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Preface

This is the fux =t volume of a two-volume collection of papers presented at the
Symposium on the Modification of Electromagnetic Scattering Cross St :tions in the
Resonant Region heid on 4 June 1963 at the Air Force Cambridge Res~arch
Laboratories.

Papers in the present volume establish the need for techniques which signifi-
cantly reduce the electromagnetic scaitering cross sectiou of bedies in the fre-
quency range where wavelength is comparable to the body size. One technique
which holds promise for use in the resonance region is impedance loading of the
body surface. This technique is discussed in severval papers, Other papers give
results demonstrating the effects that material properties have in changing cross
sectiens in the resonant region.

Volume II of the collection is cla .sified. If contains the papers "Radar
Absorbing Materials for the Reso1ance Region (U)" by K. M, Siegel and "Comm:..nt
on Some Radar Camouflage Prohlems (U)" by W.F. Bahret.
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Foreword

Objectives of the Svmposium on Modification of Electromagnetic scattering Gros~
section~ in the Re-onant Revion

We organized this conference to emphasize resonant region scattering because
we thought there were significant resuilts to report. Using the technical ideas anu
technigues discussed June 4th, we believe the scattering properties of importsnt
radas target~ can be significantly mouified by reactive loading recessed into the
targets. As is often the case in science, the experimental findings sre out in zu-
vance of theoretical and even conceptual explanations.

We were gratifieu by the high-quality papers and audience at this symposinm.
It is hoped that you will now look at this record critically to find the contradictions,
mistakes, and anomalous data. A sound national effort on this theme should add
another tool for controlling the scattering of bodies.

In my opinion the unsolved problems are these: What other general shapes
besides the electric dipole (rod) or string of dipoles (muitiply loaded rod) w.11 have
a mimmum total scattering cross section upon application of suitable localized
loading? Montgomeryl hints that there might be a class of symmetrical shapes
with such properties, What is, lor example, the suitable loading 1o reducs the
total cross section of a body representable by both electric and magnetjc dipoles?
What is the significance of adding loss to the terminal loaas on longer rodr»32 tover
A /2 in length) to maximize scatter reduction? How does one make the transit.on
from a frequency range where specular reflections are dominant and where motched

. 3 . . } .
dipoles™ or ordinary absorbing materisls provide mimimuin back scatterig to the

vii




resonant region where slightly lossy and lossless reactive loadings appear to do the
job? Does the Conductron paper's discussion'; of surface impedance loading suitable
for resonant shapes answer this question, or is the situation significantly different
for terminal loading with discrete network impedance ports on the body? Can the
reactive loading method be used to redirect scattering in the forward scatter direc-
tion, for example, as absorbers tend to do, rather than reduce the total cross
section?

Why do the values of inductive reactive loading needed to mi_nimize scattering
cross section decrease appreciably as the rod is made thicker? ° Why is the band-
width better with dual loading than with single (mid-point} loading on rods of other-
wise similar shaper? Is the desired reactive loading vs. frequency for minimum
back scatter approximately a constant value as the data show? 6 When the input
impedances vs. frequency characteristics for positions of loading on a scatterer are
known, can they be synthesized by known passive networks or wili the desired fre-
quency response violate Foster's reactance theorem? Do the external modes on the
object {spherical harmonics in the case of a sphere, for example) dictate the proper
pogitions for the terminal loadings and even the internal cavity structare in order
to realize the proper phase relations of the surface currents to produce minimum,
total, or differential cross section? Why does the bistatic radar cross section of a
rod center loaded te produce minimum monostatic radar scattering for all attitudes
increase aiter a bistatic angle of 20 to 30 degrees? Czn scattering from two ortho-
gonal polarization vectors t 2 treated independently by suitable orthogonal loading on
the objects?

When the volume of the object rather than its surface is available, what values
of the constitutive parameters will augment, reduce, or otherwise modify the
scattering of resonant objects? The work of Avco7 (plasma media) and Atlas8 (di-
electrics) hints at unusual possibilities here.

Can reactive loading methods be successfully combined with shaping or absorb-
ing techniques to cover a large bandwidtn for a targe angular region of observation?

There are provisional and perhaps correct answers to all these questions.
Probably they will all be answerable and fall like a row of dominoes as our under-
standing of the resonant region scattering and the influence of strategically located
terminal loads improves.

In spite of unanswered questions, some very useful engineering results are
available. Thick cargo-carrying bodies can be reduced significantly in scatter
cross section for all attitudes over the peak of the first resonance hump. This
loading can be recessed into the body and with coaxial or lumped network impedance
could be packaged pretty convenienily. At Ohio State9 and Boeinglo good strides  —
are being made to combine and control antenna and object scattering by judicious
use of impadance loading. I hope the prodding, provo~ation, and discussions of this
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conference will help to bolster the theoretical picture and bring useful applications
rather soon.
C. J. SLETTEN
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THE MODIFICATION OF ELECTROMAGNETIC
SCATTERING CROSS SECTIONS IN THE
RESONANT REGION

I. Some Thoughts on Scattering Cross Sections in the
Resonance Region
Richard B. Mack and Philipp Blacksmith. lr.

Microwave Phy<ies Laboratory
Air Foree Cambnidge Rescarch Laboratories
Bedford. Mas~achusett=

One certain way to start an argument in even a small group of people familiar
with electromagnetic scattering is to use the expression "rescnance region'.
Someone will immediately object that for most shapes there is no resonance in
the usual circuit sense of zero susceptance and maximum current. Someone else
will point to the maxima and minima in curves of scattering cross section vs.
frequency, and then the discussion really begins. Such instances simply reaffirm
what most of us readily admit - that when the characteristic dimensions of a tar-
get are of the same order of magmtude as the wavelength, the electromagnetic
properties are immersed in a considerable cloud of mystery.

A thin dipole is by far the simplest of such targets, for it has essentially
a cne-dimensional line current. In this case, the measurea snd computed back~

scatter cross sections, carrent distributions, and driving-pomnt admittances can

(Received for publication 9 June 1964)




be closely correlated to give a clear picture ol its behavior. Howzver, as soon
as currents on the scatterer are permitted to have additional components, such
clarity vanishes. The sphere, for example, is a simple three-dimensional shape
that still requires four to seven terms of the \Mie solution to describe its proper-
ties, even when ka is only 1.7 to 1. 5. Already there is some difficulty in de-
veloping an intuitive feeling for the results. For most shapes, including the very
imeresting complex ones, even this kind of a solution is not presently available
when the body dimensions are comparable in size to the wavelength of the imping-
ing wave. If the scatterer is made of dielectric or lossy material, the situation
is further complicated. The result is that our ability to use or modify target
properties in the resonance region is severely limited.

Determining the scattering cross sections from an interesting shape and
learning to modify them are the first steps necessary toward an ultimate goal of
controlling the scattering properties - developing a simple positive method to
make the cross sections appear larger or negligibly small as desired. Alterna-
tively, if energy is to be received by or transmitted from the scatterer, ihe
problem is to place antenna structures so they intercept the currents with maxi-
mum efficiency or excite the body to concentrate radiated energy in 2 desired
direction.

Although the scattering properties of a target are usually examined by them-
selves in graphs of ¢ vs. angle or ka, their principal application is in determin-
ing how susceptible a target may be to detection by a radar. It is interesting to
examine some common cross sections from th:s point of view. The radar range
equation is

Pt G2 }\2 . 1/4
R = — (1)
max 3
S min (4x)
where Rmax’ Pt’ G, Smin’ A are, respectively, the maximum range, the power

transmitted, antenna gain, minimum detectable signal, and the wavelength. ¢ is
the backscatter cross section of the target. Note that Pt’ Smin’ G, and A are
properties of the radar and Independent of the target, whereas the backscatter
cross section is not an exclusive property of the target because it is a function of
the wavelength.

The obvious and most important conclusion from Eq. (1) is that large changes

in oare necessary to produce significant changes in Rm For example, a 12 db

ax’
decrease in ¢ only decreases the maximum detectable range by half; a 40 db de-
crease is required in 0 to reduce Rmax by 90 percent. This is illustrated in Fig-
ure 1 for a radar which can just detect a target of 1 m2 cross section at 1000

miles.
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Figure 1. Variation of Maximum Range With Backscatter Cross Section. Norm -
alized to 1000 miles for a 1 m2 target.

In Figure 2 the backscatter cross sections of several metal targets are com-
pared as a function of k''a', where ''a'' is a characteristic dimension for each
particular target and is listed on the figure. Data for the sphere is theoretical;
that for the other curves is experimental 1-5 For values of k''a'' greater than
7 or 8, there are large differences between the values of o from a sphere and
those from a flat plate at normal incidence However, when k'a' is about 1. 1,
the cross sections from all but the dipole are within a 4db range. This produces
a corresponding difference in Rmax of about £12 percent from an average value.
If the fiat plate, an extreme example, is excluded there is a considerable range
of k''a'"' over which the remaining cnurves are separated by not more than 12 dh,
whisk corresponds to a variation of 2 to 1 in Rmax While this is a significant
decrease in Rmax it could be compensated by existing state-of -the -art techniques
For example, a larger antenna producing 6 db additional gain would be sufficient

to restore the original value of R .
max

Also, when Kk''a' is near 1, the variation of backscatter cross section withtar-
get aspect for the different shapes is very similartothe variation cbserved from a
dipole. This is further discuszed and illustrated in the paper by Sletten, et al.

Consider now the detection of a class of targets having different shapes but
approximately the same size. What frequencv band should he used to detect the
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targets at the greatest distances? Assume Ptlsmin and the antenna gain, G, to
be constant. The iarget size will be considered constant and irequency will be
the variable. Actually, the powers and sensitivities which are available make the
ratio PtiS min decrease as the frequency is increased. Assuming the antenna
gain to be constant means that once the desired frequency is determined, the
antenna will be made suificiently large to provide the required gain. At lower
irequencies where large reflectors become .mpractical, multiplate techniques
might be used. The ideal would be to always design the antenna so it produces
tke maximum obtainable gain which, irom considerations of mechanical tolerances
and coherence, is currently estimated to be about 65 to 70 db. Within a chosen
frequency band, the antenna will have a fixed size and its gain will exnibit the
usual frequency dependence. This is no: considered in the following.

With these assumptions, the radar range equation can be written as

5 1 1/4
N pc® |
R = KjoA K =
max ’ a3 s 2)
U2 v -
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Figure 2. Comparison of Scattering Cross Sections for Various Shapes
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Thus, unless ~ varies at least as 1~ or 1A%, R max will decrease as the fre-

quency is increased. in the Rayleigh region where the tarcet dimensions are miu b
smaller than a wavelength, the backscatter cross secuons ot wany objects ar s

known to vary as 1/ A%, With such targets and frequencies Rmax changes as 7

where f is the frequency. The Rayleigh backscatter cross section of a spheze,

for example, is

_ o 6 _ .

0 = 3 (ka) (1)
and

R -k D o lmax | 3.122 (4)

max T N KD — ;

i)
'

2= A
where D = sphere diameter = 2a, k=3~ kl D -

At the other frejuency extreme, the optics region where target dimensions
are much larger than a wavelength, the backscatter cross sections of many ob-
jects are independent of frequency. With these targets and frequencies, Rm

ax
changes as —}_— decreasing as the frequency is increased. The optics cross
section of a\‘gphere, for example, is
G = 7 a‘)‘ (5)
and
11 R
= ZYspz A% —_max _ 4 k.
Roae = KG)D? VT or —J2% - 06411 WK, . (6)
In contrast, a flat plate which is much larger than a wavelength gives
- a2
¢ = 4“2A , A = plate area (7
A
and
1
R = K{47)* D square plate (D = edge length) (8)




R = K{#¢=}* Nx/4 D circular plate (D = diameter) (9 .

so that Rm ax is independent of {requency.
When k" a" is between about 0. 2 and 10, the so-czlled resonance region,

9 . 2.
values of /A" can be taken from Figure 2. Let T be a given value of o/A” in

Figure 2. Then

and the usual oscillations of ¢ vs. k"a" arz modulaied by the dependence on A
(or 1/1).
Some typical curves of the normalized maximum rangs,

Rmax Han
XD’ VS k'"a ]

are given in Figure 2 for the backscatter cross sections of Figure 2. Again, "a"
1s a characteristic length for the tarset as given in the table of Figure 2, and D
may ke considered as an average or most probable target size equal to 2 "a". .
Under the assumption discussed above and for the targets considered, Figure 3
clearly demonstrates the desirability of choosing a frequency which either places
k' a" between about 0.5 and 2 or makes k" a" as low as is compatible with the
obtainable antenna sizes. Since for many targets D is quite large, Figure 3 also
emphasizes the need for physically large antennas which have high gain at the
lower frequencies.

The most commonly discussed methods of modifying the cross sections of
targets are shaping and the use of absorbers. Figures 2 and 3 indicate that shap-~
ing is effective at larger values of k' a'" but is not very effective when k" a" is
near 1. Likewisz, absorbers are effective at larger k" a' values, but at smaller
k''a" values they are either not particularly effective or are bulky at lower fre-
quencies.

Most of the symposium papers are concerned with a third method of modify-
ing the cross sections. This method has been called "reactive loading" and is
especially applicable to targets in the range of small k'a" and at lower frequen-
cies where the more common methods lose their effectiveness. Reactive loading
holds the further promise of providing a simple means of not just modifying but
of actually controlling the cross sections by simply closing or opening a switch.

It is hoped that the symposium and its record will not only lead to improved
techniques for controlling scattering cross sections in the resonance region, but
will also lead to a better understanding of basic scattering properties when the
object dimensions are comparable in size to a wavelength.
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Il. The Minimization of the Backscattering of a
Cylinder By Central Loading™

Run-Mu Chen and Valdis Liepe
The Radiation Laboraton
The ¥ niver<ity of Miehizan

Abstract

A theoretical and experimental studv of the minimization of the hackscattering of
of a thin cylinder by central loading is presenied. The induced current on 2 cen-
trally loaded cylinder illuminated by ¢ plane wave at rormal incidence is theoreti-
cally determined and experimentally measursd. The magnitude und phase of the
induced current can be greatly chiinzed bv a central impe lance  The optimom
loading to achieve zero bhackscatter in the broadside direction has been determined
for a thin cylinder shorter than 2 wavelengths. The optirmim central impedance
for the purpose of minimizing the broadside backscattering from & thin evhnder
over a wide range of frequencies has also been determined,

*This paper was presented ot the Svmposimm on Moadification of Plactiomagnetic
Scattering Cross Section ir: the Resonant Region, Air Voree Car:bridge Kesearch
Laboratories, Bedford, \lassachusetts, Junec 4, 196, The researeh in this
paper was supportesd by Air Vorce Cambridee Rescorch J.aboratories onder
Contract AF 19(628)-2371,
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. INTRODLCTION )

The first known use of reactive loading to minimrize scatiering was by Iams1
who applied the technique to metallic posts used in a parallel plate pillbox struc-
ture. The idea of using this technique to decrease the z;adar cross seciion of
obiects in space was suggested and employed by Sletten™ in 1950. The backscatier-
ing of a cylinder with and without a central load has been studizd b’ several

authors.3’ 4,3

The information available to date is that if a cylinder of near a half
wavelength is loaded with a high reactive impedarce at its center, its backscatter-
ing cross section can be significantly reduced. The exact way in which the
reactive loading behaves and the optimum method of loading are stiil not well
understood. It is the purpose of this paper to present a theoretical and an experi-
mental study of the subject in order to clarify the nature of the leoading and also to
present an optimum loading for reducing to zero the broadside backscattering from
a cylinder.

We study the problem from the viewpoint of the incuced current on a metallic
object illuminated by an electromagnetic wave, since tne induced current plays the
most fundamental role in the scattering. We consider a parfectly conducting cylin-
der with a small radius and a lengtn shorter than 2 waveleagths, and assume that
a plane wave is incident broadside on the cylinder. A current is induced on the
cylinder by the incident plane wave, and this induced currext in turn produces a
scattered electromagnetic fieid. If an impedance is added at the center of the
cylinder, the induced current and the scattered field are modified. There are
three methods by which the addition of a central impedance can reduce the scattered
field. These are: (a) by reducing the magnitude of the induced current; {b} by
reversing the phase of the induced current over some part of the cylinder; and
(c) by 2 combination of {a) and (b). The third method is the most effective for
reducing the scattering, and we shall show that with central loading it is possible
to reduce the broadside backscattering to zerc.

In Section 2, we determine theoretically the induced current on the cylinder
with central loading by applying an integral equation method. This induced current
is expressed as a function of cylinder dimensions and the central impedance. In
Section 3, we study the induced current on a cylinder without loading. In Section 4,
the induced current on a cylinder loaded with an infinite impedance is found. In
Section 5, we study the induced current on a cylinder with a resonant length for
various central impedances. In Section 6, the induced current on a cylinder with
an anti-resonant length is studied for various central impedances. Through Sec-
tions 3 to 6, theoretical and experimental results are compared. In Section 7, the
experimental method is described. In Section 8, we obtain the cptimum impedance
for zero broadside backscattering from a thkin cylinder. The optimum impedance
required to minimize the broadside backscattering from a thin cylinder over a wide
range of frequencies is also included.
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In this paper, attention has been given only to the broadside case, since the
highest return is in this direction. e have limited our analysis to a thin cylinder
in the interest »f simplicity in developing the theory. The case of a thicker cylin-
der and the case of the oblique backscaitering will, however, be studied later. The
use of multiple loading on a cylinder will also be investigated in the future.

2. INDLCED CURRENT

The geometry of the problem is as shown in Figure 1. A cylinder with a radius
a and a length 2h is assumed tc ke perfectly conducting. A plane electromagnetic
wave with the E field parallel to the axis is incident normazlly 10 the ¢ylinder. At
the center of the cylinder » lumped impedance ZL is connected. [hie dimensions
of interest are

%A< 2h < 2

[i(z) a2 <1

where A is the wavelength and 3 o i the wave number. The second condition
implies that the cylinder is thin and that we can assume that only the axia‘ current
is induced.

I
Bl &
25 Fz,-L220 Vare2h<ar

L
Incident T Boa®<<I
EM Wave T
I;
—»{2q1%—
v._z ==h

Figure 1. Cylinder with Central Loading Illuminated by an Electromagnetic Wave
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2.1 Integrel Equation for the Induced Current on the Cylinder

In order to determine the induced current on the cylinder, we apply an integral
equation method. The integral equation for the induced current is derived first.
The incident tangential electric field is assumed to be

in _
Ez = E (1)

where Eo is constant along the cylinder.
The tangential electric field at the cylinder surface, maintained by the current
and charge on the cylinder, is

wa . 20 .o )
2 T TEz T¥%% )

where ¢ is the scalar potential maintained by the tharge, and Az is the tangential
component of the vector potential maintained by the current. By using the Lorentz
condition

v-A (3)

o“m| €

Eq. {(2) can be expressed as

)
a . w|d° 2
B = ‘J—-——"‘*’B) A . (4)
2 Bg(azz o] z

The electric field maintained across the gap at the center of the cylinder is
related io the voliage drop across the center load as follows:

gsg dz = -V~ = 2, 1(2=0) = Z I {5)
o

where VL is the voltage drop across the center load ZL and Io is the induced
current at the center of the cylinder. From Eq. (5), E§ can be expressed as

Eg = Z; 1 6(2) . (6)

If the cylinder is perfectly conducting, the tangential electric field at the sur-
face of the cylinder, excluding the gap, vanishes. That is

——




E;+E, =0 for 6<z<h and -h<z< -b. (7}
At the gap, the electric field is :ontinuous. That is

~a dn _ g L R s s m
E_ + E, E> zZ 1 6(z), for -6<z2< 5 (3)

Actually, a single equation can be obtained by combining Egs. (7} and (£} and using
the result with Eq. (4} over the whole length of the c¢ylinder to obtain

5

2 B-

2 . 2 P o T
g’ Azll'ﬁoAz ) (Eo Zy.

Io":(z))for -h<z<h . ()
Equation (9) is an ithomogeneous differential equation for Az. The general solu-

tion is the sum of the complimentary function and & particular integral as follows:

- ) P
Az -—‘7; C1 cos ,?oz+02 s;..1307.+ 9(2):} . (10)
In Eq. (10) v, is 1/’\-‘#060, Cl and C, are arbitrary constants. 6(z) is a particu-
lar integral and can be expressed as

z
8(z) = EEO(S) - ZL Io(s)] sin B“(z—s) ds
b
Eo 1
"5 (1 - cos B z) -EZLIosinﬁolzl. (11)

if Eo is assumed to be constant along the cylinder, 02 can be proved io be
zero from the symmetry. Equation (10) then becomes

E
-0

-J
A(z)=—|:C cos 8 z +
4 Vo 1 o B,)

1. .
(1 - cos Boz) -5 Z‘L Io sin sofz!]
for -h<z<h. (12

From Eq. (12), Cl can be expressed in terms of A?(h) as




1.t

E
C1 = sec Boh [ivo Az(h) —§§ (1 - cos ,30h)*:_12-ZL Io sin soh] . (13)

With Eqgs. (12) and (13) we obtain the foilowing equation:

-3 E
Az(z) - Az(h) =z ;% sec ﬁoh (1 A Az(h) - .53) (cos B,z - cos aoh)
+ %ZLIosinBo(h- ]z') for -h<z<h. (19)

On the other hand, the left hand side of Eq. (14) is related to the induced
current on the cylinder in the following way:

h
K
- O - P ’ 5
Az(z) - Az(h) =4 ( Iz(z ) Kd(z,z ) dz (15)
-h
where
Kd(z, z’) = Ka(z, z7) - Ka(h,Z') (16)

exp [—jﬁo Viz-2')%+ a2]
Ka(z,z’) = 1n

#(z -z')2 + a®

and Iz(z’) is the induced current on the cylinder.

