
CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI
DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSiON

SI, WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART
UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST
AVAILABLE COPY.

S2. A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL
WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.

J 3. THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION
COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION
ONLY.

El 4. THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL"BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO
REPRINT.

O 5. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL
BE AVAILABLE IN MICROFICHE ONLY.

13 6. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL
NOT BE AVAILABLE.

Q3 1. DOCUMENT ISAVAILABLE IN MICROFICHE ONLY.

Q 8. DOCUMENT AVAILABLE ON LOAN FROM CFSTI ( TT DOCUMENTS ONLY).

Q9.

PROCESSOR:
T:,: ;- 107-101,,4 .



AIR FO~(WE

BALLISTIC MISSILE DIVISIGN

TECHNICAL LIBRARY Ci ,.

cument No. (-,? J~
Copy No.

r"

•,•I: Q "A it D C%

LAA

S" ~~~~-' -"""•• •"• •

a digital computer program

for a generalized inertial

guidance system error analysis

C OH A RD COPY $ "j

• " FAIUKUr IL, t .," '

SPACE TECHNOLOGY LABORATORIES, INC.

,,..o~o~•, D D) C
TR-59-0000-00647

UL.s .I '



TR -59-0000-00647

Copy of 80

A DIGITAL COMPULTEIt PROGRAM FOR A GENERALIZED

INERTIAL GUIDANCE SYSTEM ERROR ANALYSIS

30 March 1959

R.' A.-'M~oore
•- /

D. F. Maronek

Approved: 7, ,
G. A. Harteir, Wdnager
Inertial Guidance Department

Approved: t AZ
W. T. Russell, Director
Electromechanical Laboratory

S P A C E T E C H N O L O G Y LA B OR A T OR I E S, I N C.

P. 0. Box 95001, Los Angeles 45, California



Ta -59 -oooo-oo6 i
P ugs-ý 1 ]

TABLE OF CONTENTS

Section Page Number

1. INTRODUCTION ................ ................. 1

2. COORDINA'E SYSTEMS ............ ............... 2

3. ERROR EQUATIONS ............... ............... 6

4. FORCING FUNCTIONS ........... ............... I1

5. SIMULATION OF ERROR SOURCE.F ............ .... 13

6. DETAILS OF COMPUTER PROGRAI ....... .......... 28

7. EXAMPLES .......... .................. ... 32



TH-59-0Owoo-O0~7

Page iii

LIST OF FIGURRES

i
Figure Page Number

2.01 Earth-centered inertial and Platform

Coordinate Systems ......... ............. 2

2.02 Accelerometer Coordinate System Axes ........... 3

2.03 Accelerometer Orientation .................. 4

2.01' Optional Accelerometer Orientation.. ...... 5

3.01 Missile Trajectory .......... ................ 7

4.01 Gyro Orientation ............ . ........... 12

4.02 Gyro Orientation ..... ................. ..... 13

4.03 Gyro Orientation ..... ................. ..... 14

4.04 Accelerometer Axes ...... ................ 15

4.05 Accelerometer Alignment .... ........... .... 16

4.06 Accelerometer Alignment ...... ............. 17

5.021 Accelerometer Misalignments ............ .... 21

6.01 Program Output Format ................ ... 30

6.02 Computer Flow Diagram .... .............. .... 31

7.01 Computer Output for C 3X . . . . . . . . . . . .. 35

7.02 Computer Output for C Y and C., 36

7,03 Computer Output for cx, a. . . . ....... 38
X z

7.04 Gyro Axes ......... ...................... 39

7.0 O Gyro Orientation ...... ................ .... 40

7.06 Gyro Orientation. . . . . ................... 41

7.07 Computer Output for BG.IwI ............ 44



"B -.59 -oooo--0064 7
Page t V

ABSTRlACT

This pap'r considers the equations relating errors in inertial

guidance system measurement instruments to errors in missile burnout

position and v(locity and consequently to taxgft iidsses. Thc c.latilon-

ship is expressed in terms of three linear differential equations

with trajectory-dependent coefficients and forcing functions which

depend on the measurement instrument errors. The forcing functions

are presented in forms sufficiently general to accomodate errors

that might arise in widely different types of instrumeiit.s, both

accelerometers and gyroscopes. Furthermore, the forcing functions

can be evaluated for arbitrary instrunent orientations. Programmed

on a digital computer, these equations allow swift computation of

target misses for given component tolerances arid conionent orienta-

tion and consequently facilitate the optimization of instrument

orientation. Such a program has been used extensively by the authors

for gyro orientation schemes and general error studies for a number

of ballistic missile inertial guidance systems.
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A DIGITAL COMPUTER PROGRAM FOR A GENERALIZED

INERTIAL GUIDANCE SYSTEM ERROR ANALYSIS

1. INqq0DPTCTT0N

The purpose of this report is to describe and explain the use of a digital

computer program which is, at present, on the 1103A. Thi r, program relates inertial

guidance system component errors to errors in position and velocity at burnout and

consequently to target misses. The program has two prime uses, one being to perform

complete guidance system error analyses and the "ther being to study the optimiza-

tion of instrument orientations. In the past, error analyses and design studies

for inertial guidance systems have been performed ei.ther by hand or on an analogue

computer and for specific instrument (accelerometer and gyros) configurations.

Aside from the obvious need for speed and permanency, the need was felt for a pro-

gram in which the forms of the error functions arising from the instrument errors

were sufficiently general to accomodate many different instrument configurations

(particularly gyros) where the instruments are arbitrarily oriented with respect

to a stable platform. It is felt that this program is sufficiently general to

satisfy this need. The authors wish to extend their thanks to Messrs. Frank Meek

and Vilas Henderson for their very capable efforts in setting the problem up on the

computer.

