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PREFACE 

This Memorandum  is  a  result of RAND's continuing study of 

guidance  and orbit mechanics.     It was written to elaborate on the 

analytical details of  the  computational equations   for a Kaiman  filter, 

discussed   in RM-4241-PR,   the  Application of Dynamic  Frogranming  to 

Satellite   Intercept  and   Rendezvous Problems,  F.   T,   Smith, August   196A, 

Such a  filter was used to process observational data and to estimate 

relative  state variables  for  the optimal control process. 

In addition,   this Memorandum discusses  the application of the 

Kaiman  filter to orbit determination and orbit correction processes 

when these processes  are described  in terms of two-body orbital 

parameters.     It may be of use   in studies of the application of 

dynamic  programming  to  flight  control problems. 



SUMMARY 

This Memorandum applies dynamic programming to the derivation of 

the computational equations for a Kaiman filter. 

The problem of using a set of ill-conditioned observations is 

considered. For example, when observations of a satellite taken from 

a single ground station are spaced too close together in time, the 

accuracy of the determination of the satellite's orbital parameters 

is poor.  Such a set of observations is said to be ill-conditioned. 

The general set of computational equations derived is interpreted 

in terms of an orbit determination problem, an orbit correction pro- 

cess, and a satellite rendezvous problem. 
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I,     INTRODUCTION 

Ulis Memorandum uses the techniques of dynamic programming to 

formulate the Kaiman filtering problem and to obtain the necessary 

computational equations. The discussion is less general than that 

in Ref, 1, and the point of view here is slanted more toward astro- 

dynamical applications. The application of dynamic programming to 

this type of problem is discussed in Refs. 2 and 3. This Memorandum 

goes into much more detail concerning applications than do Refs. 2 

and 3. 

The method of  least squares  is briefly discussed  to establish 

notation.     The problem is then formulated as a multi-stage decision 

process,  and dynamic programming concepts are applied to obtain the 

necessary computational equations.     A method of treating  ill-condi- 

(4) 
tioned systems is  incorporated into  the computational  equations. 

The application of  the estimation process  to  the determination of a 

set of  two-body orbital parameters  from a sequence of observations is 

then discussed,   i.e.,  the orbit determination problem.    Iho discus- 

sion is  then extended to feedback control problems where  it  is de- 

sired to estimate  time-varying corrections  to two-body orbital pa- 

rameters and system state vectors. 



II.  THE METHOD OF LEAST SQUARES 

Consider a set of m observations of one or more physical quan- 

tities which have been corrupted by noise.  If y. is the true value 

of each quantity at the time of the i-th observation, and v  is the 

error due to noise, then the observed value z. is 

zi " vi + yr   l ■ i. •••. m 

Assume that the y. are related to a set of n parameters x whose val- 

ues are to be determined from the relation 

y » Hx 

where 

y. ■ m x 1 vector i y., •••, y 
1 .1       mj 

x " n x 1 vector x,, •••. x 
j ' 1    '  nj 

H = m x n matrix whose elements may be 
time varying 

Since the true values of the observed quantities are corrupted by 

noise, the best we can hope to do is to solve the equation 

z » Hx + v 

This equation may be written as 

v «  z - Hx 

where 

v-  [vj,   ....  vj 

* 
The superscript T denotes the transpose of a vector or matrix. 



We shall assume Chat vector v represents a gaussian random pro- 

cess with zero mean. According to the principle of least squares the 

best estimate of vector x will be that for which the quadratic form 

T -1 
J - v R v 

is a minimum, where R is the covariance matrix of the gaussian process. 

The well-known solution to this problem is 

x - (HW"1
 HV

1
* 

If this solution is substituted into the  quadratic form representing 

J we obtain 

Min J - fz  - HCH'V1!!)"1 HTR'1Z1    R'TZ - HCHV^)  HTR'1Z] 

T P  -1 -1        T  -1     -1    T -l"l T 
=  z    I R      -  R      H(H R    H)       H R    J « ■ z Q(in)z 

If matrix H is square and non-singular.  Min J  is zero. 

Suppose that we rjw acquire a new observation z    ..  and we wish 
mf 1 

to use z , to improve further our estimate of x. We can form an nH-1 
mfl 

system of equations and solve as above to obtain x where H is now an 

(mfl) x n matrix. 

As we combine more and more observations the estimate x approaches 

closer to the true vector x, but the computational process becomes 

more and more inefficient since the dimensions of H and R grow with each 

observation.  It is desirable, therefore, to find | more efficient meth- 

od of utilizing new observations. 



III.  THE APPLICATION OF DYNAMIC PROGRAMMING 

The process of estimating the components of vector x becomes a 

multi-stage decision process when new observations are combined se- 

quentially to obtain successively improved estimates of x. Further, 

each new decision requires a new minimization operation. 

* 
We shall call the vector 

z(m) -[•ll .... zj 

the observation vector. At each stage of the process vector z in- 

creases its dimension by one due to the addition of a new observation. 