An integral equation for the induced current on the cylinder 's then obtained
by equating Eqs. (14) and (15) as follows:

h 4 E
=147
S‘ Iz(z’) Kd(z, z'ydz = —g-(-)— se~ Boh (] Vo Az(h) -—B—(o;-) (cos Boz - cos Boh)
-h
+1z I sinp (h-lzl) (18)
2 7L.7o 0 :

where ¢ = 1207 and (18} is valid for -h>z>h. It is noted that Az(h) and I in
the right-hand side of £q. (18) are the functions of IZ(Z) and are still unknown.
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Solution for the Induced Corrent on « Gy hinder

The right-hand side of Eq. (18) suggests a form for the solution 7 T

Ié(z) = C‘c(cos 8,2z - cos aoh) + CS sin 3o(h - fz' ).

It is then reasonable to divide Eq. (13) irto 1w o parts as follows:

h

Ll . . } p ,
Cc ( (cos B,Z - cos doh) }\d(z, z ) dz
-h
T b fiv A () E")
= sec 3 iv - - - ¢OS
go o k o'z BOI (zos 342 - €os 3oh)
h
= - 1 ’, » 4 z
c, V sin 3 (h - 12')) Ky(z,2) dz
-h
-i2=

; i
. sec,fithLIosmSo(h lz,).

(19

(20)

21

Equations (20) and (21) are valid for -h<z<h and also well matched at the end

points, =z =xth. To find the constants, Cc and Cs' we can match both sides of

Egs. {20) and (21) at the center of the cvlinder, z = 0.
By setting z = 0 in Eq. (20), CC is determined as

E

sec ﬁoh (j v, Az(h) - -B—o) (1 - cos ,30h)

o]

-7

Cc ) Z:oTcd

where

h
Tcd = ( (cos ,30z' ~ COS ,Goh) Kd(ﬂ, z')dz’ .

~-h
By setuing z = 0 in Eq. (21), C_ is determined as
C i2 gh7 I singh
= sec . sin 8 h
s £ Tsd o Lo 0

where

(23)

(24)




h ’

Teq ° ( sin 30(!1 - 1z7h Kd(ﬂ, z'ydz” . (25)
-h

Substitution of Eqgs. (22) and (24) in Eq. (19) gives

47 [

E
[ () = — = [ jv A (h) --—o)(secah-l)(cos@z-cos(»‘h)
z ;o LTcd( 0z o o o

3
i : _ 2
+ .,:—-—'TSd ZL I0 tan Boh sin 30(h !zl):l. (26)

Equation (26} is not the final form of the solution of I (z) because Az(h) and I
are still nnknown.

Since I = I (z = 0), we can express I, interms of Az(h) by letting z = 0 in
(26), and Eq. (26) can then be arranged as

R i A(h)-f:ﬂ I z - cos 8 h) + X' sin g (h - |z])
242 T Ivga, 30 ':x cos,:S‘0 cos 3 N si ,30

o
(27)
where
’ 1
AL = 7~ ({sec3h-1) (28)
cd
, -Z; tan 3 h(sec 8 h+ cos 8 h - 2)
T = 0 o o (29)

Tcd ZL tan ,’3oh sin Boh -i GOTcd Tsd

Equation (27) still has one unknown, Az(h), and to determine this we do the follow-~
ing. From the definition of vector potential, we have

h
13
A = ﬁ I(z") K, (h,2’) dz’ (30)
-h

where Ka(h’ z') is defined in Eq. (17). If Eq. (27) is substituted in Eq. (30), we
obtain

s ‘IT ‘I

h) = iBq M ca'”\ ISa
A T v -M’‘T - N’T
z oﬁo 1-M ca N sa

(31)




P
=1

where

h
Tca = ( {cos 3,2 - cos Joh) ha’h, z') dz 323
-h
h
T, = ( sin 2_(h - {2" ) K_(h, 2" )dz’ (33)
-h

Now a final form of the solution of Iz(z) can be obtained if Eq. {31) 13 substituted
in Eq. (27). After rearrangement, the final solution for Iz(z) can be summarized

as follows:

iBj 1
I () = 303 (cos 3h-VMT -NT )[‘d(cos 352 = c0s 3 h}~ N sin 3°(h-le
o o ca sa
(34)
where
M = =— (1 - cos 3_h) 5
A T cos 3 (35)

cd

9
-Z. sin 3@ h(1- ¢cos 3 _h)”
N = Lo g (36)
Tcd ZLsm Boh -i SO'ICd TSd €O0Ss BOh

T .. are defined in Eq. (23), (25), (32), and (33).

T,
ca’ ~sa

and Tc & Ts &

Equation (34) gives a complete expression for the induced current on a cylinder
with a central load, ZL’ when illuminated by a constant electric field, Eo‘ at
broadside. The accuracy of Eq. (34) is high and its form is simple and suitable
for the furither development oi theory. It is checked experimentally in later

sections.
As a matter of completeness and convenience, integrals Tcd‘ Tsd’ Tca' and
Tsa are expressed in terms of better-known integrals as follows:
Tcd = Ca(h, 0) - Ca(h, h) - cosﬁoh [Ea(h' 0) - Ea(h’ h)] (37)
Tea = singh [¢,0,0) - Ca(h,hﬂ - cos fih [Sa(h, 0)-S_(hh ﬂ (38)

Tca = Ca(h,h ) - cos Roh Ra(h,h) (39)
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Tsa = sin ,:-‘ch Ca(h,h) - cos 3°h Sa(h,h)
where
h
I - Y4 4 7
Ca,0 = | cos pa’ K,00,2) az
-h
h
- ! /
Ca(h.h) = S‘ cos 8z Ka(h,z ) dz’
-h
h
_ ) ‘
Ea(h, 0) = S‘ Ka(O, z')dz
-h
h
- ’ ’
Ea(h, h) = S Ka(h’ 2z ) dz
-h
h
S,(h,0) = ( sin Boz' K,(0,2") dz’
-h
h
Sa(h’ h) = S‘ sin ﬁoz' Ka(h' z’) az’

-h

(40)

(41)

(42)

(43)

(44)

(45)

(46)

The integrals of Eqs. (41) to (46) can be calculated by using a digital computer.

3. INDUCED CURRENT ON A CYLINDER WITHOUT CENTRAL LOADING

The first and the simplest case to be studied is a cylinder without loading.

The induced current on the cylinder can be found from Eq. (34) by letting Z; =0.

That is

1 - cos Bnh

(’1‘cd + Tca)-cos Boh - Tca

(cos B2 - cos Boh) .




With Egs. (37) and (39), Iz(z) cun be expressed as

]Eo (1 - cos ,?oh)(cos 302 - cos Boh)

I {z) =
Z - 2 ;
30 Bo Ca(h, 0) cos {3oh - La(h, 0) cos Joh - Calh,h) Ea(h,h)cos .3oh

17

The disiribution of the induced current along the cyvlinder in this case 15 a shifted

cosine curve. The maximum induced current occurs at

- 3%
z =0 for 30}1 < > [
(48)
] 3z _ \
z = A[2 for 5= < Boh < 23
and is given by
) 9
]Eo (1 - cos 3 _h)~
1O = 353 5 £
z o Ca(h,O) cos Boh-Ea(h,O) coOs Boh—ta(h, h)&Ea(h,h) cos aoh
(49)
or
. .9
A\ ]Eo - sin ,3oh
2 \2) 305, | ¢ (h,0)cos3 h - E_(h,0) cos28_h-C_(h,h)* E_(h,h) cos 3_k
a vIc0sE, a b CoS B, a T =il cos 3 L
(50)

Theoretical and experimental results of IZ(O) as a function of h are compared
and shown graphically in Figure 2. The theoretical results are calculated from
Eq. (49) with a computer. The experimental results are obtained by measuring
the induced current at the center of a 3/16-in. -radius, variable length cylinder;
the cylinder length can be varied betwezn A/4 and 2A. The cylinder is illuminated
by a plane wave with a frequency of 1.088 kiMe. The agrecement between theory
and experiment is good except at a point near h = 0.7X where a resonant peak
occurs. The discrepancy at this point may be due to theoretical error or to the
fact that the incident electromagnetic wave In the experiment is not constant along
the cylinder for lengths greater than A. Since the general behavior between A /4
to 21 1s quite well predicted by theory and confirmed by experiment, we have not
attempted to minimize the above disagreement.

The current distributions along the cylinder of various lengths are shown
graphically 1in Figure 3. Theoretical and experimental results are in good

agreement.

19
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Figure 2. IZ(D) v3 h/A when ,303 = 0,11, f = 1.088 kl\ic, ZL = 0.

The results obtained in this section are not unexpected. The induced current
reaches a resonant peak on & cylinder with a length of 0.43A or a length of 1.4A
for Boa = 0.11. Obviously, these current peaks imply large backscattering signals.
We propose to eliminate these current peaks by the use of suitable impedance
loading.

4. INDUCED CURRENT 0N A CYLINDER WITH AN INFINITE IMPEDANCE AS ITs CENTRAL LOAD

The second case to be studied is a cylinder with an infinite impedance loaded
at its center. Theoretically, the induced current can be obtained from Eq. (34) by
setting ZL =« ., Experimentally, an infinite impedance is approximated by a
coaxial cavity tuned at its anti-resonance position., This coaxial cavity is built
inside of the cylinder as described in a later section. The induced current on the
loaded cylinder is then measured by a small probe.
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When Zsz , from Egs. (33) ana (36)
. -(1-cos 3 _h)
N o To . z
Sl sinBoh for 30}1 2 nw. (=1)
The substitution of Eq. (51) in Eq. (34) gives
-on (1 -cos,S’oh)[sin 3Diz| -sin (S’Oh + sinso(h - !zh]
I (z) = - - =
z 303, [singch [C,,0) - (2-cos3 ) C (b1 - cos s hE (h,00+ _(hh) 9"}
{
-{1-cos 80?1)2 Sa(h, h) J
- (H2)

The induced current in this case 1s zero at the center of the cvlinder, and is dis-
tributed along the cylinder as a combined curve of u sine and a shifted sine curie.

The mazximum indiced current occurs at

N
1
v

, for 30h< 27 (53
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and is given by .
2 h 3 h
I (ﬁ) ) -IE 2sin-—-§—(l—cos% (l-cos'ﬁoh) .
z\2 30 B, [sin Boh [Ca(h,(l) -(2 -cos Soh) Ca(h,h) - cos Roh l:a(h,0)+ Ea(h,h)] .

- ” 2
-{i-~cos .3°h) Sa(h, h)

(54)
The theoretical value of Iz(g-) as a function of h/A is shown grephically in
Figure 4 in comparison with an experimental curve. The experimental results are
obtained with the coaxial cavity set near its anti-resonance position The agree-
ment between theory and experiment is not very good. The discrepiincy is due o
the fact that it is impossible to obtain experimentally an infinite impzsdance from a

coaxial cavity structure. This reasoning is supported by the fact th: t there is .
closer agreement between theory and experiment for ZL— = 32000 Q.
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The distr:bution of the induced currznt on three cylinders of different lengths
and loaded with infinite impedance.—» 15 shown graphically in Figuare 5. The agree-

ment between theory and experiment is good for these cases.
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Figure 5. Distribution of I_(z) for h = 0.2133,
h = 0.2892, and h = 0.326A when 2 =«.

The important information obtained with infinite impedance at the centcr of
the cylinder is as follows: The induced currents at resonant lengths, namely
2h = 0.43A and 2h = 1.4A, are greatly reduced by this loading. However, the
induced current appears to have a peak when 2h = 0.9 with this loading. This
current peak should be suppressed if a low scattering over a wide frequency range
is desired. We then conclude that an infinite impedance, or a very high impedance,
for the central loading is not an optimum from the viewpoint of minimizing the
scattering over a wide range of irequencies. We shall seek an optimum loading in

later sections.
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3. INDUCED CURRENT O\ A CYLINDER OF \FAR RESONANT LENGTEH SITH VARIOUS CENTRAL
IMPEDANCES

In this section the effect of the central impedance on the induced current of
the cylinder with a resonant length 1s studied. For experimental convenience, we
choese the tollowing specific case:

a = 0.0173x
2h = 0.43)
ZL = JXL .

The last condition restricts the central impedance 10 be purely reactive, since
only a reactive impedance is obtained experimentally from a coaxial cavity.

\With tne above condiucens, the theoretical value of the induced current can be
expressed as

. N . ,,
L@ - JEQ \ {(cos{soz-o.ms)-%-ﬁ-sm (77.5" - {,?oz!)
2 A

et _ (55)
303, §0.215 - 35 (0.218 - j0.25)
where
) -0.765 X
P "E (56)
Al 0.955 '\L - 24.8

The relative magnitude of Iz(z) is calculated and shown graphically in Figures
6a and 6b for the following values of ZL: 0, =, —jl165002, —j800Q2, - 36008,
1160082, 18008, 6002, and j40022. In theses curves, we observe the following
facts:

(1} When ZL =0 (no loading), the induced current is very large and distributes
along the cylinder as a shifted cosine curve.

(2) When ZL ==, the magnitude of the induced current is greatly reduced
from the value for ZL = 0 and the distribution of the induced current becomes
double humped with a null at the center.

{3) When ZL is capacitive and finite, the induced current is smaller than the
case of ZL = 0 put larger than for ZL = ©,

(4) When ZL is inductive and finite, the magnitude of the induced current is
smaller than the case of ZL = « and the induced current starts to have three loops
along the cylinder; it is of interest to note that the phase of the current at the
cenier loop is reversed.
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The most important and significant information obtzined from Figures iz and
6b is that when Zjp is inductive and of some finite value, the magnitude of
the induced current is reduced to a vzlue smaller than the case of Zj = =
and the phase of the induced carrent is reversed at the center part of the
cylinder, It is, therefore, possible to reduce the broadside backscattering
from a cyrlinder to zero by prorer.s adjusting the value of ZL . In effect,
the optimum impedance for zero broadside backscattering from a cylinder of
this size is inductive and it has a small resistive component, as we shall
see in a later section.

To obtain an experimental verification to the tneoretical results shown in
Figures 6a and §h, we measured the induced current along a cviinder of this
specified dimension and with various cavity lengths. The experimental resulis
are shown in Figures 7a and Th. We obiained a family of curves which close-
ly resemble the theorerical curves shown in Figures 6a and 6b. When the
cavity length (total length) iz longer than 6.2 c¢m, the impedance of the cavity
is capacitive; it becomes inductive for cavity lengths shorter than 6.2 em. It
It should be noted thai the effective cavity length is greater than these values
since it is loaded with a dielectiric material for which ¢ =31.0. The approxi-
mate value of the cavity impedance is calculated by using a standard impedance
formula for a transmission line and assuming that a capacitance of 0.4 puf
is shunted across the gap at the center of the cylinder.

The comparison between theory and experiment is made in Figure 8 where
theoretical curves for ZL =-j800Q, «, and j&00? are shown. [hese
curves are compared with experimental resulis for £ =3.32<m, 3.10cm,
and 2.91 cm where £ is the half length of the coaxial cavity. The &agree-
ment between theory and experiment is very good. uis indicates also that
the calculated value of the cavity impedance is quite close to the corresponding
theoreticai impedance.

6. INDUCED CURRENT ON A CYLINIER OF NEAR ANTLRESONANT LENGTH WITH V ARIOU ~
CENTRAL IMPEDANCES

In this section we study the effect of the central impedance on the induced
current of a cylinder with an anti-resonant length. The dimensions of the cylin-

der and the central impedance are chosen to be

0, 01732

Q2
t

2h = 0,92
2y, T INLL
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Again we consider oalv the reactive louding.
£

The theoretical value of the induced curiren! for this case is:

r X xﬂ

i i +0.951) + == gi o _ |
iE {cos3 z+0.951) sin{l162° - i34 z;
L) 2 5o o AL o (57)
<Y P -0.911 ~ 0. 217 - 3% (0.111 - §0.128)
where
v -0.604 X
N - L (52)

N 0.096X) + 71 -j52.2

The relative magnitude of Iz(z) »& calculated and shown graphieally it Figare
9a and 9b for values of Z.L as rollouws: 0, x, — 116008, — 18002, — 16008, 16052,
18002 and ) 60022, This family of curves is quite different from those of the pre-
ceding section. Although a purely reactive impedance reduces the magnitude of
the induced current and tends 16 reverse the phase of the induced current, 1t s
not possible to reduce the broadside bsckscattering 1o zero because current nulls
do not occur in this case. Actually, an optimum impedzance for zero broadside
backscatiering from a cylinder of this size should have a large resistive compo-
nent, as is shown in a later section.

The experimental results for the induced current on the above cvlinder with
various cavity lengths are summarized in Figure 0. The general shapes of the
experimental curves are similar to those in the theogretical curves. The compari-
son between theory and experiment is made in Figure 11. Three typical theoretical
curver are compared with the corresponding experimental results. The agreement
between theory and experiment is good but not as good as in the case of a shorter
cylinder.

7. THE ENPERMENT

In Figure 12 is shown the block diagram of the equipment used for the current
measurement on the reactively loaded cvlinders. In the experiment the cylinde:
is illuminated at broadside by a plane wave of 1.088 klMc from a L-band horn
antenna with the electric field vector polarized in the direction parallel to the
cylinder. A conventional probing method with a small current probe was employved

to measure the induced current amplitude on the cylinder.
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The coaxial line leading from the probe was covered with radar absorbing

material (RAM) and oriented perpendicular to the E f{ield to miinimize the influ-

ence of 1ts p.esence. The measurement area was lined with RAM to reduce

unwanted reflections.

Figure 13 shows partially d.sassembled components of the loaded cylinder.

The diameter of the cylinder 1s about 0.85 ¢m and its length can be changed from

10cm(h = 0,1821) to 51.29cem(h = 0.931) by the combinadon of center and end pieces

of different lengths. The center sections of the cylinder contain a symmetric
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Figure 13. Cylinder with Coaxial Cavity

coaxial cavity wite 1ts input gap at the center of the cxlinder. By varving the cavity
length, various input reactances thut represent the centi. loads of the cyhinder ate
obtsined. The coaxial cavity 1s filled with a dielectric 1 order to reduce the ye-
quired cavity tength. The dielectiric used is z stvracast with a rhelectric ~ronstant

of 4 and a loss tangent of N nou,
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8. OPTMULM DMPEDANCE FOR ZERO BROADSIOE BACRSCATTERING FROM A THIN QYLINDER

In the preceding sections we have concentrated on finding the induced current
on a cylinder as a function of the cylinder dimension and the central impedance.
We now seek to find an optimum impedance for zero broadside backscattering
from a thin cylinder.

The induced current has been found in Eqs. (34) and (36). The scattered tield
due 10 this induced current can be found as follows:

The vector potential maintained by the induced current on the cylinder in the

far zone of the cylinder is

4 =Fo 3% 1
A 47 30,3o cosﬁoh-.\ITca-NTsa

a exp (i BOR)
| M ( (cos 32 - cos Boh) —x 4z
-h
h exp (-jBoR) 1 }
+ N (sznso(h -lzhy —52— dzJ (59)
~h

where

R = Ro -zcos ¢ = distance between a point on the cylinder and the

observation point.

The scattered electric field in the far zone of the cylinder can be obtained as

E, = -iw Ay = jwA sing. (60)
The corresponding Poynting vector is
P = = |E, |2 61)
2¢ 2] )
o
The scattered field in the broadside direction can be obtained by letting
(62)

f = 90° and R=Ro .




We then obtain

exp (-j N Ro) .\!(sinsoh—joh cos 30h)+\'(1 -cos 30h)

s 2
E2(s =90°) = =— E C
8 ‘50 (o] Ro cosBoh-.\lToa—,\Tsa
(63)
and
2 . . 2
" 4 - 3\ - e
PS(9=9¢) =2 50 5 msm%: aol;ci)s\??;“:\sm cos ) (64)
o BSR; cos B, “real sz

The Poynting power density of the scatiered field in the broadside direction is
thus expressed as a function of the central impedance because N 1n Eq. (64) is a
function of ZL’ as expressed in Eq. (36).