The inputs to the program are the missile trajectory and the corresponding

miss coefficients;and the inertial component errors such as accelerometer errors,

gyro drifts, platform misalignments as well as the appropriate angles describing

the oricntations of the instrumentE. The outputs are the position and velocity

errors at burnout and the corresponding target misses. Section 5 is concerned with

a description of the use of the program, particularly the input of instrument errors.

Sections 3 and 4 give the derivations of the equations relating burnout position
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and velocity errors to component errors and the derivation of the forms of' the

forcing functions representing .he instrument errors. Biefore deriving the error

equation,:s, the coordinate systeins used will be discussed Jn Scction 2.

g,. COORDI NAT• SYS'IMS

There are three basic coordinate systems used in this problem. Iwo of them

are represented in the diagram below: the XYZ system which is an earth-centered,

inertial coordinate system (ECI) and the xyz system which is also inertial, bUt

centered at the missile launch point at the time of launch. The XYZ system i.;

bucu that the Z axis is the earth's spin axis and the X axis is such that the X-7

p..ane contains the launch meridian at the time of launch. The Y axis completes

the orthogonal set. In the xyz system, the z axis is the local vertical at the

launch point at the time of launch, the x axis is Jovrn range in the direction of'

the target, and the y axis is the lateral axis nor,al to the x-z plane and completes

the right-handed system. The angle A is the firing azimuth measured southward from

the launch meridian to the x axis. and 0L are, respectively, the geodetic and

geocentric latitudes of the launch point. The quantities a and b are, respcctively,

the semi-major and semi-minor axes of tne earth, e the eccentricity, and R the

distance from th. center of the earth to the launch poil.-nt.

Z 0* = tan- (---)tan
L 1-n 2

}North Pole

z

~ y 0 2J .2

\ ~ b

Launch'

-. -__-__

"-__._______Equator
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The coordinate transfo:wation relati ng the XYZ and the xyz systems is

x X

SM + C(2.1)

where M is the rotation matrix.

-cos A sin sin A cos A cos L*

M -sin A sin -cos A sin A cos L (2.2)

Cos BL* 0 sin OL*

The translation vector C is

s Bin 5 cos A

C = R sin s (:i.3)
!

Lcos 5

The third coordinate system is the accelerometer coordinate system XA,YAZA.

The axes of this system are the axes along which the range, lateral, and pitch

accelerometers' sensitive axes are pointed. The accelerometer coordinate axes

are obtained by rotating first about the z axis through an angle ti, which defines

an intermediate system xl,yl,7z1 = z. The axes are then rotated about yI through

an angle t2 which defines an intermediate system x 2 , y 2 = ylz2. The final rota-

tion is through the angle 3 about the x2 = xA axis.
zz zA 2

yl2YIl=Y2 \ A

X ý3

S. \ \ x
"" • 2 y ""g

x A

. , 't I! '~ Coordinate Syste'!te Axe,:
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The coordinate transformation relating the accelerometer coordinate system XA, YA' ZA

to the xyz system is

XA x 

(2.4)

zA

where the matrix of rota',;ion is

CIC2 C 2 S1 S 2

Q - -C3 S 1 - C1S 2S 3  CC -SS 2S3 C2s3

S1S 3-C1C 3S 2 -C1s . -CS S 2 C 2CS3 13s2 l:- 312 2

where C = Cos Bi and Si = sin E i = 1, 2 or 3. Thus, the accelerometers may

be oriented at arbitrary angles to the xyz system. For convenience, the terms

range, lateral, and pitch accelerometers are retained.

z
zA

y

Pitch YA
Accelerometer

SLateral
Accelerometer

x

;,,'c1!-rumn"ts'r OrIr rlnt..t~on
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"XAPYAP ZA An optional means of rotating the accelerometers has been provided in which

the rotations are defined as in Figure 2.Oh.

First rotation: 02 about y axis.

k Second rotation: 0 about zA axis.

YA

IZjA

FIGURE 2.o4 Optional Accelerometer Orientation

Note that the first rotation has been defined El2. The matrix of rotations is

Cos @l 1Cos 0 2 -sin 0 1 -Cos 0 1 sin 9 2

Z = sin eI 1Cos e 2 Cos eI -Bill 01 sin 0 2

sin 9 2 0 co o 9 2

/ /

The first rotation has been defined to be 6 2 because by setting t l = 9 1' 12 = @2'

t 3 = 0 in Q (equation 2.5), and taking the transpose of Q, namely Q1, one finds

Z =Q.The computer has been programmed to take advantage of this fact.
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The orientation of the gyroscopes with respect to the accelerometer and plat-

form coordinate systems will be d-'scussed in Section 4, which is concerned with

the forcing functions of the error equations.

3. ERROR EQUATIONS

In the XYZ system let AI represent the vector of missile inertial acceleraticns

AI

A1I r= (3.1)

and let Aia represent the vector of sensed accelerati ons

Fa2a

Ai,= a a (3.2)

Lazai

Futher, let PI denote the missile position vector

Iz

and let G denote the gravity vector

2 2 X]

G = (- go ) -3 (3.4)

B3 z
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where go is gravitational acceleration at the launch site, R° is the distance from

the center of the earth to the launch site, and where R is the distance from the

center of the earth to the missile. Thus,

R2  2 y + Z P' P (3.)

where P denotes the transpose of the vector PI.

Missl IRz

Missile
Trajectory -

Launch

3.2) Point

.. /- Equator

1.3)

FIGURE 3.01 M ssile Trajectory

Then, from the relationship

A. = Ais + G (3.6)

one obtains
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L•A • •A a •-1 40G(

where the errors in inertial accelerations are

Ak,

and where the errors in sensed accelerations axe

Li&_

The qa...-Ity AG, the error ir -the gravitational vector, is

R2  R 2
R R

3= (go A) •) -3(g 0  R--) (3.'

where

API AY (3.1

Equation (3.10) may be written as

R 22

R 5R3
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the expressions in brackets all being scalars. The scalar R6R may be written as3.)

