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SUMMARY

Consider a system S specified at any time t ty a finite
dimensional ve.tor x(t) satisfying a vector differential
equation dx/dt = g(x,r(t),f(t)), x(O) = ¢, where c 18 the
initi:l state, r(t) 1s a random forcing term possessing a
known distribution, and f(t) 1s a forcing term chosen, via a
feedback process, so as to-minimize the expected value of a
functional J(x) -oéqT h(x - y,t)dG(t), where y(t) is a
known function, or chosen so as to minimize the functional
defined by the probability that Max h(x — y,t) exceed a

O<t<T
specified bound.

It 1s shown how the functional equation technique of
dynamic nrogramming may te used to obtain a .ew computational
and analytic approach to problems of this genre. The limited
remory capaclty of present—day digital computers limits the
successful erplication of these techniquecs to first and second

order systems at the moment, with limited application to higher

order systems.
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DYNAMIC PROGRAMMING AND STOCHASTIC CONTROL PROCZSSES
Richard Bellman

1. Introduction

In this paper, we wish to indicate the application of the
functional equation techniques of the theory of dynamic pro—
gramming to the formulation and computational solution of
various types of variatlional protlems arising in the study of
control processes with stochastic elements. Although the
methods displayed below are intimately related to those we have
previously presented in connection with deteirministic control
processes; cf. [1], [2], [3], as might te expected, the pres:nce
of stochastic effects introduces new difficulties of toth
concentual and analytic nature which must te carefully examined.

A fundamental problem, arising in numerous applications,
is that of determiring feedbiack control which will neutralize
random disturtances. These disturbin~ influences are usually
called "noise."

Here we 8shall consider tie followZn~ particular version of
this general question. Let S be a physlcal system, specified
at any time t by a finite dimensional vector x(t). This
vector 1c determined as a function of time, ani the initial

ptate of the system, by means of tie “ifferentlial equation
(1) g{- = a(x,r(t)), =x(0) = c.

The function r(t) appearin? on the richt 1s a random functiocn

of time with known nroperties.
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We shall not discuss here the far more difficult qQuestions
which arise from the study of processes 15 which r(t) 1s only
imperfectly known initially, and is then determined more and
more accurately as the process continues. The reader interested
in these matters will find discussions of this type of protlems
and further references in Rotbins, (5], and Bellman and Kalaba,
A1

A particularly important case, from the standpoint of both
analysis and application, is that where g(x,r(t)) 418 linear
in bott x and r(t). The equation in (1) then has the simple

form

(2) F = Ax +r(t), x(0) = c.

A rigorous formulation of the theory of nonlinear differential
equations with stochastic elements presents certain difficulties
which we shall not enter into here for reasons we shall detail
below. The linear equation, however, has been treated at great
lengih in a numrer of vapers in full rigor; cf. Doob, {4]; see,
also, [a], and the recent papers of Booton, 12, 03 . Equations
of the form dJdx/dt = (A + R(t))x, where R(t) 1s a random
matrix can also be treated in some detail,

We are primarily interested here in the case where
g(x,r(t)) 1s nonlinear, or where other nonlinearities arise,
in a fasi'ion we shall discuss below, to a sufficient degree to
destroy any hope of using explicit analytic solutions to

resolve control problems,
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To counteract the influence of r(t), and simultaneously
to direct the unperturbed system along more desirable lines, we

introduce "feedtraclk control™ in the form of a vector function

v(t). The defining function now has the form

(3) K = glx,r(t), v(t)), x(0) =c,

where v(t) 1s a function of the state of the system at time
t and the time t 1itself, l1.e., v(t) & v(x(t),t).

Let us denote by y(t) the solution of the unperturted—

uncontrolled equation

(4) H = aly), ylo) = e,

In some cases, we may wisi to keen x ~lose to vy over the
time interval (O,T). We agree tren to measure the deviation

from y by means of 2 functional of the form

(5) ah)ngTMx-wwuL

where h(z) 1s a scalar function of the vector =z. By intro-—
ducing a step discontinuity at t = T, we can comtine deviation
over the interval with terminal control.

