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ABSTRACT

A sisple relation betveen the two-dimensional wedge pressure
cosfficients for shock and expansion is showvn to apply for the entire
hypereounic regime. As & counsequence, the hypesrsoaic smll-disturdbance
thsory expressions for these coefficients are further simplified as

are calculations of pressure distridutions on arvitrary tvo-dimsnsiomal

canfigurations at hypersonic speeds.
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SUMMARY
1 8
Over the rengs of hypersonic similarity jaremster 0.2< K< @, ‘,’,‘
the reduced pressure cosfficients for compression ani expansion hsve deen )
obumﬂc have very nearly the relationship )
d
e + & » yel (1)
Py i
where EP and Ep ars calculated results of two-dimensiomsl hypersomic 2|
c e .
small-disturbance tboory.(l)(e) I¢ is denoustrated that for K > 1.4 «:
T 2 ]
¥ yel o+ (2) ;
Pe y K &
q
d
and 53
' 2l
T & e (3)
’e y K

Thege reduced pressure coefficiertis give substantially ths sems force

Y
PR, I Y

coefficients for simples convex airfoil shapes as those given by either
tw -dimensional hypersoni-c small.iisturbance theory or by shock=-

exparsion theory. Their use permits counsiderable savings in coxpu-

. Mv;xiu

tation time in calculating force ~ocefficlents for tvo-dimensional

airfoils. Agreexment vith limitel test lata is good.
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I. INTRODUCTION ‘
[
2
The pressure coefficients for tvo-dimensional flow over the hyper- \

sonic regime 0.5 < Kg @ have beer derived by various .utbor-(l’e’”
basec on the idees of hypersomi-s small-disturbance theocry. The applice- A
tion of these coefficients to specific two-dimensional airfolls has been

wmade for K < 1.C by Dorrtnco(h) for essentlally isentropic flove and by
Linull(” for 0.1 < K< 10.

The present paper introduces approximations for pressure coe!fi-

‘exaet' tvo-dimsnsional hypevsonic smll-disturbance values. The
present equations are simple; in addition an axpress.on relating the

|
]
i
]
ciente wvhich in gensral are within tvo percent of shock-expamsicvo ar :;J
[]
hypersonic siallarity paremster X before and after an expansion 1is i

derived and sOme remarks on the corresponding compreseion relationship
are made. The result is a sisplified practical way of calculating the

forces on tvo-dimensional airfoils over the entire range of speeds repre-

sented by 0.5 < K< oo vithin the fremevork ~f the tvo-1imsnsional hyper-
sonic smalil-disturbance theory.

An apalysis of the compression pbsnomenom for the isentropic expan.
siou and cowmparison vith obliqunw shock compression is made. An investi-

@tiocn imto the flov pheoomenon as to why ‘c’p IS Z!P = y+l {s mde. The

¢ ¢
relationship detween several theories is drought out together vith the

___present caloculations. — -

The derivation of the forces on two-dimensional flat plate by use

of the piston smlogy is mrde. The results agree vell with those of

tvo-dimensional hypersonic smll-disturvence theory, for X

proximetely.

-2.0, ap-

- ey o R [ & ‘-.&!"
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II. DISCUS-ION

To bring cut the deviations of'Epc + T . froc the sum y+1, it is
pertiment to study .either the Jerivatives of each coafficient and coupare
their variation vith K, Or to examine the derivatives of the sum. The
latter approsch is sade here,

Por K< 1.0 Ske f]ov is isantropic for compression as wll ag expan-
sion., Thie has been eatablishad dy Buu-nn(” to the seccnd orier end

by Dorruco(k) %0 the first order in % and is shown in Fig. 1. Both

.Lm..g_..é.ma LnAl 1. = aametanso e Ble

theoretica)l treatments follow,

Including the second nrder it flov deflection, Busemsnn gives

cp = C %eC,0 (ba)
c
and
2 |
c = -C,%+C.8 ()
P 1 2
e
fron whieh
CrEa - 20, ()
Rc po h
\
uh.,.(ﬁ,
~ ¢
[ ]
l /"""'."—'.
VAR' a |
vV e
and

' - s)\‘ L4
S (um >} % Moo
2 200, - 1)

[ ]
This snggestion is acknovledgel with thanks to Dr. W. D. Hayes,
Associate Professor of Aero. Eng., Princetor University.

i * v % . p
P 2 ‘.! -“é‘u‘ }:‘ -3 ‘.&ﬁ'ﬂk"’ v M &% $0Y



P~101]1
1-15-57

Hence the Jderivative ia

e X

LM
d | o h 2
w (3 T )= V(e )V3 - - (Ley)K 22 o
oo Pe : Pe (;m-l) | 7 m (;w'l) L e J

e

3 (6)
J )
vhere Mm- Kmlb , Vhich 1is ulid()) for bn.x( 5 <%, 1.3 < uw< 13
or essentially for Iw < 1.0 (alsc see Fig. 1). It is alwvays negative,
increasing positively toward zero, so that as Mw o0, it is sero.

