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SUMMARY 

Consider a syetem S specified at any time t by a finite 

dimensional vector x(t) satisfying a vector differential 

equation dx/dt ■ g(x,r(t)lf(t)), x(O) - c, where c Is the 

Initial stat^;,  r(t)  lc a random forcing term possessing a 

known distribution, and f(t) Is a forcing term chosen, via a 

feedback process, so as to minimize the expected value of a 

functional J(x) ■ z^7 h(x - y,t)dG(t), where y(t)  Is a 

known function, or chosen so as to minimize the functional 

defined by the probability that Max  h(x - y,t) exceed a 
0<t<T 

specified bound. 

It Is shown how the functional equation technique of 

dynamic programming may be used to obtain a .lew computational 

and analytic approach to problems of this genre.    The  limited 

memory capacity of present-day digital computers limits the 

successful application of these  techniques  to first and second 

order systems at the moment, with  limited application  to higher 

order systems. 
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DYNAMIC PROGRAKMINQ AND STOCHASTIC CONTROL PROCESSES 

Richard Bellman 

1.  Introduction 

In this paper, we wish to Indicate the application of the 

functional equation techniques of the theory of dynamic pro- 

gramming to the formulation and computational solution of 

various types of varlatlonal proolems arising In the study of 

control processes with stochastic elements. Although the 

methods displayed below are Intimately related to those we have 

previously presented In connection with deterministic control 

processes; cf. [l] , [2], [3], as might be expected, the pre£3nce 

of stochastic effects Introduces new difficulties of both 

conceptual and analytic nature which must te carefully examined. 

A fundamental problem, arlslnp; In numerous applications, 

la that of determining feedback control which will neutralize 

random dlsturtances. These disturbing Influences are usually 

called "noise." 

Here we shall consider the followlnp- oartlcular version of 

this general question.  Let S be a physical system, specified 

at any time t by a finite dimensional vector x(t).  This 

vector Is determined as a function of tine, anj the Initial 

state of the system, by means of the '!lfferentlal equation 

(1)      ^ " S(x,r(t)).  x(0) - c. 

The  function    r(t)     appearing on  the   rl^ht  Is a random function 

of  time  with  known  properties. 
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We shall not discuss here the far more difficult questions 

which arise from the study of processes In which r(t)  Is only 

Imperfectly known Initially, and Is then determined more and 

more accurately as the process continues. The reader Interested 

In these matters will find discussions of this type of problems 

and further references in Rolblns, |l5] , and Bellman and Kalaba, 

A particularly Important case, from the standpoint of both 

analysis and application, Is that where g(x,r(t))  Is linear 

In both x and r(t). Tine equation In (l) then has the simple 

form 

(2)      f£ . Ax + r(t),  x(0) - c. 

A rigorous formulation of the theory of nonlinear differential 

equations with  stochastic elements  presents certain difficulties 

which we shall not enter into here  for reasons we shall detail 

below.    The  linear equation,  however,  has been treated at great 

length In a numrer of capers  In  full   rigor;  cf.   Doob,   Jfl ;  see, 

also,   [Q] ,  and  the recent papers of Booton,   52| t   &3 •     Equations 

of the form    dx/dt •  (A •♦' R(t))x,     where    R(t)     Is a  random 

matrix can also be treated In some  detail. 

We are primarily interested here  In the case where 

g(x,r(t))    Is nonlinear, or where  other nonllnearltles arise. 

In a fashion we  shall discuss below,   to a sufficient  degree to 

destroy any hope  of using explicit  analytic solutions  to 

resolve control  nroblems. 
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To counteract the Influence of    r(t),    and simultaneously 

to direct the unperturbed system alonp; more desirable  lines, we 

introduce  "feedback control"  In the  form of a vector function 

v(t).    The defining; function nov; has  the form 

(3) 3I- g(x,r(t), v(t)K    x(0)  . c, 

where v(t)  Is a function of the statp of the system at time 

t and the time  t  Itself, I.e.,  v(t) ■ v(x(t),t). 

Let us denote by y(t) the solution of the unperturbed- 

uncontrolled equation 

(4) ^ - g(y), y(0) - c. 