RAR = X&X + Y~L + Z P = P 1'•P (3.13)

Substituting (3,13) into(3.12) yields

=(39 - P'6F) P -(go - (3.14)

Substituting (3.14) into (3.7) yields the error equations in vector form

R 2  2
+ (g - )0 -.(3g -2 -P'a) P b aM (3.15;'

3.9) 3 5  I I )

This equation written in component form is

R 2  R 2

AX + og 6X-_ 39 o__. X(Xx+YAY+ ZZ)=taXo R3 R5

3.10)
B2  B 2  ~

o+g -°by- -9-- Y(AX + YY +Z) = bays (3.16)
o R 3  R5a

3.1)R 2 R 2

o o Z(Xnx + Y
0 R + = =

or three simultaneous linear second-order equations which may be solved to yield

the relationship between velocity and position errors (t•,Lt) and (ca.,tW,aZ)

3.12.) and the errors in sensed accelerations. The coefficients in the differential

equation are trajectory-dependent, i.e., R,X,Y and Z depend on th6 trajectory.
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As will be seen in the next section on forcing functions, the errors Aa', 6Ya and

6aza are also trajectory-dependent for the most part.

In the actual computer program the equations are solved in the earth-centered

inertial coordinate system XYZ. The position and velocity errors resulting from

the solution are printed out in the XYZ system, the xyz or platform system, and

the XAYAzA or accelerometer system. The target misses are also printed out, but

of course these are independent of the coordinate system. In actuality, the misses

are computed in the XYZ system, the miss coefficients having been appropriately

transformed from the xyz system to the XYZ system.

Since the sensed accelerations are measured in the xA, YAzAsystem, it is of

interest to point out the relationship between the sensed acceleration errors

ZAAla in the XYZ system and the sensed acceleration er-or LAAaA in the accelerometer

system. It is, by virtue of relations (2.1) and(2..4),

4A aA = WM•AI a (3.]

from which it follows that

2LA a = M' Q'A aA ((3-2

since the inverse of QJ,4viz. (QM)"l = (Q4)' = M'Q' where the prime denotes transpose.

Thus, equation (3.15) becomes

R2 2

AA.. + - P %_ M Q)'PA (3.)
R3  R

Equation (3.19) then expresses the relationship between the position and velocity

errors in the XYZ system and errors in sensed acceleration in the accelerometer

coordinate system. The next section is concerned with the form of iA8aA and its

relation to the trajectory being used.
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4. FORCING FUNCTIONS

The term forcing function will be applied to the vector M'Q'6AaA and denoted

by the vector F. Thus,

F = M'Q'•AA (4.1)

The errorn in sensed acceleration in the platform system, bAaA, may be expressed

as

nA = EA + JAaA (4.2)

where EA is the vector of errors arising due to accelerometer inaccuracies such as

bias and scale factor. The term JAaA represents acceleration errors due to angular

errors in the platform. I represents the platform angle matrix, and JAaA expresses

the spurious accelerations sensed by the accelerometers due to the platform mis-

3.17) orientation resulting from either initial platform misalignment or from gyro drift.

The matrix is

3.18) -O "z 0 ýX•,3

where the angles a�gd• , ra A represent rotations about the XA,YA and ZA axes,
r the a sdrx ry rz

respectively.

3.19)

From (2.1) and (2.4) it is seen that AsA may be expressed as

AA = W Ia

but from (3.6) A, = Ala + G so that

AaA = QM (AI - G) (4.5)

IE I I
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Thus, from (4.1) and (4.2) above, the forcing function F may be expressed as

F = M'Q'EA + M'Q!QM (A, - G) (4.6)

Section 5 is concerned with the general forms of EA and i due to accelerometer

errors, platform angles, and gyro drifts. Before proceeding to Section 5, it will

be helpful to describe the gyro and accelerometer axes.

Two two-degree-of-freedoin gyros have been assumed and their orientation restric-

ted to cause the three input axes to form an orthogonal set. The axes h, fl',f2 are

the axes of the number 1 gyrc- with h the input axis. The axes h2 ,h 3 , f 3 refer to

the number 2 gyro with h2 and h3 the input axes. With respect to the xA,YA, zA

system and consequently with respect to the xyz system, the gyros may be arbitrarily

oriented, subject only to the constraint as mentionedabove so that the three input

axes form an orthogonal set. Figures 4.01 and 4.02 illustrate these orientations.

GYRO NUMBER 1

zA angle about when

f 2 * zA axis 2= 13 0

*2 fl axis 1i = 0

fll h axis

Sh 1
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GY•O NU1MER 2
Lngle about when

7,A
6) '1 zA axiG *2 0 0

h

f2 h2  axis
2 3

S/• •Z f3 /.

/ .

*1

'YA

,//

XA

FIGUIp, 4.02 Gyro Orientation

Thus, the orthogonal set hl,h 2 ,"h3 is related to the XA,YAzA system by the rotation

mati ix.