ulton.(’) has tedulated C, (or b, of Ref. 3, Tudble 3) over ths renge

2
of Mach mumber 1.1 < Mmf. 100, However, since the flow is postulated
as isentropic, the Geflectisn angle muct de kept small encugh so that
Koo < 1.0 approximtely. Figwe 2 shows the effect of b on the varia-
ion of 2!:2 with Km. It mast be noted that the effect of b is rather
pronounced but the valwes of &2 are nonstheless in agreemsnt with the
other curves shovn. (Purtber remsrks on validity vill subsequeutly
follov.) The preceding indicates that provided K = 0(1), the Mach
mber caa incresse indefinitely and still provide resscoadls egree-
asnt vith otler pertinent isemtropic theories.
Sorraace has shown [R.f. h, Eg. (29)\‘l , tmt for essentially esen-

tropic flows, Kcn < 1.0, I!O >.3.19, that

E - 2 . *1* lx (T)
SR anhde 2 g
and
8 P -i‘&l -%’:‘ (8‘
p. Km 2 oo ’

Prom vhleh ¥ + & wyeland —— (T + ¥ ) « 0. This result is
pC pQ a kw pC p.
{ndicated in *ig. 2.

PR PPOT N
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TII. TWO-DIMENSIONAL HYFFRCCONIC MALL-DISTURBANCE "dHE RY

A rnimilar analysis bdbased on the results ¢f hypsrsonic small-
disturbance t}nory(l)(e) can b¢ made. The results are valiid for
0.3< K+ 0o and bence coxplement an! axtend the {seatropic treatment.

The equations are

- s # 1 L
A A » B (2)
¢ i ¢

for oblique shocks arnd

o '

" & .
2 R -1 y-
e TR R Eo5eT
or > (10)

2
Py T T2 D

for isentropic expansion. The derivative is negative for K < 0.4,
becomes positive for C.k . K < 2.%° and ther negative once sgain for

2,3% <« X @@. Hcovever, unlike the Busemann approximation which Jje-

pends upon ?, the greates® aiffervnce betveen Ep + fp anl p+l1 1s

c °
edout .€ percent at ¥ « 2.7 over *he range C.2 - K - o (Pig. 2).
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IV. COMPARISOA BEIWEEN [ - NTROPIC AND _AOCK COMPRECSIORN

To gain an ﬁxsuht as o the phenomenon l'p + L'p = y+1, 1t was
thought vorthvhih' iovestigating the 1aentropiz com;euion ia the
region .2 < K< oo apd corparing wi‘h the odlique shock compression,
Lq. (7). . -

Results *akes on the form of pressure, 4demsity, tempersture, Mach
number sn! velocity variations with Kao and comparing them,

The isentropic compressiorn coefficlemt is dy iefinition

i— _ -\

{ -l M Y~-a

~ 2 | s C ﬁ— “fn l 1 ll 1

I e R R 2 g - (1)
‘® o |

Prom Pq. (32) (whick follows) we have % - E-l-— + 1%1 Zrom vhick
(%)

X = S (12}

1&1-2-1-Km

[ 3

Putting £q. (12) intc 2q. (11) and dividing by b2 gives

P

n
P
{ 8'
~

-1 (13)

= |
= )

It 1a {rteresting tc leviate briefly an! note that for & < <

*

"his euggestion vas mace by Dr. C. Gezley, Jr., ‘erodynamicist,
The RAN. Corporation, and 1s a“knovleigsd vith thmnks.

LS, A S V! REp
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(

c, --?-i(1¢%—n -1'f (1)

0

fquation (14) 1s reasomably good ever to § 85 smll as unity where it
is about 10 percent high ae compersd to the value given dy Bq. (17)
with 3 » .1 radians and agrees even be'ter with Bq., (9) for B 1.0

(Pig. 1). It 13 to be noted from Eg. (1Y) that

- (1»1-‘-3::0,,)-71'-I (13)

which {s similar in form to

’/ : -1 7-i 2 -
\-px—‘ = (1 - L < 301 (16)
= 2

the result obotaine’ for isentropic expansiou by Cole ;Rof. 2, Bq. (6-16)! .

In fact, if coupnuivc and expna've flows are designated by positive
and negative K )O?gorresmom‘ing respectively to positive or nega-
tive slope, + %), By. (1%) represente doth compreseiov and expansion,
reapectively,

The reduced pressure coefricient tased oa egs. (2), (%), (&), (7).
(8), (9), (10), (13) and (1) are plotte’ in Fig. 1.

We proceed vith comparison of pressure, temperature, density and

velocity ratios bese! or ooth isantropic and oblique shock corpressions.