At other times, the function y need not re a solutlon of
the unperturbed system, tut merely a desiralle state of the
system. In both cases, we see that we wish to determlne the

control vector v(t) so as to minimize 13 prescribed functional

of x and v which can be written
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(6) J(v) -%(T'h(x,v,r)dc(t).

Since the functional itself will ie, in general, a stochastic
quantity, in order to make this statement precise we must first
average J(v), in some suitatle fashion, over the class of
random functions which occur. The problem we wish to consider
1s that of minimizing this expected value of a function of J(v),
subject to constraints on v(t).

A rigorous formulation of varilational problems involving
stochastic functions 1s again a matter of some difficulty. We
shall avoid toth this difficulty, and the one mentioned concerning
the meaning of stochastic differential equations by considering
only discrete control processes. In this way, we replace
differential equations by difference equations, integrals by
sums, and stochastic functions by stochastic seqQuences. The
reason for this change in format lies not so much 1in our desire
to avoid occasionally unpleasant rigorous details, as in our
desire to rrenare the nroblem for solution by means of a digital
compucer.

Nothing for nothinc, however! It i3 now a matter of some
significance to study the connection ‘ctween the original
continuous process and the approximating discrete process. Not
only 1is it important to know whether or not the respective
minimum values are close, but it i1s also important to know
whether tpe correspunding policles tear any similarity. Further—-

more, the rate of convergence of the discrete process to thre



P-1003
Revised 1-27-58
~5—~

continuous process must ve studied. This is critically dependent
upon the type of discrete approximation which 1s employed. Some
preliminary resultes in these directions may be found in [}] and
(].

It should constantly be kept in mind that both continuous
and discrete processes are approximations to the actual physical
process. The important point 1s not so much their similarity to
each other as the value of either mathematical model in treating
the actual control process.

We shall first apply the tunctional equation technique to
the general variational problem posed above. Then, as a simple
example, we shall discuss 1ts specific application to the protlem
of determining the scalar function v(t) 4in such & way as to
minimize the expected value of the functional
(7) 4'1" udt + lu(T)]
where u 13 the solution of the Van der Pol equation with the

forcing terms r(t) and v(t),
(8) u" + x(u2 —1u' + u = r(t) + v(t),

u(0) = ¢ u'(o) = Cye

1)

To show the versatility of the method, we shall then show
how to treat ty means of recurrence relations the problem of
minimizing the probability that Jl(v) > d, where

(9) Jy(v) = Max ||x — y|l.
0<t<T
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Here ||z|| 48 the norm of z defined in one of the usual ways.
A treatment of the deterministic version of this problem may be
found in [5].

Finally, we shall discuss a case in which the random
function r(t) possesses a correlation with the value of
r(t — A). Here t assumes only the values 4, 20, ... .

As a subsequent discussion of the specific equation
mentioned above will show, the functional equation technique
of dynamic prograrming furnishes a feasible computational solu-—
tion for second order systems, without regard to the analytic
character of either the equation or the criterion function,
J(v). Although equations of higher order cannot be treated at
the moment by means of the same straightforward approach, more
refined analytic and computational tecliniques recently developed
appear to offer an approach to the successful treatment of

control problems for higher dimensional systems; see [0], [7].

2. Feedback Control as a Multistage Decision Process

Let us now see how we can interpret feedback control as a
multistage decision process.

To tepgin with, we observe ¢, the initial state of the
system, and make an initial choice of a control vector, v(0).
As a result of the initial random effect, r(0), we find our—
selves at time A in a new state c¢', determined by the
equations governing the system, required to make a new choice of
a control vector. This situation repeats itself at times

20, 30, and so on.
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The sallient fact &hat enables us to break this complex
process down into a sequence of simple processes 18 the dependence
of the future upon the present, and not upon the nast, or upon
how the past became the present. Starting from any state at any
time, Bsay to, we exert control in such a way as to minimize the
deviation from that time to until the process ends. Whatever
deviation has occurred in the past does affect the total cost of
deviation of the system as measured, say, ty the integral in
(1.6), but does not affect the sequence of cl.olces we make from
the time to on. This sequence of c!lolces depends only upon
the state of the system at this particular time to and tre
behavior of the stochastic vector r(t) from ty on.