Cs * 2 Cos 1 os *2 sin sin *2

(-Cos 02 sin (cos 13 Cos sin 32 Cos *

R = 2-sn sin *2 cos ti) -sin 12 sin *2 sin *i) (4.7)

(sin 2 sin *1  (-sin 02 Cos *I Cos P2 Cos *2

C-s r2 sin *2 cos *I) -cos 02 sin * 2 sin *i)
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ZA

h3  2

h2

XA

FIGURE 4.03 Gyro Orientation

Thus, rotations about the XAYAZA axes, $x,$y, z, are related to rotations due

to gyro drifts about the hl, h2 , h3 axes, say 01,02'0$3 by the relationship

where R' is the transpose of (4.7). It can be shown that as a result of (4.8)

the t matrix, (4.3), may be written as

[o 0z -.Y Fo $3 -$21
z o 0 ox R' -$3 0 R (4.9)



TIR-59-OO0-OC647
aa~e i)

Thus, the forcing function (4.6) may be written as

F = MIQtEA + M'QIR'thR(AI - o) (4.10)

whlere •h is the matrix .,n (h.9), viz.

ýFo 0 f'3 "42

th -03 O 0(• 1

It should be pointed out that the gyro arrangement need not necessariV be two

two-degree-of-freedom gyros. Any arrangement wherein there are drifts about three

orthogonal gyro axes may be used. As a matter of fact, many cases of non-orthogonal

axes may be treated by using one set of values of the anrles in the matrix R for

the number I gyro and in an independent computer run use another set of angles in

R for the number 2 gyro.

Certain types of accelerometers and velocity mel.ers are such that the plane

in which the pendulous element moves and which ccnta:.ns the sensitive axis may be

at anZ, arbitrary angle with respect to the xA, YA, zA system. Denote the axes of

the meter itself as 1,2,3, where I is •,e sensitive axis and axes 1 and 2 define

the plane of motion of the pendulous elemenL. Axis 3 completes the orthogonal set

and is the axis about which the pendulous element rotatesi
------ 1-- 1 Sensitive Axis

SPendulous Element

2
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Figure 4.05 illustrates two possible orientations of the 2 and 3 axes for

the pitch accelerometer.

ZA

"Orientation 1

3

3 1Y

Orientation 2

XA

FIGURE 4.05 Accelerometer Alignment

Due to the physical nature of the meters and the unequal accelerations along

the XAYA, and zA axes, there may be some preferred orientation vhich minimizes

the cross-axis acceleration errors. For this reason, provisions in the programn

have been made for arbitrary orientations of the meters about the sensitive axes.

The cross-axis accelerations (accelerations along axes 2 and 3) are

a 2 %] 0Co s 0 sin 9 xax

aa2 Y -sin y 0 -cos yA (a.12)

LaZI [in z cos 9 0 a

" 3y I cos Qy 0 -sin A (4.13)

Sa -
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where a 2x is the acceleration along axis 2 of the x or range accelerometer, a2y
the acceleration along axis 2 of the y or lateral accelerometer, and where 0 is

x
a rotation about the sensitive axis of the range accelerometer, Q is a rotationY
about the sensitive axis of the lateral accelerometer and @ is a rotation about2
the sensitive axis of the pitch accelerometer. The angles are described in

Figure 4.06. Although the accelerometers used here for illustration have a pendu-

lous element moving in the 1-2 plane, the relationships given in (4.12) and (4.13)

may be used for other types of instruments for the study of cross accelerations.

ZA

1

PITCH

2

z A

xz
XzA LATERAL

A

RANGE I -YA

2) 

3

.e
"-//9 Y 2YA yA

x 3Si X3

3)
FIGURE 4.06 Accelerometer Alignment
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The next section describes the forms of the elements of EA and I and 1h in

terms of missile accelerations and actual component tolerances and the manner

in which they are identified and entered into the program.

5. SIMULATION OF ERROR SOURCES

The purpose of an inertial measurement unit is to provide, as its output, a

true indication of any acceleration (excepting gravity) the unit is experiencing.

To accomplish this, the function relating accelerometer output to input should

be well known; and the orientation of each accelerometer, with respect to some

coordinate system, should be well defined both in space and time. When these

conditions are not satisfied an acceleration error appears, and it is the purpose

of the vector

F = M'Q'EA + M'Q'R'•hRQM(AI - G) (5.

to evaluate this error.

Broadly speaking, acceleration errors can be catalogued into two classes. The

errors arise because:

CLASS 1: The accelerometer output-input relation is not well
known (e.g., scale factor uncertainty) or is non-
linear, or the accelerometer is misaligned with respect
tf t.hp n1atform.

CLASS 2: The stabilized platform on which the accelerometers
rest is initially misaligned or has rotated from its
correct orientation.

The two classes can be associated with the two parts of the vector F as was

discussed in Section 4. Thus, to simulate Class 1 errors EA must be evaluated;

while for Class 2 errors §h must be formed. The rest of this section will be con-

cerned with the simulation of each class with attention being focused first on

Class 1 errors.
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Class 1 Errors

Error sources which fall in this category are:

(a) Accelerometer misalignments with respect to the platform.

(b) Uncertainty in zero setting (null shift or bias).

(c) Linear scale factor uncertainty.

(d) Non-linear terms in the input-output relation - proportional to square,

cube, cross-products and absolute value of acceleration.

To simulate Class 1 errors the following general vector has been programmed

for evaluating EA.

11

EA = ME1 + M•MEiAE(

5.1) i=2

where the MEi are 3 x 3 matrices, ard the AE, are vectors whose elements are

functions of acceleration.