The remmining i{seniropic gas propertise were calculatsd from Eq. (15)

by using

. L {10)
It can easily be shown that Lignthill's Eq. (&) ’

are identical, though not the same in appearance.

and 8q. (15)

— —
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. Y - o=
i (;,—‘-)7ZI (a7
p& poo = o)

The velocity retio can be calculated by use of the energy
equation, together with the static temperature ratio obtained froa

Eq. (17). The energy equation is

2 v
F-+Cp'1' - %olp‘rm (18)
Rearranging ve get
2 206.0% g \
v ) @® by
Cand LAt -+ T b
oo Vao \'o0
froa vhich
/[ 2 . .
"' 2b ! T ’
T - /1- —>~ = -1 {17)
oo / (7-1)£m e o)

It ie {nteresting *0c calculate Eq. (17) in the hypersonic smsli-

Aisturbance limit

(7 2 -1 ) N
P N (L TN N
- I .
5y
o / (7-1),(& ! 2 if‘;
) ¢ ;z
/ 1 2
* ©
N ’ .
For :’b-: l, 7, «< 1,
/ - 2
v.Y.. - J1- (15-1-)?& (1m)
20

m.@J‘M by .
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T™e cblique-shock properties are now calculated, Prca Eq. (9)

i wandhiadhd

r

y K2 . e
5L.1+-—-§91T1%-1-*/’(Z§l)+(f2—) l (20)

Ny the Rankine-Nugonioct relationship, the density ratio 1is

1 + L‘% —2—
r- Poo
L . ~ (21)
Peo LT + 2=
r- Py
and by the equation of state we get the shock temperature ratio ﬁ
m Poo 3
— . (2 (=) (22)
" Fe ° 4

Por the velocity retio we see (from 7ig. 3)

@ U w_ - \ @ b/
7V, ‘ .
- ,/7"\—' ur oy — =V
@ — ‘:. ,_.&-“""'L(‘ 7
— ——— -———T = —Z ;'i vl | ) VS .
i 4
/ 8 J
Pigure 3

that the velocity V after the shock is

2 2 2 N 2
/7 = v cos 9v+(»m slnev-u,)

(23)

vhere u_, the perturbaticn valocity folloving the shock vave, is

relatec to the normal veloeity u, produced dy the slope 3, by
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“n Vm o,
[ " (2!*)
s cos(V - cos(o -
Substituting Bq. (24) icto =q. (2%) we have
2 2
in @ v ()
2 2 S
P e V2 conf e, e VP atn” 0, - AV B ety o — P
5 o = v cos (0' - 8)
Hence
V2 2
—~ * 1-2860 +9 (2=)
Yo
aseurirg s.mll angles 8 anc @ . From q. (7) ve have
GV
Ep‘_ - 2 Upc (y,K) (")
0 tha'
. /1-55(3 - 1) (2¢)
T
(o ¢] v (o]
\J / 2
™ = J1-78 (2%)
®

lduls K = o0

Equation (27a) is quite similar ip form to ¥q. (17@). The rela'ions
expressel by Rqs. (1%), (17), (1), {(2¢), (21), (22), and (2€) are
plotted in Pigs. La and 5b,

rrom Fig. 44 the pressure rise in isentropic lov is greater

thar that for obtlique zbick compression previously noted b, :Aitonc())
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for X - 1.4. It is note: that for X - 1.%, *here is r£o large dif’erence

in pressure retic for either t ype of coumpresaion, & phenonenon notel by

h
mAn) vruerl.( 1(5) Sirce p/pm lue %0 shock ccnpression is propor-icnal

-
te K™, Pq. (70), then as ¥ — ac, Ep tenis ‘v & T'rite lia!*. On the
i ¢

other hwr!, anon-viscous theoOry shovws that ‘he lsentropir pressure reatl

- 7 -
151. (1) 18 proportional tc K asw & = o, Lance Cp tenis tc infinity.

~

The tenpereture an! velocity ratios 1ndi-a*e the nature of the dissipa-

tive shock flow when comparel to the rospective isentropic relations.

PGSy, PV

The temperature rise {s higher for oblique shock vaves thau for fsentropic

*low, The velocitly decrease 13 cmlig}or smmll flov defiections charec-

~alil 5y

teristic 07 the small-iisturdance cblique thccks ccnsiicre’ ani even less

e alies <t Al v TR . b, s Y 2 K = ML ..‘Ja.va" .&J

3 for iserntropic flow, It should be notel that for cenvenience, K is
{

_‘ generally use” for E:m although stri tly aspeaking, the latcter is the
3

i free-streazr s!milaritv parame-er.

2

|

3

%
#

1

v

1

d

o4 .

-
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V. RFGION OF VALIDITY OF 15ERTRCPIC FLOM

™e regime of Mach mmber-dellection angle over which sbock flov
can be assumsd to be isentropic is investigated belcv (although this
has been dome frox slightly different viewpoints prtvlously(l.)(s)).
Frem Pig. 1, 1t is evident that for K < 1.0, ‘hy limiting isertropic
compression coefficipnt, Bq. (1s), (for 5 = 0°) and the shock coef-
ficlient, 2q. (%), are substantially the same. Cipce Ko:; =M%, and
since the two-dimnsional hyperscnic smll-disturbance thesory 1is
valis for 8 - -1 say & « C.2, several important 3elucticrs carn de
wade. The {ire* !4 thut Epc - —2:-! > 7.9 for luentropic coapreseion
(at ¥ @ 4.C). The corrssponiing Mach number ncrmal to “he shock is
M sin °v - M Ov LI ;1 frow which M Gv e 1.75 (and Jecreases vith
iecreasing K).

