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PREFACE 

In this Memorandum the authors present further 

mathematical results concerning particle—transport 

processes.     Research in the mathematical physics of wave 

propagation has important implications for a variety of 

physical situations in such fields as astrophysics and 

radiation studies. 



SUMMARY 

In a series of papers,   the authors have applied 

invariant imbedding to provide new analytic and computa- 

tional approaches to a variety of processes of 

mathematical physics.    We began a detailed analysis of 

the ordinary and partial differential equations of 

invariant imbedding,  concentrating upon existence and 

uniqueness of solution, nonnegativity of solution, and 

convergence of associated difference algorithms as 

step—size went to zero. 

In this paper, we wish to show that for a quite 

general class of transport processes involving particle- 

particle interaction, as well as the usual particle-medium 

interaction,  we can obtain difference approximations 

which exhibit nonnegativity and boundedness  in an 

immediate fashion.    Furthermore, a uniform Lipschitz 

condition is preserved.     In subsequent papers  the more 

difficult matters of convergence to the solution of the 

partial differential equation,  and existence of this 

solution over the entire physical range of the  independent 

variables,  will be discussed. 
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INVARIANT IMBEDDING, PARTICLE INTERACTION, 
AND CONSERVATION RELATIONS 

1. INTRODUCTION 

In a series of papers,   the technique of invariant 

imbedding has been applied to provide new analytic and 

computational approaches  to a variety of processes of 

mathematical physics   [1],   [2],   [3],     In  [4],   [5],   [6], 

a detailed analysis was begun of the ordinary and partial 

differential  equations  of  invariant  imbedding,  concen- 

trating upon existence  and uniqueness of  solution, 

nonnegativity of solution, and convergence of associated 

difference algorithms as step—size went to zero. 

In this paper,  we wish to show that for a quite 

general class of  transport processes  involving particle- 

particle interaction,as well as  the usual particle-medium 

interaction,  we can obtain difference approximations 

which exhibit nonnegativity and boundedness in an 

immediate fashion.     Furthermore,  a uniform Lipschitz 

condition is preserved.     In subsequent papers, we shall 

discuss the more difficult matters of convergence to  the 

solution of the partial differential equation and 

existence of  this  solution over the entire physical range 

of the independent variables. 

2. ANALYTIC AND PHYSICAL PRELIMINARIES 

When interaction occurs, the expected fluxes in the 

transport process do not depend linearly upon the 
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incident fluxes. To apply invariant imbedding techniques 

we must regard the reflection, transmission, and loss 

functions as functions of both the length of Che rod and 

the ircident intensities. We let 

(2.1) r.(x,y) * the expected flux of particles in 

state i reflected from a rod of 

length x when the incident flux at 

x has intensity y. 

Here, the incident intensity y is an N—dimensional 

vector whose j—th component y.  is the intensity of 

incident flux in state j. For convenience we also 

introduce the column vector r(x,y)  with components 

r^y) (i - 1,2,...,N). 

The transmission and loss vector functions, t(x,y) 

and ^(x,y), are defined similarly. We let 

(2.2) t.(x,y) « the expected flux of particles in 

state i transmitted through a rod 

of length x when the incident flux 

at x has intensity y; 

^•(x*y) = the expected flux of particles in 

state i absorbed or annihilated 

within a rod of length x when the 

incident flux at x has intensity y. 
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To obtain different-ial equations for these functions, 

we consider a discrete approximation to the process in 

which the rod is divided up into small segments,   each of 

length    A.     In setting up the discrete approximation,  we 

shall often ignore terms of higher order than    A    since 

the partial differential equations obtained by letting 

A    approach    0    will not depend upon higher order terms. 

This still leaves considerable freedom in the choice of 

the discrete approximation.    We take advantage of this 

freedom by selecting a discrete approximation which 

preserves  two important features of the physical problem— 

nonnegativity and conservation of matter.    The difference 

equations will be chosen so that the components of 

r(x,y),  t(x,y),    and    ^(x,y)    are all obviously nonnega- 

tive and so that 

N N 
(2.3) £     (r.(x,y) + t.(x,y) + i.(x,y)) -    S    y.. 

i=l       L L 1 i-1    l 

We now consider what happens in the segment  [x,x + A] 

When a flux of u. particles in state j enters the 

segment at one end and a flux of v.  particles in state 

k enters at the other end, then the following effects 

occur: 

(a) The expected number of particles from the 
2 

u.—Gtream absorbed by the medium is f..(x)u.A + 0(A ), 

and the expected number absorbed from the v,—stream is 

fkk(x)vkA + 0(A
2) 
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(b) The expected number of particles from the 
2 

u.—flux back—scattered In state i is b.. (x)u.A + 0(A ), 

and the expected number from the v, —flux back—scattered 

in state i is bik(x)vkA + 0(A
2), 

(c) The expected number from the u.—stream trans- 

mitted in state i  (i ^ j)  is di.(x)u.A+ 0(A
2), and 

the expected number from the v.—flux transmitted in 

state i (i jt k)  is dik(x)vkA + 0(A
2). 