The  earlier components of z, of course, remain unchanged. At each 

stage of the process the decision involve' choosing x such that 

where 

T    -1 
J = v (m) R (m) v(m) 
m 

v(m) mfa,   .... vj 

is minimized where m is the number of the observations involved. 

It is clear that the estimate of x depends on the number and the 

values of the components of z(m) , as will the value of J . Instead 
m 

To clarify notation regarding the dimension of vectors z and v, 
we shall let z(m) and v(m) denote the fact that z and v are m-dimen- 
sional vectors. Vector x is assumed to be always of dimension n. 

** 
The notation   .v(m)   implies  an m x m matrix. 



of referring to an N-stage decision process we shall  refer Co an m- 

observation estimation process and define  the minimum value of J    as 
m 

f    z(m)       =    The cost of an m-observat ion estimation process 
based on an m-dimensional observation vector 
z(m) with an optimal estimation policy being 
used. 

By an optimum estimation policy  is meant  the choice of  successive 

estimates of x such  that the performance  index 

J    ■ v(m)  R    (m) v(m)      m - n, n+1,   ••• 
m 

is minimized.  Hie reason for index m starting at m ■> n is that a 

minimum of n observations are required to obtain a useful estimate 

of the n components of vector x.  It is assumed that the components 

of v(m) are independent, i.e., R (m) is a m x m diagonal matrix. 

Let a new observation z . be added as the (m+l)-th component to 

vector z(m).  A new component v . , the uncertainty associated wi th 

observation z .,, is also added to vector v(m).  If R .. is the var- 
m+l' v '      m+l 

* 
iance associated with v .., then we can write J ., as 

m+l m+l 

J .Li - ».Li CL V ^.I 
+ J m+l   m+l m+l m+l   m 

' Vm+1 Rm+1 Vm+1 + ^ »'^ V<n> 

* -1 T   -1 2   2 
Since v ., and R . are scalars v .. R ., v .. equals v .,/a ,. 

m+l     m+l m+l m+l m+l        m+r m+l 
The vector-matrix notation is retained for convenience since it is pos- 

sible to add several observations at a time to improve the estimate, 

and R ,. would then be a matrix. 
m+l 



The estimate of x that minimizes J    , , denoted by   (x) , , will be 
m+1 ■'   x 'm-n+l' 
* 

different from that minimizing J .   Let the new estimate minimizing m 

J    ,   be expressed as  (x)        + (^x)       .    When  the components of vector m+l m-n m-n 

(x) are changed  to (x) + Ax a new value for J    > f  [2(111)] is m-n m-n mm 

obtained 

T 
Jm = {z(m)   -  H(m)   [tf)M + Ax]}    R'V)  {z(m) 

H<^ [*M + AX]] 

Expanding this quadratic  form and properly grouping terms yields 

J    = zT(m)   R^On)   z(m)   -  2 zT(m)   R'Vm)   H(m)   (x) m-n 

+ (x)^   |   H
T(m)  R'^m)  H(m)   (x)    m m-n m-n 

+ 2 AxT [HT(m)   R'^m)  H(m)   (x)m_n 

- HT(m)   R'^m)  zT(m)l + AxT HT(m)   R'^m)  H(m)  Ax 

The first three terms clearly are f  z(ra) 1 and the bracketed term 

vanishes from the definition of (x)   (See Section II).  This leaves m-n 

I AxT HT(m)   R'l(m)  H(ra)  Ax + f_ \z{p) 
m m 

Tlie notation (x)        denotes  the  (m-n)-th estimate of vector x m-n 
and  is  used  to distinguish  the   (m-n)-th estimate  from  the   (m-n)-th 

component denoted by x m-n 



and J  ,,  becomes m+l 

Jni+l = lZin+l 

T 

+ AxT HT(ra) R'^m) H(m) Ax + f [2(01) 

We can now apply the principle of optimality to derive a recurrence 

relation for f  z(ni) .  For this problem the principle of optimality 

can be stated as follows: 

An optimal sequence of estimations of the parameter 

vector, (x) , (x)_, •••, has the property that what- 

ever choice is made for (x)., the remaining sequence 

of estimates (x)^, (x)-, •••, must constitute an op- 

timal sequence with regard to the observations from 

which (x). is estimated. 

We obtain the following recurrence relations: 

f
m+i [^

+1>] • MAX k« - Vi [*>«+ ^]}T Cl i2, m+l 

- Hm+1 [(ft    - + Axjj + AxT HT(m)   R-1^)  H(m) Ax 

+ £ r 
m L 

z(m) 

Tae symbol H . denotes the n x 1 vector associated with obser- 

vation z ...  If z ., denotes several simultaneous observations H . 
m+l      m+l m+l 

is a matrix. 



where 

fn [2(n)] ' rT(n) Q(n)  Z(n) 

m « n, n+1,   • • • 

The  first  term  inside  the braces  represents  the direct cost of using 

the  (nH-l)-th observation.     The second cost  represents  the change  in 

the cost for the previous m observations due  to changing the estimate 

of x. 