To minimize the broadside backscattering to zero, we can simply make
P36 = 909 equal to zero. That is,

N sin 3oh - Boh cos ,3°h

N T 1-cos3h : (63)

Using Eqgs. (33) and (36), Eq. (65) can be rewritten as

ZL sinBoh(l -cos ,’}Gh) sin eoh - 30h cos 303

= . (66)
1 ~cos ‘?oh

.2 .
ZL sin Boh - JﬁOTsd cos 30h

By solving for ZL in Eq. (68), we obtain the optimum ceniral impedance for zero
broadside backscattering as

. } -j BO’I‘Sd(I - Boh cot ﬂoh)
Ljg = 2cos@h -2+ g.nsingh

(67)

where

= q3 - - - 1
Tsd sin 30h [Ca(h, 0) Ca(h’ h)] - cos 30h [Sa(h, 0) Sa(h, h) }

as expressed in Eq. (338).
Equation (67) gives the complete expression for the optimum central impedance

for zero broadside backscattering from a thin cvlinder. This ¢ptimum central
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imperdance is a function of the cylinder dimension and 1ts numerical value can be
calculated quite easily. The expression should prove useful in proctical desigp
We consider a cylinder with a=9.01731 and calculate [ZI:}

as a function of the cylinder length h. The result is shown graohically in Figure
14. From this figure we observe the following:

(1) In general, the optimum central impedance for zero broadside backscat-
tering should have both the resistive and the reactive component.

(2) For a cylinder shorter than 1 wavelength (or h< 0.51), the optimum
impedance is inductive and requires a resistive component.

(3) For a cylinder longer than 1 wavelength (or i > 0.51), the optirmum
impedance is inductive or capacitive but requires a negative resistive component.
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Figure 14. Optimum Central Impedance, [ Zj ]y, for Zero Backscattering from
a Cylinder of Radius a=0.0173A , as a Function of Cylinder Length

These results indicate that for a cylinder shorter than 1 wavelength, a passive
impedance loaded at the center of the cylinder can reduce the broadside backscat-
tering to zero. However, an active impedance is required to obtain zero broadside
backscattering from a cylinder longer than 1 wavelength. Ot course, an active
impedance may not be needed if the cylinder is loaded at two points.

We also consider the case of a thicker cylinder with a = 0.0517A. The opti-
mum impedance for zero broadside backscattering is obtained as a function of the




evlinder length L and shown graphically o Figure 13; und o seen 10 be shmila:
10 that in Flpure 13, The resistive component ren.ains relotively constant with
respect to the change of the cylinder thickness, but 'pe reactive component is

reduced almost by a factor of two for the thicker cylinder.
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Figure 15. Optimum Central Impedance, [ Z1 ]lg , for Zero Backscattering from
a Cylinder of Radius a=0.0517A , as a Function of Cylinder Length

To determine bandwidth characteristics of this technique, we calculate the
optimum impedance for the purpose of minimizing the breoadside backscattering
from a fixed cylinder over a wide range of frequencies. We consider a cylinder
with h=4cm, a=0.476cm to cover a frcquency range from 1kMc to 3kMe., The
frequency characteristic of the optimum impedance is shown graphically in Figure
16. Within this frequency range the optimum impedance is inductive and requires
a resistive component. This impedance appears to be obtainable by a simple net-
work synthesis. It is also noted that to cover a wider range of frequency, an
active impedance is needed to reduce the broadside backscattering to zero.

A final remark is necessary at this point. Although we have exclusively
studied the broadside illumination, the optimum loading obtained in this studyv is
also effective for the case of the obliique illumination. To sugport this statement
the experimental measurement of the induced current by a plune wave incident

from different angles are presented in Figures 17 and 18. In these figures we
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observe that the only change on the induced current for the oblique illumination .=
the reduction in its magnitude. The distribution of the induced current is pract -
cally unchanged from the case of the broadside 1llumination. Additional study or.
the oblique illumination case will be made in the future.

9. CONCLEAI0N

We have studied the effect of central loadings on the induced current on a thin
cylinder that is illuminated by a plane wave at normal incidence. It is found that
both the induced current and the scattered field can be greatly modified by a cen-
tral load. Through theol etical analysis and experimental measurement, we have
good understanding about the exact nature of the loading for the reduction of the
scattering.

We have also obtained the optimum central loading to eliminate the broadside
backscattering from a thin cylinder. A relatively simple formula for the optimumn
impedance is presented, and it should prove useful in practical design situations.

Although an impedance which can easily be obtained by a simple network synthesis
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is sufficient to reduce t zero the backscattering f. om a cylinder shorter than 1
wavelength, it appears that an active impedance is required to eliminate the back-
scattering from a cylinder longer than 1 wavelength. This difficu.ty can probably
be overcome by loading the cylinder at two powmts with two passive impedances.
An investigation of this possibility is in progress.
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IIl. Backscatter Reduction of Long Thin Bodies
By Impedance Loading

R. P. Hansen. Ir.
Aero->pace Division
The Boeing Company
~eattle. Washington

Abstract

An impedance-loading technique for backscatter reduction of long thin bodies is
discussed and experimental verification of the technique presented. It is shown that
a significant reduction in the backscatter is possible while providing a receiving
capability. The body is thus converted into an antenna that has a high ratio of
receiving cross section to backscattering cross section under conditions o1 low
backscatter.

1. INTRODUCTION

Backscattering from a long thin body in the region of longitudinal incidence has
been evaluated by Pe:ersl’z in terms of a trzveling-wave antenna mode excited on
the body by an incident wave. In this paper, an impedance-loading technique is
described which effectively results in cancelling the backscatter field produced by
such a mode. The body is considered as an asymmetrical dipole antenna, and the
value ot lvad impedance necessary to accomplish the cancellation of backscatter is
determined. Using the Smith-chart representation of Kennaugh and Green3 for
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antenna scatterir.g, the backscattering cross section is evaluated for any load imped-
ance at the fregaency under consideration.

An inciden: wave with the plaae of polarization parallel te the axis of the body
excites a traveling wave on the body. This wave is reflected from the rear point,
producing a secondary traveling wave on the body. It is this backward wave that
results in the large backscattering cross section. Elimination of the reflected wave
from the rear point would affect a large reduction in backscattering over a range of
aspect angles in which the travelling-wave mode is the primary mode. It is thus
postulated that a set of antenna terminals be constructed near the rear point so as to
absorb the incident wave without reflection, or to reflect part of the received signal
with the proper vhase and amplitude to cancel that which is not coupled to the ter-
minals. In this paper, such a technique is shown to be possible.

2. IMPEDANCE LOADING

In order to evaluate the backscattering characteristics of a long thin body with
an impedance load near the rear point, the general concept of antenna scattering
sho.!ld be considered. The electric field scattered by an antenna as a function of

load impedance is given by3

Z1,24

Z 1(0) ET (1)
L+ Z-‘&

E(Z;) = E(0) -

where
ZL = RL + jXL is the load impedance,
ZA = RA + jXA is the anterna impedance,
E(0) is the scattered field of the antenna with z,,=0,

ET is the electric field transmitted by the antenna when excited by a unit
voltage source, and
I(0) is the current through the load Z; = 0.

This equation may also be written aLs3

B = Fz” gAM (:2)
E(z;)=E(2,)+TE




where

Z 3 1o the complex conjugate of Z a4

E(Z:) is the structural scattered field,

24
22
gAM - A [0)ET is the antenna-mode scattered field,
2 A
J
i- Zi\
T = ————\? is the reilection coefficient, and
1+ 2%
L
N ZLtiN,

ZL = _RT_ is the normalized load impedance.
If the condition

r /M. -E(z)) (3)

is talfilled, then the scattered field E(ZL) is zero. Ir order to accomplish this
over some range of aspect angles, cone should have

AM

= (4)
5 |Ez))]

over that range. The load impedance is then adjusted to provide the proper phase
and amplitude of the reflection coefficient so as tc fulfill Eq. (3).

The long thin body with a set of terminals near the rear point may be con-
sidered as an asymmeirical dipole intenna. For a high degree of asymmentry,
the primary mode in the region of longitudinal incicence is the traveling-wave
mode. When short-circuited, this asymmetrical dipole reduces to the long thin

3 =

body considered by Peters From Eq. (1) the structural scattering E(Z’;) may

be written as
—_ kX = —_ ! -2 -
E(z}) = o) - EAM 720 ()
where ¢ is the phase angle of the antenna impedance. One can also write1

E(n) = ‘)’En {6)
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shere 5y is the reflection coeffic.ent it the end of the bods zad I_E;?M is the {1eld
radiated by the *raveling-yave antenna mode excited on the short-circuited bods.
Thus Eq. ¢4) skould hold for the long thin Lbody in the region of longitudinal inci-
dence. Considering only the components of Egs. (3), (3), and (6), the reflection

coefficient necessary for cancellation then becomes

- =Y -C * -
g3M
ir E‘:M = E‘:’M and ¥ is constant as a function of aspect angle, then it should

be possible to find a load impedance that would result in cancelling the structural
scattering. If Egm f EAM, then the load impedance would need to be varied as a
function of aspect angle to affect the cancellation.

For the case considered, the terminals are some finite distance from the end
of the body so that E‘gm and E‘AM are not identical. However, if the distance is
sufficiently small they are neariy the same. In this case it should be possible to
find a load impedance that would result in considerable reduction in backscattering
over some range of aspect angles.

3. EXPERIMENTAL EVALUATION

In order to verify that effective cancellation of the structural scattering is
possible, an experimental evaluation was made. The test model, shown in Figure
1, consiais of a 30-degree ogive with a coaxial-fed probe extending from the rear
of the model. Backscatter and receiving cross sections were measured at a fre-
quency of Z000 Mc with the plane of polarization parallel to the axis of the body.
For these measurements, the model was supported on a polyurethane foam tower,
A smaly coaxial cable was brought out from the model and connected to an adjustable
load in'pedance, a power meter, and to other equipment located at the base of the
tower For the polarization used, the coaxial cable was perpendicular to the inci-
dent electric field, hence its effect on the measurements was sufficiently small.

The model was positioned at an aspect angle corresponding to the peak of the
main lobe, and the load irapedance was adjusted for minimum backscatter. In this
manner, the peak of the main lobe was reduced by 30 db. The entire backscatter
pottern was then measured, the results of which are shown in Figure 2. It is seen
that an effective backscatter reduction of 26 db is accomplished over the main lobe.
The 30-db reduction of the peak of the main lebe is not maintained for other aspect

AM AM

angles because of the difference between the two antenna modes E™ ™ and E(;™", as
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indicated by Eq. (7). In order to maintain nearly complete cancellation, the load
impedance would need to be adjusted as a function of aspect angle.

The receiving characteristics of the model were evaluated under conditions of
minimum backscatter and maximum received power. These characteristics are
shown in Figure 3, and indicate that the received power under conditions of mini-
mum backscatter is 3 db less than the maximum received power obtained. Thus,
one-half of the received power is reflected from the terminals with the proper
phase and amplitude to effectively cancel ‘he structural scattering. For the cond:-
ticn of maximum received power, a backscatter reduction of only 5 db wac accom-
plished. The measured values of antenna impedance and the load impedance neces-
sary for minimum backscatter were found to be

=892 - 5
ZA 82 - ;15 ohms

and

Zy = 68 - j98 ohms.

As shown by Kennaugh and Green,3 Eq. (2) may be represented on a Smith-chart
impedance diagram. This allows the backscattered field to be evaluated for any load
impedance by experimentally evaluating the backscattering cross sectionfor two parti-
cular values of load impedance. FromZ A and ZL given above, the normalized load
impedance Zil\': corresponding to minimum backscatter is found to be 0.74-j1.3 .
Circles about this point represent constant backscatter, as shown in Figure 4. Addi-
tional measurements allow calibration of these circlesinbackscattering cross section.

The reflection coefficient lI’l is found to be 0. 61 so that ll"l2 = 0. 37. Thus,
only about one-third of the received power should be required to cancel the struc-
tural scattering. It is expected that if various losses can be eliminated in the
experimental apparatus, the increased power corresponding to this reflection
coeificient could be measured.

4, CONCLUSION

It has been shown that backscattiering due to the traveling-wave mode on a long
thin body can effectively be cancelled by an impedance-loading technique. Further-
more, the cancellation is accomplished with only a small reduction in received
power. Using the Smith-chart representation of antenna scattering, the backscat-
tering cross section is evaluated for any load impedance at the frequency under

considerution.
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Figure 4. Backscatiering From an Asvmmetric Dipole

Although the impedance-loading technique as described for the long thin body
is rather irequency sensitive, it may be possible to extend the bandwidth by select-
ing the proper thickness and asyvmmetry of the scattering bodv. This coupled #ith
a feedback system ifor control ot the load impedance may result in a large back-
scatter reduction over a wide bandwidth and «ide range of aspect angles. Prelim-

inary experiments in this area indicate hopeful results.

References

1. L. Peters Jr., End-fire echo area of long, thin bodies, IRE Transactions on
Antennas and Propagation, AP-6: 133-139, January 1958.

2. L. Peters Jr., Echo Area Properties of Bodies Due to Certain Traveling
Wave Modes, Antenna Lab., The Ohio State University Research Foundation
Report 771-19, May 18, 1960. Prepared under contract AF 33(616)-5341.
Air Research and Development Command, Wright Air Development Center,
Wright-Patterson Air Force Base, Ohio.

3. R. B. Green, The Effect of Antenna Installations Upon the Echo Area of an
Object, The Ohio State University Research Foundation Report 1109-3,
September 29, 1961. Preparcd under contract AF 33(616)-7386, Acro-
nautical Systems Division, Air Force Systems Command, Wright-Patterson
Air Force Base, Ohio.




This Document Contains
Missing Page/s That Are
Unavailable In The
Original Document

O G

~ | 3
Bloon - Py
JH’\ PJ h Gy Lug,J

D)

hoo 1 Komoved

BEST
RVAILABLE COPY

e o e e e e e e



49

IV. Theoretical and Experimental Invastigation of
Backscattering Fro:n a Cavity-Loaded
Monopole

Werner W. Gerbes aad William J. Kearns
Microwave Physies Laboratory

Air Force Cambridge Research Laboratories
Bedford, Massachusetts

Abstract

Backscattering from a monopole (linear scatterer) can be considerably dimin-
ished and almost suppressed if it is grounded in a cavity and the protruding length
of the monopole does not exceed 0. 451 . The optimum depth of the cavity is about
0.25x .,

The good agreement between theory and experiment justifies the rather bold
theoretical assumptions made to avoid invoived mathematics and implies their use-
fulness in similar problems.

1. INTRODUCTION

So far as we know, backscattering from a linear scatterer grounded in a cavity
has not previously been studied, either thecretically or experimentally. The only
work coming close to ours is the experimental and theoretical work on unloaded
antennas cited by R. W. P. King in The Theory of Linear Antennas, Harvard Univer-
sity, 1956, pp. 508,508, 516.
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In our initial (1956) study of backscattering from a grounded scatterer, we
restricted ourselves to the case of a mononole projecting from the center of a
cylindrical cavity in > plane, perfectly conducting screen (Figure 1); the monopole
was excited by a wave traveling along *i.e surface S with an electric vector E
parallel to the scatterer. The restriciion to cavity-loaded monopoles was actuaily
unnecesszry, since the formulas cbtained led easily to a generalization for mono-
poles loaded with an arbifrary impedance. Although we demonstrate this possibility
in the text, we did not change our study to the general case because it had been
stimulated by, and the experiments conducted for, the specific question of cavity-
loaded monopoles.

A further restriction we set was to consider only unmodulated, harmonic,
electromagnetic waves. In a sequel to this report we will deal with cases of
oblique-incidence waves and modulated or pulsed electromagnetic waves.
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Figure 1. Scheme of Scatterer Arrangement

As in almost all antenna problems, an exact solution with present techniques is
difficult if not impossible; the more or less dubious initial assumptions of a theore-
tical treatment must be justified by experimental substantiation. To keepthe
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m..thematical treatment relatively simple, we made rzther far-fetched assumptions;”
however, we carefully checked the theory by conducting very reliable experimeits.
These experiments were conducted by Mr. William Kearns after some exploratory
measurements by Mr. H. Poehler. The experimental setup and method of meas-

urements are described in Appendix A.

2. THEORY

Our theoretical approach itc the problem (see Figure 1) was based on the idea
that (1) the part of the monopol» outside the cavity could be regarded as a lossy
line of length £, having a char..cteristic impedance Z with an additional voltage
dV per element imposed by the incoming electric field E ; and (2) the part of the
monopo.e within the cavity couldbe regurded as alossless line of length 6, naving a
characteristic impedance Z e’ grounded at the bottom of the cavity. Sirictly, this holds
only for & >> r, (.'cc = radius of cavity), tut to simplify the mathematics we ex-
tended it to cases where 6 << r ¢

Length x and X, on lines £ and 6 are measured toward the screen surface
S . Their currents are considered to be positive in the direction measured. The
electrical field strength E of the incident wave is taken to be normal to the sur-
face and positive in the outward direction. The fieid strength of the incident wave
is arbitrarily considered to ke zero in the cavity.

We then get the two basic relations:

v _ ol
x -RI-L-a-g-E(t,x),
(1)
o av
% -GV -C 3t

where, as customary, V is veltage, R is resistance, I is current, G is shunt
conductance, L. is inductance, and C is capacitance, all per unit length.

If we suppose that the incoming plane wave is incident parallel {o the screen
surface S, then E along the scatterer is a function of only the time t.

We subject Eq. (1) to a Laplace transform with respect to time and then to
another with respect to length. This simplifies the rather involved analysis and

* An essential disagreement between experimental and theoretical results would
demand a ''second- or third-order'' closer theoretical approach. How immensely
such a closer approach complicates ilie formulas is seen by comparing our {formu-
las given in King's book for an even easier problem,
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gives the final formula:*

zZ 2
I 14 -Z—c tanh (T"_6) 2ianh (22-‘—)
&~ |1‘z - tanh (Tt} > c d , (2a)

C
1+ = tanh (I‘cé) tanh (T't)

where & represents the backscattered energy

1
r = Hzr+on) (GHwor ] °

1
7 = [REjwL]? -
G+ ]wU
and 1‘c and Z c are the analogons quantities Jor the cavity parameters R o’ Lc’
Gc' and Z e Specialized for 6 = 0,

2 L
g, ~ | T - tanh (rn)]”, €, = ofor £ = 0 only. {2b)

Equation (2b) describes the Lehavior of the unloaded moropole directly connected
with a conducting plane and also, of course, the backscattering of a dipole of
length 2 in freespace.

If <<, then 2tanh (I'f) goes tc 1. Therefore, everything after the minus
sign of Eqa. (2a) beccmes 2 constant that will be simall compared with Tf4. Thus
€~ l"l IZ ~1 2. The backscattered energy increases as the second power of the
ler~th of a very long moncpole.

2 2
If << A, then 2tanh % =tan (It) and &~|Tt - tan (r0)|° — J(xe)3] "~ 18

The backscattered energy increases as the sixth power of the length of a very short

ronapole.

Unfortunately, tne evaluation of Eqs. (2a) and (2b} is so complicated [even the -

seemingly simpler formula (2b)] that it was not feasible to carry out calculations
for general properties. l.quation (23) was, therefore, calculated with a computer
for certain combinations of the parameters so as to obtain families of theoretical
curves for comparison with the experimental ones. The parameters Zc/ Z, T,
and © e had to be chosen as close as possible to the experimental conditions, but
with sumplifications necessary to keep the calculations within reasonable limits.

*The complete analysis i given in the report AFCRL-63-355 ""Theoretical and
Experimental Investigation of Backscattering From a Cavity -1loaded Monopole'!
by Werner W. Gerbeg and William J. Kearns.
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The complex propagaiion constant for the upper part of the monopole, T=a+ig,
where « is the attenuation constant and B is the phase constant, is naturally only
approximately a constant. But wi: can set g8 equal {o that of freespace, so that
B = 2z/A = w/c . The attenuation constant o« is related to the radiation resistance
of the monopole. To avoid complicated c~lculations, we considered a a para2meter
and calculated a family of curves fcr every depth of the cavity, setting T=a+iw/c.