In addition to these effects, which would occur in a 

no—interaction model, we introduce collision effects. 

Let u denote the column vector with j—th component u. 

for j « 1,2,. •.,N, and let v denote the vector with 

components v^v«*.. .^Vj,,  Then: 

(d) The expected number of r articles from the 

u.—stream annihilated due to interactions with the 

opposing streams with intensities gi^en by the vector v 

is 

9     r    -^Acp. (u.,v,x)n     « 
(2.4) u.q)i(u.,v,x)A + 0(A

Z) = u.l 1 - e  J 3 ! + 0(AZ). 

Similarly,   the expected number annihilated from the 

v,—stream due  to interactions with the opposing streams 

represented by the vector    u    is 

(2.5) v^l -e    ^    k J + 0(A2). 
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The functions 9. are constrained by the conditions 

(2.6)    cpj(UjiV,x) > 0,  cp.(u.,0,x) ■ 0, 

lim u.cp. (u.,v,x) ■ 0, 
x-»0 J J J 

In setting up the difference approximation, we have used 

the exponentials to obtain terms which are obviously 

nonnegative and uniformly bounded if the conditions of 

(2.6) hold. 

In the following discussion we shall usually 

suppress the x—dependence of f..(x), b..(x),  etc. We 

assume that 

(2.7) 'ij > 0'   dij > 0   (i ^ j)*   fjj > 0; 

and we define d.. by the equation 

(2.8) d.. = - 
JJ 

r N       N -, 
Z b. . + S d.. + f.. 

Li< ^   1-1 ^   JJJ 
(j - 1,2,...,N), 

which implies that d.. < 0.  If we introduce the matrices 
JJ - 

(2.9)    D(x) « (dij(x)), B(x) « (b.^x)), F(x) (f..(x)ö..), JJ   ij 

M 

1  1 

0  0 

0  0 

1 

0 

then from (2.8) we obtain the relation 



(2.10) M(B + D + F) - 0. 

It is also convenient to introduce the matrix 

(2.11) *(u,v,x) - (^(u^v^x)«^). 

To derive the difference equations for our discrete 

approximation, we introduce the auxiliary vector function 

v(x,y) where 

(2.12) v.(x,y) = the expected flux in state i moving 

to the left at x due to an incident 

flux at x + A of intensity y. 

To terms of order A,  the flux v(x,y) arises from 

forward scattering of y diminished by absorption and 

annihilation, and from back scattering of the flux 

incident at x which is moving to the right.  The flux 

at x moving to the right is r(x,v(x,y)). Hence, to 

terms of order A, we obtain 

(2.13) v(x,y) = (I + AD)e-A<I>(y'r(x'v(x^)))y 

+ ABr(x,v(x,y)), 

an implicit equation for   v.     Since  this  implicit equation 

seems  to be somewhat difficult to handle,  we shall replace 

^'(y^O^v^y)))     by    <I)(y,r(x,y)).     If    r(x,v)     satisfies 

a uniform Lipschitz condition and    v(x,y)  = y + 0(A), 

this replacement will only affect terms of higher order. 
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The reflected flux at x + A arises from fluxes of 

Intensity y and r(x,v(x,y)) Incident upon the segment 

from x to x + A. Hence, to terms of order A we 

obtain 

(2.14) r(x + A,y) - ABy 

+ (I + AD)e-A*<r<x'y>^)r(x,v(x,y)), 

where the two  terms represent backward and forward 

scattering,  respectively.     Similarly we obtain 

(2.15) t(x + A,y) - t(x,v(x,y)). 

In calculating  the loss  functions,  we break it up  into 

losses occurring in the segment     [0,x]    and in the segment 

[x,x + A].     In the latter we must consider losses due to 

absorption from both the    y—flux and the    r(x,v(x,y))—flux, 

and losses due  to annihilation of particles from both 

fluxes.     We obtain 

(2.16) i(x + A,y) = nx,v(x,y)) 

+ AFY + AFr(x,v(x,y)) 

+  (I + AD)(I - e-'AC,(r(x^)'y))r(x,v(x,y)) 

+  (I + AD)(I^e^<I)^'r(x'y)))y. 