Noting that f  z(m)  is independent of Ax, we minimize the terms 

inside the braces by differentiating with respect to the components of 

Ax.  Setting the result equal to zero and solving for (Ax)   yields 
m-n 

<ai>m-n ' K« *'l(-) H« ♦ H^ R^ H^,]  H^, R^ [z m+l 

H»+l (*\.„] 

The new estiirate for x is then 

(x)   ., - (x)   + (Ax) N  m-n+1   v 'm-n   v  'm-n 

It  is clear  that J can be expressed as 

m+l - [v(m) 
1 1T 

! Vm+lJ 

R'^m) 

0 

0 

'm+l 

v(m) 

m+l 

= vT(m+l)   R'^m+l) v(m+l) 
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where R (m+1) denotes the partitioned matrix. 

Since 

v(m) 

m+1 

z(m) 

m+1 

H(m) 

H 
m+1 

it is clear from Section II that f ^.[zCm+l)] must be given by 
m+1 

f J z(m+l)j = zT(m+l) Q(m+1) z(ra+l) 

where 

Q(mfl) » R'^m+l) 

- R'^m+l) H(m+1) |"HT(m+l) R-1^!) H(m+1)]  HT(m+l) R'^m+l) 

H(ra+1) 

H(ra) 

H 
m+1 

It follows frcm the nature of J as expressed by the equation 

J » AxT HT(m) R'^m) H(m) Ax + f_  z(m) 
m m 

that each correction  to  the estimate of vector x for each stage of  the 

decision process can be computed by the equation 

(Ax) = ^HT(m)   R'^rn)  H(m) + H^.   R**     1^,1      H*      R'^.   \Z     . v      m-n      L.     
v   / \  '     \   '        ra+i    m+i    nH-lJ        m+1    m+1  _ m+1 

H ^.1   (x)       1 m+1        m-nj 
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where 

(x)  ^ = (x)   + (Ax) x 'ra-n+1     m-n     'ra-n 

m « n, n+1, • • • 

To avoid a matrix inversion process we follow the notation of 

Ref. 1 and define 

P"1    =  HT(m)   R"l(tn)  H(m) 
m 

-1 -1 T -1 
m+1 m ra+1    m+l    m+1 

Then by   the  lenma given  in Ref.   1 we have 

P ^  = P     - P    H1^.   (H^.   P    H1^.  + R ^J"1  H ^   P m+l ra m    m+1      m+1    m    m+1 m+1 m+1    m 

If we now replace our  index notation by k « m-n we have the following 

set of recurrence relations: 

^k+1 =  (^k + (^>k 

<^>k    = Pk+1 ^+1  \ll [Zk+1  * «k+l  ^>|J 

pk+i   - pk ■ pk Ci (Hk+i pk <fi+ W1 "k+i pk 

k - 0, 1, 2, •.. 

This can be proved by direct substitution of the expressions 

for P"*  and P ^.   LO P"* P . » I. 
m+1     m+1      m+1  m+1 
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In order  to use  these recurrence relations   it is necessary  to have 

a set of  initial  conditions   (x)    and P    as well  as R. ,  R_,   •••. 

The quantity z    .   can represent a single observation or a vec- 

tor whose components  represent several observations.     The computa- 

tional advantage of utilizing observations  one  at a  time is   that 

T 
(H.    .  P.   H.   .   + R^.,)   and IL    .  are  scalars and matrix  inversion  is 

eliminated entirely. 

The selection of  suitable initial conditions will be discussed  in 

the  sections  to  follow. 
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IV.     ILL.COWDITIONED SYSTP1S 

Consider  the equation relating the true observation vector y and 

the parameter vector x given in Section  II. 

y - H x 

In order  that this equation have a unique solution the  rank of matrix 

H must equal  the dimension of vector x.     Equivalently,  w. may require 

that  the determinant of matrix H H,   i.e.,   the Gram determinant of H, be 

non-zero.     While  this condition satisfies  the  theoretical requirement 

for a unique solution,   it may not satisfy computational requirements 

for finding such a solution. 

When  the Gram determinant has a sufficiently small numerical value, 

the computation of the components of vector x  is subject to considerable 

error and  the sen of observations defining vector y is  said  to be  ill- 

conditioned. 

The recurrence equations given in the last section may converge 

too rlowly, or not at all, if they are applied to an ill-conditioned 

set of observations. 

A method for treating ill-conditioned  linear systems is  given by 

(6) Bellman,  Kalaba,  and Lockett. The recurrence relations given in 

Section III  can be modified to incorporate one  of these  computational 

techniques  for ill-conditioned  systems. 

Consider first the one-stage  process  in Section II.    We modify 

the performance  index to be 

J    = Fifa)   - H(m)xJ    R'^m)  FzCm)  -  H(m)xJ 

+ X(x-c)T  (x-c) 

where c is an n x 1 vector chosen so that the norm ||x-c | | is small. 
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If we expand  J  ,  differentiate with respect  to the components of vec 
■ 

tor x, set the result equal to zero, and solve for x, we obtain 

» rHT(m) R'^m) H(m) + XI I  HT(m) R'^m) z(ni) 

+ X ^HT(m) R'^rn) H(m) + III  c 

as  the best  least  squares estimate.     Reference 4 describes a method of 

successive approximations where vector c  is  taken as  (x).   and x be- 

comes  (x)«.     We then have the recurrence equation 

(x)k+1  - [HT(m)  R'^m)  H(m)  + u]      {HT(m)  R^Cm)  2(m)  + X(x)k} 

which, as shown in Ref. 4, converges to x. 