The above cosera*ions reeult 1, Fig., ., "™he upper small-
2ieturbance limit for 5 is taken as C.2 Mmilaps, vhile the lower
liznit is & =» O, The left-hand lim!t is for shock attachment vhile
the right-han) limit becomes & = C as M > @,

An important featwe of the ficv mentioned briefly above, is
that isentropic coapression resul’s iu less compression than shock
compression Delov i < 1.0 approximestely, for b >- O (Jeper'ing on
the magnitul=s of ¢), although the reverse i{s ‘rue for K > 1.0 (Pig.
“a). It is meern that the greater the flov ceviation in ieentropic

(3]

compressive flov, the less ‘he compression. Laitope ip coxparing

approximite sclutions of cblique shock ani isectropic compression

indicate: this K ef“ec* {in a Jifferent wvay, That (s, for smll Zlov

A 2 2 V.

e

" _1'37“’. y

e >
L

& s
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deflections and for Ruo - 1.82, isentropic compression produces
greater pressur« ircreas=s than the oblique shock wave even for very
small deflection angles. Yowevar, ‘or M~ 2.5, the oblique shock
wave produces a much smaller pressure increase than isentropic com-
pression, even for very large flowv deviations.
The value of Fig, © is brought out in Pig. 1, by observing
Busemann's results. That is, in order tc establigh the validity
of Busemann's results in the Ep - K plane, an example calculation,
5 = C.10, and (.01, vas taken. fHere i' is seen that for K < 1.0,
the results of this thacry 0 not differ greatly from the others shown,
{n fact, agrees to within 6.3 percent cof the isentropic compression
value of iq. (1%3) for » = 0,10 at X = 1.0, and hence {s closaly
relate! *o other theori=s. J* must ¢ noted that the Busemann
result varies scmevha* with flov deviation selected, although ouly
for X< .9, For example, for 5 = 0,10 the compression an. expansion
coefficients are higher than those fcr » = 0.0l by 15 percent and 1b
yarcent at K = 0,20 but these iifrferences decrease until Tor K > 0.5%0
they are negligiole. The agreemen’ between 3Jusemann's results for
% = .01 and the other {sentropic reaults at K a (.20 is excallent,
It appeers, trec, thal for a selacted X, “vsemamm's solutior agrees
better with cther theories as © - O, even thougn M > . This
survrising result leads o072 tc velieve that the smll-perturbetion
effect is perhape wore iomipant than the Mach number effect, at least
in taies case., Figure 5 indicstes “ae Mach nusber-deflectior angle

relationship grephically for isentropic flow, for X = 1.0,

it 1s notel that Eq. (13) provides a rew sclution for the regize of
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13
K > 1, as vell as fitting into the previocus theories for K< 1.0,
Obviously, Eq. (13) does not break down at high K and is seen to go
beyond the bounlis of Pig. 5 (for exmiple the solutior for & e (.10

for K > 1.0).
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Vi. CHANGE OF SIMILARITY PARAMETER THROUGH A SHOCK OR AN EXPARSION

It has been previously pointed ont(:‘) that for essentially isen-
tropic flowv vhere K < 1.0, M - - 3.19, that pressure coefficients can be
calculated and integrate. over tvo-dirensioral airfoils to obtain force s
coefficients vithout regard to the number ard type of vave fronts pre-
ceding the local slope (see Ref. 4, Eq. (29)). Because of isent-oyy,
it 1s poseidle to calculate free-strean pressure coefficients as a
function of Kaa based On Hm and locsl slope which in turn makes por-
sidle the closed form solutions for verious shaped airfoilr. This
technique is used i{n gettimg force coefficients in linear tvo-dimen-
sioonl flows and has been knowvn for soms ti-.(6)

Hovever, for XK -~ -Té’-I , the flowv is characterized dy strong shocks
and it 4s no longer possidble to disregard the shock fronts, consequently
it has not been possidle *to relate the local pressure coefficient directly
to free-streax copditions in closed orm, It was necessary, therefore,
to find the local simiiarity paramster based on local slops and local
Mach nusber in order to calculate local pressure ratios through a vave
front. These ratios cen be related to free-stream gtatic pressure by
a consecutive series of multiplications of the local pressure ratios at
any downstream position progressing systematically upstreacz until free-
strean conditions are reachec. A closed form solution is derived in
Sec. VI11 which applies to comvex airfoils.