In the complex propagation constant for the lower part of the monopole (I‘c).
we set a.= 0 because the radiation of this part can be neglected. The phase con-
stant was again taken as approximately equal to that of {reespace. Tnerefore,

w . o@
= __ and T =i _.
3c c c c

For Zc we used the formula for capacitance of a coaxial cable, and for Z we
used the formula for capacitance of an elongated rotational ellipsoid. The charac-

teristic resistance is inversely proportional to the capacitance per unit length C.
Thus ZCIZ = C!Cc . Now

Therefore, with £ /2 r,=p,

1--L
3
-Z& - ln ——rc p“ (3)
Z r, arcosh p ’
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WHETE T is the radius of the nionopole, T, is the radius of the cavity, and £
is the upper lengih of the monopole. Evidenily, ZcIZ is a function of £ and
further complicates the numerical calculation.
For monopoles of smail length, if p— 1, ZcIZ -~ 0/0. Ordinary cvaluation
by differentiation gives
Ze o o4 e
Zz N r-

»

m

a constant v/ith respect to £ . For monopoles that are very long, if p>> 1, a
short calculation gives us

showing that for very long monopoles Eq. {2a) changes to Eq. (2b), the equation
for a monopole without a cavity. This means the cavity has no effect on the back-
scattering of very long monopoles. To simplify calculation of the curves in
Figures 2 and 3 we used chZ = 1 as & convenient mean value, which actomatically
precludes use of the formula for long moncpoles.

Basically, there are two ways of deriving the atteruation constant « :
(1) directly, from the radiation resistance of a monopole divided by the length;
(2) indirectly, from measurements of a monogpole projecting irom a plane surface
without a cavity. But both ways, owing to the assumptions nn which our whole
theory had to be based, lead to more involved calculations without assuring any
greater accuracy. e therefore arbitrarily chose 6 and « as parameters for
the calculation of the families of theoretical curves, and compz.ed them with the
families of curves measured for the parameters 6 and T e All measurements
and calculations were based on six values of the parameter 6 listed as follows,
in inches, and as related to the wavelength used (33 mm):

\\ 0 I 1 i 2 I 3 l 4 I 5
6 (in.) 0.00 | 0.05| 0.10 | 0.15 | 0.20 | 0.25
5/ 0.00 | 0.04| 0.08 | 0.12 | 0.16 | 0.20
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It may be appropriate to mention at this time that the theoretical and experi-
mental sets not enly match substaatially in shape, but even coincide quantitatively
mor~ than we had a right to expect from the somewhat far-fetched assumptions of
the theory.

The theoretical set of curves of bzckscattered energyv as a function of the pro-
truding length { of the monopole for a = 0.95 ( which meane a somewhat low
radiaticn resistance or a high characteristic impedance) is shown in Figure 2.

The curves rise with the sixth power to a first sharp maximum, then drop to show
an area of low but nearly constant backscattering followed Ly an additional slight

depression. They then rise to a second maximum and drop to a second depression
that is not nearly as low as the first. This behavior repeats itself over and over.*

Obviously, the first depression aiter the first maximura is the cnly area that
exhibits suificient backscattering suppression. With a recess 0. 20k deep, the
unsuppressed backscattering is apparantly cnly 2 percent of the maximum scatter-
ing of the unrecessed monopole.

Figure 3 shows the thceretical set for « = 0. 10, which means monopoles
with somewhat higher radiation resistances than shown in Figure 2. The curves
nresent the same characteristics as the curves of the previous set, but naturally
not so pronounced since a higher radiatica resistance means more strongly damped
circuits with smaller resonance effects. In this case, also, a recess of at least
0. 20X suppresses about 98 perceunt of the maximum scattering of the unrecessed
monopole.

Figures 2 and 3 indicate that for satisfactory scatter suppression the protru-
ding length of the recessed monopole must be less than 0. 452 . If the monopole
protruades more than 0. 45A , backscattering canrot be sufficiently suppressed by
means of a cavity.

These theoretical resuits are thoroughly confirmed by the experiments. Fig-
ure 4 shows the experimental set for a2 rod 1/16 in. thick. The shape of the curves,
the shift, and the areas of possible scatter sappression are the same as in the
theoretical sets, except that the first maxima are relatively lower with respect to
the second maxima than in the theoretical sets (probably due to the choice of
Zc/Z = 1), Figure 5 shows the experimental set for a rod 1/32 in. thick. This
set also shows goo¢ agreement with the theory.

Both experimental and theorelica: curves show a defini.e shift of the maxima
of the curves with increasing depth of the recess. Although it appears that the
positions of the maxima would coincide if the curves were plotted versus the sum
of the protruding and recessed lengths, closer investigation reveals that they would

still not exactly coincide.

*Qur simple theory obviously yields the same characteristics as those produced by
the more complicated formulas cited in King's book.
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In Eq. (2a) the parameters of the cavity appear only in the grouped form:
Zc tanh (I‘cé), which represents the impedance of the recessed part. Thus, since
the recess acis as an impedance, backscattering could be suppressed just as well
by grounding the monopole over a specified impedance. Consequently, if 1n Eq.
(2a) we substitute a general irupedance £ for the term Z . tanh ( ‘cé) , we obtain
the formula for the general case of backscatitering from a monopole grounded over

an impedance:

2 2

Z
o i
1+% tonh (Tf£)

1+ 2tanh%‘—

&~ [Tt - tanh (T2) . (2b)

In this form the final formula also covers the case of backscattering from a
center-loaded rod in space.

Two theoretical curves and two experimental curves for each of the basic
parameters are compared in Figures 6 to 11. The shape, and even the size, of
the curves demonstrates the surprisingly good agreemens between theory and
experiment,

The results of experiments conducted for some recesses deeper than assumed
for theoretical evaluation are given in Figures 12 and 13. These indicate that sup-
pression of backscattering can be achieved with recesses deeper than 0. 201, but
that the frequency range of suppression becomes smaller with increased depth.

It has been shown, both theoretically and experimentally, that backscattering
from a monopole can be considerably diminished and almost suppressed if the
monopole is grounded in a cavity and its protruding length £ does not exceed
0. 45X ; with increasing length, cavity-loading becomes increasingly ineffective.
Suppression is optimum when the cavity depth is about 0. 25\ ; deeper recesses
narrow the suppressicn bandwidth considerably.
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Appendix A

1. EXPERWMENTS

The backscattering from a monopole grounded in a cavity was measured for

various heights of the monopole above the ground plane and for various depths of

the cavity. A variable-depth cavity was obtained by machining a hole into the

ground plane and precision-fitting a sliding circular brass bar into the hole. A

brass rod was precision-fitted into a hole drilled through the center of the bar.

This was the monopole, also variable in height and independent of the adjustments

made in the cavity (Figure 14).

In the block diagram (Figure 13) showing the experimental arrangement of

the apparatus, the symbols are as follows:

Ty

PA
E
HY

a stabilized frequency source operating at 3080 Mcps, modulated at
1000 cps

precision waveguide attenuaior
transmitter arm
hybrid junction isolating arms H and E

receiver arm, containing a crystal detector and a bolometer amplifier
for recording the signal level

adjustable imnpedance transformer attached to the third arm of HY,
offering better isolation from the rest of the circuit when used with L




b6

L precision adjustable load, attached to the third arm of HY

TR  fourth arm, carrying the transmitted signal and reflected signal

2. MEASUREMENT PRCCEDURES

2.1. Without a scatterer on the ground plane, ZT was tuned for the minimum
signal return, which was found to be at about 85 db below the transmitted signal.
Siuce this was approximately the same as the inherent noise level of the amplifier,
the reference level was arbitrarily chosen to be 10 db above noise. For all meas-
urements the reflected signal was attenuated to the reference point, and the amount
of attenuation read on a calibrated db scale was recorded at the value of the sig-

nal return.

2.2. For the first set of measurements, the top of the circular brass bar was

left on a level with the ground plane so that no cavity existed. The top of the
1/16~in. -diameter monopole was raised to a height of 1A above +he ground plane,
and a measurement taken. The monopole was then successively depressed so that
its height above the ground plane was regularly reduced in increments of 0. 025 in.,
and reaoaings taken until the monopole had reached zero height above the plane.

2.3. The monoocle was theu again extended to a height of 1A above the plane.
This time the circular bar was depressed into the ground plane, creating a cavity,
and the measurements described in Step 2. 2 were repeated. The depth of the
cavity was regularly increased in increments of 0. 05 inch. In each case the mono-

pole was raised to the same 1A height above the grocnd plane and incrementaily

reduced until the neight was again zero.

2.4. To determine the influence of the ratio of monopole diameter to wavelength
on the curves, identical measurements were made with a monopole of half the
diameter (1/32 in.) and an appropriate cavity kar. A comparison ¢! the daia for
both monopoles showe that the curves are essentially the same, exccpt that the

shape is more pronounced in the case of the thin rod.

<. 5. As a standard reference, a hermisphere 0. 437 in. in diameter was placed at
the same point at which the monopole had stood. ‘.he return from the hemisphere
was noted to be 13. 8 db above the arbitrary reference level for the monopolz.

M e At g s




V. Scattering From Thick Reactively Loaded Rods

C. J. Sletten, P. Blacksmith, F. S. Holt, and B. B. Gorr
Microwsve Tnvsics Laboratory

Air Force Cambridze Besearch Laboratories

Bedford, Massachusetts

1. INTRODUCTION

For objects whose dimensions are large in terms of wavelengtnh, considerabl:
reduction in backscattering cross section, ¢, can be obtained in certain specified
directions by shaping the object. Again, for objects large cownpared to waveleng*h,
considerable reduction in ¢ for all target attitudes can be attained by coating the
object with absorbing material. For objects whose dimensions are of the order of
a'wavelength, it was conjectured that the teciiniques of shaping and coating with
absorbing material wouid lose their effectiveness in reducing ¢, and tiat addi-
tional techniques would be required for effective cont: o). One such additional
technique, namely passive reactive loading, has been the subject of considerable
experimental investigation at AFCRL.

This paper is principally concerned with an examination of the effectiveness of
the three techniques - shaping, coating with absorbing material, and passive re-
active loading ~ individually and in combination, in reducing ¢ for objects of

resonant dimensions.
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2. EXPERIMENTAL SETUP AND DEFINITIONS

All experimental measurements were made at S band on the AFCRL freespace

scattering range at the Ipswich Field Test Site, Ipswich, Massachusetts. All tar-
gets were placed on a styrofoar: column and rotated 369° about the vertical axis of
the column. Elongated objects were always mounted with their long dimension
horizontal; for such objects, horizontal polarization means polarization parallel
to the long dirucasion, and vertical polarization means polarization perpendicular
to the long dimension.

The terms peak % and peak oy are used to designate the maximum ¢ un-
der, respectively, horizontal and vertical polarization conditions for those target
aspects attained by rotating the objects 360° about a vertical axis. The term
overall peak ¢ denotes the larger of peak Oy and peak Oy For some of the
plots the peak ©¢'s are normalized for each target to the overall peak ¢ for that
target under unloaded ur shorted conditions. The angle of rotation of the target
ahout the vertical axis is designated by 6. Unless otherwise explicitly stated,
all elongated objects are approximately 2 in. long, thatis, A/2 at S band.

3. BACKSCATTER REDUCTION BY MEANS OF ABSORBING MATERIAL

Conductron, Inc. absorbing material, Sample No. 17 - 109, has been tested
on several shapes in the resonance region. In all cases the targets were metal
plates.coated with the absorbing material on one side only. The target configura-
tions were a 1.2X by 1.2A square, a A/2 by Af2 square, a A/2 by A/4 rec-
tangle, and a A/2 by A/8 rectangle. Figure 1 presents the results for vertical
polarization, and Figure 2 the results for horizontal polarization.

The solid curves are ¢ vs, target angle 6 for the metal side of the target,
and the dashed curves are o vs. 8 for the absorber side of the target. The O
scale is in db with an arrow denoting a reference value of oy = 29. 2 sg cin (the
backscatiering cross section of a 1. 25-in. ~diameter metal sphere). *

For vertical polarization (Figure 1), the absorbing material produces a large
reduction in peak UV for all targets. For horizontal polarization (Figure 2), the
absorbing material is very effective for the square targets but relatively ineffective
for the elongated targets (Figures 2c and 2d). Note that for the metal side of the
A/2 by A /8 target, the peak Oy is down from the peak Oy about 8 db. Thus for
elongated targets of this type, the condition under which least reduction in seak
can be achieved by means of absorbing material (that is, horizontal polazization)

is just the condition under which peak ¢ is greatest. Conversely, for the same

A
This reference value ¢, appears in meny of the subsequent plots.
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type of target the condition under which greatest reduction in peak ¢ can be
achieved by means of absorbing material (that is, vertical polarization) is just
the ccadition under which the peak ¢ is least.
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Figure 1. PRackscattering Cross Section ¢ vs Target Angle 6 for Conductron, Inc.
Absorbing Material Sample Number 17-109. Polarization Vertical.
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4, BACKZ-ATTER REDUCTION BY MEANS OF TARGET SHAPING

In Figure 3 backscattering cross section ¢ vs. target angle 9
a cylindrical rod and a truncated cone under horizontal polarization.
sions of the targets are shown in the figure.

ig shown for

The dimen-
Changing from the cylindrical shape
{o the conical shape, although reducing the voluine by a facter of approximately 3,
did net reduce the peak O rather, it slightly increased it. Also note that ¢ did
not decrease for the nose-on aspect of the cone compared with the rod.
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The effect of rod diameter on peak Oy and peak oy for rods approximately
A/2 1ong is shown in Figure 4. The curves show that peak oy is essentially inde-
pender. of rod diameter over the range of values considered and that peak 7y
increases with rod diameter. For rods approximately A/2 long, it is clear that
overall peak o occurs for horizontal polarization. It is also clear that peak oy
can be controlled by rod diameter but peak oy cannot.

If the desired level of reduction in overall peak ¢ is arbitrarily set at 15db
below the overall peak ¢ for a solid A/2 rod, then, atleast for vertical polariza-
tion, this can be achieved by using a rod whose diameter is A/8 or less. Clearly
then, to achieve the desired level of reduction in overall peak ¢ for a rod, peak
oy must be reduced. Neither the absorbing material nor the target shapes tested
were effective in reducing pean Oy This leads then to consideration of the pas-
sive reactive loading technique.

3. BACKSCATTER REDUCTION BY MEANS OF PASSIVE REACTIVE LOADING

Early work in the technique of reducing peak oy appears in a patent filed in
1946 by Harley A. Iams .1 In this disclosure Iams descrlbed the use of coaxial
loading together with dielectric coating to effect wide-band scatter reduction for
metal spacer posts in parallel plate construction. Iams claimed that symmetrical
loading at separated, symmetrically placed points (double loading) produced
wider-band performance than asymmetrical loading at separated asymmetrically
placed points or loading at one point (single loading).

In 1948 C. J. Sletten at AFCRL successfully designed spacer posts for the
parallel plate region of the Volir Antennaz, using the Iams idea Sletten also
atterapted to multiply load a rod to produce a low backscattering freespace object.
This «ctempt was unsuccessful but Sletten's ideas motivated both a theoretical and
eaperimental investigation of passive reactive loading of monopoles over a ground
piane to reduce backscattering by Gerbes, Poehler, and Kearns in 1957.3

In 1958 AFCRL supported further research in passive reactive loading of thin
monopoles (about A/45 in diameter) over a ground plane to reduce backscattering by
As and Schmitt at Cruft Labora.ory, Harvard Umver51ty The Harvard experiment.l
results agreed well with ‘heir theoretical results and included multiple as well as
single loading.

Independent work using passive reactive loading techniques has been carried
out by Andrew Alford Consulting Engineers, Inc. in the reduction of scatter from
radio towers. Currently this company is investigating the possibilities of wide-~
band backscatter reduction by means of active control of reactive loading.

In the last few years under Air Force support the Ohio State University
Research Foundation and the University of Michigan Radiaticn Laboratory have
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investigated reactive loading of various configurations, including rods and slots,
to reduce backscatfering.

Current investigations at AFCRL have been primarily concerned with the effec-
tiveness of passive reactive loading in reducing peak %y for metal rods approxi-
mately A/2 long and A/8 to 3A/8 in diameter. Three typical single-loaded rods
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are shown in Figure 5, and cross sections with dimensions are shown in Figure 6.
Note the gap extending circumferentially around the rod and the symmetrical
coaxial loading cavities. Figure 7 shows a typical double-loaded rod.

Figure 5. Typical Single Loaded Target Models

Curves of o vs. target angle 8 for the target shown in Figure 6a under

horizontal polarization conditions as a function of the total loading cavity lengih

C are shown in Figure 8. The curve labeled C = 0 is for the unloaded or solid

rod. As C increases, o drops significantly until, at C = 0.281 in., peak oy

has dropped approximately 25 db below overall peak ¢. Note that in the broadside
aspect ¢ has been reduced by approximately 40 db. The value of C for minimum
peak o,,, designated as le n
peak Oy VS C. Curves of this type are shown in Figure 9 for two different rod

diameters (see Figares 6a and 6b). For D =0.5in, C_. =0.2811in.; for

D = 1.0 in,, cmin = 0.105 in. Apparently the tuning for minimum peak oy is less

critical for D = 1.0 in. than for D = 0.5 in., as evidenced by the broader minimum.

The dua’ cavities used in the loading configurations (see Figure 10) are effec-

tively in series. This was experimentally veriiied by using only one cavity and

tuning for mirimum peak Oy The resultant inductive load was equal to the sum of

the loads of the two symmetric cavities of the usual configuration und:r minimum

. , is most easily determined from a plot of normalized
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D=0.5%

@ =0.040*%
L =1,915"
R «0.0625"
¢ =0.280"

D=1.0"

0 =0.0%0"
L =2.15%
R =~0.125%
¢ ~0.205"

D=1.5"

(3 -O.OI*O'
L ~1,92%
B =0.200"
¢ »0.050"

Figure 6. Dimensions of Target Models Shown in Figure 5
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peak oy conditions. The circumferential gap that is present in the loading con-

figuration acts as a shunt capacitance across the cavity loads. To determine the
effect of the gap width G on the load impedance 1cquired for minimum peak O

loaded rods witl gaps of 0.040 in. and 0.080 in. were tested. Figure 10 shows

that for the two different gap sizes the individual cavity depths C' required for )
riinimum peak Cy conditions were nearly equal. It is therefore concluded that ‘
the effect of the shunt capacitance associated with the gap is small.

Figure 7. Typical Double Loaded Target Model

The effect of rod diameter D and rod length L on Cmin is shown in Figure 11.
From Figure 11a it is clear that Cmin decreases as D increases, and from
Figure 11b it is apparent that Cmi n changes little with L over the range con-

sidered. The latter indicates that there is some hops for bandwidth.
6, MONOGSTATIC, BISTATIC, AND BANDWMDTH MEASUREVMENTS ON VARIOUS TARGETS

6.1 Monostatic Comparison of Cylindrical Shape * ith Double Conical Shape

A comparison of the backscattering from a cylindrical rod loaded and unloaded :
with the backscattering from a double conical shape loaded and unloaded is shown
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in Figure i2. Dimensions of the objects are given in Figures 6a and 13a. The
solid curves of Figure 12 are o vs. 8 for the unloaded configurations, and the
dashed curves are ¢ vs. 9 for the loaded configurations tuned for minimum peak
Oy Comparison of the solid curves of Figures 12a ana 12b shows that peak o
the maximum ¢ under horizoatal polarization condition:, is the same for both
target shapes. The dashed curves in Figures 12a and 12b show the large reduc-
ticn in peak oy io be gained for both shapes by reactive loading.

For both shapes with polerization vertical, it is strikingly evident from com-
parison of the solid and dashed curves in Figures 12¢ and 12d that the reactive
loading has practically no effect on g; that is, there is very little difference
between the solid and dashed curves.

The conclusion here is that for vertical polarization the loading cavities as
presently designed do not couple with the induced currents on the surfaces of the
targets. Comparison of Figures 12c and 12d indicates that peak oy is about 6db
less for the double conical shape than for the cylindrical rod shape. This result
is to be expected since the average diameter of the double cone is considerably
less than that of the rod.

Clearly, then, changing the shape from cylindrical to double conical did not
reduce the overall peak 6, whereas reactive loading reduced the overall peak ¢
by at least 15db. The condition for which shaping had an appreciable effect, that
is, vertica$ polarization, is just the condition for which peak oy for the rod is

already down 16 db from peak Note the similarities of these conclusions to

Oyy-
H
those obtained from using absorbing material.

6.2 Bandwidth Characteristics

Three differert reactively loaded target configurations were examined over
the frequency range 2500 to 3000 Mcps. In each case the target was tunsad for
minimum peak oy at a frequency near the center of the band. The configurations
were a single loaded rod, a single loaded double conical shape, and a double loaded
rod. The dimensions of the targets are shown in Figures 6b, 13a, and 13b. Curves
of normalized peak Of VS- frequency are shown in Figure 14, and the approximate
-15 db bandwidth is indicated for each target.

Apparently double lcading produces considerably wider bandwidth than single
loading, while double conical shaping with a single lcading results in even wider
bandwidth. It ic interes.ing to note here that although shaping does not decrease
the overall peak o at a single frequency, it does apparently increase the bandwidth.