Assume that a new observation z .. becomes available whose un- 
m+1 

certainty is v ..  We know that the optimal estimate of x will change. 

The value of J for (x)   + Ax becomes 
m       m -n 

J    = {z(m)   -  H(m)  fd) + Ax]|    R'^m)  {z(m)  -  H(m) [(x)    m + Ax]} m       L i_      m-n JJ L L       ro-n JJ 

+ x [«>M + ^ ■c] [<ftM + ^ -c] 

If the subscripts and arguments are temporarily dropped for 
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notational convenience we can expand J    as r m 

J   • [« - H(x + Ax)l    R'^z - H(x + Ax)J + X(x + Ax - c)T (x + Ax - c) 

= A*li  - 2(x + Ax) A"1! + (x + Ax)T (A'TI + XI)  (x + Ax) 

2X(x + Ax)T c + XcTc 

We next expand  the terms  involving x + Ax and regroup  the  terns 

to take advantage of 

rHT(m)  R'^m)   H(m) + Xl] (x)m_n  - HT(m)  R'^m)  z(tn)   -  Xc  = 0 

We obtain 

J    - A"li  -  2xT}i\'lz + xT(HTR'1H + XI) x - 2AxTHTR"1z m 

+ 2AxT(HTR'1H + XI) x + Ax^H^"^ + XI) Ax - 2XAxTc 

- 2XxTc + XcTc 

T 
z R-1«  - AVli ♦ xT [(HV

1
! + XI) x - llTKlz  - Xc] 

-»- 2AxT [(A'1! + XI) x - A"li  - Xc^ 

+ ^t (A"Ti + XI) Ax - XxTc + XcTc 
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T 
The third and fourth t    vanish.  We next substitute for x in 

the second term and obtain 

T -1     T -1      T  T -1      -1  T -1 
J = z R z - (H R z + Xc)  (H1R H + XI)  H R 2 
m 

+ AxT(HTR"1H + XI)  Ax  - XxTc + XcTc 

Expanding the second  term gives 

T 
J      =   2 m 

T   -1 -1        T  -1 -1     T  -11 T    T  -1 -1     T -1 
I R      -  R ^(^R    H + XI)       H^ "-J 2  - XcO^R ^H + XI)       ITR    ! 

+ AX
T

(H
T

R"
1

H + XI) Ax - XxTc + XcTc 

2TT—1 —1 T 
We next add and subtract the  term X c   (H R- H + XI)'    c  - Xc x and 

obtain for J m 

T 
J    » z 

m 
[R*

1
 - »'hiOiVhi + xi)"1 HV

1
] B 

- XcT [(iV1! + XI)"1 HV1Z + X(HV1H + XI)"1  c   - x] 

- X2cT(HTR"1H + XI)"1 c + XcTx - XxTc + XcTc 

+ 4» (A'TI + XI) AX 
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■nie second  term vanishes and  two terms cancel  leaving 

J    =  z 
m 

PR"
1
 . R^HCHV^ + U)"1 HV

1
] 

+ \cT [l - kfA*1! + XI) ^J 

+ AxT(HTR" H + XI)  Ax 

If X is set equal to zero this reduces to the case considered in 

Section III.  As in Section III, we can now write the recurrence re- 

lation for f.J z(m+l), c, X as 

^l^"^' C^r M^ {[Zm+1 - Hm+1 ^)ra.n ♦ A«]] K^  [z "m+l 

Hm+1 [(x)m  + Ax]j + Ax
T[HT(m) R'^m) H(m) + Xl] Ax 

+ f [zCm), c, X]) 
m J 

where 

f FzCn), c, X 
n L 

r(n) {R"1^) - r.^Cn) H(n) [HT(n) R'^n) H(n) 

+ Xll  HT(n) R"1^)} z(n) + XcT {l - X [HT(n) R'^n) H(n) 

+ Xl]  } c 

m ■ n, n+1, •• 
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Comparing this recurrence relation with  that  in Section III 

for f z(in+l)    shows  that  the  terns  involving vector Ax in  the 

T -1 
two expressions differ only by having H (m)  R    (m)  H(in)  replaced 

T -1 by H (m)   R    (m)  H(in) + XI.     If we make a similar substitution  in 

the equation for  (Ax)        we obtain m-n 

^m-n " [HT<m>   ^W  H<m>  + Hm+1   \ll Hm+1 + U]       H^l  Rm+1 [S, 

" Hm+1 (x)       I m-nj 

Define 

P"1    » Hf(m)   R'l(m)  H(m) + XI m 

m+l m m+1    m+l    m-fl 

From the  lemma  in Ref.   1, we have,  as  in Section III 

P ^   - P    - P    H1^.   (H  .,   P    H1^.  + R ^1)"1 H ^   P 
m+l m        m    m+l      m+l    m    m+l        m+l m+l    m 