In some cases, we may wlön to keen x close to y ever the 

time Interval  (0,T). We agree then to measure the deviation 

from y by means of a functional of the form 

(5) J(v) -y>T h(x -y)dO(t), 

where    h(z)     Is a scalar function  of the vector    z.     Ey  Intro- 

ducing a step discontinuity at    t  ■ T,     we can  combine  deviation 

over the  Interval with terminal  control. 

At other times,   the function     y    need not  re a  solution of 

the unperturbed system,  but merely  a deslraVle state of  the 

system.     In both  cases,  we see  that wc  wish to determine the 

control  vector    v(t)    so as  to minimize  a prescribed functional 

of    x    and    v    which  can be written 
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(6) J(v) ./Th(x,v,r)dQ(t). 

Since the functional  Itself will    e.  In general, a stochastic 

quantity.  In order to make  this  statement precise we must first 

average    J(v),    In some suitable fashion,  over the class of 

random functions which occur.     The problem we wish  to consider 

Is that of minimizing this expected value of a function of    J(v), 

subject  to constraints on    v(t). 

A rlporous formulation of varlatlonal problems Involving 

stochastic  functions la af,aln a matter of some  difficulty.    We 

shall avoid both this difficulty,  and the one mentioned concerning 

the meaning of stochastic  differential equations by considering 

only discrete  control processes.     In this way,  we replace 

differential  equations by difference equations.   Integrals by 

sums,  and stochastic functions by stochastic  sequences.    The 

reason for this change  In format  lies not so much  In our desire 

to avoid  occasionally unpleasant  rigorous details,  as In our 

desire  to prepare the oroblem  for solution by means of a digital 

compucer. 

Nothing  for nothing,  however!    It Is now a matter of some 

significance  to study the  connection between  the original 

continuous procesG and the approximating discrete process.    Not 

only Is  It  Important  to know whether or not  the  respective 

minimum values  are close,  but  It  Is also Important  to know 

whether the  corresponding policies ^ ear any similarity.    Further- 

more,  the  rate of convergence  of  the discrete process to the 
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continuous process must be studied.    This is critically dependent 

upon the type of discrete approximation which is employed.    Some 

preliminary results in these directions may be found in  [l]  and 

w. 
It should constantly be kept in mind that both continuous 

and discrete processes are approximations to the actual physical 

process.    The important point  is not so much their similarity to 

each other as the value of either mathematical model  In treating 

the actual  control process. 

We shall first apply the functional equation technique to 

the general varlational problem posed above.    Then,  as a simple 

example, we shall discuss its specific application to the problem 

of determining the scalar function    v(t)    in such a way as to 

minimize the expected value of  the functional 

T ..2 (7) Z1 u^dt ♦  lu(T)| 
^0 

where    u    is  the solution of  the Van cter Pol equation with the 

forcing terms    r(t)    and    v(t), 

(8) u" + Mu2 - l)ul  + u - r(t) + v(t), 

u(0)  - c1,    u'CO)  - c2. 

To show the versatility of  the method,  we  shall  then show 

how to treat ly means of recurrence  relations the problem of 

minimizing  the probability that    J1(v) > d,    where 

(9) J,(v) - Max      ||x - y||. 
1 0<t<T 
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Here  I |z| | is the norm of z defined In one of the usual ways. 

A treatment of the deterministic version of this problem may be 

found In [5] . 

Finally, we shall discuss a case In which the random 

function r(t) possesses a correlation with the value of 

r(t - L),    Here t assumes only the values  A, ?Ä, ... . 

As a subsequent discussion of the specific equation 

mentioned above will show, the functional equation technique 

of dynamic programming furnishes a feasible computational solu- 

tion for second order systems, without regard to the analytic 

character of either the equation or the criterion function, 

.T(V).  Although equations of higher order cannot be treated at 

the moment by means of the same straightforward approach, more 

refined analytic and computational techniques recently developed 

appear to offer an approach to the successful treatment of 

control problems for higher dimensional systems; see p] , [7j . 

2.  Feedback Control as a Multistage Decision Process 

Let UG now see how we can Interpret feedback control as a 

multistage decision process. 

To beßln with, we observe c, the Initial state of the 

system, and make an initial Choice of a control vector, v(0). 

