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Preface

This is the f1i Zt volume of a two-volume collection of papers presented at the

Symposium on the Modification of Electromagnetic Scattering Cross Sf -.tions in the

Resonant Region held or, 4 June 1963 at zhe Air Force Cambridge Research

Laboratories.

Papers in the present volume establish the need for techniques which signifi-

cantly reduce the electromagnetic scattering cross sectivi, of bodies in the fre-

quency range where wavelength is comparable to the body size. One technique

which holds promise for use in the resonance region is impedance loading of the

body surface. This technique is discussed in several papers. Other papers give

results demonstrating the effects thal material properties have in changing cross

sections in the resonant r'egion.

Volume II of the collection is cla .sified. It contains the papers "Radar

Absorbing Materials for the Resonance Region (U)" by K.M. Siegel and "Comm.nt

on Some Radar Camouflage Prhblems (U)" by W.F. Bahret.
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Foreword
Objectives of the Smposium oil 1Iodifieation of Electromagnetic --tatterin- (ro,.

-eetion in the Rle-onant JRe;in

We organized this conference to emphasize resonant region scattering because

we thought there were significant results to report. Using the technical ideas aria

techniques discussed June 4th, we believe the scattering properties of importapt

rada.- target- can oe significantly mcuified by reactive loading recessed into the

targets. As is often the case in science, the experimental findings are out in :au-

vance of theoretical and even conceptua! explanations.

We were gratifieu by the high-quality papers and audience at this sy mposiuim.

It is hoped that you.will now look at this record critically to find the contradict:ons,

mistakes, and anomalous data. A sound national effort on this theme should add

another tool for controlling the scattering of bodies.

In my opinion the unsolved problems are these: What other general shapes

besides the electric dipole (rod) or string of dipoles (multiply loaded rod) w1l1 have

a minimum total scattering cross section upon application of suitable localh2ed
I

loading? Montgomery hints that there might be a class of symmetrical shapes
with such properties. What is, for example, the suitable :.oading to reduc,' the

total cross section of a body representable by both electric and magnetic dipole.s

What is the significance of adding loss to the terminal loacs on longer rodi 2 (o ,r

4 /2 in length) to maximize scatter reduction? How does one make the lransitkon

from a frequency range where specular reflections are dominant and where mat:he-i

dipoles 3 or ordinary absorbing materials provide minimum back scattering to thu

vii



resonant region where slightly lossy 3nd lossless reactive loadings appear to do the

job? Does the Conductron paper's discussion of surface impedance loading suitable

for resonant shapes answer this question, or is the situation significantly different

for terminal loading with discrete network impedance ports on the body? Can the

reactive loading method be used to redirect scattering in the forward scatter direc-

tion, for example, as absorbers tend to do, rather than reduce the total cross

section?

Why do the values of inductive reactive loading needed to minimize scattering

cross section decrease appreciably as the rod is made thicker? Z Why is the band-

width better with dual loading than with single (mid-point) loading on rods of other-

wise similar shapet? Is the desired reactive loading vs. frequency for minimum

back scatter approximately a constant value as the data show? 6 When the input

impedances vs. frequency characteristics for positions of loading on a scatterer are

known, can they be synthesized by known passive networks or will the desired fre-

quency response violate Foster's reactance theorem? Do the external modes on the

object (spherical harmonics in the case of a sphere, for example) dictate the proper

positions for the terminal loadings and even the internal cavity structdre in order

to realize the proper phase relations of the surface currents to produce minimum,

total, or differential cross section? Why does the bistatic radar cross section of a

rod center loaded to produce minimum monostatic radar scattering for all attitudes

increase after a bistatic angle of 20 to 30 degrees? Can scattering from two ortho-

gonal polarization vectors I' e treated independently by suitable orthogonal loading on

the objects?

When the volume of the object rather than its surface is available, what values

of the constitutive parameters will augment, reduce, or otherwise modify the

scattering of resonant objects? The work of Avco 7 (plasma media) and Atlas 8 (di-

electrics) hints at unusual possibilities here.