We can thus use  the  final  set  of recurrence relations given  in 

Section  III for  ill-conditioned  systems.    The difference for ill- 

conditioned systems concerns   the   initial matrix P   ,  which  is given 

by 

P    - HT(n)   R-1^)  H(n) + XI 
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and the initial estimate (x)  , which is obtained by the method of 
o 

successive approximations as described in Ref. 4 using the first n 

observations. 
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V.     THE ORBIT DETERMINATION PROBLEM 

Hie determination of  the definitive orbit of a celestial object 

usually   involves a differential  correction process which relates ob- 

servation residuals to corrections of a set of two-body  orbital pa- 

rameters.       This problem can be quite easily  treated as  a Kaiman fil- 

tering problem,  since  the observational data are usually  large  in 

number and   the sources can be  separated  in space and  time.     This  ap- 

plication was originally proposed by Swerling. 

As  an example,  consider the differential correction process 

discussed   in  Ref.     7   .     The residuals of a sequence of  azimuth and 

elevation angle observations are  to be related  to  the  corrections to 

i    >   . of  six  two-body  orbital  parameters.     These corrections can be 

represented as an orbital parameter correction vector 

~        ~        ~    T 
Ap = [Aa/a,  Me cos Eo) ,  A(e sin Eo), Au0,  Avo, AwJ 

u       (8) where 

a    is  the  semi-major axis 

e    is  the eccentricity 

E    is  the value of the eccentric  anomaly at t >  t 
o o 

Au   , Av   , Aw    are  small  rotations about a set of unit vectors 
0   0   0 

ü , V , W which define the orientation of the 
o  o 
orbit in space. 

Hie small rotations Au , Av , and Aw can be related to small changes 
o        o o 

in the unit vectors AU  , Av   ,  AW.     IJie vector Ap corresponds to vector 
o        o 

x  in Sections  11 and III. 

* 
See Chapter 11 of Ref.  :>   for a discussion of  this problem. 
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The true values of the observation residuals are represented as 

the m x 1 vector 

iT 

where 

Aq ■ rAq1, Aq2, •••, A^J 

Aqi '  -  Pi ^i  
cos hi 

Aqi+1 = P, Ah. 

i » 1, 3, •••, m-1 

The quantities AA. and Ah. are the true values of the observation 

residuals for the azimuth and elevation angles. 

Withiu the limits of linearity the vectors Aq and Ap are re- 

lated by the relation 

Aq - CAp 

where C  is an m x 6 matrix whose elements are  functions of  time and 

the elements of  the preliminary  two-body ^rbit being corrected.    The 

explicit expressions giving  the elements of matrix C are  rather in- 

volved.    Since  they are derived  in detail  in Ref.   7,  they will not  be 

given her^. 

If we assume  that  the observations  are corrupted by white gaussian 

noise of zero mean,   then  the above vector matrix equation becomes 

v ■ z - CAp 

where  the observation vector in Sections  II and  III  is given by 

z » v + Aq 

and 

r -lT 
v -  [v   ,   ••., v   J 1 m 
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The components of observation vector z are 

r.  ^ -  p.(A  ,   - A .) cos h. 
i i    01        ci i 

■..,  ■ P.(h   .   - h  .) 
i+l i     oi ci 

i »   1,  3,   ..., m-l 

where A  . , h  ,  are  the observed and A  ,, h   .  are   the computed values 
oi      oi ci      ci r 

of azimuth and elevation angles at times  t..    Angles A .  and h   .  are 
i ci ci 

based on  the values of the  orbital parameters of  the preliminary or- 

bit being corrected,  as are  the factors  p.  and cos h^. 
ii 

By associating Ap. with x , 6p with Asc, and matrix C with ma- 

trix H the recurrence relations in Section III become 

6pk ■ pk+i 
ck+i Vfi (zk+i - Sc+1 *k> 

^M  = APR + ^k 
k = 1,  2,   . 

= P.   - P.   C. (C, 
-1 

k4 ! fl Pk Ck+1 + \+0      Ck+1 Pk( 

where  the  subscript k refers   to the k-th estimate. 

If we assume that each observation results in a pair of residuals 

in azimuth and elevation, then matrix C. is 2 x 6, matrix P is 6 x 6, 

and matrix II    is  2 x  2.     Vector z    will be  2 x  1. 

If we  take  the first  three pairs of observations we can form the 

equation 

z = 

'1 

Ap  ■  CAp 
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where T 
;i - [-  Pi(Aoi  - Acl>  «" V   'i^oi • hci>]   >  « - l'2-3 

We  can compute  the  initial estimate of Ap as 

A^ - C"1 z 

Azimuth and elevation angle observations are independent.    Assume 

2 
they have equal variances a   which are constant  for all  observations. 

Then 

Rl-R2 = R3- 

0 

-a2!. 

Let 

R = 

«1 0 

0 

0 

u 

R2        0 = a2I, 

Then  since P.   is   the  covariance matrix for Ap,   it can be computed  from 

P1 = a2(CT C)'1 

It is also possible to let P. be a diagonal matrix whose elements 

are estimated on the basis of experience, and to let Ap be the null 

vector. 