As a result of the Initial random effect,  r(0), we find our- 

selves at time A In a new state c1, determined by the 

equations governing the system, required to make a new choice of 

a control vector. This situation repeats Itself at times 

?A, "5^,  and so on. 
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The salient fact that enables us to break this complex 

process down Into a sequence of simple processes Is the dependence 

of the future upon the present, and not upon the past, or upon 

how the past became the present. Starting from any state at any 

time, say t0, we exert control in such a way as to minimize the 

deviation from that time t0 until the process ends. Whatever 

deviation has occurred in the past does affect the total cost of 

deviation of the system as measured, say, by the Integral In 

(1.6), but does not affect the sequence of choices we make from 

the time  t^ on. This sequence of c! olces depends only upon 

the state of the system at this particular time t0 and the 

behavior of the stochastic vector r(t) from  t0 on. 

This statement which perhaps appears paradoxical at first 

glance, and is certainly rather difficult to express verlally, 

is a simple consequence of the addltlvlty of integrals, I.e., 

(i)      ./T-./to + /T. 

and the fact that the solution of a differential equation of 

the form given in (1.3) is for t > tr  dependent only upon its 

value at  t0 and the values of r(t) for t > t0. 

Let us call a policy any choice of v(t)  subject to the 

constraints imposed, and an optimal policy a policy which 

minimizes the nrcscribed criterion function.  Then the remarks 

we have made above concerning the Independence of future be- 

havior from the past history of the process are particular con- 

sequences of what we have called the 
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Principle of Optimality; An optimal policy has the property that 

whatever the initial state and initial decision are, the remaining 

decisions must constitute an optimal policy with, regard to the 

state resulting from the first decision. 

The analytic translation of this statement yields 

functional equations that lead to a computational solution of the 

control process described above. See [l] for further discussion 

and applications. 

Finally, let us note in passing that, as we have discussed 

elsewhere, [ij , [2], [j] , not only can the varlational problems 

derived from the study of control processes be considered to be 

multistage decision processes, ^ut actually the wider discipline 

of the calculus of variations itself can  be considered to be 

part of the general theory of multistage decision processes of 

continuous type. 

3. Discrete Versions of Control Processes 

Let us now prepare the way for the use of digital computers. 

We begin by replacing the continuous process described in bl by a 

discrete process. The interval  [0,T]  is divided into N parts 

of length A, so that NA • T, and t is allowed to assume only 

the values 0, A, ?A, ..., N. To simplify the notation, let us 

write 

j  (1)      x(kA) - xk,  r(k&) - rk, v(k6) - vk, 

and replace the differential equation of (1.3) by the difference 

equation 



P-1005 
Revised 1-27-58 

--9- 

(2)      xk+l -\ "  8(xk'rk'Vk)A' X0" c- 

There Is now no difficulty as to what we mean by a stochastic 

sequence of values  jx. \ as generated by the difference 

equation In (2). The random sequence of vectors  [r.]  con- 

stitute a much more prosaic set than the set of values assumed 

by a random function r(t), and one much easier to contemplate. 

In place of choosing a function v(t) which minimizes tbe 

expected values of a functional, we wish to choose a sequence of 

vectors  (vk| which minimize the expected value of a function, 

This Is a well—formulated oroblem with no conceptual loose ends. 

In the next section, we shall devote our energies to showing 

how the functional equation technique of dynamic programmlnc may 

be applied to the problem posed In the foregoing lines. 

4. Functional Equations 

Consider the oroblem of minimizing the expected value of 

N-l 
(1)       J( (vkj ;a) - 2  ^WV + m(^)' 

over sequences  [v.] , k » a, a + 1, . . . , N — ] , where a Is 

one of tie quantities 0, 1, 2, . .., N - 1.  As In b5, xv>i ^8 

determined by the relation 

<?)       xk+l -xk - «K^k^k5' k > a.  ^ 
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It is clear that the minimum expected value of J( fv. 1 ;a) 

depends upon c, the state at time a, and upon a Itself. 