Can reactive loading methods be successfully combined with shaping or absorb-

ing techniques to cover a large bandwidth for a large angular region of observation?

There are provisional and perhaps correct answers to all these questions.

Probably they will all be answerable and fall like a row of dominoes as our under-

standing of the resonant region scattering and the influence of strategically located

terminal loads improves.

In spite of unanswered questions, some very useful engineering results are

available. Thick cargo-carrying bodies can be reduced significantly in scatter

cross section for all attitudes over the peak of the first resonance hump. This

loading can be recessed into the body and with coaxial or lumped network impedance

could be packaged pretty conveniently. At Ohio State 9 and Boeing 1 0 good st 'ides -

are being made to combine and control antenna and object scattering by judicious

use cf imp-dance loading. I hope the prodding, provo'cation, and discussions of this

viii



conference will help to bolster the theoretical picture ajnd bring useful applications

rather soon.

C. J. SLETTEN
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THE MODIFICATION OF ELECTROMAGNETIC
SCATTERING CROSS SECTIONS IN THE

RESONANT REGION

I. Some Thoughts on Scattering Cross Sections in the
Resonance Region

Richard1 B. \!aek iwl Philipp Black.mith. Jr.
\licro%%a~e Ph%--ies laloralor%

• ir Foree CinI.rat ,ic fle-earvh Lahoratorit.
B~edford. \1a!,-aehlmctts

One certain way to start an argument in even a small group of people familiar

with electromagnetic scattering is to use the axpression "resonance region".

Someone will immediately object that for most shapes there is no resonance in

the usual crcuit sense of zero susceptance and maximum current. Someone else

will point to the maxima and minima in curves of scattering cross section vs.

frequency, and then the discussion really begins. Such instances simply reaffirm

what most of us readily admit - that when the characteristic dimensions of a tar-

get are of the same order of magnitude as the wavelength, the electromagnetic

properties are immersed in a considerable cloud of mystery.

A thin dipole is by far the simplest of such targets, for it ha-, essentially

a one-dimensional line current. In this case, the measurea and computed back-

scatter cross sections, crrent distributions, and driving-point .idmitltant es can

(Received for publication 9 June 1964)
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be closely correlated to give a clear picture of its behavior. Hot% ever, as soon

as currents on the scatterer are permitter] to have additional components, such

clarity vanishes. The sphere, for example, is a simple three-dimensional shape

that still requires four to seven terms of the Mie solution to describe its proper-

ties, even when ka is only 1. 0 to 1. 5. Already there is some difficulty in de-

veloping an intuitive feeling for the results. For most shapes, including the very

interesting complex ones, even this kind of a solution is not presently available

when the body dimensions are comparable in size to the wavelength of tho imping-

ing wave. If the scatterer is made of dielectric or lossy material, the situation

is further complicated. The result is that our ability to use or modify target

properties in the resonance region is severely limited.

Determining the scattering cross sections from an interesting shape and

learning to modify them are the first steps necessary toward an ultimate goal of

controlling the scattering properties - developing a simple positive method to

make the cross sections appear larger or negligibly small as desired. Alterna-

tively, if energy is to be received by or transmitted from the scatterer, the

problem is to place antenna structures so they intercept the currents with maxi-

mum efficiency or excite the body to concentrate radiated energy in a desired

direction.

Although the scattering properties of a target are usually examined by them-

selves in graphs of a vs. angle or ka, their principal application is in determin-

ing how susceptible a target may be to detection by a radar. It is interesting to

examine some common cross sections from this point of view. The radar range

equation is

= mPt G2 X2 1 4 (1)
S min (4,-T)

where R max' PC G, S min , X are, respectively, the maximum range, the power

transmitted, antenna gain, minimum detectable signal, and the wavelength. a is

the backscatter cross section of the target. Note that Pt. Saill' G, and X are

properties of the radar and 'ndependent of the target, whereas fhe backscatter

cross section is not an exclusive property of the target because it is a function of

the wavelength.