If the matrix C is singular then the observations are not in- 
dependent and the whole process breaks down The process discussed 
in Section IV can be used if the observations are ill-conditioned. 
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VI.     THE FEEDBACK CONTROL  PROBLEM 

THE ORBIT TRANSFER PROBLEM AS AN OPTIMAL  REGULATOR PROBLEM 

An orbit  transfer process can be represented as a feedback con- 

trol  process  and  treated as an optimal  regulator problem.     Consider 

that  the space vehicle  is   in an orbit defined by p    at time  t    and ro o 

it  is desired  to transfer  it to an orbit defiled by p    at  time  t + T. 
T o 

The symbols p    and p    represent vector? having as romponents  the sets 

of values of  the two-body  orbital parameters describing the osculating 

orbits  to the vehicle's   trajectories at  t    and  t + T.    We define an o o 

orbital correction vector at time t as 

Ap(t, = pT  - p(t) 

where p(t)  is  the vector representing  the values of the osculating 

orbital parameters at  time  t.    Hie object of  the orbit transfer pro- 

cess  is then to drive  the orbital parameter correction vector to zero 

at  time t + T.    By some  optimization process  the optimal  control vec- 
o 

tor can be expressed as a functi m of  the orbital parameter correction 

vector Ap(t).     This closes a feedback loop  and  expresses  tho orbit 

transfer problem as an optimal regulator problem.    It also  implies  the 

necessity for computing  the components  of Ap(t)  as functions of certain 

observed quantities,   since  the components  of Ap(t) are not directly 
* 

observable. 

The orbit transfer problem can be formulated in phase space.  In 

this case vectors p and p are replaced by s and s . Tlie components 

of vectors s and s are the rectangular components of position and 

velocity in the initial and terminal trajectories. A relative system 

Assuming Ap(t) is inaccurately known. 
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state vector can  then be defined as 

As(t)  «  sr(t)  - s(t) 

fAxCt), Ax(t),  Ay(t),  Ay(t), bz(t), Ai(t)] 

In phase  space  the values of  the components of the  system state vectors 

s and  s    change with  time, with or without  thrust being applied  to  the 

vehicle.     The object of the orbit  transfer problem  is  then  to make state 

vector s  coincide with vector  s    at  time  t + T, 
r o 

Eie vector  s  (t)  can represent  the motion of a hypothetical  point 

mass moving along  the desired  terminal  trajectory  of  the orbit   transfer 

process,  or  it can represent the motion of an actual  space vehicle that 

is to be  intercepted or rendezvoused with.     In the  intercept  case  it 

may be desired only to drive  the  relative position components Ax(t), 

Ay(t), and Az(t)  to zero at time t    + T. 

As  the components of As(t)  are usually not directly observable, 

it is necessary to compute them from observable quantities in order 

that  the optimal  control process can be carried out. 

Actually,  in phase space,  the orbit  transfer is more  like a servo 

problem than a  regulator problem since As(t) refers  to a moving origin. 

However,  under certain circumstances  it  can be treated approximately 

as a regulator problem by neglecting certain small terms or defining 

As(t) as As(t) - s  (t + T) - s(t). 

In the remainder of this section the application of Kaiman fil- 

tering theory to the estimation of orbital parameter correction vec- 

tors Ap(t) and relative system state vectors As(t) will be discussed. 



THE ESTIMATION OF ORBITAL PARAMETER CORRECTION VECTORS 

In  the discussion  to follow  it  is  assumed  that  the durations  of 

time  involved are short enough so  that  the space vehicle essentially 

follows  a two-body   orbit while no  thrust   is being applied,   i.e.,   the 

effect of perturbations from natural  causes  is assumed negligible. 

Under  these conditons  the motion  of  the body  ii  defined by  a  set  of 

six constant orbital parameters.     The rectangular position and velocity 

of the space vehicle can be determined at  any particular time  from these 

orbital   parameters by  applying  suitable   transformation equations.     How- 

ever, when  thrust  is applied  to the space vehicle  the values of these 

orbital parameters  change continuously with time.    At each  instant of 

time  the resulting  set of orbital parameters defines an osculating conic, 

This conic  represents  the path  in space along which  the vehicle would 

move  if  the  thrust were to vanish.    An orbit transfer can  thus be con- 

sidered as  the  time behavior of a  two-body  orbit that  is continuously 

deformed  in size,   shape, and orientation  in space from some  initial con- 

fi0uration  to some  terminal  configuration.    Because  of   the nonlinearity 

of  the  set  of differential  equati-:.  s  defining  the  time behavior of  the 

orbital   parameters,   the estimation problem will be  treated  as  a discrete 

process  and  linear approximations  used. 

The  orbit determination problem  involves  obtaining  the  estimated 

values  of  a set  of  six constant  parameters  from a sequence  of  observa- 

tions.     The  feedback control problem  involves determining  the  estimated 

values of a set of  six time-varying orbital  parameters  at discrete in- 

stants of  time during the orbit  transfer process.     Thus,  some  relation 

is necessary  for determining how  the orbital  parameters change   their 
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values with  time. 