IE E E E E 'a E E1E !a
1 1 10 20 21 22 xA 30 31 3 xA

F E,, E + F E E a
A = l1 23 2' 5 2 YA IE33 E3 5 ' 2

E E LE26 E E a IE6 E37  E La zA
3J 1. L2 27 2J -zAJ 3 7E3- Y-

E0 EI1  E4 2  a E E E 140 4 iF2 X 50 5152

43 E44 45 A 53 z4 55 ,75 (5.3)

Er6 E E a3 E E E

E60 `61 `62 I ' axA -70 _71 72 2x '

" E6 3  E64 E6 5  JayAJ, ayA + E7 3  E74 E75 'yay ayA

L 66 67 68 _a I _ 'T6 77 78 2 "
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Equation (5.3) continued

E83 Es4 E8  I. oy EA93 E91  E9  I&X1 " 5.
E EI E I a E80 ~ 81 aY2x A 93 go 4 1E 92 Is,3!,a3YI

" E E E, JL ) + 9*94'5

-86 "87 E& a2.1  aA 96 E 97 E 98  Ja31  azA_

E910 0  E 101 E 10 E 1 10  E ill E 11 2

"E103 E104 E105 AE10 + E113 E114 E115 AElII

E o6 F'O E 10j E_1 1 6 E117 E118

axAa YazA are range, lateral, and pitch accelerometer sensed accelerations; and

a UP ay, a2z, a3 Y' a 3z are defined in equations (4.12) and (4.13) with axA,Ca yAY

a,,A again defined to be sensed accelerations. Note that provision has been made

for simulating any function of acce1ieration by leaving AEs, AEo, AEll undefined.

Thus, regardless of the error source, if it can be ýxpressed as a function of

acceleration it can be simulated in this program.

By use of this general vector the error sources listed above can be simulated

in the following .ways.

a. Accelerometer Misalignments with Respect bo the Platform

Figure 5.01 shows the miso-lentations of the accelerometers that are to

be simulated. P is the angular rotation, in radians, of the x accelerometer

toward the yA axis, (zx is the rotation of the z accelerometer toward the xA

axis, and similarly for the others.
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Z.

LAA

\ /

/ I

/ /
/ /
ZA

FIG(JRE 5.01 Accelerometer Misalignments

The acceleration errors resulting from such misorientations are simulated by the

0 pxy Oxz axA

EA - "EZAE 2  = yx 0 Pyz ayA (5 .4)

Pzx 1zy 0 a -J
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b. Uncertainty in Zero Bettig ..(Null Shift or Bias)

If a.xpay Cxz represent the shift or bias in the zero settings of the

three accelerometerst then the error in the indicatcd output can be represented

by

a x

"EA - l" 1 y (5.5)

a

c. Linear Scale Factor Uncertainty

Uncertainties in scale factor setting give rise to errors which can be

simulated by setting the elements of ME2 to

0 0•x 0 0

ME2 0 f Y 0 (•6

0 0 'E j

then

E• .MA2

where x, PCy, 6z are the uncertainties in the range, lateral, and pitch accel-

erometers, respectively.

d. Non-linear Terms in the Input-Output Relation

To illustrate the simulation of non-linearities, the hypothetical relation

a out - aA + Kla3A + K2 1aAI. aA (5.7)

will be assumed for each accelerometer. Then
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'A o auG " aA -_ Yl1A + K 2 IRA *'A 5.'3)

represents the error in the accelerometer output. Such errors can be simula-

ed by setting

I
SK 0 a03

lx XA

E 0 K 0
5) EA- ME4AE 6AE 66 ly yA

o 0 K a
lz zA

K 2 0 0 ax . a0

+ K2y 0 jayA . ayA

o 0 K0z izi . a

6 th
where KIIK 2 i are the coefficients for the i accelerometer. Moie examples

of such simulations will be presented in Section 6.

In all of these illustrations, in fact wheaever the vector EA is being used,

it is necessary to specify the angles t ,$ ,3, or Q1 ,e 2 , depending on the option

being used to specify accelerometer orientation (see Section 2).

Class 2 Errors

Error sources considered to fall in this category are:

(a) Initial platform misaltgnments.

(b) Platform rotations due to platform elasticity.

(c) Platform rotations due to constant or acceleration-dependent gyro

drift rates.
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When pla'form rotations are considered to be small, the acceleration error

can be found from

where 7 denotes the angular rotation vector of the stabilized platform with

respect to its proper orientation. Expanding the vector cross-product in a

coordinate system defined by the axes hl, h,2 h3 (see Figure 4.03), and putting

the result into matrix form, yields

A,- =hAh = jhRA = hR•4(A1 -G) (5.G)

where ih is defined by equation (4.11) and R, defined by equation (4.7), rotates

accelerations along accelerometer coordinates into the h , h , h3 axes, Multiplying

by RI rotates the acceleration errors into accelerometer coordinates, and multi-

plying by M'Q' completes the rotation into ECI coordinates in which the differential

equations are solved. To simulate Class 2 errors the rotation vector, $, must be

evaluated. To accomplish this, a general vector G has been programned from which

-Tis evaluated by either of two options.

Option 1:

F FG11

02 G (5.12

L3J _ JG

Option 3 t

f Gf dtFý, 1I
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0, % + )� Me, 1Aa .
1=2

.1o)
"i in which the M are 3 x 3 matrices and the A are vectors whose elements

G 6i
are functionG of acceleration.

G -1 G 1j G2n a 21 G 22 af3' G30 G3 1 G3 j ah
1

ii) +1 '23 25 25 33 G34 G3 5  6f
iG G G a *G G G a2

.. 22"T 2•28  L _ 13 1 36 37 3I af,

0G0 G41 G42 af3" %h21  GC0 G5 G52 ahl" 1l
+ /G43 G 44 G 45 ah2' ah3i5 G53 G54 G55 afl- 'f2 (5.15)

.- G, G_ G , af, kai

0. - .. h 'f... L 57 f2,IL

-60 G61 G62 G 70 GT71 72

1 G 63 G64 G65 AG6 + 73 G74 G75 AG7. - )I I
G6 6  G O0G G G G

_67 L 76 77 78-

As in the vector EA' provision has been made for simulating any function of

acceleration desired by leaving AG6 and AG7 undefinel. The acceleration vectors

appearing in G are defined by
5,13)
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afa axA