3.  THE DEFINING EQUATIONS 

In the following discussion we shall proceed rigor- 

ously, using the difference equations obtained above as 



our starting point. The fundamental vector equations for 

x ■ 0,A,2A,3AJ..., y >. ^'  are thus  the difference 

equations 

(3.1) r(x+A,y) «= ABy + (I+AD)e~A<1>(r(x'y)'y)r(x,v(x,y)), 

t(x+A,y) « t(x,v(x,y)), 

/(x+A,y)  •= i(x,v(x,y))  + AFy + AFrCx^Cx.y)) 

+ [I+ADHI- e-ACt,(y'r(x'y))]y 

+ [I+AD][I - e-^^'^'^MxMx^)), 

and the  implicit equation 

(3.2) v(x,y)  =  (I+AD)e""A<l5(y'r(x'y))y + ABr(x,v(x,y)). 

For intermediate values of x we shall assume that the 

functions r(x,y), t(x,y), and ^(xjy) are defined by 

linear interpolation. 

For the problem wc have discussed, we have the 

following initial conditions corresponding to a rod of 

length 0: 

(3.3) r(0,y) = 0,  t(0,y) = y,  /(0,y) = 0; 

but to allow comparison with other initial value problems 

for partial differential equations, we shall allow the 

more general situation in which 

(3.4) r(0,y) - g(y),  t(0,y) « y, £(0,y) = 0. 



In our problem this situation would arise if there were a 

source at 0 or additional material to the left of 0. 

We shall assume that g(y) >^ 0 and satisfies a Lipschitz 
« 

condition 

(3.5)    llg(y) -gCy')" < L0||y ~ y'L 

where LQ is a positive constant. 

The scheme (3.1) and (3.2) is not immediately usable 

for numerical purposes because (3.2) is an implicit 

equation for v. For numerical purposes we would expect 

to solve (3.2) by iteration, starting with the initial 

approximation (I + AD)e"A*^y,r^x'y^y for v. Observe 

that if the iterations converge to a solution of (3.2), 

then because of (2.7) all components of the limit vector 

v(x,y) will be nonnegative provided A is sufficiently 

small so that I + AD has nonnegative elements. 

Similarly, nonnegativity of r, t, and I    is preserved. 

4. LIMITING DIFFERENTIAL EQUATIONS 

From the foregoing equations, we obtain formally a 

set of nonlinear partial differential equations for r, 

t, and I    by passing to the limit in A. Introduce 

the three Jacobian matrices 

"¥  
For vectors and matrices we shall use the norms 

N N 
"yll  -    2   lyJ,     I|B||  -      Z     lb.   |. 

i-1    L i,j-l    LJ 
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^t.(x,y)       ^r.(x,y) 
(4.1)    T„.-^ ,  Ry._4__, 

y äyj 

T          s 
a/.Cx, •y) 

y iyi 

Using (3.2) in conjunction with (3.1), we readily obtain 

the nonlinear partial differential equations 

(4.2) rx - Ry[Dy + Br - <l>(y,r)yl = By + Dr - t(r,y)rJ 

tx - Ty[I>y + Br - ^(y,r)y] = 0, 

£x ~ Ly[Dy + Br - *(y,r)yl « Fy + Fr 

+ ^iyrfy + (I)(r,y)r. 

From (3.3)  we obtain the initial conditions 

(4.3) r(0,y) = g(y),     t(0,y) = y,    £{0,y)  = 0. 

5. CONSERVATION FOR THE DISCRETE APPROXIMATION 

For the considerations of this section it is conven- 

ient to replace the initial conditions (3.3) by the 

conditions 

(5.1)    r(0,y) = z,  t(0,y) = y, i(0,y) = 0, 

where z is an arbitrary nonnegative N-dimensional vector 

which may depend upon y.  The discrete approximation 

given by (3.1) and (3.2) was chosen so that the following 

conservation relation would hold: 
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CS.2) MtrCx^y) + tCx^) + i(x,y))  - M[y + z]. 

This  states that the total reflected flux,   transmitted 

flux,   and dissipation due  to ab     rption and annihilation 

must equal the  total  input at the  ends of  tht   rod—^rtiat 

goes  in must equal what goes out. 