A piece-wise  linear  solution  to an optimal  control problem formu- 

lated in terms of orbital parameters and  obtained by dynamic program- 

ming is given  in Ref. 9.     The  linear transformation relating the or- 

bital parameter correction vector at time  t.   to  that at  time  t    .   is 

given by 

^+l-*\-\*\'  k-0'  ^   ••••N-1 

where A. is a 6 x 3 matrix whose elements are evaluated from the com- 

ponents of the osculating orbital parameter vector at t . The vector 

AV     is  the incremental change  in the  space vehicle's velocity vector 

from t,    to t, ..   due  to the application of   thrust.    From Ref.  9 
k k+1 rr 

iVk * ^ WSc+ ">*' ^ Vi 4v k = 0> l> ••••N-1 

where Q. . i , a 6 x 6 matrix, is determined from 

\ ' «Wi - VA (AkT Vi \ + I)'1 \T Vi 

%' 
= I 

Substituting  from AV    in  the  transformation  equation yields 

»»kfi • ^ " ^ (^ Vi \ + XI)"1 \T \+i] ** 

Multiplying both sides by matrix Q . and solving tor Ap. gives 

Apk " Qk Qk+1 
Apk+1 
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This relation defines how the orbit parameter correction vector changes 

from one stage of the process to the next during an optimal orbit trans- 

fer. 

It will be assumed that at each time t, an observation z(t, ) is k k 

obtained,  an orbital parameter correction vector estimate Ap(t.) will 

be computed  (Fig.   1).     The optimal  control process will utilize  this 

estimate to compute a change  in the vehicle's velocity vector.     The 

orbital parameter correction vector and  the true values of the obser- 

vations at  t,   are related by k 

Aq(tk)  = C(PT;   tk)  Ap(tk) 

Matrix C(p  ; t. ) is the m x 6 matrix discussed in Section IV except 

that its elements are evaluated in terms of the components of p .  This 

means that the linear approximations involved in deriving the elements 

of matrix C become more exact as the termination of the process is ap- 

proached. 

Associating Aq(tk+1) with y^ , ^(t^) with Axm, Ap(tk+1) with 

x , . and C(p  ; t. .,) with H .,, we can rewrite the recurrence rela- 
m+l       *T '  k+1       m+l' 

tions with a necessary slight modification as 

6Pk+i ■ pk+i 
ck+i \li [z(tk+i> - ck+i \li \ ^v] 

»fcw= Qk!i "k 4p(tk>+ 6f<tk+i> 

Vi - pk ■ pk ck+i (ck+i 
pk ck+i + VP"1 ck+i pk 

where 

Ck+1 " 
C(
PT 

: Vl' 
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The slight modification mentioned above involves  the extrapolation of 

Ap(t. )  ahead  to time t        by using  the Q matrices.     The  sequence of Q 

matrices   is generated  in  the process  of solving the optimal control 

problem. 

THE ESTIMATION OF RELATIVE SYSTEM STATE VECTORS 

The  linearized  time-varying differential equation  for the relative 
/ 1 Q\ 

system state vector is given    by 

JA* = A(t) As - [A(t) - Ar] sr(t) - Bu(t),  As(to) - Ac 

where A(t)  is  a time-varying matrix,  A    is a constant matrix for the 

target  in a circular orbit,  B  is a constant matrix,  and u(t)  is  the 

control vector.    For a quadratic  system performance  index the optimal 

control vector will be a linear  function of  the relative system state 

vector 

u(t)  = |- BT [a(T + to-   t)  As(t) + 0(T + to-  t)   sr(t)] 

Substituting  this expression  for u(t)   in  the differential  equation 

above yields 

^ = F(T + t  -  t)  As + G(T + t  -  t)   s   (t) 
at o or 

where 

F(T + t  -  t)  - A(t)   - r B BTa(T + to-  t) 

G(T + t  -  t)  - A    - A(t)   - v B BTB(T + t  -  t) N orX o 



The  solution of  this  time-varying differential equation is given 

by 

/ 

Mt)  -  »(*.   to)   As(to)  +     I       t(t,   §)  G(?)   sr(!;    d-- 

*(t,   to) As(to) + g(t,  to) 

where matrix $it,  t ) satisfies the matrix differential equation 

}l.r(T + t0. t)».    i(t0. t0).i 

This  solution defines  the  time behavior of  the  relative state 

vector as   the vehicle moves along a trajectory determined by  the op- 

timal control vector. 

The   relative  system  state variables  are  expressed with  respect 

to a non-rotating coordinate  system and are not directly  observable. 

Tlieir estimated values must  therefore be based  on physical  quantities 

that can be observed.     There  is, obviously more  than one way of handling 

this  problem.     TTie method  to be discussed consists  of  two  separate com- 

putational  processes. 

Observations of relative range,   relative  range rate, 
two angles,  and  two angular rates  associated with  the 
line  of  sight  from s(t)   to  s   (t)   are made at discrete 
instants  of   time.     The corresponding values  of  the 
state variables  are computed by  suitable   transforma- 
tion equations. 