%a2  ,R a AS a sjA! (5.16)

aLh3 a ; af 2  aM

The matrix S is identical to R except that P2 must be replaced by 11 (see equation

4.7). Reference to Figures 4.01 and 4,02 shows that the effect of the matr'ires S

and R is to rotate accelerometer accelerations into the axes defining gyros 1 and

2, respectively. Note that the matrix R is also used in the vector F to obtain

accelerations along the three gyro input axes, hl,b ,h 3 ; or, from another viewpoint

it is used, as shown in equation (4.9), to obtain

where I is the matrix containing rotations about platform x,y,z axes. It is impor-
+ta+nt teo 'Reep in. A.- , •"-" n ,aA .... t• roles that LAM, 11atkLix n hasb ..... ............LUL, • ,,,u • , Class?

errors. This will be demonstrated in the following examples.

a. Initial Platform Misalignmients

Normally, initial platform misalignments are given about platfcrm x,y, z

axes as o,1 yo,•zo. By setting *l = 2 = 0 in R, in which case R become:ý

the identity matrix, the vector • becomes, from equation (4.8),

0

=2 o (5-33)

and ý = 0 h from equation (5.17). As can be seen from •'igvres 4.01and 4.0,

such a choice of angles does indeed cause the hi axes to Iie klong the x,y,z

axes. The simulation is completed by choosing Option 1, i.e.), 9 G, and

setn
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G10 Oxo

16) O11 (5.19)

in equation (5.15).

If, however, the initial platform misalignmmnts were given about axes

other than x,y,z, say accelerometer axes, which were rotated through angles

t V•y2, then the simulation would be effected by setting

*1 G 10 010

7) *2 t •2 , $m0, an. Gl . o (5..20)

02 3 12

In effect, the hi axes have been placed parallel to the accelerometer axes,

acceleration errors computed, and then rotated back to platform x,y,z axes

and finally, as is done in all cases, into ECI coordinates.

b. Platform Rotations Due to Platform Elast• ct•t

If the platform rotates when accelerated, the indicated acceleration

errors can be found by choosing the angleb *l, *- and 02' such that the hi

axes lie along the axes about which the platform rotates; and using the

vector G to simulate the expressions which relate rotations about the hi axes

to accelerations along these axes. For example, if

1 = ahl + K, 'ah 3 + K3 1h 2 h3

02 = 0 (5.1)
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the simulation would be effected by choosIng Option 1, i.e., • = G, where

-K1 0 K2  l af3 oK 3  0 [f 3 " a

G MGAA o MGhAGk4 " 0 0 o %2 + 0 0 0 oh2' ah3" (5.21

0 K4 K5  I Lh3 0 0 0 •h3' 'f3

NOTE: ahl af3 (see Figu•ces 4.01 and 4.02)

In the two examples given thus far, the matrix R has served as a means of

obtaining accelerations along the h, axes with no mention of gyro axes. The hi

axes have been used as an intermediate set which in some cases are more convenient

to use than platform x,y, z or accelerometer axes. In the case of gyro drift rates,
the h axes will be used to represent the three axes stabilized by the gyros. The

matrix R, though still used in the vector F to obtain accelerations along the hi

axes, is lookosd upon more as a means of obtaining accelerations along the axes of
gyro 2. The matrix S is, of course, used to obtain accelerations along the axes

of gYro 1. Because the simulation of Uvo drift rates Is de.pendent on specific

gyro orientations and drift rate equations, examples w1ll not be given until

Section 6 in which a specific gyro system will be simulated.

Before proceeding to Section 6, it should be pointed out that the vectors EA

and G can be used simultaneously, but that only one optic i may be used for evalua-

ting $ for any given simulation.

6. DETAILS OF COcPvrTER PROGRAM

To use the program it is necessary to provide a tape on which are recorded the

sensed accelerations, position, and range from the center of the earth of the missil

as a function of time, all in ECI coordinates. It is advantageous, but not neces-
sary, to have recorded, at burnout, the missile velocity components in ECI coordin-

ates. Once such a tape is made available, the input required for evaluation of

error sources is:

(a) General Input

1. Azimuth angle A
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,(a) GCnerir] Tnput (contimuidj

)4. Gravity components in ECI coordinates if (E o, Eill EI?,) or (G1 0o, G1 1 ,GIZ)

are to be computed (see examples for use of this feature).

5.22) (b) For Vector EA

1. Angles 9iy t?. k or Q1. 2
232

2. eXQyEz if (a 2x, ay, a2z) or (a3x,a3y' a 3z are being used

3. Elements of the ME matrices

(c) For Vector G

1. Angles 0l, *2 1'02

2. Whether Option 1 or 2 is being used
3. Elements of the M6 matrices

Elements and angles not specified are assumed to be zero. All angles should be

given as positive numbers in degrees.

Fig-re 6.Olshows how output information is presented. Blcks 1 a 2 rpnrordie

whatever .2nput has been provided to the program, whIle Blocks 3 and 4 present the

errors cuomputed as a result of this input. Position and velocity errors are printed

in accelerometer, platform x,y,z, and ECI coordinates; and if burnout velocity has

been recorded on tape, perturbed pocition and velocity vectors are printed in

EUT coordinates which can be used in free-flight programs to determine the target

miss. The target miss, in terms of down-range and cross-range miss, is computed

in Block 4 if miss coefficients are provided.

The term "coupled or uncoupled" is used to denote the form of rhe differential
he equations being solved. That is, one has the option of solving equation (3.16) with
sile

g 4 0 or go = 0, in which cases the equations are said to be coupleC or uncoupled.