The obvious and most important conclusion from Eq. (1) is that large changes

in uare necessary to produce significant changes in R max' For example, a 12 db

decrease in or only decreases the maximum detectable range by half; a 40 db de-

crease is required in a to reduce Rmax by 90 percent. This is illustrated in Fig-

ure I for a radar which can just detect a target of I m cross section at 1000
miles.



0- fdb)
4000 -40 -30 -20 -tO 0 ID

PI I 1 1

2000 ___t __ C, Lc 114

max k (4-,)3
Lmini~

1000
Rmox 800

(males)

500

200 -4

0.0001 0.001 0.01 0ol I 0 10.0

o (square meters:

Figure 1. Variation of Maximum Range With Backscatter Cross .;ection. Nor-rr -
alized to 1000 miles for a I m 2 target.

In Figure 2 the backscatter cross sections of several metal targets are com-
pared as a function of k"a", where "a" is a characteristic dimension for each
particular target and is listed on the figure. Data for the sphere is theoretical;
that for the other curves is experimental 1-5or values of k"a" greater than
7 or 8 , there are large differences between the values of cr from a sphere and
those from a flat plate at normal incidence However, when k"a" is about I. I,
the cross sections from all but the dipole are ', ithin a 4 db range. This produces
a corresponding difference in Rma x of about ±12 percent from an average value.
If the flat plate, an extreme examplM, is excluded there is a considerable range
of k"a" over which the remaining curves are separated by not more than 12 db,
whiek corresponds to a variation of 2 to 1 in 1ma x  While this is a signilicant
decrease in Rma x it could be compensated by existing state-of-the-art techniques
For example, a larger antenna producing A db additional gain would be suffic'ient
to restore the original value of R ax

Also, when k"a" is near I, the variation of backscatter cross section withtar-
get aspect for the different shapes is very simila-tothe variation observed fron a
dipole. This is further discussed and illustrated in the paper by Sletten, et al.

Consider now the detection of a class of targets having different shapes but
approximately the same size. What frequency band should lie used to detect thc
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targets at the greatest distances " Assume P t/Smin and the antenna gain, G, to

be constant. The target size will be considered constant and frequency will be

the variable. Actually, the powers and sensitivities which are available make the

ratio P tS rain decrease as the frequency is increased. Assuming the antenna

gain to be constant means that once the desired frequency is determined, the

antenna will be made sufficiently large to provide the required gain. At lower

frequencies where large reflectors become ,mpractical, multiplate techniques

might be used. The ideal would be to always design the antenna so it produces

the maximum obtainable gain which, from considerations of mechaniLal tolerances

and coherence, is currently estimated to be about 65 to 70 db. Within a chosen

frequency band, the antenna will have a fixed size and its gain will exhibit the

usual fr-quency dependence. This is not considered in the following.
With these assumptions, the radar range equation can be written as

-' 1/4

Rmax K caX , K = 3(2)

10 108 I I I I I 1 ! I I I "a/ -
6 -thn circular disk -L. ftan .-.1* -' - -

4 (normal incidence)- 30* flat-back come ''.-

3 - *_

2 "C1
sphere

6 thin dipole

44

10 n10

08 
_t

061_ db

04 '

01 LINE OBJECT TARGET ASPECT CHARACTERISTIC LENGTH ** DATA SOURCE -20
.008 sphere radius ref I
006 ---"*--A 30 flt-back cone nose- radius of flat back ref. 2
004-- 30"cone-sphere nose-on radius of sphere ref, 3

-4-0* dipole. aiX -0.0035 ]broadside h,dipole half-length ref4.002 .. thin circular disk broadside disk radius ref 5

0 10 2.0 30 40 ,s0 &,0 TO so 9.0

K " a "