6.3 Bistatic Characteristics

Bistatic reflection measurements for horizontal polarization were made on a
single loaded rod (see Figure 13c) and on a double loaded rod (see Figure 13b).
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For each bistatic angle ¢, each target wus rotated 260% and the peak bistatic cross
section determined. These measured peak bistatic eross sections wers then nor-
malized to the overall peak bzckscattering cross section of the unloaded confifura-

tion. Curves of normalized peak bistatic cross section vs. bistatic angie « for
both targets are shown in Figure 15. For each target the peak bistatic eross
section incrzases with bistatic angle; in the neighborhoou of ¢ = 99° it approaches
the reference value, that is, the overali peak ¢ for an unioaded or solid rod. For
bistatic angles in the range a = 0° to «= 30°, the single loaded .-od has lower
peak return than the double loaded rod though both are down at least 12db from

the reference value. The geak return from the double loaded rod is 12 db or more
down from the reference value ocer the bistatic angular range ¢ = 0° 10 o = 0.48°

7. CONCLUSIONS

For elongated objects of length app.-oximately A /2, coating them with absorb-
ing material or shaping them into the double conical form does not significantly
reduce overall peak o. The condition under which these two techniques have their
greatest effect in reducing o, that is, vertical polarization, is just the condition
under which the ¢ for an elongated object is already well below its overall peak
value. Fortunately, the condition under which overall peak ¢ occurs and under
which the two above techniques are least effective in backscatter reduction, that
is, horizontal polarization, is just the condition under which reactive loading has

its greatest effect. Therefore, the three iechniques tend to complement each other,

and it is reasonable to expect that a combination of all threz techniques should pro-

duce a good wideband minimum backscattering cbject.

8. CURRENT AND FLTURE WORK

The following investigations are either currently in progress or will be under-
taker in the near future:

a. Use of slightly lossy rather than purely reactive_loading to improve band-
width characteristics.

b. Redesign of the slot configuration so that it will couple inic the surface
currents under vertical polarization ~unditions.

¢. Determination of the extstence of higher harmonir resonances of the load-
ing cavity that may undesirably enhance the scattering.

d. Design of loading configurations to successfully reduce the scattet ing
from spheres and jacks in the resonance region.
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VI. Analysis of Loaded Terminal Scatterers™®

Edward M. Kennaugh

Antenna l.aboratory

Department of Electricel Engineering
The Ohio State Universiny

Columbus. Ohio

1. INTRODUCTION

The echoing properties of antennas, or scatterers with one or more terminal
pairs, have been the subject of continuing studies at our Laboratory. In addition
to the new scattering parameters introduced by arbitrary terminal lcadings, we
are interested in the subtle difference between scattering by " good" antennas and
by arbitrary objects. Since a ' good" antenna acts as an efficient device for trans-
fer of energy from a wave field to a terminal pair when recerving, and in the re-
verse direction when transmitting, it appears that itls scattering properties should
possess certain unique features. Among tl 25e, of course, is the streng depend-
ence of these properties upon the coupling between the incident wave and the
antenna upon termination.

Several of the applications of this study can be described. First, the deter-
mination of the parameters that relate scattering by an antenna to its load, and
the selection of loads that will maximize or minimize the echo area. Next, the

*The research reported has been supported in part by Aeronautical Systems
Division, USAF, under technical supervision of Mr. William Bahret, ASRNC-32.




30

design of more efficient modulated scatterers for use in field probing, passive
communicaticn links, or in radar target simulation. In many cases, the control
of the echo from a specifiec object is desired, although neither an antenna nor
terminal paire have Leen specified. Use of antenna concepts can still be made,
nowever, to find the characteristic modes that car most significantly contribute
to echo area and determine what loadings are required. Finally, a unified thec-
retical treatment of scattering and radiating properties may best be achieved, at
least for obiects of resonant size, by considering these objects to be multi-mode
antennas.

2. EFFECT OF TERMINATION UPON ANTENNA ECHO AREA

Initially, a fixed-source frequency and aspect were assumed, and the scat-
tering properties of antennas or bodies with antennas mounted upon them were
investigated as functions of the rerminating impedance. It is easily shown that
the echo signal is a function of three complex parameters and the load impedance:

s s
) E oc ZL+E Z

Es_ scTA

(1)
ZL-PZA

where ES is the phasor echo signal received when the antenaa is terminated with
ZL’ Eic is that received when terminated with an open circuit, E:c is that re-
ceived with a short circuit termination, and Z A is the antenna impedance at the
load terminals. A more useful form of this equation is readily derived by use of
the phz;sor Ei’l’ the phasor echo signal received when the antenna is terminated

with Z A the complex conjugate of the antenna impedance:
S_1S _(mS _ S
E” = EM r (EM Eoc)' {2}

is the modified voltage reflection coeificient corresponding to the load ZL:
*
Z; .2 A

T - . (3)
L+ IA

Note that the definition of ; differs f:‘om that normally used, whenever Z A is
not a real quantity, and is such that I’ will always lie on the unit circle for re-
active loads ZL and inside the unit circle for passive lossy loads.

A graphical interpretaticn of Eq. (2) is that the phasor signal received as a
fu.nction of load impedance ZL is proporticnal to the difference between a fixed




phasor and the phasor ; . Thus, if one plots the modified refiection coeificient
on a pseudo-Smith chart, the vector from f to the tip of the fixed phasor has a
length proportional to the echo signal received as T (or ZL) is varied. Such a
geometrical interpretation is shown in Figure 1 for several values of the fixed
phasor component.

ECHO SIGNAL
—
ES« LP

Figure 1. Dependence of Phas.r Echo Signal on Load Reflection Coefficient

We might assume that three different aspects of a single antenna correspond
to the phasor values 0?1 , O—P2, OP3 . For aspect 1, thc fixed component exceeds '
the load-dependent component and it is not possible to eliminate the echo signal by
use of a passive load, but it can be varied between amplitudes proportional to
OPI + 1 and OP1 - 1 by use of reactive loads. For aspect 2, the fixed coinponent
equals the load-dependent component and the echo signal can be eliminated or
maximized by use of reactive loading. For aspect 3, the fixed component is less

than the load-dependent component and the echo signal can be eliminated by vsing
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a lossy load corresponding to the point P3. or maximized by a reactive load.

One must bear in mind that the gecmetrical diagram omits a factor of pro-
portionality, so that only relative echo signal amplitude and phase can be deter-
mined; the factor omitted is proportional to the geometric mean of the antenna
power gains in the directions of source and receiver as well as the usual radar
range parameters.

Since the variation of echo signal with load is uniquely related to antenna and
scatterer parameters, we have considered the use of variable reactive loads to
determ:ne these paiameters solely through scattering measurements. Combining
graphical and analytical techniques, it is possible to quickly reduce echo signal
amplitade data for several calibrated reactive loads to determine antenna imped-
ance, gain, and scattering parameters at a single aspect and frequency. These
techniques and their application are fully described by Garbacz.l' 2,3

3. AVERAGE ECHO AREA AND TOTAL SCATTERING CROSS SECTION

The graphical interpretations of Figure 1 are limited to individual aspects
of the scattering antenna, but it is frequently recessary to consider how average
echo area over a range of aspects or polarizations varies with antenna termina-
tion. Green? has shown how a slight modification to Figure 1 can be made to
permit its use in such a case. We merely add a positive constant to the square of
the distance previcusly derived for echo signal amplifude in Figure 1 to obtain a
quantity proportional to the average echo area and to determine its dependence
upon T. As shownin Figure 2, the average echo area of an antenna is propor-
tional to a constant C plus the square of the distance PL, where L is the point
corresponding to the modified reilection coefficient of the load defined by Eq. (3).

Depeniling upon the position of the fixed point P, one would achieve minimum
average echo area with a reactive (P outside or on unit circle) or lossy load (P
inside unit circle). In every case, maximum average echo area can be obtained
with a reactive load. The echo power can be averaged in this manner over orien-
tations of source and of receiver, including variations in polarization, but it is
assumed that the source frequency remains constant. From averaged cross sec-
tion values obtained wiih as few as four loads, it is poss .le to construct a dia-
gram such as Figure 2 that will yield the average cross section for any load
impedance.

Of special interest is the case where the source remains fixed and the receiv-
ing antenna varies over all bistatic angles to obta:n the average scattering cross
section of an antenna. One may then consider how the total energy scattered by
an anteana compares with that absorbed as a function of termination. In the early
literature on antenna scattering, it was often erroneously assumed that an antenna




must back-scatter at least as much energy as it absorbz. Although no such re-
striction exists, a mcre fundamental relation possibly applies between total scat-
tering and absorption cross sectiong of an antenna. If we postulate that an antenna
may not absorb more thar. it scatters, this would imply that the valuz of C and the
location of P in Figure Z wonld be restricted in the case of averaged bigiatic
scattering.

AVERAGE ECHOQ AREA « C + (PL)?

Figure 2. Dependence of Average Echo Power on Loa Reflection Coefficient

Green4

used the zonzept of Figure 2 to present calculated aver.age scattering
cross section for a cylindr.cal antenna as a function of load, and included contours
of constant average scattering and constant absorption cross section on the chart,
as shown in Figure 3.

It is possible ‘o fir ! a load impedance that will maximize the ratio of absorp-
tion to scattering crass section; the maximum ratio obtained in this case is 4- "1,

obtained at point B where the power absorbed is approximately 50 percent of that
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for a matched termination. Note that the scattering and absorption cross sections
are approximately equal when the absorption coefficient is a maxirum.
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The relation between scattering and absorption cross sections of any object
is implied by its albedo, which is the ratio of scattering cross section to extinc-
tion (total) cross section. Since the extinction cross section is the sum of scat-
tering and absorption cross sections, an object with «n albedo less than 1/2
ahsorbs more than it scatters.

Results obtained by De1rmendjian5 for the scattering by lossy dielectric
spheres show that the albedo js below 1/2 for lossy dielectric spheres iess than
2 wavelengths in diameter, for a complex index of refraction 1. 215 - i. 4298. For
the same index, the ratio of absorption to scattering cross sections is approxi-
mately 5 for a sphere circumference of 1 wavelength, where the absorption cross
section is slightly less than the geometrical cross sectiun.

Tc what extent can a lossy dielectric sphere be considered an antenna with a
lossy termination? From a practical point of view there does not appear to be any
way to extract useful power from such a structure, but a more fundamental differ-
ence is the distributed loss rather than the lumped 10ss corresponding to a definite
terminal pair.




1. APPLICATION OF ANTENNA CONCEPTS TO ARBITRARY LOADINGS

It would be useful to fit more general types of leading or scatterer perturba-
tion to the model of Figures 1 and 2. For example, the efiect of a slot or gap of
variable depth in a conducting object might be considered as a variable reactive
load on a hypothetical terminal pair. From Figure 1, if this model may be used,
we would expect the phasor echo signal to trace out a circular locus as the depth
is varied. Thrnugh experimental or theoretical studies of the effect of gap depth,
we should then be able to determine the applicability of Figure 1 to more general
types of loss-less perturbations. Similarly, it may be shown that a purely resis-
tive load variation should lead to a circular locus for the phasor scatiered signal,
and it might be possible to assess the effect of changes in conductivity of a part of
the scatterer by the single terminal pair concept with an effective lumped load of
variable resistaice.

In short, when the single-mode concept applies, we should expect a circular
locus for the phasor echo signal under loss-less perturbations of the scatterer.
When this is not obtained, it may be possible to treat the scatterer as a multi-
terminal antenna with variable loading at more than one terminal pair. The analy-
sis of such configurations is currenily under study.

5. ANALYSIS OF ARBITRARY SCATTER AS MULTI-NODE ANTENNA

When one considers an arbitrary scatterer as a multi-mode antenna, it
follows that the echo area as a function of source and receiver directions can be
expressed as

a{® s’ ¢s;er’ ¢r) =E CiFi(es’ ¢s) Fi(e r’ (pr) (4)

1

where 0y ¢g are the spherical coordinates of the source and er. ¢r those of
the receiver (both assumed infinitely remote), and

F. (0, ¢)

Ci

It is assumes that the mode fields are mutually orthogonal and that there are a

radiation patterns of the individual modes and

constants determined by "terminal" conditions,

finite number with lCiI greater than some arbitrary minimum value. The number
required we iid nceessarily increase with the size of the scatterer, but in the
resonance rzgion the number would be less than 19 in many cases.
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These orthogonal or "normal" modes as we have called them are simply re-
lated to the eigenvectors of the target scattering matrix, and the Ci are determined
fromn the corresponding eigenvalues. The associated patterns are useful for analy-
sis of the transmitting, receiving, or scatitering properties of the object. We
would expect the effect of perturbations to the object shape, such as those pro-
duced by slots, cavities, or changes in surface impedance, to be represented by
change: in the constants Ci, as reflecting the change in ' {erminal" conditions.
Further, the relative importance of the various modes is indicated by the magni-
tude of the associated Ci’ so that one may determine what radiating or scattering
patterns will be most readily excited on the object.

Our present goals are to extraci, by a combination of theoretical and experi-
mental methods, the ""normal'" mode patterns of a scattering object (at a single
frequency) and to determine the associated constants C, as influenced by various
perturbations of the scatterer surface and by lumped loadings.

6. EXPERIMENTAL INVESTIGATIONS

Experimental techniques have been developed for measuring antenna parame-
ters with conventional echo-measuring systems, using modulated or variable re-
active loads. To permit rapid measurement of echo-signal ampliude as a function
of load, a seli-contained programmed load unit was devised. This battery-driven
device can be mounted within a model of a scattering object containing an antenna
and will automatically vary the position of a sliding coaxial or waveguide short
through a full cycle, giving characteristic pips on the echo pattern correspondiag
to each 1/72 in. of travel. Typical 10 kMc echo patterns obtained from a stub
antenna on a 7.0 - in. - diameter sphere and from a1 1/2in. x 2 7/8 in. compound
rectangular horn are shown in Figure 4.

A second means of varying antenna termination under consideration employs
an elactrically switched load. As a part of this study, the echo area variation with
bias of a germanium switching diode was investigated. Figure 5 presents the
variation in broadside echo area obtained with bias over a range of X-band frequen-
cies. It is clear that large changes in cross section of an object in the resonance
region can be obtained through electrical tuning.

The effect of a rectangular slot upon the echo area of a small flat plate was
also studied. An analysis by Green using the superposition of plate scattering
and slot radiation patterns to predict the effect of the slot was verified. By use of
a small shorting bar at the center of the slot, the echo area of the slot-plate com-
bination can be varied by approximately 15 db. Some of the experimental results
are shown in Figure 6.
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7. CONCLLSION

Various concepts of interest in the analysis ot scattering by objects that
possess one or more terminal pairs (real or virtual) have been described. We
have briefly summarized the contribution of our co-workers, R. Green, R. Garbacz,
D. Moffatt. and S. Skarote. Additional information can be obtained from the
References and Bibliography listed below.




9L

|
i
+30ma
—_—— +imeg o
[ ]
. « * s &
—————— +50p0 o PR *. .
v5 o —

.......-w“a./':\/\/\ T

\/\/\ _\
'/

L ]
o// \
®
10— S/ / \___
®
[ )
o / /\\a o
A 7/
s
R + Forward Bias
b ~ Reference Bias
-15  ——
3
Diode
Dimensions
pey—
0.772=4
-20+— —
95 100

Frequency kmc

Figure 5. Effect of Bias and Frequency Upon Echo Area of Germanium Diode




75

N

(=}

=5

Echo Area Relative To 1) db

-
o

-12.5

75 &0

T

i
?r\\\\f— Short Circuit

0.5 A\

S

0.5\

/

/|

Opzn Circuit}\

1y /4

30

0

30

60 75
Aspect Relntive To Broadside (Degrees)

Figure 6. Ectio Patterns of Rezta.ngﬁlar Plate With Slot

30 September 1962. AD 286 760

30 November 1962.

R. J. Garbacz, The Determination of Antenna Parameters by Scattering
Cross Section Measurements: III, Antenna Scattering Cross Section,

D. Diermendjian, JOSA, Vol. 51, June 19861.

R. J. Garbacz, The Determination of Antenna Parameters by Scattering
Cross Section Measurements: I, Antenna Impedance, Report 1223-8,

98

References

R. J. Garbacz, The Determinaticn of Antenna Parameters by Scattering
Cross Section Measurements:

II, Antenna Gain, Report 12¢3-9,
AD 297 953

Report 1223-10, 30 November 1962,

R. B. Green, The Effect of Antenna Installations Upon the Echo Area of
an Object, Report 1108-3, 29 September 1961.

R. B. Green, The Echo Area of Small Rectangular Plates with Linear
Slots, to be published in IEEE Transactions on Antennas and Propagation.

AD 274 041




100

1

[31]
.

Bibliography

Copeland, J. R., Robertson, W. J., Green, R. B., and Mikuteit, S.,

Antennafiers for Echo Area Control, Repori 803-30, 15 December 1962.
AD 292 979

Kennaugh, E. M., The Echoing Area of Antennas, Report 601-14,
20 December 1957. AD 152 786

Moffatt, D. L., Model Measurements of Antenna Scattering Cross Section,
Report 1223-12, to be published.

Peters, L., Jr., End-Fire Echo Area of Long, Thin Bodies, IRE Trans-
actions on Antennas and Propagation, Vol. AP-6, No. 1, January 1958.

Richmond, J. H., A Modulated Scattering Technique for Measurement of
Field Distribution, IRE Transactions on Microwave Theory and Techniques,
Vol. MTT-3, No. 4, July 1355.




101

VIli. Some Bounds to the Behavior of Small Resonant

Scatterers

Roger i. Harrington

Electrical Engineering Depariment
Svracuse Lniversity

Syracuse 10, New York

A loaded scatterer is an object to which one or more lumped-parameter im-
pedance elements are connected. It has been shown that a small scatterer can be
resonated to grecatly enhance its scattering cross section.1 In the vicinity of reso-
nance, the echo area of a small singly loaded scatterer is given by2

hz G Rin

A j____in (1)
T Zin+ ZL

[0 2 1

where A is the wavelength, G is the directive gain of the scatterer when used as
2 transmitting antenna, zin = Rin + inn is the input impedance to the scatterer
when used as an antenna, and ZL is the loading impedance.
According to Eq. (1), the echo area of a small resonant scatterer is completely !
determined by its properties when used as an antenna. Hence, known limitations
to the behavior of antermas3 can be used to obtain corresponding limitations to the
behavior of scatterers. If the general formula for echo area1 is used instead of
Eq. (1), bounds to the behavior of scatterers of arbitrary sizes and loads can be
obtained.
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. 3
The following are results abstracted from the mnore general antenna theory.
Let a denate the radius of the smallest sphere that can contain an antenna. Then
for small (ka <1) loss-frez antennas, the minimum quality factor obtainable is

Qi = 7 (k) + (ka)d (2)

where k = 27/A is the wavenumber. This minimum Q is obtzined when the electric-
dipole mode and the magnetic-dipole mode are equally excited. If a high Q antenna
is resonated by an input reactance, the bandwidth cf the antenna is related to the

Q by
_Aw _ 1
B=e. " (®

where w. is the resonant frequency and Aw is the frequency difference between
points for which lzl has fallen to 1/N2, its value at resonance. Under the condi-
tion of minimum Q, the maximum antenna gair is

G =3 (4)

for small loss-free antennas. If only the electric-dipole mode or only the magnetic~
dipole mode is excited, instead of both, then the minimum Q is twice that of Eq. (1)
and the gain is one-half that of Eq. (4).

Applying the above results to small resonant scatterers, irom Egs. (1) and (4)
one finds that the maximum echo area obtainable from a small (ka <1), loss-free,
resonant (ZL = =X, n) scatterer is

A2 ~ 2.861% . (5)

9
n
A |w©

max

In the case of an actual scatterer, losses can reduce ¢, as discussed later. Equa-
tion (5) can oe comparad to an electric-dipole scatterer, or a magnetic~dipole

. .1
scatterer, for which the resonant echo area is

2

- 9 - 1
%dipole - T 7 T%max” (6)
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. o Hence, smuit, loss-free, dipole scaiterers can give one-quarter the maximum
possible echo us-ea.

It has been noted2 tha. because a small rescnant scatterer behaves us a series
- or parallel resonant circiit it is characterized by a gain-bandwidth product

¢ B = constant. (N

Using Egs. (2), (3), and (5) in Eq. (7), one finds the maximum gain~bandwidth
product for small, loss-free, resonant scatterers

Wep_ = (32 2 « 3.38 A (ka)® (8)
Fmax T =" )T 5 (ka)

where a is the radius of the smallest sphere that can contain the scatterer. For
resonant dipole scatterers (electric or magnetic), both Vo and 8 are at most one-
. half the mximmm. Hence,

‘ 1
o B)dipole <3 Wos dmax (9

showing that gain-bandidth products for dipoles cannot be greater than one-
quarter «° the optimum.