Let us then define the function 

(3) fa(c) - Mln Exp J( [vk| ;a), 

where the minimum Is over all policies P. The function Is 

defined for all c, and for a ■ 0, 1, ..., N — 1, 

We see that 

(4) fN-l^ " Mln EXP  h^XN-l'rN-l'VN-l^ "*" ^^ 
VN  rN 

where 

(5) xN - c + gCc.r^^v^) 

The principle of optlmallty, stated In ^2, yields the 

recurrence relation 

(b) fa(c) - Mln ixp 

-ra 
^c'ra'va) *  fa+l(c + S^^a^a^J 

Since fwi(c)  is determined by (U), the relation In (6) 

enables ua to compute fN ^(c), and io,  step—by—step, eventually, 

f0(c). 

5. An Example 

I-et us now apply these  tec; nlque.^  to a particular example. 

Consider the Van der Pol  equation with a forcing terra. 
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(1) u" ♦  X(u2 - l)u•  ♦ u - r(t)  + v(t), 

u(0)   - c1,    u^O)   - c2, 

v/here  the behavior of  the  random function    r(t)     will he  speci- 

fied precisely below,  and where  It  1c  desired  to determine to 

choose     /(t),     subject  to  the  constraint 

(2) - a  < vft)   < a' 

so as to minimize the expected value of 

(3) J(v) -/T u2dt 4 |u(T)|. 

In place of the  second  order equation  In   (l),  we consider 

the  system 

CO irc - w'   u(0) " ci' 

^ - _ x(u
2 > i)w _ u + r(t)  ♦ v(t),     w(0)  - c2. 

This,   In  turn,   Is converted  Into tie system of  recurrence 

relations 

(5) uk*l   * uk  + WkA'     u0 "  cl' 

wk+l   " wk   +   L"  X(uk " 1)\  " uk   + rk   + vkJA'    w0 "  c2 

I>et us  assume that  sequence     [r  '      Is  a  sequence of  Inde- 

pendent  random varlalles  with   a  common   distribution  function 

dO(r).     W?  shall  consider the  problem of correlation  below. 
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It Is desired to choose the sequence of values,     (v.i , 

subject to the  restriction 

(6) - b < vk < b' 

so as  to minimize the expected value of 

N-l   « 
(7) JJ  V')  " ^ 2 uk *  V'    a - 0,  1,  2,   ..., N - 1 a      v" k-a 

Set 

(8) fa(cl'c2) Mln Exp J.( (v j ) 
P      r     a     K> 

for    a - 0,  1,  2,   ....  N-l,    - OD < c^Cg < oo . 

Tlien 

(9) 
1 

^(c^cj  -Mil,    Sxp     \c\ *   lu^ij 
N-l   ^N-l 

wh^re     Uj,,  »  c.   + A:?.     Hence 

(10) rN-l(cl'c2)  "  Lc\ *   'Cl   + 6C2I- 

The equation  of   (U.'.)  becomes 

(11) fJc.,c?)   - Mln  Exp   \b>2l ♦  r2+i(
ci  +  6c2'   c2 + ^ < cl'W^ > 

va     ra   - 

or 

(1?) f
a^l'c2) " ^   \*4 *</£*   fa^(cl + 6o2' o2 ^h)dO(r)  , 
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The minimization with respect to va is over the integral 

- b < va <b. 
We have thus reduced the solution of t he problem to the 

computation of the sequence or functions or two variables, 

{ra(cl,c2) • 

6 . Discussion 

Let us now discuss 1n more detail to what the algorithm 

presented in t he previous section is feast le. The concept or 

feasibility 1 comp letely dependent upon the type or computer 

available. We shall think 1n terms of a modern high speed 

digital omputer. As f ar as hand computation is concerned, t he 

method outlined above is definitely no t feasible. 

To carry out the e term1nat1on of fa{c 1 ,c2 ), we must 

store t ne v lues of r a+l{ c1 , c2 ) 1n t e computer, 1n one form 

or anot er, eva luate t he i .nte r al ove r r appearing in (5.12), 

and t en minimize over v
8

• 

Let us discuss t hese op rations in tum. When we spea < ot 

computer, we mean 

that we must have a method for pro ucin the value of 

ra+l(c 1 , c2 ) at any particular point ( c1 , c2 ) that 1s desired. 

There are two ways or accomplishing t his. In the first place, 

we can agree t ha t we are interested on ly in the points within 

some square - s ~ c1 ,c2 < s, and t hen only in t he values or 
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t he function at a finite set of grid-points (m~,n6), 

m,n •- M,- M + 1, ••• , M, where M~ • s. If (c1 ,c2 ) is 

not a grid-point, the value of ra+l(c 1 ,c2 ) is determined by 

an inte rpolation formula. 