Uncoupling the equations eliminaLes whatever effect 60 (equation 3.12, gravity

computation errors) may have on the final position and velocity errors.
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go (ftlsec2) R~~c (ft) (deg)

EIL (deg) b (deg) A (deg)

Miss Coefficients B.(t/t) (ft/1t/eec)

MD &~X by LZ2
M C lx a~ 16Z X tY Z

- -t -io--- Coupled or Uncoupled -
tlt2 E3

Trajectory all angles in deg.

Identification 0

Number x y z

*1 *2 ILOCK 2

e e1 m2

elements of matrices in G
elements of matrices in E A

Errors in t AZxA 6YA 6ZA (ft)
AccelerometerCoordinates 'n'kA 'n•A 'nA (ft/sec)

6XA LýYA -A

Errors in Launch t 6x Ay Z
Point Coordinates 6: 4k•
(x,y,z) b A

Errors in ECI t 6x AY 6z BLiCK 3
Coordinates

t (rad•lemlnts aOf • t il2 • (rad.)

Elements 6f ý I2 ý3 (rad/sec)

EC Position and t X Y z (ft) 2
Accele1,,ration R (ft) (ft/sec)

- - - - - - - - - - - - - - - - - - - - - - -
:-C! P'.rturbed t X Y Z (ft)

v... . .,n l •c~ i t y ( f t/ s e ) l k C K :

: ",,I@) (f t) MC (ft)

* Prow;: wi, Ou tput " nat

Best Avaiiable Cop']
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Start
Transfer Trajectory

from Tape to Drum

K1 1 ye.

Miss Coefficients - I Compute , '

Print Block 1

,_test

-- no Trajectoryti, t2, t3, or e), 1 2 Na Glev *it• *l, 01, f3, 2 \

S2y, or .- Read Angles and O
TK 2 Matrix Elements

tA i Element Print Block 2 G Matrix Elements

Gravity
[pqppnents_(ECI) A.-____

(EIO' Ell, E12)
~ E2 ) Test for Non-Zro

(Q10 , Gill G1 2 ) Matrices

Coupled or Uncoupled - - I

Solution of Equations _

K 3 • •__ Inte_ ate by •T
K 3I Compute Block 4

Information
T+T -- teste

(b Print Blocks
TT -T yes itBok

no ou 3 and 4
nou

this

cycle Optional Printout Times

iK 4
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Though not indicated in the output format, provision has been made in the
program whereby initial conditions can be placed on •4 t, ,,Ž,, and &•.

Figure 6D2 indicates the manner in which the computer Input is utilized and

how the program operates. A test for non-zero matrices is made thereby eliminating

time consuming operations with matrices that are identically zero. Ate the follow-

ing about the mftver in which output information is printed:

(a) Block 1 is printed only once for any given trajectory.

(b) Block 2 is printed only once for any given case.

(c) Block 3 only is printed at optional printout times.

(d) Block 4 is printed only at burnout.

7. EXAMPLES

To demonstrate the use of this program, several examp)es of error sources that

have been simulated with this program will be presented.

Class 1 Errors

Non-Linear Terms in the Input - Output Relation

The accelerometers used in one guidance system are of the pendulous type

shown in Figure 4.04 and are oriented on the platform as shown in Figure 4.06.
Three axes, 1,2,3 are used to describe the accelerometer, with axis 1 the sensitive

axis. The equation

out =C 0  a1 + C1a1 + C 2all a1 + C3 j•a. a, + C a2a 1 + C4 la 3 al

+ Ca3 + C C C14-+ 1 (Clgl + C2 [gl gl + c3 gz] + C3 gl  3j4 Ig gl

+ C g9 + C~g1
2 ) (7.1)
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has been used to relate output to input acceleration for any given accelerometer

where a, - aA, the acceleration along the sensitive axis, and g,,, g2,g3 are gravity

components appearing along the three axes at launch. The error in the indicated

accelerometer output is then

", 'out - a (7.2)

For demonstration purposes, and because the rest of the terms are simulated in a

similar manner, only terms involving C3 ,'C9 and C5 will be simulated. For these

terms

C 3x0 0 a3  I+1 0~ 0 C a

C5x J[0 xA+ 0 Cy •a3 (7.3)

0 C a3 j
where

10b c3xl2 gx " Cixg2xgx + 5ZA

E CyIy 3y (7.4)

11 3YIg2ý YA +C' g~y +g 5/y

E 12CC 19
z I + 3'2zzA + 3.A

in addition, the angles %•i 32 or 1,e 2 mist be specified to define, the accel-

,.r~t-r .nitive axes \xA, YA, zA) vith respect to the platform (x,y,z) axes;

E) must be given to define w.;Is 2 of each accelerometer with

Best Available Copy
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respect to the (XA,yA,ZA) system. If, for example, axis 2 were along the zA axis

for the range accelerometer and along the "YA axis for the pitch accelerometer

(see Figure 4.06), one would set -x = 900, 0 z = 1-0°

Except for special orientations, the gravity components gl' 2' g3 are complica-

ted functions of the auigles specified above, thus necessitating a lengthy computa-

tion to evaluate equati)n (7.4). To eliminate this computation (especially
desirable for optimization studies where the angles are being varied) the computer

has been programed to Ip'rform this operation at t = 0. The computation is made

as follows:

10xA gxA S

E 2 3 +(7.5)
1 .E2 _Y + E y +M4 y

2¢

In other words, the acceleration vectors appearing in E are computed at t 0

in terms of gravity, matrix multiplications and summations are carried out, and

the negative of this sum put into the cells used for the elements Eo, EII,E1 2 .

To use this feature, gravity components existin•i at launch, and expressed in ECI x

coordinates, must be provided.

Figures 7.01 and 7.02 are examples of the output obtained when C 3x, Cy and

C Z are simulated individually. Th.Ž elements E and E12 have been machine

computed by use of the feature deEcribed above. The following input was required.