When practical scatterers are made small compared to wavelength the radia-
tion resistance becomes small, and the conductor losses become significant. A
careful consideration of the general formulal for acho zrea shows that, if the
current éis:ribution on the scatterer is not changed much, instead of Eq. (1)

2 GR

o~ A rad
T

—_ rad (10)
Zin T 2y,

where Rra d is the radiation resistance. The maximum echo area of a lossy
scatterer is obtained when Z; = -inn, in which case Eq. (10) gives

3
&

max (11)
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where R

the loss-free echo area.

loss

by the resonance curve of Zi at ZL’ becomes

where Q is the Q of the loss-free scatterer. Forming the gain-bandwidth prod-

R
d
Q=Q (—F28 )
o Rratd + Rloss

uct of Eq. (7) and then using Eq. (3), one finds

NGB NG, 8, .

is the iGss resistance in both the scatterer and the load, and T i
Similarly, the @ of the scatterer, which is determined

Hence, the gain-bandwidth product is unchanged by losses, assuming that the current

distribution on the scatterer is unchanged. The primary effect of losses therefore
is to reduce the echo area according to Eq. (11) and to reduce the Q according to

Egq.

1.

(12), wiwmnout changing the gain-bandwidth product.

R. F. Harrington, Small resonant scatterers and their use for field measure-
ments, IRE Trans. on Microwave Theory and Techniques, Vol. MTT-10,
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R. F. Harrington, Field measurements using active scatterers, communica-
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VIIl. A Determination of the Scattering From a
Cavity-Backed Plane Surface

J. K. Schindler, 1/Lt, USAF *
Microwave Physies Laboratory
Air Force Cambridge Research Laboratories
Bedford, Massackusetts

F. V. Schuli2

Schaol of Electrical Enginee.ing
Purdue Uziversity

Lafayette, Indiana

I. INTRODUCTION

One possible technique for evaluating the scattered return from surface-loaded,
conducting, scattering bodies consists of separating the scattered field into two
terms. One term consists of the scattered field from the hody with all loading
structures short-circuited at the surface of the body, that is, the unloaded body.

The additional term represents what is essentially the radiation effects of the aper-
ture that couples the loading structure and the exterior domain. Of course the inci-
dent field plus the unloaded return gives a zero tangential electric field over the
whole surface of the assumed perfectly conducting scattering body. The additional
scattered field term is then necessary to account for the non-zero tangential electric
fields induced by the excitation in the coupling aperture.

*Formerly with the School of Electrical Engineering, Purdue University, Lafayette,
Indiana.
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With this fechnique the problem of analyzing the scattering from a surface-
loaded body is broken into two problems, the usual unloaded scattering problem for
the body under co.:sideration plus the problem of determining the rad.ation from
structures equivalent to aperture antennas located on the surface ur the scattering
body. The aperture antennas are of course excited in a very sypecial way by the
external radiation.

A key problem then is the determination of how the aperture fields are excited
by the incident radiation and, further, how the magnitude and phase of the aperture
fields depend upon the cavity parameters. A knowledge of this latter dependence
allows one to deterinine how the cavity may be made to control the reradiated energy
in such a fashion as to appropriately modify the radar return from the body.

In this work we briefly consider the analysis of the scattering from a highly
idealized cavity-loaded structure. The structure consists of an infinite plane backed
by an infinitely long rectangular cavity and coupled through the plane by a narrow,
infinitely long aperture parallel to the cavity axis We do not approach this oroblem
in an effort to minimize the return from an infinite screen; rather, it is believed
that the results obtained for this idealized structure will be of assistance in the

analysis of more practi-<al three~dimensional bodies.

For example, the aperture fields obtained may approximate those excited in a
cavity-loaded finite body, if the principal radii of curvature of the scattering surface
are large at the point of loading and if resonant aperture and cavity lengths are
avoided. A* worsi, one would expect the same qualilative behavior of the aperture
fields in the finite body as is exhibited by the aperture fields in the present problem.
In addition, the results of the present work will provide a comparison for the results
of simpler though more approximate schemes for the calculation of the aperture

fields in finite bodies.

2. THE PROBLEM AND ITS FORMULATION

We conside: the scattering of a plane electromagnetic wave from a plane screen
of infinite extent in all directions and backed by an infinitely long rectangular cavity.
The cavity is coupled through the screen by an infinitely long slit parallel to the axis
of the cavity. A cutaway view of the structure is shown in Figure 1 and a cross
sectional view is shown in Figure 2. The structure is assumed to be excited by a
monochromatic plane wave (with time variation exp (jwt) ) having an arbitrary
polarization and arbitrary polar and azimuthal angles of incidence, @ o and d)o ’
respectively. (Sse Figure 1,)

The portion of space where electromagnetic fields may exist is divided naturally
into two regions: the cavity, givenby -b<x<b, -a<y <0, and the semi-infinite

half space, where y> 0.

. g
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In each of these regions, the electromagnetic field may be expressed as a linear
superposition of divergenceless solutions to the homogeneous vector Helmholtz
equation,

In the cavity region, the fields are expressed as the superposition of a discrete,
doubly infinite set of modes, both transverse magnetic to z and transversge electric
to z modes being included. To these expressions we apply the boundary conditions
which require zero tangential electric field on the cavity surfaces, y = -a, -b = x
=b and x=1tb, -a=<y < 0. The resultaal expressions for the cavity electric
field, E® , and the cavity magnetic field, HE , are




108

o0
Z[ (2b ncoseo-mncn)cos%%(x-f-b)sinmn(y%-a)
=0

o]

+ y(Jm d cos 6 +2b n) sin-rzl—g(x+b)cosmn(y+a)

+ 1 [351!1()0cinsir|gg-(x-!-1'.»)sinm“(y‘l—a)j]-I (1)

T . N . nw

[lx (mn dn-] 25 Cp ©OS eo)sm b (x + b) cos m (y + a)
+fy(-%dn-jmncncoseo)cos—(x+b)s1nm (y + a)
+ izﬁ'sineo cncos%(x-!-b)cesmn(y-i-a):l. (2)

Here ¢, and dn , n=0,1,..., are unknown complex ccristants, Z = “p ol €y -

. _ _ 2 nw\2 1/2 . ae
g = k sin 6g (k = 27/A), and m, = 18" -\ 55 . The assumed harmonic time

and z variation, exp [j (wt + kz cos 90)] , has been suppressed from these ex-
pressions.

In the exterior half space the total fields are w.itten as the sum of three terms
in accordance with the discussion given in the introduction. The first term is the
incident field, B , which is known. The gsecond term is the unloaded scattered
iield, Esl , which is the field which would exist when the aperture £-d =< x =< {+d
is replaced by a perfectly conducting sheet. The unloaded scaltered field is simply
the field specularly reflected from an infinite screen and is thus known from ele-
mentary calculations. The third term in the field expression is the loaded scattered
field, This field is that which is produced by the f;mstence c;f non-zero aperture

and H

fields. It is these field quantities, denoted by E , that we wish to com-

pute,

Let us concentrate on expanding these latter field quantities. It is known that
if ¢ is a soluticn to the homogeneous scalar Helmholtz equation and 2 is any
constant vector, the vector functions M and N, defined by

M= Vx(T¢) (3)
N = 1/k(VXM) , {4)

£ CF ST W T i B TR eaam o g g < =~

o L
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are purely solenoidal solutions to the vector Helmholtz equation. Moreover, there
exist collections of the functions of Egs. (3) and (4) which are z basis for the expan-

sion for the most general solenoidal solution to the vector Helmholtz equation.
With ¢ of the form (suppressing the harmonic time dependence)

¢(x,y,2) = ¥(x,y) exp (jkz cos 90) , (5}

¥ may be written as

oc

¥ix,y) = %S‘ cla) exp {jlrlaly - ax] } da , (6)
(2m?/ ¥ o
where

c(a) is an unknown to be determined, and
Sj(a‘ -gHM2 4] =g
Aa) = -

i @2 - aH1i?

le| =8

It may be readily veriiied that Eq. (6) subs‘tuted into Eq. (5) gives a result that
obeys the scalar Helmholtz equation. Further, as the cylindrical radius

p = (x2+y2)1/2

drical wave and thus obeys the radiation condition,

becomes large, Eq. (5) appears in the form of a diverging cylin-
We now use in Egs. (3) and (4) the result of substituting Eq. {6) into Eq. (5).
Using both transverse electmc to ,. and transverse magnetic to z field expres-

sions, the quantities E and H take the form

w0

Esz =1 ; S [] Aa) cla) + o D(o) cos @ —] exp { j[Ma)y - ax]} da
7
y 'J_ S‘[Ja cla) - Ala) D(a) cos 6 ] exp {j[ra)y - ax]} do
Bsing.
+ i, -9 SD(a) exp {j[AMa)y - ax]} da (7

N2

EL
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—

3 . ~
H 2 . —7-]—[- 1 ( @ cla) cos 6, + jArla) D(a]exp {j )y - ax]} da
Z =J L o

o L‘VZ
+ 'i'y J;? ;S;[-Ma) cla) cos 6 + ja D(o:)] exp {jlr(a)y - ax]} da
g sin @
+ iz -——-—O-S cla) exp {jlr(a)y - ex]} da | . (8)
27

-0

Here D(¢) is also unknown and is to be determined.

Our objective at this point is to use the results of Egs. (1), (2), (7), and (8) to
form integral equations for the x aznd z components of the aperture electric field.
The technique used is similar to that proposed by Lewin]L for a class of waveguide

“discontinuity problems.
If I_-:Z(x) denotes the unknown z component of the electric field in the aperture,

then the boundary condition requiring continuity of the tangential electric fields at

y = 0 interface gives

= (9)

otherwise

when -b=x=Db. Substituting for E® and using the orthogonality of the sine

functions gives

1+d
A gz(x) sin g—; (x+b) dx
1-d

b si i d
B smeosmmpa B

1+d

- 20 g F(x) cos —g—g— (x+b) dx,

p7T .,
1-d

where

Fix) = 7= E,00 . (10)

The last equaliiy follows from an integration by parts as suggested by the work of

Lewin,

fid
»
+

L +
AT AT QA P W e
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In a similar fashion the continuity of E relation gives

\ E (x) f-d = x = f+d
('f:i +E s Esz) . i = (1
2|y=0
0 otherwise

¥ =i "51\ LT g
for all x . Note that \E +E °/ 1z|
=S
ties. Substituting for E 2 from Eq. (7
transform of the equation gives

=0 - 0 fromn the definition of these quanti-
) into this result and computing the Fourier

t+d

. 1 ( i
B sin g, D(«) p— S gz(x) exp (jox) dx
N 27 1-d

_ L+d
J 1 .
P [:— S F(x) exp (jax) dx] . (12)
v Le )= !

The last equality follows from an integration by parts. Also, P denotes that the
Cauchy principal value of the expression is to be taken upon an integration with
respect to ¢ .

In addition to the conditions above, let us require the continuity of the tangential
components of the magnetic field in the aperture, f-d = x < £+d. That is, we

require
=i, =S1_ =S2) . ®C. 3 i
(H +H C+H ) Z|y=0 H 1z|y=0 1-d = x = £+d (13)
=i =51 —Sz) s - .
(H +H '+ W 1x|y=0 H 1x|y=0 £-d < x <f+G (14)

.l =51 =i S1, =
Note that due to the definitionof H ~, (H + H ) - i, y=0 =

After substituting for 752 from Eq. {(38)

i <
2H - 121:#0 and

s
@+8 Y- ly=0 = 2H! - Iely=o -
and for H® from Eq. (2), we note that the second equation added to

-jcos @ o/ﬁ sin CR times the x-derivative of the first equation gives a result in-

volving only the unknown quantities D(a) and d ne 8%, 1,2,... . Substituting for !
these unknowns from Egs. (12) and (10) respectively gives an equation in the single

unknown F . A rearrangement of this result leads to the integral equation
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+1
S F(Ad + 1) (G- + HA, 7 dAx = E, (rd + 1) -1 =T +1, {15)
-1
where

= _—n -1 = x -1
A a * T4
G@A-7) = %P S-"%-)- exp [ jadr-7) ] da

-0

H(A, 7)) = 24 E — cot m, a sin 5 b {vd+ 2 +Db) cos —- (hd+ 1+ Db)

-

d - 2 . =i s jCOt 60 9 =i T
E (rd+1) = -;2z8sin6 Z |H - 1x!y=0 el H 'lziy=o

The solution to this integral equation , ¥, along with the relation

(x-£)/d
E,(x) = d S Fad+£)dn , (16)
-1

makes possible the determination of the z component of the aperture electric
field. Remember in connection with Eq. (16) that F=d/dx E_(x) and that
gz(l -d) =0

Let us consider now the derivation of a second integral equation, the solution
of which is related to the x component of the aperture field. Let _F:‘x(x) denote
the x component of the electric field in the aperture. Continuity of the x compo-
nent of the electric field at y = 0 then gives

s _}::,x(x') Lt-d = x = t+d

. |y=0 = ) (17)
0 otherwise

E®.1

for -b= x=< b ,Substituting for EC® from Eqg. (1) in this expression and adding
-jd cot 90 times the x derivative of Eq. (9) [with E® substituted from Eq. (1)]
gives
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\ G(x) t-d < x =< 1+d

-gd Z w_ ¢ sinm_ a cos -—— L (x+b) = 18}
0 otherwise
for -b<x <b. Here
G(x) = A E (x) - jd cot 8 F(x) . (19)
Using the orthogonality properties of the Fourier cosine series gives
Jg+d
e, -3) m_bgdc,sinm a =S G(x) cos &~ (x+b) dx , (20)
£-d
where
1 n=0
€ =
n 2 n#0
In a similar fashion, continuity of E ar the y={0 plane requires
\ Ex(x) 1-d = x = t+¢@
—i =S =S - -
((E1+E1+E2)-i - (21)

X
l 0 otherwise

1

=i = S
for all x. Again, noting that E'+E xly 0=0. substituting for E 2 from

Eq. (7), and adding -jd cot 6, times the x derivative of Eq. (11) with E%2 sub-
stituted from Eq. (7) gives

P \ G{x) (f-d=x=1+d
j B — S‘Ma) cle) exp (-jax) do = - (22)
N2T .
- 0 otherwise .

Upon taking the Fourier transform of this resuit, there resuits

£+d

g G(x) exp (jox) dx . (23)

2% l'-d

jpdr(a) cle) =
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=S
At this point let us consider Eq. (i3). Substituling for H 2 from Eq. (8) and

for H® from Eq. (2) and using the fact that (ﬁi + 7 Y. fz -0~ 2 - fz , we

find a relation in the unknowns c, n=0,1,2,... , and cl(a). Substituting for the
c,'s from Eq. (20) and for c(a) from Eq. (23) and rearranging the result gives

the integral equation
+1
=7 = +1, (24)

S GOt [IA-7)+ I, 7)] dA = E (rd+), -1 =
-1

where

IA-7) = % S-{(‘;—) exp E‘qad()\-‘r)] da

(-]
J(A,7) = xd E micot m a sing—z (rd+ £ +Db) cos % (Ad+ L +b}

b" 5y n
o2 3%% 8 (Gt cani
Ej(rdtt) = — i ( Lt z)|y=0) . 2

s s SRt

Due to the relation defining G, Eq. (19), the solution to Eq. (24) along with
the solution F of Eq. (15) makes possible the calculation of g,{ .

L mrrmasene st ¢

3. PROBLEM SOLUTION

The complexity of the integral Eqs. (15) and (24) seems to preclude any exact
solution. Instead, we consider a standard perturbation technique in order to obtain
an approximate solution under the assumption of a small aperture width in wave-

lengths.
Consider the integral equation

e -

(25)

"

Sf(x) Alx,y) dx = gly)
L

R e

T R T A AR, e et IO T




where A and g are known functions and f is an unknown function to he de-
termined. Expanding A and g in a series in the dimensionless parameter ¢
and assuming a similar expansion exists for the unknown f{ results in

Alx,y) = E A (x,y) ,
n=0
) = ), g,
n=0
f(x) = E €™ f(x) .
n=0

Substituting these expansions into Eq. (25) and assuming the equality of the coeffi-
cients of like powers of ¢ yields the following sequence of integral equations:

)

g 960 2%, y) dax
L

yfl(x) Ao(x, y)dx gl(y) - § ) Al(x,y) dx

L L

and so forth. Thus, if an integral equation having a kernel of the form of A0 is
solvable, then each integral equation in the above sequence is solvable for the suc-
cessive approximations fo , £ 1 , 1‘2, . It should be noted that the right-hand
side of each equation is a known function provided th: previous eguations in the
sequence have been solved.

Let us apply this perturbation technique to the int:gral Eq. (15) for F. The
small parameter ¢ in this development will be taken io be 8d . To apply the
technique, we require series expansions in gd for the functions G, H, and Eo
defined following Eq. (15). A detailed evaluation of G(A-7) reveals that

GO-T) = 'P[T%?]-*- O(ﬁd)z.
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Also,

) = 173, 0
H{A,7) = -P A—TJ-E- 0 (gd)
and

E.o(fd-!-l) = j2mB sing iz - e exp (jp!L cos $,) + 0(gd) .

Here € is a vector in the direction of the E polarization of the incident wave and
of magnitude equal to the incident electric field.
Substituting these results, along with the assumed 8d expansion for F ,

F(Ad+t) = FOQas1) + pd Flgst) +. . ., (26)
into Eq. (15) and equating the coefficients of (,‘3(1)0 gives

+1

p ¢ Flld+eian .
=) — = -jfsino i - e exp (jBL cos ¢°) -1=s7=+1 . (27)

-3

This is a singular integral equation of the form considered by Tricomif‘Z The
solution to Eq. (27) is

Eo(Adﬂ) - -jBA sin ¢° i,- e exp (j8t cos ¢0)

Qa - 12)1/ ]
wnere we have used the fact tnat

+1

S Flaars) aa = 0 .

-1

This latter result follows since

E (t+d) -E t-d) PR
0 = ; . SE(Ad-!-!)d}\ - E [5d] gg (Ad+L) dn
-1 n=0 .-1
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or

+1
gg“uda)dx =0 n=¢,2,...
-1

Here the first equality foliows since the 2 component of the aperture field must
be zero at the edges of the aperture. The second equ:lity follows from the defini-
tionof ¥ given following Eq. (10), and the third equa¥.:y follows irom a substitu-
tion of the assumed jd expansion for F.

A continuation of the perterbation schem: yields integral 2quations of the form
of £a. (27) in the urknowns F™ n=1,2,3,... . These results substituted into
Eq. (26) along with the condition Eq. (18) sives for the aperture field

1/

(Ad*—i) = Bd(1i-A ) sin Oo iz - e exp (jgt cos © ) [3 - T cos %+ O(Bd)?']

~l=A=+1 ., i28)

Applying this same perturbation technique to Eq. (24) we arrive at a sequence
of integral equations of the same form as Eq. (27). Withcut going into detail*
theve results fur the x component of the zperture electric field

2ip - € exp (jBtcos ¢)
gx(xdu) = + 0 (8d) . (29)
gan(1A2)1/2 5

Here °i¢° is thie unit vector §¢ evaluated in the direction frorn which the incident

wave arrives. Also,

=—;—+381 +lnlcos l+1| l*llﬁdl

’1.'
« nne
22%(coth Y:: 2b) -1>c 2n7r(u_b} cg;:a%

where y = Euler-Mascheroni constant = €.5772157 and Yh = [1 - (2ﬁb/n1r)2] 1/2 .
The results of Eqs. (28) and (29) for the z and x components of the apzrture

0

n=

electric field are the main results to be obtained here. 1t should be noted, however,

*A detailed analysis of this and other aspects of the problem will be included in an
AFCRL report in preparation.
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that by applying the 1aethod of steepest descent to the Fourier integrals in the ex-
pressions for E‘.sz and ﬁsz , Eqs. (7) and (8} respectively, it is possible te
evaluate the far scattered fields produced by the non-zero aperture fieids E, and
Ex . We will not consider these resuliz here.

4. DISCUSSION OF RESULTS

In this section we consider Egs. (28) and (29) for the z and x components of
the eleciric field in thi: aperture.

Consider the result {for Ez first. We note that this field component is propor-
‘tional tc the z component of the incident electric fieid and is independent of all
other components. Further, this fieldd is 0(3d) znd hence for a narrow aperture
will be small. A more complete analysis reveals that the first term in the solution
to involve the cavity parameters a, b, and { is O(Bd)3 . Thus it would seem
that for a narrow aperture the cavity wil! dc littie to change or control the z com-
ponent of the aperture field.

Finally, it is interesting to note that near the aperture edge, » — =1, lgzl
varies according to the square root of the distance from the edge. This is the known
edge condition for electric field components parallel to a sharp edge.3

Let us consicer also the more interesting resulk of Eq. (29) for E_. We note
that the dominant term for gd small is the first term, it being 0(1/ Bd; . This
dominani term has the same spatial variation as the static electric field which
would be produced in 2n infinitely long narrow slit by a potential difference across
the slit. Near the edges, A — +1, this component of the field is proportional to
p'l /2 where g is the distance to the edge. Again, this is the known edge condi-
tion for zlectric field components perpendicular to a sharp edge.3

It is of interest to consider E_ at the center of the aperture (A=0) when
1=0, thatis, gx(O) , as a function of the cavity parameters a and b. A detailed
analysis of Eq. (29) for © o - 90° and ¢ = 45° reveals that gx(o) =0 for ka =n7w,
n=0,1,2,... aslongas kb# pr, p=1,2,... and kd #0. Thus the cavity appears
to short circuit the aperture when the cavity depth is adjusted to integer multiples
of a half wavelength.