It follows then that storing the values or t he function 
2 f a +l( c1 , c2 ) is equivalent to storing (1 +2M) numbers, the 

values at (me,n6). It M • 50, not a particularly fine sub­

division if c1 and c2 are large, we require approxlmately 

104 va lues . TI i s is a considerable quantity, when we realize 

that i must be multiplied by 3, to take account or the 

t orage of t e values or the r~w function, r
8

(c1 ,c2 ), and the 

r olicy funct i on va • va(c 1 ,c2 ). 

Pro l ems of this magnitude, howeve r , can be treated with 

t he largest of current digital computers, and will be routine 

in a f ew yea rs wi th the much larger mac ines eing built at the 

present. 

It i c lear, nonetheless, the stora e of functions or many 

va r ia bl s cannot e accomplished along the crude lines described 

above . Any further discussion would take us too far atield. 

The i nte res t d r eader may consult [8] for a brief sketch of an 

nt ir ~Y tffe r ent approach . 

Turn now to t he pro lem of evaluation of the integral in 

( 5 .1 ) . Since t he se studies are all or preliminary nature, 

it i s wise to assume quite simple random effects. Hence if r 

i s taken to assume t he values + k with equal probability, the 

ex ress lon 1n ( 5 .12) becomes 
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Ptnally, consider the problem of determining the minimum 

over v
8

• For a variety of reasons, we do not wish to follow 

any conventional lines involving the use of derivatives. 

Hence, we choose a grid in the va-1nterval, say 

v a • - qf>l' - (q - 1 )51 , ..• , qo1 • b , and minimize only over 

the discrete set or values ! l51 • To do t his, we need only 

compare numerical values at t hese points. If further accuracy 

ts desired, interpolation can again e used. 

A very important aspect of this direct minimization 1s 

that the presence or constraints aids rather t an hurts. The 

more constraints, t he smaller t he allow ble c oi cee of va and 

the more ra id the numerical search. In part i cular, t e 

simplest case is t ha t which is occasionally called "bang-hang• 

control, ct. [10], where v is allowed to assume only the 

values + b. 

7. Minimum or Maximum De via t1on 

So far, we have een considering variat ional problems of 

fairly conventional type. Usin~ t he same second-order equation 

as 1n ~5 , let us consider the problem of determining v(t) so 

as to m1n1m1ze t he pro ability t hat 
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The discrete version requires us to minimize the probability 

that 

< 2) r-1ax [ 1 u0 I , I u1 I , ... , I ~1 I > ct] . 

The o servat1on that 

-, 
(3) ' ... ' ~ ~-l lj 

[I u1 I . . . . . I "N-1 I] J 
permits us to employ the principle or optimality in very much 

the same way as before. 

Introduce t he sequence of functions 

( 4) ra( c1 ,c2). ~n Prob(Max [1ua1. 1ua+1 1 •...• 1"N-11J ~ d}, 

for a= 0, 1, 2, ... , N- 1, and - m< c 1 ,c2 <co. 

Then 

• 0, lc1 < d, 

and 

( 6 ) 
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a • 0,  1,  2,   ...,  N - 2. 

8.    Correlation 

'"■•*:  us now Indicate how processes where  the    r.     are not 

Independent random variables may be  treated.    The  simplest of 

these Is  that  the dlstrilutlon of    r.    depends only upon the 

value of    r4   i • 

In this case. It Is clear that an essential part of the 

information pattern at each stage is the value of r at the 

preceding state.     Let us define 

(1) dO(r1;r-   ,) - the dictrllution  function of     r. 

given the  value of    r4   i » 

and returning  to the model of b^. 

(2) ^a^cl'c2'ra-l ^  " ^e minlmuIT1 expected deviation 

starting at tine    a    in  the state 

(c,,c?)    and the  information that 

r    at     a — 1    was    r    , . a—1 

It is easy then to see that the recurrence relation now 

has the form 

r 

(3) f^VVa-l' - Mln :A 1 V^WV^'V^^Va-l 
Va  .       -CD 
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