We shall  take up the question of existence of solu- 

tions of  (3.1)  and  (3.2)   later.     In this section,  assuming 

the existence of solutions of  (3.1)  and  (3.2),  we prove by 

induction that  the conservation relation  (5.2) holds for 

x = 0,A,2A,3A,.,..    First,   for    x = 0    the conservation 

relation follows  immediately from (5,1).     As our induction 

hypothesis, we assume that  (5.2)  holds for    x    for all 

input vectors    y    and    z,     and we then show that it holds 

for    x + A.    Abbreviating    r(x,y)    by    r    and    v(x,y)    by 

v    and making use of  (2.10), we have 

(5.3) M[r(x+A,y) + t(x+A,y) + i(x+A,y)) 

= AMBy + Mr(x,v)  + AMDr(x,v) - M[I+ADl [ W^r,y^]r(x,v) 

+ Mt(x,v)  + Mi(x,v)  + AMFy + Z^Fr(x,v) 

+ M[I+AD][I^rA*(y'r)]y + M[I+AD][I-e^(r'y))r(x,v) 

- M[r(x,v)  + t(x,v)  + i(x,v)]  + AM[&+F]y + AM[I>+F]r(x,v) 

+ M[I+ADl[I^-A(t(>r'r)]y 

« M[v+z] - AMDy - AMBr(x,v)  + M[I+ADly - M[I+ADle"^yI>^y,r^y 
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- M[y + z], 

which completes  the proof by induction. 

6.     EXISTENCE OF  SOLUTIONS FOR DISCRETE APPROXIMATION 

We  shall now prove  the existence of  a solution of 

(3.1)  —  (3.2)   satisfying  the  initial conditions   (3.3)   for 

a small    x    interval provided the step size    L    is 

sufficiently small.     At  the same  time we  shall  show that 

r(x,y)     satisfies  a Lipschitz condition with respect to 

y    which  is uniform  in    A.     In addition to   the  assumptions 

already made concerning     B(x),  D(x),  F(x),   t(u,v,x),     and 

g(y)*     we assume that    B(x)     and    D(x)     are uniformly 

bounded  and    i(u,v,x)     satisfies uniform Lipschitz 

conditions with respect  to    u    and    v. 

The proof will be carried out inductively for a 

region of  the  form 

(6.1) y ^ 0,       y    < ce"^ - c^ 

where    7    is any positive constant for which 

(6.:!) 7 >     B    +    D , 

c is an arbitrary positive constant, and c, > z , 

where  z e g(y)  is the input flux vector at 0, We show 

that the system (3.1) — (3.2) has a solution for 

0 < x < x* provided 0 < L <_h,     where x* and 6 

depend upon the constants c, 7,  and c,  as well as 

upon B(x)i D(x), *(u,v,x), and g(y). 
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As our induction hypothesis we assume (a) that for 

y and y1  satisfying (6.1), we have 

(6.3) r(x,y) -r(x,y') < L(x) y -y'jl. 

where    L(x)    is a certain function of    x    to be specified 

below;   (b)  that the conservation relation 

(6.4) M[r(x,y) + t(x,y) + i(x,y)]   - M(y + z) 

holds,  and  (c)  that    r(x,y)  _ 0,    Under these assumptions 

we prove that for    0<A<6,    0<x<x#    the equation 

(3.2) has a nonnegative solution   v(x,y)    for    y >. 0, 

Hyll  < ce"-7^"*"^ - c^     It will then follow immediately 

that for 

(6.5) y > 0,     Hyll  < ce^(x+A) - c^ 

the vectors r(x + A,y), t(x + A,y),  and X(x + A,y) 

determined by (3.1) are nonnegative and, by the proof 

given previously, satisfy M[r(x+A,y) + t(x+A,y) + ^(x+A,y)l 

« M(y + z).  We then show that for y and y*  in the 

region (6.1), we have 

(6.6) "r(x + A,y) - r(x + A^')!! < L(x + A):!y - y'H, 

thus completing the  inductive step from    x    to    x + A. 

We obtain a solution of  (3.2) by iteration,  starting 

with the vector    v0 *  (I + AD)e      y    and defining the 

vectors    v,^«,...     recursively by the equation 
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v   ..   " vft + ABr(x,v  ).     Because all elements of  the n+i        u n 
matrix    B    are nonnegative,  each component of    v 

increase ^ -tonely with    n.    Thus  to prove that the 

sequence VQ,V-, ,v«,. •. converges, it is sufficient to 

show that the sequence is uniformly bounded. By (6.4) 

we have 

(6.7) Hv^ll  <   IVQ1  +l|AB;i(!!vril!  + llzll); 

hence 

(6.8) "vn+1    + Cj^ <    VQ1  +cl+ ilABJKIIvJ + c^, 

and by induction 

(6.9) v^    + c1 <  ( v0    + c,) 

•   (1 +    AB"  +   "AB  2 + •••   +   "AB111). 