The relationship for the change in K through an odblique shock has
been calculated (Ref. 2, =q. (8-27)). It s useful in the development

vhich followy in . ec. VIII.
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or
v 2 L o | o
(—:’-) « 1 =k Ep”(xm) -1 {(270)
vhere Ep (K) 18 give: by =q. (9).
Thocdirvcf relationship however, be’ve~«n six=‘larity pars—c‘er
ieriveq

before ad a’ter a~ isen‘ropilc axpansion throeugh “he arygie & is

belov, The ratio of local ststic pressure ratio thrcugh an expausion

from Re?. &, EBq. (%.9)" s

1l »
L .
pa: 1 + 4

s

e

fw

~- o

Froa Ref. 2, Bq. (4-17), for R ()

2
gL 53 \
B s A s hm) (2)

Px,

Equating Eqs. (23) and (2) results in

- 2 -1 ?—‘-ET A
£ Km 7 v-1l -7%1 (30)

[ 8 o
B s we- g - G- E) :
R 2
froo which
1 - g4,
1 < o 54
E - (»‘)
X 28 .01 - 153 52)
@® ¢
\/ @
Por % <. 1, the final equaticn beccmns
1 1 -1 1 o1 .
S sl S = S

oo il



Bt SR iy A il . R Rl Lnl.‘

& -~ -
A7 1 VRRNE Y. TRRRAY e A

.

el i DN Ml bl A

W

= ..—‘s n.‘ -

-

vsing BEqs. (28) and (1°) ‘he similar expressicr for compressicn is

o (Zé.) Lo

) | ”Y
: = ( 5- /

.

/ - 2 5
Km‘/, (lolrs)'?r;‘—

v

which for e@ 1l and £ = C becOmes

R (32a)
) oc

¥quation (32) 13 sesn to agree very w=1ll with 3Zq. (27) fer & = C,

K< 1.0 {Pig. £). 1t 7ust be noted <hat Eqs. (Jla) and 32a) are
) | 1

nirror images of eact other abcut the line X" ° It is instruc-
’ oc
tive to note the limit values of -}- as -!(—1- approaches {ts minimum
s m
volue, For compressicn, as rb—r o, (i.e. lﬁco = () X remains
Y

finite due %0 the fact that Mach number decreases throuzh a shock
or in {sentropic corpression. On the other hand, for the sexpansion
process at Ku = 5.0, *he resulting X = cv, Physically, then, the
flow will expand %0 M = X vhen xoo = .0 at the begimning of an
exparsion, becauss “he local tampersature, bhence, the speed of scund
goee to zearo,

Another relationship for the change in similarity paramster
through & shock is derived in See. VIII. It is based on Egs. (2)

and (275) and ie cousideradly simpler in form.
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Vil. APPROXIMATE PRETLUR? QUEFPICIENT,

Approximate express.ons for pressure coeffici=n%t can bte lerive?d

from Eq. (9) by expanding into series wvhich corverge for both K

Tle roiical ir. Eq. (9) can De vrittern

i K ’ !
, Qlt k) 2 / I‘K vz
SEh o e ek (7

k
vhich converges for K- >eY | °

xpanding the radical on the righ*-hand si2e into & serizs results

in

——— —~ -

s

/ N ; K)° g L (7).
—— | = 1 ' - + , 2
L L

ileurc the approximate expressicn for F3. (9) becones

2
- . 2 f K b T
.pp - + t + —‘-—:, * K < "7"1 ( )
and by use of Eqs. (1) any (39) ,
2
tp - T e ;— - = K (}{")
e

3guations (%)) and (25) ars qui-e sizilar to Eqe. (7) and (2) (eee Pigs. 7

any ). The precedurw ig ~he im cr obalring Ep ir *he region

"
K - ';:Y ani reeulte in

Ep . )
c 1 2 P4
- 1l - - 4 @ —_— | ’ (:—’)
7+l (K oK) (") |

s & . - Mo ek 1\0&?4‘
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and
]
...Ip".- S SRR W Ji 1N (38)
7+ (h‘)2 ('-vx)” 7-’.I - N e
-« - < K> i /..Z_.
K r AR ol B
It can be shown that 7  calculated by Eq. (38) is equal to
Pe 3
that for tctal vacuwm for K = = /—L—  and 1s less for K

/ ,’ 7- ,'—’

Zreater than this value. This is not physically possible. In this

case, the ©_  wag taken as aqual tc - —2--2 which correspords tc p = O,
Fa 7y K .

“TOm an enginesring viewpoint, there is no practical difference essen-
tially in force ccefficients calculste: by Eqs. (37) and (%3) and those
0y 'exact' swall-iileturocance theory, Eqs. (G) and (0). Examples of
force coefficients calculated by Eqs. (2), (3), (%5), (36), (37) and

(35) will follov (Pigs. 7, 8, 10, 11, 12 and 13).
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VIII. PRESSURE DISTRIBUTIOR OVER A CONVEX AIRFPOIL

As mentioned in See, VI, a closed form solutien for convex airfoils
vill be derived using present results. For K > 1 there wvill be a strong
attached shock on either or both sides of a thin airfoil in supersounic
flov. Thus a method of relating the local pressure, p, to the free-
strean pressure P’ 1s needed to compute the aerodymamic coefficients.
Only the mormal force coefficient is treated here, it being typical.
Other coefficients can be similarly cslculated. A selected airfoil of

arbitrery convex shape at angle of attack is shown in Pig. 9.