There also occur combinations of the cavity dimensions a and b where what
might be called ''anti-resonances'' occur. Here the dominant first term in the
expression for gx is a2 maximum in magnitude.

These ''anti-resonance'' dimensions are not odd integer multiples cf a quarter
wavelength as might be expected. Rather, these dimensions are given by the condi-
tion that

B
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Further, it can be shown that this condition occurs in the range 0 <afi < 12
when q<2bfA <q+ /2, g=0,1,2,... andinths range /A >1/z for all values
of 2b/A. A numerical analysis for the conditions %ﬂ =0.1, /=0, 6‘_' = 90°,
= = 45° reveals thzt under these conditions the "'amti-resonance'- salues of a/a

tend to nf2, n=1,2 3,... as 2bJa becoumes large. Also, the ''anti-resonances'’
become sharper as 2bfA becomes lzrger since the magnitude of the field varies

rapidly to zero at a/A =n/2.
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IX. Some Concepts for Reducing Reflectivity
From Antenna Apertures

Edwin M. Turs-r

Electromagnetic Environment Branch
Air Force Systems Command
Aeronautical Systems Division
Rright-Patterson AFB, Ohio

An elementary analysis of radar reflectivity will generally show that for high-
speed aerospace vehicles the most difficult surfaces to conceal are thcse occupied
by the antenna apertures. This is true because the antennas are generally focused,
reciprocal, and linear devices, and they must be strategically placed to perform
their assigned functions. Within the confines of these assumptions, one has a
number of readily available alternatives to reduce the backscattering from antenna
apertures; the alternatives include terminal loading, inductive loading, absorptive
loading, and choosing antenna designs which are inherently low in reflectivity.

Often a more productive solution for the backscalttering problem may be found
from a study of the flight trajectory and the operational requirements of the sys-
tem. For instance, an antenna configuration may be used over only a small part
of the flight path, and it may be hidden from radar view throughout the remainder
of the trajectory without being operationally objectionable. This may be accom-
plished by either changing the antenna patterns io produce a beam pointing in somg
innocuous direction, or by breaking the aperture up into small segments, each of
which will resonate at frequencies above or below the operating frequencies of
the tracking radars. These objectives may be achieved by the use of biased diodes,
non-reciprocal ferrites in waveguides, switches, or by relay-operated shorts that
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will change the resonance frequencies or the patterns of the apertures.
Examples of the techniques suggested herein are shown be.ow in Figures 1

/ /

¢

Figure 1. A Horn Aperture Shorted by Means of a Diode Switch Reduces
Backscattering to Approximately That of a Flat Plate

to° 10° e,
e 2 2
2 “ 1
O———T‘—‘O
{
o o
1180 o 1O

1 p;

IN-PHASE AT PHASE
PATTERN PATTERN

Figure 2. A Conical Spiral Antenna Showing Faiterns for Both In-F:ase and
Anti-Phase Connections. A change in patterns can be achieved by mearns of
placing a short across the feed terminals.
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Figure 3.

A Dipole Antenna With Forward Biased Diode Switches
d« bias across diodes will segment the aperture

TRANSMITTED
BEAM

RECEIVED BEAM

--A

A change in

Figure 4. An Open-Ended Wave-Guide Radiator Showing Non-Reciprocal Ferrite
Phasing Element. The angle of divergernce between the transmitted and received

beams is proportional to the magnetic field across ferrite phase shifter.
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X. Radar Cross Section of Perfectly Conducting,
Dielectric and Dielectrically Clad Infinite
Cylinders at Arbitrary Incidence®

Abdelnour S. Thomas
A, 5. Thomas, Ine.
Westv.ood, Massackusetts

1. INTRODUCTION

The work reported in the lit‘.eratuz*'el-7 on dielectrically clad cylinders prima-
rily treats normal incidence and in most cases is restricted to the geometrical
optics region. As far as could be ascertained by the author, the dielectrically clad
infinite cylinder at normal (broadside) incidence for ¢ TM incident fieid was first
treated by C. C. ’i‘ang7 with computed values of normalized radar cross section
experimentally verified. The more general “ase of arbitrgry incidence was treated
by J. R. Wait8 for a homogeneous non~metallic cylinder for an incident TM mode.
He, however, did not present any numerical data. The dielectrically clad cylinder,
following the work of Wait and Tang, is extended here¢ to the more general case of
oblique incidence of either TM or TE modes for N concentric layers. The normal-
ized radar cross section in the plane of incidence has been computed for normal
and oblique incidence.

It is believed that a comparison of the normalized radar cross section of the
dielectrically clad and solid dielectric cylinders for small radii with that of the

*This work was sponsored by Lincoln Laboratery, Subcontract No, 265, under
Prime Contract No. AF19(604)-7400.
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o e e -

- perfeci.y conducting cylinder would provide some insight into the problem of re-

- -

duciag the radar cross section of objects of small genmetrical cross section.

2. FORMULATION

[P ——

2.1 Geners!

The equations of the incident, internal, and scattered fields at arbitrary inci-

dence are presented here fcr a cylinder consisting of N homogeneous, concentric,

non-metallic cylindrical layers. The expressions for the scattering coefficients

for a single layer about a perfzctly conducting core with an incident TM field
(HZ = 0) are derived, and thea the expressions for incident TE mode are given.

These general expressions reduce to those for the solid homogeneous d.electric

cylinders as well as to t:ie solid metallic cylinder.

Consider a plane-vave incident on au infinite cylindrical obstacle at an angle

\Po with respect to the normal to the axis of the cylinder to be a pure TH wave.

Using the coordinate system given in Figure 1, the incident, interpal, and scattered

fields may be written as follows:

(1) Incident Fields

inc _ S.n
Ez = Eo cos \I’QLJ Jn(Bor)Fn

. -nk _sin¥

! mc _ E '-ﬂ/ n O 4

; E‘P = Eo cos \Pc’ i \-.,?_r._——) Jn(ljor) Fn
o

H'i,nc =0

[

wp B

.2
. ~jk
inc _ E ‘ N o .
H¢ Eocos \Po j ( - ——o ) Jn('go r} Fn
/

(2) Internal Fields

Bl - Y (Ar’:“ Hf}” (g R _)+B Hg") B, Rm)) F_

(1)

(3)

(4)

(5)
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» x

Figure 1. Cylindrical Coordinate System

-nk_sinV¥

m _ .n 0 o | my(1) m..(2)
Eé - ZJ (?R__ l}‘n Hy (ﬁmRm) +BH) (BmRmﬂ

m m

wi P o) -

. m|=m,,(1) =m . (2)
+j -_ﬂ;;[An Hn (ﬁmRm)+Bn Hn (ﬁmRm}) Fn (6)

m _ .0 [=m (1) =m..(2)
Hy'= )0 (An H (B R )+BH (ﬁmRm)) F, (7
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-nk_sin¥_ f_ - 1
H;n = Zjn(—_g—_'g' [Arx?ﬁgxn (ﬁmRm) + Brx:] Hsz) (ﬁmnm)_l

2
BB
2
k
_;_.m m,. {1}’ m{(2)° ~
JW; [An B (BR)+B H (ﬂmRm)]) Fu (c

(3) Scattered Fields

EXC= Z‘j“cnﬂff) (B,T)F, (%)

ESC = g,-n(:i’;%?fa c 1P (g x)+3 u;;° Enﬁff"(ﬁor))rn (10)
O

HSC = Z‘j“c“:nﬁff) (8,1 F, (11)

HSC Zjn(;n—;;g_?i C_uPp o - -a;:%—cnﬁgm 8, r))Fn (12)
o]

where it is understood that the summation is from n= -« to n= =

Eo = magnitude of the incident field
\Ito = angle of incidence with respect to the axis of the cylinder
ﬂm = km cos ‘I'm, with1a = 0, 1, 2,.... N relating to the mth layer,

with m = 0 free space external the cylinder
m 2%/ R‘Jllmem ,

= operating frequency

w
¥ 1

=
]

normalized permeability of the mth layer

m
&n © normalized permittivity of the mth layer
F=exp[-jlnd -k zsin L

Alr_ln, B:;“, C;n = arbitrary constants relating to the TM mode
Kg’, ﬁ:n, E:ln = arbitrary constanis relating te the agssumed internal and
scattered TE mode

J o Hg), Hglg) = Bessel and Hankel functions with the primes relating to
differentiation with respect to the argument.
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2.2 Sngle Layer about a Perfectis Conducting Cylinder

Now, by equating the internal fields to the sum of the inc.dent and scattered

fields at the air interface:

N (2, 3. a 1D (2,
Locos\POJn(xo)-%-Can (xo) = Aan (xl)-*'Bndn (,.1), (13)
nk sinV¥ .

o o (2) (2)
_—ﬁoxo Eﬁtocoswan(onCan (xo)] 13 C H (x )

nk_sin¥ ‘ = ‘
_Mosin¥, E‘nﬂg)‘xx”Ban)‘xl’] [A B )+ B_n? (xl)] (14)

PEN R
= (2) - = i) = £ (2) -
Can (xo) = Aan (x1)+Ban (xl), (15)
and
% r (2)- nk,sin¥ _ o
wuo 5 LEOCOS‘I’OJH(}LO)‘*‘C H (X)] TT C H (X)
. o 2
nk_sin¥ k
- o[z (1 = (2) Iy (1)° (2)°
"W—[Anﬂn (X1)+Ban (Xl)] E}Tﬁ—l[A H (x ) B H {x )](15)

where ‘1’1 = angle wave makes with normal in coating

X ° B oRo
R 0 = outer radius
X = B 1 Ro

and setting at the metallic intertace

(1)
B, H. (xz)

= - > (17)

A {2)

n Hn (xz)

and !

= (1),
B, i Hn (:\2)
— - - (2,'( ) s (18)
An Hn X9

the C n and En may be readily obtained for the incident TM mode, giving:
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TM=_VP q J (x)fi(z)(x

Cn n n 9 s (19)
- el
and
(2) (2)
E=qnso[n (x)J (x) H (\)J (x?]

n (20)
PN - [qn Hf) (xoi,

N e (2),. (2)°
where: N = sy Hn (:"o)D' SoHn (x)

=ry H(Z)(x YL-~s H(zy(xo)
V= J (\: yD~s_J’(x)

o'n'"o
i Hf,}’ e L () - B 1 ) B ()
BT §)) (2) (2) (1)
B (xl)Hn (xz)-Hn (xl)Hn (x2)
. H;U'(xl) Hflz) ‘(xz) - ng) '(xl) HS) '(xz)
B 5 DO (2)7 (2) (1)’
H '(x)H (xz)-Hn (xl)hn (xz)
P S—
\/e-sinquo
s = —1
o cosWo
ro=— 1
1
\/e-sinz\Po
o = nAsin\Ilo / 1 } 1 >
n —Q“Ro (e-sin2\1f0 cosZ\IJ(>

In the plane of incidence (¢ = 0°), ¢ may be written

o 2
2Acos ¥
- ) _ 130
o= —21) (-1PC, (21)
L)
Now note that the En’ Eq. (20), may be written as follows:
nA sin ‘I'
Ca —TR—“ Gy (22)

R PR K & 4
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where
Gp= G_n,
hence, for
n=_0
Co= 0
and
C +E_ = Oforn% 0.

Therefore, in the plane of incidence, the orthogonal mode is identically zero.

However, the scattered field in planes other than the plane of incidence will
contain the orthogonal mode which will increase as a function of the angle ‘Ilg and
the angle ¢ of the plane of observation, with & maximum in the plane ¢ = 90°,
Also, if the axis of the cylinder is skewed with respect 1o the plane of incidence,
the scattered field in the plane of incidence will contain the orthogonal mode.

In the plane of incidence, the C mzy be obtained for the TE incident mode
(C ) by replacing E by H and H by -E € by p# and s by ¢ throughout, giving:

e MN- an e O)Hm x_)
cTE . e (23)
n PN -E; H {x )]

where

I—r J (x YL~ san(xo)

and all other symbols are as previously defined.

For normal incidence, \Ilo = 0°, q, = 0.0, Egs. (19} and (23) become the well-known

eguaticns for normal incidence

cM-- % (24)
and
cI®- M. _ (25)

2

.3 Solid Dielectric Cylinder

If X is taken equal to zero, that is, a solid, homogeneous, non-metallic
cylinder, Eqs. (19) and (23) immediately reduce to those for the solid dielectric
cylinder at oblique incidence, with
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_ 2 (2) 2
TM _ vp ann(xo) Hn (xo) Jn(xl) 4
Cp =- 6] 3 (26)
\ .
PN [ann (x,) Jn(xl)]
Nl ) 2
CTE . MN ann(xO;Hn (xo)Jn(xl) (27)
n (9-) [N 2
PN- [ann (xo,Jn(xl)]
where
V= s Jn(xo) J;(xl) - soJx'a(xo)Jn(xl)
- (2) - e ul2) .
P=r H/ (xo)Jn(xl) -5 H (xO)Jn(xl)
v - (2 . (2)”
N=s H (xo)-In(xl)-soHn (xo)Jn(xl)
M= r, Jn(xo) Jx;(xl) - SOJI’l(xo) Jn(xl)'
Again, for normal incidence,
TM_ _V
bn "N (28)
TE_ M
Cn - 'p - (29)

2.4 Perfect!y Conducting Cylinder

Setting ¢ = ©, Egs. (19} and (23) for the dizlectrically clad cylinder reduce
to the following expressions for the perfectly conducting cylinder at oblique
incidence:

K (30)
n H ’(xo)
Jo(x)
TE n'o
C = - (31)
n Hn{‘] (xo)

Equations (30) and (31) are of the same form as the well-known equations for
the perfectly conducting cylinder at normal incidence, except that at oblique
incidence Xy = ko Ro cos ‘I’o. In all of the above, the factors Eo cos¥_and Ho cos \Ilo

4 have been surpressed for all of the Cn' 8. It is inter.:sting to note that, ignoring

the factors Eo cos \Ilo or H0 cos ¥, the o for the perfectly conducting cylinder at
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oblique incidence is identical to that of norinal incidence with the radius reduced
by the factor cosV¥ o

3. COMPUTED NORMALIZED SIGMA
The normalized radar cross section

(4

S =W (32)

was computed for perfectly conducting solid, homogeneous, dielectrie, and dielec-
trically clad cylinders.

3.1 Metallic Cylinder

For the metallic cylinder, a single computation of ¢ versus Ro for both TE and
TM incident modes is sufficient since, for other than normal incident, multiplying
Rol A by cos \I'o will convert normal incidence to another angle of incidence 'Ilo.

Figure 2 is the well-known g/ FRO of normal incidence for a perfectly con-
ducting infinite cylinder with the THl mode decreasing monotonically wita increas-
ing Ro/ A and the TE mode increasing monotonically to unity and then oscillating
with damped oscillations as Rol A is increased and finally settling to the limiting
value of o/7R_ = 1.

3.2 Solid Dieleciric Cylinder

In Figure 3, the normalized sigmas at normal incidence for TE and TM
incident modes are given for 0.0002= ROI) = 1.0 and ¢ = 4. 0. Here the normalized
sigmas for both TE and TM modes are monontonically increasing for values of
Ro/ A < 0,10, and then both commence to oscillate with the oscillations increasing
in amplitude and rising above unity with increased Rol A. It is interesting that the
TM mode for sr;all R o/ A is approximately at the same level as the TE mode for
the perfectly conducting cylinder. The level of course depends on the value of ¢
and will be higher for larger values of ¢ and lower for the lowe.” values of ¢. In
Figure 4, the Ro/ A versus S is given for ¢ = 4 and ¥ = 84°. In comparison with
the metaliic cylinder, the TE mode is considerably higher up to R 0/ A= 0.2 with
the TE and TM modes very close in amplitude.

It has been found that the relative number of flucttations (min to min) is related

to the dielectric constants of the mat.cials as '\’el -1/ "/ez -1, where € is the
permittivity o one cylinaer and €9 the permittivity of another cylinder.
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Figure 4. Solid Dielectric Cylinder vs Metallic Cylinder. Normalized
Sigmas vs ROIA. ¥ =84% €= 4.0, Rgll =,6002 —1.0.

3.3 Dielectrically Clad Cylinder

The normalized sigma versus Rol' A for the range 0. 0002 = Rol A=1 for
shell thicknesses as determined by R1 = 0.9R o and dielectric constant of the
shell equal to 4,0 at normal incidence is given in Figure 5. Here again,
unlike the perfectly conducting cylinder, the oscillations of the TE mode do not
dampen out in the same manner as the TE mode of the perfectly conducting
cylinder; rather, they increase in amplitude after R o/ A=10,5 For small Ro/ A,
the TE mode of the dielectrically clad cylinder is significantly higher than that of
the perfectly conducting cylinder, and the TM mode is significantly lower thar that
of the perfectly conducting cylinder.

T e
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It is interesting to compare the dielectrically clad cylinder at normal incidence
with the dielectricaily clad sphere* , Figure 6. Note the considerable similarity
between the sphere and the cylinder at normal incidence. Both “he sphere and
cylinder have burst of oscillations that dampen out and then resume. The first
burst of nscillations from the sphere corresponds with the TE mode of the cylinder,
and the second burst with the TM mode of the cylinder; when the oscillations of
both modes of the cylinder are damped, so also are those of tue sphers. Both sphere
and cylinder have equal numbers of oscillations occuring at the same R ol A; however,
the sphere differs from the cylinder in that the amplitude of the oscillations is larger
for the sphere than for the cylinder.

Fipgure 7 shows normalizéd sigma, S, versus RofA for a shell thickness of
0.1 Ro' €=4.0, and the angle of incidence equal o 84° for 0.0002 = ROIAS 1.0
in comparison with the perfectly conducting cylinder. Here the S for the TE mode
of the aielectrically clad cylinder is significantly larger than the corresponding
mode of the perfectly conducting cylinder for Rol A=0.2.

Figures 8 and 9 give scan in angie for R1 =0, QRO and Ro = 0. 78, respec-
tively, for ¢ = 4.0 and ¢ = 2. 56. Here there is considerable similarity between
the two values of ¢; however, for the large ¢, the S rises higher above unity
than it does for the smaller r.

The normalized g, S, versus ¢ is given i, Figure 10 for ¥ = 45°, ROIA = 0.78
and Rl =, T02A,

% The sphere was computed by J. Rheinstein of MIT, Lincoln Laboratories
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Xl. Effect of Surface Diffusivity Upon the Scattering
Characteristics of a Plasma Sphere*

Philip J. ®yau* *
Plasmadyne Corporation

Abstract

The effect of varying the suriace diffuseness of a spherical plasma region is
examined in the resonance region. It is found tha: large changes in electren den-
sity may be readily compensated by modest changes in surtace diffuseness as
regards the scattering characteristics of such regious.

Since the re-entry charactevistics of a great many objectis ofter include large
regions of highly 1omzed material, it is of particular interest to consider how
slight structural modifications of these plasma volumes can appreciably affect the
scattering of electromagnetic waves in the resonance region. For purposes of
illustration, a hypothetical plasma will be examined whose atructure is assumed
to be spherizally s:ymmetric.l In this event, an earlier formalism developed by

* This work was completed while the author was at Plasmadyne Corporaticn and
was performed entirely at company expense. Much of this material may be
found in J. Appl. Phys. 34: 2078, 1963.

* *Now a member of the Technical Staff of the Defense Research Corporation,
Santa Barbara, California.
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the author2 and oiherss’ 4

wiil become immediately applicable as soon as an asso-
ciation between the conventio-.al plasma variables and the so-called index of
refraction is made.

For » plasma in local thermodynamic s ¢ .:librium, the electron density, N,
and ccllision frequency, v, are sufficient parameters o characterize its gross
structural features. The minor contributions from the heavier ions are usually
neglected in this approximation. The eleciror collision frequency itself is in
general a rather complicated function of temperature and electiron density.s

Defining the plasma frequency,® p* by

uZ’ = 47 Nezlm , (1)

one may introduce the local dieleciric constant

2

€ =1 - :vz[l-fvlw] (2)

w +

which depends upon the incident angular frequency @ as indicated. The electron
charge and mass are indicated by e and m respectively.

If new the plasmia frequency and collision frequency are functions of position,
then € also will be a function of position. The complex refractive index is given
by the square root of ¢ and thus also varies with position. Since all variations
are for the present example assumed radial, one has the situation described by
Wyattz, namely a medium whose refractive index is a function of r only.