Thus  if    AB    < 1,     the sequence converges and the limit 

function    v(x,y)  =  lim    v      satisfies 
n-«oo 

(6.10) v(x,y)     + c,   <    V0    +Cl < } + ^ISliCy"  + c,) 

< (1 + 7A)(:y   + c^ 

< e^Cy    + c^, 

provided A is sufficiently small.  Note that v(x,y)  0 

and that if y satisfies (6.1), then 

'jv(x,y) < ce""^  '  — c-,.     Because r(x,v) is a 
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continuous function of v in this region, it follows 

that the limit function v(x,y)  satisfies the equation 

(3.2). 

To establish that r(x + A,y)  satisfies a Lipschitz 

condition, we first prove that v(x,y) satisfies a 

Lipschitz condition for y and y1  in the region (6,5). 

We have 

(6.11) v(x,y) - y + ADe^^^^^^y 

+ (e-A^(y,r(x,y)) _ I)y + ^(^v^y)). 

It is easily seen that if    L(x)  >^ L«,    there  is a 

positive constant    c«    such that 

(6.12) £j)e-^(y,r(x,y))y _ ADe-AO(y,,r(x,y,))y,M 

< c2L(x)A y - y'L 

(e-AO(y,r(x,y))  _ I)y _ ^«'(y' ,r(x,y'))  _ I)yl 

< c2L(x)A y - y'l- 

If    y    and    y1     satisfy   (6.1),   then by  (6.10)  we have 

(6.13) v(x,y)    < ce"^ - c^      ^(x^1)    < ce"^ 

Hence, 

— c,. 



-16- 

(6.14) l!v(x,y) -vCx^') 

< liy - y'll + 2c2AL(x)"y - y'll 

+ AÜBII   l!r(x,v(x,y)) - rCx^v^y'))! 

< lly -y'IKi + 2c2AL(x)) 

+ ^!lB!!L(x)I!v(x,y) -vCx^')]!, 

and consequently. 

1 + 2c0AL(x) 
(6.15) 'Iv^y) - v(x,y,)|j  <  -^  !|y - y' 

1 ~ A,!BllL(x) 

<   (1 + c3AL(x))!ly -y' 

if    A||B||L(x) <  1/2,     where we can let    c-j « 211B!1  + 4c2. 

We have 

(6.16) r(x + A,y)  = ABy + r(x,v(x,y)) 

+ ADe'^(I)(r(x'y>'y)r(x,v(x,y)) 

+ (e^(r(x'y>'y> -I)r(x,v(x,y)). 

For y and y1 satisfying (6.1), using (6.15) we 

obtain the estimates 
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(6.17) IlADe^^^'^'^rCx^Cx^)) 

< c4AL(x)(l + C3AL(x))||y - y'H, 

IKe^CrCx^y)^) _ I)r(x,v(x,y)) 

- (e-^^y'^y') - I)r(x,v(x,y'))| 

< c4AL(x)(l + C3AL(x))!ly - y'H, 

where    c,     is a positive constant.    It then follows  that 

(6.18) ||r(x + A,y) - r(x + A^')'! 

< AllBll   Hy - y'H  + L(x)||v(x,y) - vC^y')!! 

+ 2c4AL(x)(l + c3AL(x))I!y - y'H 

< [A'B'  + L(x)[l + (c3 + 2c3c4)AL(x) + 2c4A]}l!y - y"'. 

Consequently,   (6.6)  follows  if we define    L(x + A)    by the 

equation 

(6.19) L(x + A)  = c5A + L(x)(l + 2c5A + c5AL(x)), 

with    Cc ■ maxCllBll^c» + 2c~c4,c4). 

From a lemma proved in  [6] 

r     1 n"1 

(6.20) L(x)  < [I + L(0) - C5X, 

if 

- 1 
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c5x < 1/(1 + L(0)). 

In view of  (3.4), the induction can be started by  taking 

L(0)  - L«    and can be continued  in the region  (6.1)  as 

long as  the condition    A||Bi|L(x)  <  1/2    is  satisfied«     By 

restricting    x    to a small enough interval,  we obtain 

from (6.3)  the result that    r(x,y)     satisfies a Lipschitz 

condition 

r(x,y)  - r(x,y,)l|  < Kl|y - y' 

where    K    is  independent of    x    and    A, 
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