Figure 7.01 - C3x E ex = 200 Ei = 315' F, = 450

t,-6 0 45 0
Figure 7.02 - C'y E74 = 0.1 x 10 0y = 10 1i = 3150 t2 =

K, 1 re 7.)2 - CsZ E48 : 0.1 x 1O-6 ti = 3150 k, = 450

., .. .ty comyonents!, and miss coefficients were provided.

Best Available Copy
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In another guidance system the accelerometers are oriented such that their

z sensitive axes lie along the platform (x,y,z) axes, i.e., 1i 0. The

I, equations used to describe the error in their outputs are

S3
A K +K a. +K a + K (7.6)

ay oy l Kx y xy 3y ay

by K0  K K2 az 2 +K 3 za 3  (7.6
inA

_ . zA = K + Ka + xa, 2 + Ka + KJz axazZAc oz Ia zz 4

S o Since z1a-! a zfor this system, the equations can be simulated as followo:

EA MNl + ME2 A~E2 + NI3 AE3 + M.E4IAE 4 + MEAE7

:K K 0 0 K 0 O 0K 0 0 K. 0 0
ox ix 3x4

''oy +.0 • 0 .A . K 0 f 21 A + 0 0 ;A
E 2 y +A E 3 " 3 Y 4 . +X

L[K L0 0o K1Jo o .: L oLoz~ K~ 3z ,

(7.7)

'where x 900, Oz =270
3x

C
'C

M Class 2 Errors
C

Platform Rotations Due to Platform Elasticity

The platform in one guidance system is such that when subjected to Accelerations
it tends to rotate, with the rotation being directly proportional to acceleration.

The rotations Are about platfonn (x,y,z) axes where

x -• Z
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From equation Qi. 4 when 0 0

Czl = , Cy(7.9)

3 F z

With such a choice of angles, the error source is simulated by choosing Option 1,

i.e., $ = G; and

-0 1 ,cx fx 3

G = MG 2 AG2 = 0 0 0 "112 (Bf 3 = ahl : ax) (7.10)

lz 0 0 I ahh3I

The only input required to simulate this error source is

P = G, 2 2  X G26  "z

Figure 7.03 is an example of such a simulation where a. = Uz = 0.2 x 10-6. Note

that since all angles are zero, none have been printed.

Gyro Drift Rate

A typical gyro can be defined by three orthogonal axes, S, IW, INW, as shown

in Figure 7.04.

SOW
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The acceleration-dependent drift ratts about axes IW, OW can be represented for a

certain system as

ýIW= B~ajW + G~aIW - BG1j~aS - N a

(7.11

"ow ý •s8 a~o + Bowa - ra•asoW

Bi,Gi,BGi are ball, gimbal, and ball-gimbal unbalances along the ith axis, and

K i = (KS - K,) is the difference in compliance bctween the spin and ith axis.

A platform can be stabilized by two such gyros oriented with respect to the

platform as shown in Figure 7.05.

Z8zB

(vertical)
y

1W

GYRO 1

r

OW
(slaved)-S

(I IGYRO

1W

ow



Fa~e •l

,e ar.E'e 5 c zi s ." e- to ýdefine the (-S) axis of ý-ro 1 (pitch &,-ro).

-eWe OW of & -ao I slaved; thus, three drift rate equations s'.ffce to descrile

_. = 1S`I i 'T.4. rIla I

)"--+ " I w za s 2 K . B s z 2  ( 7 . 1 2

0: W2 'S 2 80W 2 0SeW2 2 2 S2 0 KW2 a~aý0Wz B BS2a0OW2 + Bgo; 2 a S2 " K OWZ'SZaOW2

•This orientation can be simulated in the error analysis program by choosing

v 1,4,2, and 52' and definilng the gyro axes as sbhovn in Figure 1(.06 (refer to Figure5
4.1a.,1 4.02).

y
z f2

GYRO I

/'

•..
3 3

2 0 GYRO 2

3 2 ht

2
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It is necessary to add the 2700 offset in defining p1 because in the simulation P

is used to define axis fI with respect to the (-x) axis, where 11 is measured

counterclockwise about h I. When defined in this manner, the angle '3, defined in

Figure 7.05, is equal to 7. Equations(7.12)now become

0.1= 1.1a,+ G 8 1ah - BG;,Waf 2 - K~af2 shl

ý2 - BsZh2 + GS2 ah2 " BGIW2 af 3 " ,, 2 af 3ah22

$3 ' B82ah3 +4Bw2 af 3 " Kow2 a'f3% 3

Under the assumption that a. V 0, then af 3 a ahl - 0, and equations (7.13)reduce to

0 i " BGlafZ (dropping the minus sign)

02 Bs 2 %2 + Q82% 2  (C

t

Equations (7.13) can be sixl1ated by choosing Option 2, i.e., $ Gdt and

0

G a MAG2 + %oAG3 + "AG4 + MGAG

[o 0 (B +G 8  0-BGWI

"- w2 (G 2 + G2) 0 AG2 + 0 0o0 Ao3

B W2 0 BS 2  0 0 0

+ 4 W2 001K

"+ K Iw 2 o o A G + 0 0 0 A U
Lo o -0w,
0 0 -K

L L II
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Figure 7.07 shows the errors that arise due to BI 30-6
Ni where 0 0.3014 x 1

13.1- 3220 corresponding to 3 = 52

Constant Gro Drift Rates

i Constant gyro drifts are simulated by choosing the same angles and option and

Ssetting•

(7. 13) 0

G = IG 1 = 20

.0 0303

Though drifts due to gravity are not subtracted out at launch in this system,

provision hat been made to evaluatq the elements Glo, GI, 0G22 in termk of gravity

(7.1) components just as the elements E1o,EjIJE• can be evaluated in the EA vector.

(7.-5)
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