The  sequence of  sets  of computed values  o£  the  state 
variables   is  operated  on by  a Kaiman  filter  to op- 
timally  estimate values  of  the  state variables up- 
dated   in   time  from  the  observation   times. 
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Assume that As(t ), k = 1, 2, •••, in represents the computed rela- 

tive system state vector based on observations at t , k = 1, 2, •••, m, 

The problem is to estimate the As(T) where T > t , k * 1, 2, •••, m. 

The relative system state vector at t « T is related to the rela- 

tive system state vector at t by the solution of the differential 

equation 

As(T) - *(T, tk) As(tk) + 

/ 

*(T, I)  G(0 sr(p d? 

$(T, tk) As(tk) + gCT, tk) 

or 

AsCy - T^T, tk) |rAs(T) - g(T, tk)j 

By making the proper associations of vectors and matrices we can re« 

write the recurrence relations in Section III as 

r6S<T>j< - pk+i *T<w T> R;l<w[a 

♦<W « {[*«<»\ - *«■ «fcfx>} 

>s<T>l+i" [*8<»1 + [«««I 

pk+i ■ pk - ''k »^Sfi- *> [*(tk+i> T) pk »^v«-r) 

+
   RB<tk+l>^l»(tk+l-T)Pk 
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where 

Htk+1. T) ■ |-l(I. tk+1) 

1 

/ 
g(l, tfc) •      /     ♦(!. 5) 0(5) sr(5 

k = 0   ,   1,   ••., ra-l 

There will  be  some uncertainty associated with g(T,  t )  due to 

uncertainty  in knowledge of the  target's orbit.     However,  the matrix 

G(^) will have elements  that are either relatively small or zero,  and 

since g(T,   t )   is  in  the nature of a correction  the effects  of un- 

certainties associated with g(T,   t )  will  be   ignored. 

The initial quantities required by the recurrence relations are 

fAsCT)] , P , and R (t ). The initial estimate of [As(T)] can be 

computed  from 

rAs(T)]o - $(T,   tj)  As^) 

The matrix P    can be  taken as a diagonal matrix whose non-zero elements 

are the variances  associated with the  initial values of the relative 

system state variables. 

If the matrix R (t, )   is  the covariance matilx associated with  the q    k 

set of observations  taken at time t    and the matrix M(t )   is  the Jacoblan 

matrix associated with the equations  transforming  from  the observed 

quantities  to the computed  relative system  state variables,   then when 
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the observation uncertainties are sufficiently small 

w - «V W ^S' 

wh ere R (t, )   is  the covariance matrix for the relative  system state 

variables at  t. . k 

The process  just described estimates  the values of  the relative 

system state variables at time T>t,,  k=  1,  2,   •••,m based on m sets 

of observations.    The  feedback control  process requires  that  the  rela- 

tive system state variables be estimated either continuously or at a 

discrete number of times  throughout  the orbit  transfer process.     Since 

the computational processes  involved will usually be performed by  a 

digital computer, both cases are actually discrete,  the difference 

being due  to  the  frequency with which As(t)   is  estimated. 

The period  of time during which observational  data are processed 

to obtain the estimate As(T),  i.e., 0 i t s T will be referred  to as 

an estimation  interval.     It  is assumed   that  the orbit trarsfer process 

consists  of N estimation  intervals,   i.e., As(t)  is estimated at  times 

T,   2T,   •••,   (N-l)T with m sets of observations being made during each 

estimation interval.     The process  involved  in estimating As(T)   is  then 

repeated during each estimation interval,  and  it remains   to consider 

how the various estimation  intervals are  linked  together so that all 

preceding observational  data are used  for each successive  estimate. 

The  initial  estimate of As(2T)  can be computed  from 

[As(2T)]o = 1(21,  T)   TAsCT)]^  + g(2T,  T) 
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where 

2T 

', T) -  / g(2T, T) -  /   *(2T, %)  G(§) sr(§) d? 

The initial P matrix for the second estimation interval is com- 

puted from 

since 

P - P . - P  . [P . + R 3"1 P - 
m   m-1   m-1  m-1   m    m-1 

$(t  T) = 1(1, T) = I 
m 

The computation of  R (t) depends only on the time of the associated 

set of observations,  and  the equation given above  is used for all es- 

timation  intervals. 

Imbedding the one-stage estimation process in the N-stagc esti- 

mation process provides estimates of the relative system state vari- 

ables at (N-l) instants of time during the orbit transfer. When a 

continuous control process is involved, the digital computation pro- 

cess used to compute As(t) is based on a simple linear extrapolation 

during each estimation  interval7   i.e., 

As(t) - $(t, nT) As(nT)  + g(t,  nT),    n = 1,   2,   • • •,  N-l 

where 

,  nT) -       / ^     nT)   =        I t(t,  ?)   G(§)  sr(§)  d§ 

nT 

Since the matrix M(t) becomes singular as s(t) approaches s (t) 

the computation process for R (t) may have  o be modified during the 
s 

last few estimation ii "ervals. 
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