Y

/{'514,1. 0 5‘

|
|
|
|

Yigure O - Schematic of an Airfoil st Angle of Attack

The following treats the selected case of a strong shock followed

by an isemtropic expsnsion (or one side of the airfoil). Using Eg. (2)

results in
B " %,
Pw o 1 ¢ ——!—-——
7(7*1)t2
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FProx Eq. (16) ve have for isentrcpic expansion
| &
2 (1 - izg.l.l < <2
2
= Ko = y-1
(16)
Using Eq. (27b) ve get for the similarity parameter ratio through s
shock ‘
‘K \2 ~ —_
{ 00 -1 |- |
- 1 { x -
N 22 ‘,_c"c( o) - 1 (2®)

vhich is sixplified by substituting Eq. (2). Solving for K wve get

K- /- £ (50)
/" vy (y-1) +

\% @

The result of Eq. (40) 1s plotted in Fig. 6.

Tt must be noted that the characteristic angle (for K ) in
£q. (40) is based on the initial angle between lsading-edge slope
and free-stream, This le differs, in general, for the upper

and lower surfaces and is respectively,

5 -3 -a |

= - 5 ‘00: (hl)
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Bov Eq. (1F) 1is applicable (n the isentropie regionr aftar the shock.

In notetion of the ratioc of the pressure at the 1?.2: point tC that

immsdiately behind the shock

N~

(52)
The ratio of the pressure P at 1"h point to that immediately behind
the shock p s expressed in terms Of the knovwr quantities X after the
shock and the net change in slopes or net turning angle. The Mach number
M irmediately after the shock is readily calculate? by divi‘iing Eq. (&0)
by Pqs. (41) for the upper and lower surfaces, respectively. By couse-

cative multiplication

p 7P ’
i S S (63)
Poo P Py

— y —
i
1 {
Py 1 (7-1)[61-6”_0' [ Dy b S
cp— - - z ’ xm e 2 ]
(3 o) =0 Ko (y=1)e ' X =0 |

. \I w!lQ.J L —
(k)

It must be noted that 5, is <he only variable with chordivise position

1
for either surface. The normml force coefficient e

‘ P, =P
. =2 S S (45)
" e;i o o
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2
Hence E' can be calculated by subetituting Eq. (4Li4) (applied to wpper )
ani lower surfaces) into Bq. (%%). Explicitly ":1

E - 2 1 -
) ’Ioo g b E—(:m /;T(Pl) + 2! .
O 1) ! J' w'.:’x-;J 1
|
l I _j % d
(y-1)(8 -5 ) S -

Q‘Z%ﬁﬂxi /x-ol- i - = & -1 |

' ' ’ "u,x=0 y“(y-l) ¢¥_]_‘

| v ® ,u,x-odi

i +1 .
AL ﬁé_—z Ki:t,u,r.-c L (46)

- y W 2o B(&(',i = ,x-o) , X=0 u, 1’

(@1}

o E\
(46a)

vhere the only variadblise are

a - 3
SRR B )

|-

u, !

and all the other quantities,A, 8, °, D, are fixed {or » selected free-
strean Mach nwwer, angle of attack, profile and ratio of specific heats.

POor a symmetric airfoil ebout “hs chord iine, local siopes at a given
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chordvise gstation are reiated bdy
Bja ™ " Y,4¢ .

Por the case of no shock wvave at the leading edge, Eg. (1£) is dlpectly

applicabie.
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IX. RESULTS

The 7lat Plate

The flat plate (wvhere X = ¥ a) i{s espacially easy to treat,
In this case, *he 1lift¢ and drag can be calculated by the use of
: L
Eqe. (3%) anl (35) for K< 73T » end by 5qs. 137) an2 (*R) for
h
K > s, HEowever, the case for ¥ - 1.k, results in an ex‘remely

simpls expression for 5! naryly from Ege. (2) and (3) ve get

(83)

-

- (T‘l)iv-——g—
y K

The results of 3q. (¥;) are plottei in rig. (7) sleng with thoee cof
tvo-dimenszional hyperscnic ammll-disturdance theory, linzar theory
and the {sertropic results from i2qs. (7), (8), (%), (3€), (37) snd (38).
It must b2 noted thst m'calcu“atim -" for a flet plate, for
example, tue expression for E‘N' Eqg. (43) is the most practical to
use (X > 1.4). The axpression “or pressure coefficlents as expressel
oy Eqs. (2) and (3) are *he sirrlest in practice and involve rnéli-
gidle error for X - 1.5, for all cases vorked out herein.
It appears that the combimation of Egqs. (2), (3), (3%) and (30)
chieve excellent agreemen' vith other thecries ‘hroughout the entire
rauge of K. The simplicity of Zq. (87) salong with the accuracy shown
ir Fig. 7 makes 1t useful to X as low as 1.4 an. with lees than 5
percent iifference from the 'exact' Eqs. (5) and (10). It will be noted

that



P-1C11
1-15=27

Ry
E’u N aa (-0)

for a flat piste, vithin the smll-sngle approximation.