Consider now the following siruation: Radiation of frequency «/2% is incident
upon a spherically symmetric plasma with a uniform interior. In terms of the

vacuum wavelength, Av ac’ the dimensionless parameter p = 21rr/?~vac may be
introduced. Thus
= . 2 . 2 2
nlp) = Nelp) = \/1 - @, (p) [1 - w(p)/w] /[w + (o) :] . (3)

For p less than some value a, say, both w and v are assumed constant and
therefore one may write

nlp) = nop +ing, 0<p<a . (4)

Surface diffusivity may now be introduced by letting n(p) vary from the value
given by Eq. (4) to the value 1.0 at some point b(> a), say, by letting
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np) = nplp) + inl(p), a<p<b (5)

n(p) = 1.0,p> b

where nR(P) and nI(p) are real functions of p . This functional dependence of the
complex refractive index may be deduced by assuming some realistic variation
with P of o p
Although either approach will yield a diffuse surface with similar characteristics,

and v or, alternatively, by assuming & variaticn of ni{p) directly.

the latter assumption is more convenient for the present discussion.

In order that n{p) and its first two darivatives be <ontinuous throughout the
entire range of interest, & convenient form fa..tor of the Green-Wyatt type may be
introduced as follows:

n(p) = np(p) + in/p)

where
np(p) = 1+ (ngp-1) £(p) (6)
n; ) = ngy £(p)

and the form factor £(p) is given by

§(p) =1, 0<p<a

L _15zn6 + 102316 - 32°116, a<p < b ()

i

0,p>b

z =[p -21—(b+a) / T}(b-—a)] .

The parameters a and b may be related to the half fall-off distance

5 (=27rr°/Avac = kro) and the surface thickness T (diffuseness), if one defines

the term ‘thickness' io mean the 0.9 to 0.1 fall-off distance. Thus for the form
chosen in Eq. (7}

)
i

Py ~ 0.99868T (8)

o
"

Py * 0.99868T.

The variables of interest are illustrated in Figure 1 for the case where

noR © 1.87 and nOI = (.734.
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9

6 = Po-0.99868T
1.0F b = pc+0.99868T
16} \
14f
,:_ Reln) = 12067 (7)Y}

0 \_
tob— — e —— ] = -
s F T —]
..7 /

A Im{n) = 0734 ;( /

1

) // /V/ .
°

Figure 1. The complex index of refraction for an object
with a diffuse surface. The form factor is of the Green-
Wyatf type and the radial variation is in units of 1 /k

i.e., p= kvac 7

For the present example the incident frequency has been fixed at 3kMec,

10 -1

v = 10" "sec 7, and p 0= 5. Thus the problem concerns an S-band measurement

of a plasma whose mean radius is about 8cm.
Consider first the effect upon the radar cross secticn of such a regicn when
the surface thickness is varied. The curves shown in Figure 2 illustrate this

1/2

result for a variety of values of wp(NN ) at the uniform interior region of the

plasma scatterer. Rather than express the results in terms of the radar cross
section, the abscissa refers to the backscaitered intensity in units of (kr)-2

normalized to unit incident flux.

e

T 5 T3

-----

Y

TETY T

T

TCTTITnY

R R LS

.ow
YR

Fign re 2. The differential scattered intensity of unpolarized radiation in units of
(kr)' at 180° shown for verious surface thicknesses as a function of plasma fre-
quency (p =5, @ = 6% X 105 gec-1, v = 1010 gec-1)
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Several important results are clearly illustrated by Figure 2. At the smaller
electron dernsities, that is, when the interior plasma frequency is less than the
incident angular frequency, small variations in surface thickness cause appreciable
variations in the backscatiered intensity. This would be expected in general since
an increased surface diffuseness usually results in a diminished reflection. Thais
trend is continued throughout the region where the plasina frequency is comparable
1o the incident angular frequency, except for the particularly sharp surfaces. For
these latter exceptions, the reflection coefficients are critically affected for even
slight variations in the surface regivu aud thus produce the resonance type phenomena
illustrated. Itisinterestingto note thatfrom a given measurementof backscattered
intensity, it is in general impossible to deduce anything concerning the structure
of the scatterer. This result is vividly illustrated in Figure 2 since a given back-
scatter may be produced from an infinite variety of «p and T combinations.

Not only is the radar crocs section appreciably affected by variations in sur-
{ace diffuseness, but the scattering at all other angles as well. Assuming for the
moment that the source of radiation is unpolarized,* then Figures 2 and 4 illus-
tratie the differential scattered intensities for various iuterior plasma frequencies
at two distinct surface thicknesses (0.0 and 1.0, respectively). Thus for the case
of larger surface thickness, the scattering characteristics at a particular angle
behave in an essentially monotonic manner. For tne sharp surface (Figure 3) on
the other hand, this simple behavior is no observed. Indeed, the sharp-surfaced
structure may be said to have a high Q (at a variety of dielectric constants) which
is easily “spoiled", thus resulting in the resonance behavior illustrated. The
diffuse structure may be said to always have a poor Q.

If the interior plasma. frequency is fixed, then the diffusivity effects vpon the
differential scattered intensity may be examined direcztly. Figure 5 illustrates this
situation for w = lousec-l. Note the general shifting of the diffraction pattern
toward smaller angles with increasing surface diffuseness. For @, less than
this value a significant drop in the backscatiered intensity is also observed.

The above example illustrates that marked variations in the scattering charac-
teristics of plasma volumes may in general be expecied subsequent to small varia-
tions in surface diffusivity. In addition, large changes in ionization density may be
easily ''disguised,'’ insofar as conventional radar measurements are concerned, by
relatively small changes in surface diffuseness. Applied to larger systems at other
frequencies, the above indicated results could have interesting practical applications.

*Although this is eompletely unrealistic insofar as microwave sources are con-
cerned, this assumption. permits an average differential scattering pattern to be
presented. As was so vividly brought out at the Symposium, it is not enough to be
just concerned with the effects upon the scattering of certain medifications or load-
ing techniques for a given polarization of the incident radiation. The effects upon
two mutually perpendicular polarizations must always be considered simultane-
ously. Thus, the assumption of an unpolarized source (which, incidentally, renders
the computations somewhat more difficult) results in a clear picture of the net effects.
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Xll. Absorption Resonance Effects in Plasma Spheres

\. Pedersen

Research Birectorate

Research and Advanced Development Division
\rco Corporation

Wilmington. Massachusetts

L. Malmstrom

Department of Phyvsics
Harvard Lniversity
Cambridge, Massachusctts

1. INTRCDUCTION

1t is the purpose of this paper to report on theoretical work dealing with the
absorption of electromagnetic power by plasma spheres. The electromagnetic
energy is propagated {o the plasma sphere in the form of plane-wzve radiation.
The sphere is assumed to be homogeneous and to be surrounded by a medium
whose refractive index is near unity. Under these conditions, Mie scattering
theory may be used to compute the absorption cross section of the sphere as a
function of its complex dielectric constant, its radius, and the frequency of the
incident electromagnetic wave. In particular, the conditions for maximum power !
absorption efficiency will be discussed. It will be shown that strong absorption
resonances are to be expected only for cases where the ratio of sphere radius to
free space electremagnetic wavelength is less than unity. Consequently, models
which assume infinite or semi-infinite media are not applicable and would not yield
the absorption resonances that are predicted by the application of electromagn -
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zcattering theory. On the other hand, treatments based on electrostatic or mag-
netostatic solutions o rthe wave equation will vield a discrete et of characteristic
"resonance" conditions i the cielectric constant or in the permeability but will
not lead to a determination of absorption cross section or to the conditions for
absorption ¢ross section maxima.

2. APPROACH

Since it is the objective of this vork to optimize the efficiency for power
absorption in dielectric spheres, the results of formal Mie theory 2re used to
write down the exact expression for absorption cross section. It is first deter-
minted that strong absorption resonances are to be expected oaly in the low fre-
quency limit. A low frequency approximation is then applied which reduces the
problem to thai of optimizing the absorption cross section of lossy spheres having
small radius to wavelength ratio. This is done by first determining the optimum
values of the real and imaginary parts of the appropriate partial wave coefficient
and then computing the maximum possible value for the power absorption efficiency
as a function of ka, where k=2 zi\A and a = sphere radius. Next, the optimum
values of the real and imaginary parts of the dieleciric constant are found as
functions of ka by means of performing a power series expansion of the partial
wave coefficient in terms of ka. In this step, the condition that ka << 1 is again
used. Since the magnitude of the optimized absorption eificiency is proportional
is (ka)'z, and since the approximations used become increasingly accurate as ka
decreases, this method should be quite valid in regions of very high absorption
resniance.

Finally, the effect of an applied magnetic field is investigated and it is found
that the existence of the magnetic rield merves to decouple the parametric aquations
for absorption resonance,

3. RESULTS OF FORMAL MIE THEORY

The absorption efficiency factor Qabs for a scatterer is defined as the ratio
of its absorption cross section to its projected area. For a sphere this is
= nl
Qopg = crabsl,.a , where o
Likewise, the extinction and scattering efficiency factors are defined as

bs - absorption cross section and a = sphere radius.

- 2 - 2 . .
Qext = aext/’n'a and Qsca = o'sca/ra . From conservation of energy, it follows

that




Ubs = QRext ~ Usca- (v
The extinction and scattering efficiency factors are usually given by.the following

series representatioas:

Qy = Z (20+1) Re(a_+b ), (2)
n' 1
i 2 2
Q. ;22- Z\ (2n+1):tan! b : (3)

where x = ka = 27a/A, and a n and b n 2re, respectively, the coefficients for the
n'th electric and magrnetic partial waves. These can be shown to be the contribu-
tions due to the induced electric and magnetic dipole, quadrupvle, and higher-order

moments of the sphere. They may be written as follows:

1

a, = —— — (4)
1-1( n (x) [y (- ei () [xn (0] |
30 B (0 7= edfs) [xi (I 7\
bn = 1 (5,
( enn(x) [yjn(y)] c - jp(y) [x nn(x)] ’ 1
1-i

l ejn(x) [yjn(y)] ‘- jn(y) [xjn(x)} . s

where the j (y) and n (x) are spherical Bessel functions of the first and second
kinds respectively, x = ka, y = x /€, and ¢ = complex dielectric constant. The
prime in Eqs. (4) and (5) indicate derivatives with respect to the argument. Since
the Bessel functions will in general k¢ complex, the a n and bn wili also in general
be complex. Substituting Egs. (2) and () into Eq. (1), we have

o

Qabsz'igi:% z (2n+1)$Re(a)- ial +Re(b)-| nl l. (6)

al L |

Equation (6) indicates that it is reasonable to expect resonances in Qab s when
resonance exists for one or more of the partial wave coefficients. Such resonances
can only occur for plasma-like media with ¢”< 1, as shown by appresimations of
the first few partial wave coelficients.
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A computer code for the computation of the Q's has been developed by J. C.
Pedersen of the Aveo Corporation. Some results of this pregrain have been
checked against published* results of a similar program at RAND Corporation
and good agreement was obtained for ka values as low as 0.2 (the lower lin:it on
the published RAND results). Both programs were operable for dielectric con-
stants having a negative real part as well as an imaginary part. Such cases
represert plasma spheres. Inthe case of a plasma, the complex dielectric
constant is given by

. 1
16018?
€= € -ie”" =1 - . (N

@
£ 4
w

where n e electron density, e = electronic charge, "Jg = electron coliision ire-
Guency, and €~ permitivity of free space. It is convenient to define n = (wp/m»)2

n_ e
=—-9-——§ and y = (wglw), where wp is the plasma frequency. The real and

@w
€O Me

imaginary parts of the dielectric constant are then given by

2
e' =—]:_i.‘y - n (8a)
1ty .
e =AY (8b)
1+

Some general statements can be made about the limiting values of 7 and v as

related to absorption. First, it is obvious that no absorption can occur for ¢” = 0.

Thus, the cases of 1 =0 (no electrons) or ¥ = 0 (no collisions) will yield Qab = 0.

The case of n = « with y finite represents a perfect conductor (imaginary refractive

index). No absorption can occur in this case. Finally, for v =« andn finite, we .
have ¢”° = 0 and agaiu no absorptior can occur. It has therefore been shown that
any resonances in the sbsorption cross section will occur for finite values of both
n andvy.

A number of sets of computer runs were made for plasma-like spheres, and
the results are shown in Figures 1 through 5. Each set of curves is a plot of Qabs
vs ¥ for a particular fixed valug of ka, with n the running parameter. The max-
imum value of Qab s for a given ka is seen to be characterized by a discrete value

*D, Deirmendjian and R. J. Clasen, Light Scattering on Partially Absorbifrlg
Homogeneous Spheres of Finite Size, RAND Report R-393-PR, Febh, 1962,




<
1000 YT T T T TIY T T T T T T Ty -
- 3
- 169010 ]
m s
-
-
= s
-
- 0
[
L / >
o 4 N\
N\
TN \
N <
e i e C N N
- \J N
- \
iE N ] 3
i ne2.8 oy
* (32 -
sl .
4 b= g
b -
- - 2.8
: ne2.4 7
el L g EIR IR AR R IR W [TOA NI AN}
26748 B & 3 2
1 [+X] 0.0} 0.001 0.0094

Figure i. Qabs as a Functionof n and ¥ for ka = 0.10

e 4




160

Q as a Functionof 3 and y for ka=0.5
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of n and a discrete value of ¥ . Thus, for a given ka, this set of values of » and
v represents the resonance condition for Qab s Of particular interest in these

results is the fact that the maximum value of Q which we define as @ as {max},

Y 13
increases strongly with decreasing ka. The va??osus Qab s {max) in Figures i to 5
have been identified with resonances in a, the electric dipoie partial wave coeffi-
cient. For ka values below 0.4, only the a, coefficient need be considered.
Although resonances due to the higher order a n couefficients have been observed in
some computer runs, these are very much sharper than those due to the electric
dirole term and arise from values of y which are too small to be of practical
interest. Since the magnetic permeability was set equal to u o 1O magnetic
resonances were expected in these runs, nor were they found. Resonances due to
“he bn can ccecur only in the case of negative permeability and were therefore not
investigated.

4. APPRONIMATIONS TO MIE THEORY

Since small ka implies large @ {max), and since it has been demonstrated

abs
that the use of 34 alone will suffice under these conditions, it is next meaningiul

to make two approximations.

(a) Assume that Qabs results from only the electric dipole term a
Find Qab s
to find the optimum values of the real and imaginary parts of a, for the

1
(max) as a function of ka. In doing this, it will be necessary

occurrence of @, (max).

abs

(b) Write a; as a power series expansion in ka and make the appropriate
approximation for ka << 1. Separate the approximate expression of a,
into iis real and imaginary parts. The optimum value of these, found ]
from (a) above, will then be used to arrive at two equations which define
the necessary values of ¢” and ¢°° as a function of ka for the occurrence
of Qabs {max), Finally, Eq. (8) will be used to obtain a set of equations
in n and ¥ giving the resonance values of these as functions of ka.

For the determination of @,

abs( max), assuming a particular a, to be the only

contributor, Eq. (6) reduces to

9 2 2
Qs = ;Q-(znn)[ae(an) - Ianl *R (b)) - o | ] (9)

If we now let a_ = (c+id)” 1, we obtain




= 2 4. c~-1
Qabs-?(ln‘*'l) !—-c—z—-:;.f'] (10}
- w

To find Qab s = Q b s‘ max), we must have

_?_[__9;}___]= 3["'1 = 0. (11)
ac 2y 42| W2 4%

Qpg (max) = 25, (12)
or

Qabs(ma*:) = -2_3:-:—2 (electric dipole resonance). (13)

Esxact machine calculations verify Eq. (13) for values of x below 0.5,

The next step is to calculate the optimum properties of the medium as functions
of x. It will be most convenient to first find the absorption resonance conditions:
€ = fl(x) and ¢ = gl(x). Equation (8) will then be used to findn = f2(x) and

Y = go(x). For this purpose, it is converient tc write a, as a power series

expansion in x and to then make a low frequency approxlimation, making sure
that sufficient terms are kept in the denominators to prevent the occurrence of
infinities which would otherwise result. Due to the algebraic complexity of this
operation, the series expansion for the general a, term is given in the Appendix.
The result is given by Eq. (A-12). Since Eq. (11) led to the result a = (2-i-i0)'1
for Qabs
the real and imaginary parts of the denominator of Eq. (A-12) to 2 and 0 respec-
tively, which yields Egs. (A-13) and (A-14). We now let x <<1. The zero'th
order appr::icimation of the absorption resonance conditions in Eqs. (13) and (14)
n

isa=- - B = 0. This is obviously not of suificiently high order in x since

the x dependence on ¢” and ¢“” does not appear. In addition, this result gives

= Qab s(‘ max), we obtain the absorption resonance conditions by equating

zero coliision frequency. The next higher-order approximation gives

{n+1)(2n+1) x2n+1

] i , (14)
[(2n+111]% (n+1)n?

_ n+1 2 2(2n+1)

e [”" AZn-1 (2n+3)]' (18)

in the case of electric dipole resonance (n= 1), we have the resonance conditions:
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f=2x (16)

a:—[z-}-lsz- xz]. {17)

Substituting Eqs. (16) and (17) into Eqgs. (8a) and (8b), we finally get

w
ARt £ (s
2
w
0= =3+-1-52-x2. (19)

Equations (16) and (17) constitute the necessary conditions for electric dipole
resonance in the absorntion eificiency factor for homogeneous plasma spheres
having small radius-to-wavelength ratios. Since Eq. (13) shows that x must be
small in order for large absorption efficiencies to occur, Egs. (18) and (19) are
useful in the region of interest.

5. DISCUSSION

It was demonstrated in the last section that large absorption resonances can
occur in plasma spheres (Eq. 13). The conditions for electric dipole absorption
resonance (Eqs. 18 and 19) show that in the region of strong resonance {small x),
the value of 7 goes to a constant value of 3, while v is proportional to xs. Thus,
the ratio of plasma frequency w p to collision frequency w_ is proportional to x-s.
Thus, for Qabs = 150 (Eq. 13), we would require wplwg =N7 /v = 2600. As x is
further decreased, this ratio will greatly increase. It is probably this fact more
than any other which will limit the highest physically realizable values of Qabs'
Another consideration is the mean free path of electrons within the plasma sphere.
This distance is really the mean distance a "hot'" electron must travel in order for
it to equilibrate with the surrounding ion-neutral atom medium. Obviously, the
sphere radius should not be smaller than the mean free path. On the other hand,
the radial homogeniety of the plasma sphere is not believed to be too important in
this cage. The reason is that, since a/A is small, the wave will "see" a sphere
with some effective dielectric constant and some effective radius. These assump-
tions have heen at least partially confirmed by Dr. P, Wyatt* , Defense Research

Corporation.

#Private communication.




The only real way to predict the degree of physical realizability of this absorp-
tion resonance phenomenon is to combine the electro-magnetic resonance conditions
(Egs. 18 and 18) with appropriate physical expressions for the equation of state and
the collision frequency, and to derive a set of equivalent thermodynamic resonarnice
conditions. A preliminary calculation of this nature was performed by one of the
writers (N. P.) who used the weakly ionized approximation of the Saha equation.
Difficulties were encountered in that, in the region of interest (small %), the
assumption of weak ionization was not valid. Mr. J. Davis of the Avco Corporation
is presently extending this work to include strong ionization. These results, when
they are available, will be investigated for violations of the assumption of equilib-
rium, etc. If the assumptions implicit in the calculation prove to be valid in the
resonance region, we will conclude that this is the proper thermodynamic model.

If not, we will proceed to the more complicated non-equilibrium case. Present
indications are that this may be necessary.

One of the writers (N. P.) has done some preliminary work on the effects of a
strong magnetic field on the absorption resonance conditions. The anticipated
results are:

2
w
12 2
x 3+ x“, (20}
“peasig
B
@
£ - ,3. xS, (2i)
vthere

w, = -2 = gectron cyclotron frequency.
B m,

Although Egs. (21) and (18) are identical, Egs. (20) and (19) differ in that @z
replaces « in Eq. {19). Thus, the application of a strong (w P >>w) magnetic
fizld serves to decouple the resonance conditions, and leads to an extra degree of
freedom in physically realizing sirong absorption resonances. If severe limita-
tions should be shown as a result of the zero magnetic field calculations, the
strong field case will be investigated in detail regarding its relaxation of thermo-
dynamic requirements.

When the correct thermodynamic description of the plasma has been found,
the power input and the power output will both be written in analytic form. Thus,
an analytic equation for steady state can be written. This equation will be set up
ard the required incident electric field strength will be computed. A more interest-
ing study will be an examination of the steady siate equation for stability. Is the




16€

plasma sphere, under the (initial) steady state conditions stable against {lvctuations
of the thermodynamic parameters? This question will hopefully be answered wher
the thermodynamic resonance conditions are expressed in analytic form. !
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