This statement which perhaps apnears naradoxical at first
glance, and is certainly rather difficult to express vertally,
is a simple consequence of the sdditivity of integrals, 1.e.,
(1) T _/to e ST,

o] 0 to
and the fact that the solution of a differential equation of
the form given in (1.3) 18 for t > to dependent only upon 1its
value at t, and the values of r(t) for t > tge

Let us call a policy any choice of v(t) subject to the

constraints imnosed, and an optimal policy a policy which

minimizes the nrescribted criterion function. Then the remarks
we have made above concerning the independence of future be—
havior from the past history of the process are particular con-

sequences of what we have called the
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' Principle of Optimality: An optimal policy has the property that

“whatever the initial state and initial decision are, the remaining

. decisions must constitute an optimal policy with regard to the

state resulting from the first decision.

The analytic translation of this statement ylelds
functional equations that lead to a computational solution of the
control process described above. See [1] for further discussion
and applications.

Finally, let uc note in passing that, as we have discussed
elsewhere, [1], (2], [3], not only can the variational problems
derived from the study of control processes be considered to te
multistage decision processes, tut actually the wider discipline
of the calculus of variations itself can bte considered to be
nart of the general theory of multistage decision processes of

continuous type.

3. Discrete Versions of Control Processes

Let us now prepare the way for the use of digital computers.
We begin by replacing the continuous process descrited in §1 by a
discrete process. The Iinterval [O,T] is divided into N parts
of lengtn A, so that NA =T, and t 1s allowed to assume only
the values O, 4, 25, ..., N. To simplify the notation, let us

write

(1) x(kQ) = Xy s r(kD) = L v(kQ) = Vier

and replace the differential equation of (1.3) by the difference

equation
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(2) Xee1 — % " 84T )8, xg = .

There 1s now no difficulty as to what we mean bty a stochastic
sequence of values {xk} as generated Ly the difference
equation in (2). The random sequence of vectors {rk} con—
stitute a much more prosaic set than the set of values assumed
by a random functior. r(t), and one much easier to contemplate.
In place of choosing a function v(t) which minimizes tte
expected values of a functional, we wish to chioose a sequence of

vectors {vk} which minimize the expected value of a function,

N-1

This 18 a well—-formulated oroblem with no conceptual loose ends.
In the next section, we shall devote our energies to showing
how the functional equation techlinique of dynamic programming may

be applied to the problem posed in the foregoing lines.

4. PFunctional Equations

Concider thie nrobtlem of minimizing the exmected value of

N-1

‘ ya > h(x F RPN A D¢ ’
(1) J( (v} sa) L:Za (x,.,r, v, ) + mixy)

I,

over sequences Pk)’ k=a,a+1l, ..., N =1, where a 1s

one of tie quantities O, 1, 2, ..., N —-1. As in 633, X4 18

determined by the relation

(2) x -x = g(xk,rk,vk), k >a, x, =c.

k+1l a
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It is clear that the minimum expected value of J((vk];a)
depends upon ¢, the state at time a, and upon a 1itself.
Let us then define the function
(3) £, (c) = Min Exp I({v,}sa),
B
where the minimum is over all policies P. The function 1s
defined for all ¢, and for a=0,1, ..., N -1,

We see that

(4) fN_l(c) = Min Exp [h(xN-—l’rN—l’vN—l) + m(xN):],
vy T
N N

where

(5) Xy = ¢+ g(c,rN_l,vN_l).