). Double Ve lge

A comparisor of theory and test {o mnle i~ Figs. 10 and 1.
Calculations using Pgs. (3% anl (%) for K - 1.+ ard Kos. (2, and
(3) for K > 1.4 are compare! with thceée of shock-expanciocu theory aad
respults of vind-tummel tests on a doudle-vedge airfcil viti an aspect
ratic equal %o one ir the langley ll-inch hypersonic wind turmel. In

geusra]l, the present method is in goo? agreexnert with shock-expansicn

‘thecry, the error verying from C at G = P10 1.9 percent high at @ = 2‘~°

for SLe The same treni holis for C_ vith the maximam error varying

D
frcm C at G = 0 to about one-half perrent at Q » 2h°.

T™e Modiified Half "‘di’_

The present results are compared vith the theory of Cole and
Van Dyke as well a8 the shock-expansion ueory for a modifiec nalf
veige for M_ = 18 1n *igs. 12 and 135. The differences in “he results
are not thought sigmificant, there being gensral agreement over the

rangs of angle of attack shown,

% 4.
Awka®a o

o il
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IX., CORCLUSIORS

The folloving sspectos of flov for (.2 < K < oo have been pointed

1., There !{s a uniqua rehuonahimctncn the reduced pressure

coufficlents & + T ® y+2 ¢Oer the range 0.2« K< .

C p.

2. The {(sentropic region of lineer eri secend-orier theories
is a Aunction of ¥ arnd U (Fig. 5). The Mach nwier can be much greater
t'an one for isen‘ropy.

3. The lL.n‘ting cnse of lgentropic compreceion 5 « 0, 1s a guide
to tha bebavior of the oblique-shock phinc=enon for C.2« X < w, boing
cearly ¢qusl tc oblique shocx in nature for X < 1.0 and indicating the
nature of ar upper bour! for reversidle ‘compressive flows for K > 1.0,

L, "e use of Egs. (2), (3), (2<) and (*¥) are quite accurate

for engineering caiculations fcr surprisingly lurge flow Jeviations

vhen compared tc limite ' *est iata, as wvell as cther thecries, for

0."f_‘5m

JRE-ge Gy

R OO S

Bl Aade, st ate. aladh ot
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AN APPLICATION OF PISTON FLOW TO TWO-DIMERSIONAL HYPERSONIC FLOW

The flows in two 2d jacent planes parallel to each other and
normal to the flight pnth. (velocity vecter) are essentially indepen-
dent of each other, since it can be shown that at hypersomic speeds,
the time for = sound wave to traverse the (ilstance betveen these
planes 1s large compare? tc the time for the wedge or body to pass

through them, .o, in the rntio,]i . The flov a* any fixed plane

({n spuce) appears almogt independent of adjacent tradsverse planes
snd depends only upon the time history of the dody as it passes by,

Consequently, Zor a tvo-dimensional wing, a Tixed observer secs the

el

motion of s gns similar to that genersted by e piston moving in a

.

long tﬁo.(e)(g) The durstion of pilston motion is c/vw and the
vertical position of the 'piston' is a funttion of time,
The pistou problem bas been solved by J. D. cm(z) and can

be applied to two-dimensiomml hypersonic flows.

The following will be devoted t0 this application and will
fisally be compared vith the results of tvo-dn-nuomi hyﬁrmic
small-disturbance theory (Cole, van Dyke). Figure 14 i1llustrates

the shock phenomsmon, simulated by a piston movimg upward.

VUGS SO W eV RPN

:
|
]
Fig. I A Tvo-Dimensional Coxpression "CJ

L= o sl - e
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The mass above the piston is
y
{ -2—/ Pop % dy 1z (1-1)
P
The ferce of the piston on the air s
4 {p°
® & I si-\ Peo dxdy.dz % (1-2§ ,
Siace
dy = Vv &t (I-%a)
and
% - \'m & - " (Io))
by substituting Bqe. (I-3) into (I-2) and integrating,
B ut
r..‘.ﬂ..';pmv 5 Ay (‘ dx
P J
t
e
2 o ,
B .DL (pm) ¥ ) «Ss(u' - up,, (T-%)
o
Yros Ref. 2, Bq. (%-24),
[yl /( »127 e 2 -
N ‘\zl"/’ ¥ / {\I'i'l' ¥ * %o (x-5)
and noting that
t = ;‘S— ] (1'6)
o

T NS

PN

&~

. alad
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the total time of impulse, by substitution of Eqs. (I-5) and (I-9)
into Bg. (1-b),

| ' -3) ¢ / 1)~ .2
? - (;F;) k!’m ‘.’i\“ ds 2 | L R / (ZE—/ 3

*;é'l
L .|

Pros Bq. (20)

'
1 +1 2
t.l.zip_l?”x‘/u(zrjr (1-8)
anl from Raakise-Rugoniot shock theory, 2q. (21), we bave

1l (%%:'.-2

Pm-
Lo - v S - (1-9)
4
°m 5:1 $ 52-

-

Esnce swbstituting Bq. (I-8) imto (1-9) and them (I-%) into (I-7),

g - v!' —» - T

’pm‘wc".zb e
4N +1 p
o el fl’z;-Tp ‘]
- 2(\1’72\ "/\zl'ﬂ ‘1‘) i z;h.‘._w
e IR U ™ __J

P‘(ﬁ)("‘w‘z*r!;éh (%;EKZT’ (1-10)




—~

. o x

P-1011
1-13-57
20
It v1)1l b= noted that
lim EI‘ o 7+l (1-11)
K-> @
vhich is 8 well-known hypersomic result. Squation (I-10) expresses
the force coefficient ir hypersonic similarity ferx, of the piston on
the gas; hence it is also the foree of the gns on the piston and is e
positive force for positive 3. Comparison vith the results of hyper-
sonic-smll disturbance thoory, Bg. (5), is deferred umtil hicr.
The folloving is the case for the vithdraving piston at coastant
speed, Y which simulates the expansior side of a two-dimensiousal

flat plate., Pigure 15 illustrates tlis situstioa.

Moch fan

|

Fig. 15 A Tvo-Dimensiocoal Txpansion

Iz this case, both the velocity and ths speed of sound along the x

axis vary linml.y(2) through the far so that kq. (I-2) upon imtegra-

‘

tion becomss %
.wT R &

7 = P Vw az ] (-’Lll u 4x (1-12) ;

J oo P

(5'5)‘ i

'.p
-
-
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Simce “hi¢ is an isentropic flov
7Y
4 y-
£ . (s) (1-1%)
o Voo

and in the expacsion fan [see Ret. 2, taq, (E~5a), anc (t‘-ib)].

4
lmt-x ]
& = g +

@ :‘t-(g’-u'Tf(*P..

(1-14) -
Imt - X !
a =
Y lmt . (5-%7{ ’
3
Noting that u, - up «- -8 Voo 377 substituting Eqs. (I-1%) and (1-14) :

into Eq. (1-12), we get

2
me; & 4: (:mt ﬁ (.Qt - 2)(ag - L lm" ‘ot - x )
b E - @ * ot - (& | 3 t-(g,-upxj“
JT L J o= )
(o) _—

whick Vheo intagrated hecoumss

: +1
1 - {l - ’l ‘)h ’:}
—

-2

et e

J_
(1-15)
vhick {s the force of the plston oa the airflow tlrough the 2 XDeLS .on
fas.
(1 [ 2.7
T e = . - 7 1 - (2 x)”"» K< 2
vmﬂtl‘l‘r",%— - 5 =

- 0

(1-17)
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P=1C11 i

11597 ’

r A

* Yor K > ;%T 1t will b= ncte” tbat Eq. (I-17) agrees exactly with Cole's -%
result, Bq. (S). 3

(@]

[ ]

'
of
|
J'.)
.
(g4

(1-18)

e y ¥ e

In swrming up the present resul's cf the piston applieation fer

v o d

compression, 7. (1-i0), a.: expansiom, 2qQ. (i-17), 1t s seen tha:

Aoy an '.QM.E;Q &

they compare Zavorsally vith bypersonic small-disturbance theory,

.

P L TR

except ‘or ‘ns avpansion case for K- 2.7, At K = 1.C the pr-aen:

expans lor reeult is 45 percent lov vhile st K « 2.0 1t ts& le percent

3 Wy

«

lov as cocparel with - Ep of Bq. (10). This taken *c be er imAica-
e
*fov that at K« 2.0, the ilea o7 ‘nierencient flovs ir the transverse

i 8

ltrectin:. {5 being viclate1 L0 ar eppreciladle 2agree for expansive
fiovs. The shock resulta of the pistor, Zq. (I-1C), agree very vell
vi‘% the smmll-disturbance result ¢f ¥q. (9), throughout <he range

1.0« K- a.

" 4
« e 41*.‘...,:4&5&11;32.

A
-

It should be noted that the reiations expressed by Bqe. (I-%)

for w,, sod K. [1-8) tor p/’m’ can be evalumted by By. (2). The

Y
.L.“.“

force coefficient for e pistcn in compreseior (correspending to

-

[OPNSYS- =5

q. (I-10)) {s then

' 1 zgsnz ]
T e (y-l 4+ =S) i_*llzf'[ ; T 35 * 2
P | L 2ize2) ¢

(I-10)

[ v LMD — |

Mam‘(-ulmlufa:“mﬂbwdo -
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