The principle of optimality, stated in §2, ylelds the

recurrence relation

() fa(c) a Min lEip {h(c,ra,va) + fa+1(c + g(c,ra,va))}}.
a L‘a
Since fN_l(c) is determined ty (%), the relation in (6)

enables us to comnute fN_Q(c), and 10, step—by-step, eventually,

fo(c).

5. An Example

Tet us now apply these tecinlgques to a particular example.

Consider the Van der Pol equation with a forcing term,
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(1) u" + x(ug —1Ju' + u=r(t) + v(t),

u(0) = ¢ u'(0) = ¢

1’ 2’

where the behavior of the random function r(t) will be speci-
fied precisely below, and where 1t is desired to determine to

choose v(t), subject to the constraint

(2) —a < v(t) <a,

80 as to minimize the expected value of

NnT 2

(3) ﬂv)-% ucdt + {u(T)].

\S_ )

In place of the second order equation in (1), we consider

the system
du
(u) JF =W, U(O) - Cl’

g% = = Mu? = 1)w —u+ r(t) + v(t), w(0) = ¢,

This, in turn, 123 converted into tle system of recurren-:c

relations
(5) uK+1 - uk + wkb’ uO - Cl'
Wiy = W+ [— )\(ui - l)wy -y +r 4 vk]A, Wo = Coe
et us assume tiat sequence {rk i1s 3 sequence of inde-

nendent random variatles with a common ulstriiution function

dG(r). W2 shall consider the protlem of correlation lelow.
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It 1s desired to choose the sequence of values, {VkE'

subject to the restriction

(6) —b<v

so as to minimize the expected value of

N—-1 5
(7) Ja({vyv)-AZuk-f!uNl, A=0,1,2, ..., N=1,
i k=3
Set
= 1) ‘,
(8) f.(c .c,) M%n sxp 3 {v,1 ),
r

for a=0,1,2, ..., N=-1, - < CysCs < 00,

Then

-
. . 2 i
(2) !N—](CI’CQ) « Min Srp Lfl + lugl,
v r J
N—-1 "N-1
where u, = cy + Cm?. Hence
(10) £f.. . (cy,ca) = Ac2 + lc, + Lo
- N-1*"1""2 A ! e
The equation of (4.7) Yecomes
r -
(11) fq(cl,c2) - Mtn E?p [p:l + fa+1(cl + 00,y oyt Ah(cl,c2,ra,va)
a 'a
or
r . ‘I
P - ! /1@ .

(12) £leyie,) Min acy +, fogplcy + 825, ¢y +80)d0(r) ],

a -

y

]
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where

(13) h(c1’°2’ra’va) =r, +v, —¢cy - k(c? - 1)c2.

The minimization with respect to L is over the integral
-b < vy, £ b.
We have thus reduced the solution of the problem to the

computation of the sequence of functions of two variables,
{ra(cl,ce)}.

6. Discussion

Let us now discuss in more detail to what the algorithm
presented in the previous section 1s feasitle. The concept of
feasibility 1s completely dependent upon the type of computer
available. We shall think in terms of a modern high speed
digital computer. As far as hand computation is concerned, the
method outlined above 1s definitely not feasible.

To carry out the determination of Fa(cl,ce), we must
store the values of ra+l(°1'c2) in the computer, in one form
or another, evaluate the integral over r appearing in (5.12),
and then minimize over Var

Let us discuss these operations in turn. When we speak of
storing the values of ra+l(°1’°2) in the computer, we mean
that we must have 2 method for producing the value of
ra+l(°1'°2) at any particular point (c1’°2) that 1s desired.
There are two ways of accomplishing this. 1In the first place,

we can a2gree that we are interested only in the points within

some square — 8 < C,,C, < 8, and then only in the values of



P-100
Revised 1-27
e

the function at a finite set of grid-points (mb,nb),
m,ne—-M —M+1, ..., M, where Mb = 35, If (cl,ca) is
not a grid—point, the value of ra§1(c1,c2) is determined by
an interpolation formula.

It follows then that storing the values of the function
fa+1(°1’c2) is equivalent to storing (1 + 2M)2 numbers, the
values at (md,n6). If M e« 50, not a particularly fine sub-

division if ¢ and c, are large, we require approximately

1
10u values. Tlis is a considerable quantity, when we realize
that it must be multiplied by 3, to take account of the
storage of the values of the rew function, fa(cl.ca), and the
policy function v, = va(cl,cz).

Protlems of this magnitude, however, can be treated with
the largest of current digital computers, and will be routine
in a few years with the much larger machines being built at the
present.

It 1s clear, nonetheless, the storage of functions of many
variables cannot he accomplished along the crude lines described
above. Any further discussion would take us too far afield.

The interested reader may consult [8] for a brief sketch of an
entire.y different approach.

Turn now to the problem of evaluation of the integral in
(5.12). Since these studies are all of preliminary nature,
it is wise to assume quite simple random effects. Hence if r
is taken to assume the values 4 k with equal probability, the

exnression in (5.12) becomes
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1 ,
(1) » [fa+1(c1 + 8c,, cpy 4 AL(cl,cak,va))
+ t'aﬂ(cl + 0c,, cp # Ah(cl,ca,—k,va))].

There is thus no difficulty in this evaluation.

Finally, consider the problem of determining the minimum
over v.. For a variety of reasons, we do not wish to follow
any conventional lines involving the use of derivatives.
Hence, we choose a grid in the va-interval, say
v, = —qb,, - (q - 1)61, +++» @0y = b, and minimize only over
the discrete set of values + 161. To do this, we need only
compare numerical values at these points. If further accuracy
is desired, interpolation can again bte used.

A very important aspect of this direct minimization is
that the presence of constraints aids rather than hurts. The
more constraints, the smaller the allowable choices of Yy and
the more rapid the numerical search. In particular, the
simplest case 18 that which 1s occasionally called "bang-bang"

control, cf. [10], where v, 1s allowed to assume only the

values + b,

T. Minimum of Maximum Deviation

So far, we have been considering variational problems of
fairly conventional type. Using the same second—order equation
as in §5, let us consider the problem of determining v(t) so
as to minimize the probability that
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(1) Max |u| > 4.
<T
The discrete version requires us to minimize the probability
that

.
>4

(2) Max U“o|' g by eeey Tuy 4
The observation that

| -3

(3) Max | lugls fuyly ooy fuy gl

< max [lugl, Hax [lugl, .., lu,,_ll]]

permits us to employ the principle of optimality in very much
the same way as before.

Introduce the sequence of functions

(4) f‘a(cl,cz) = M%n Prob{Max {:'“al'lua#ll"""“ﬂ—ld > d},
fOI“ ago’ 1’ 2, e s 0y N-l, and -O( CI,C2<m.

Then
(5) fual(eqscp) =1, eyl > a,

=0, '01: < d,
and
(5) r.(cyic,) =1, leyl >a,

= Min -q:Dra*l(cl + cad,c2 + nf)da(r), Icll < a,

Va
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a=0,1,2, ..., N2,
8. Correlation
-+ 5 now indicate how processes wrere the r, are not

1
independent random variables may be treated. The simplest of

these 1s that the distritution of r depends only upon the

3.
value of ry 31

In this case, 1t 18 clear trat an essential vart of the
information pattern at each stage 1s the value of r at the

preceding state. Let us define

(1) dG(ri;ri_l) = the distritution function of r,
given the value of Ty_q»

and returning to the model of §C,

(2) fa(cl,cg;ra_l) « the minimum expected deviation

starting at time a 1in the state
(cl,c?) and the information that

r at a —-1 was r .
a-1

It 18 easy then to see that the reccurrence relation now

has the form

/)mf

"’
o s N V€ . i g
(3) Fa(cl,ce.ra_l) Min (807 4 a+1(c1+0c2,02+0h)00(ra.ra_

1 [
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