Figure 2. Compa-ison of Scattering Cross Sections for Various Shapes



Thus, unless - varies at least as f2 or !A 2 , Rmax .ill decrease as t e fre-

quency is increased. in the Rayleigh region where the taret r.im ensions are :Lu,

smaller than a wavelength, the backscatter cross sections ot nany; objects ai,:
known to vary as 1 p4 With such targets and frequencies R ax chan1 a :

where f is the frequency. The Rayleigh backscatter cross section of a spheie,

for example, is

a = 9X -2 ka) 6  C")

and

R 9" D max 5. 122R = K 9== D. or(4}
max 4 r KD - 1

NT Nk

where D = sphere diameter 2a, k= - , k 1 --

At the other frequency extreme, the optics region where target dimensions

are much larger than a wavelength, the backscatter cross sections of many ob-

jects are independent of frequency. With these targets and frequencies, Rmax
1

changes as -, decreasing as the frequency is increased. The optics cross
,!f

section of a sphere, for example, is

c r a2 (5)

and

R K() D- r max 0. 9414 ma1 (6)

In contrast, a flat plate which is much larger than a wavelength gives

4- A2

a = >2 , A = plate area (7)

and

R max K(4-r)4 D square plate (D = edge length) (8)
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R max = K(47)4  T D circular plate (D = diameter) (9)

so that R max is independent of frequency.

When k"a" is between about 0.2 and 10, the so-cc'lled resonance region,

values of a/ . can be taken from Figure 2. Let T be a given value of a1. 2 in

Figure 2. Then

max =- T 4 k1  k1 = X/D (10)
KD -~ 1 k= l

and the usual oscillations of a vs. k" a" ar? modulated by the dependence on X

(or 1/f).
RmaxSome typical curves of the normalized maximum range, KD, vs. k" a"

are given in Figure ? for the backscatter cross sections of Figure 2. Again, "a"

is a characteristic length for the target as given in the table of Figure 2, and D

may he considered as an average or most probable target size equal to 2 "a".

Under the assumption discussed above and for the targets considered, Figure 3

clearly demonstrates the desirability of choosing a frequency which either places

k" a" between about 0. 5 and 2 or makes k"1 a" as low as is compatible with the

obtainable antenna sizes. Since for many targets D is quite large, Figure 3 also

emphasizes the need for physically large antennas which have high gain at the

lower frequencies.

The most commonly discussed methods of modifying the cross sections of

targets are shaping and the use of absorbers. Figures 2 and 3 indicate that shap-

ing is effective at larger values of k" a" but is not very effective when k" a" is

near 1. Likewise., absorbers are effective at larger k"a " values, but at smaller

k" all values they are either not particularly effective or are bulky at lower fre-

quenc.ies.

Most of the symposium papers are concerned with a third method of modify-

ing the cross sections. This method has been called "reactive loading" and is

especially applicable to targets in the range of small k" a" and at lower frequen-

cies where the more common methods lose their effectiveness. Reactive loading

holds the further promise of providing a simple means of not just modifying but

of actually controlling the cross sections by simply closing or opening a switch.

It is hoped that the symposium and its record will not only lead to improved

tevhniques for controlling scattering cross sections in the resonance region, but

will also lead to a better understanding of basic scattering properties when the

object dimensions are comparable in size to a wavelength.
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11. The Minimization of the Backscattering of a
Cylinder By Central Loading*

h~ju-1Iu ( bItr aind X.ldj, I.te'ji!

Hunien i-r-zZtimi Izalmor uuo

Abstract

A theoretical and experimen~tal study of the minimizati,)n of the hackscattering of
of a thin cylinder by central loading is presented. The influced current on n cen-
trally loaded cylinder illuminated by -, plane wnve at rormial incidence is theoreti -
cally determined and experimentally meisurf-d. The macnitude and phase of the
induced current can. be greatly ehnned by a centrnl Irnpe ]anc e The Optiwir
loading to achieve zero hackscatter in the broAside direction has been determined
for a thin cylinder shorter than 2 v avelengths. The optin-i-m central impedance
for the purpose of minimizing the broadside backscattering fron, c, thin cylinider
over a wide range of frequencies has also been determined.

'F his paper was presented ct the S~ps~mon >Icodification of~ 1 ,cti oma -netic
Scattering Cross Section in. the Rehsornant tNcaion, Air Vorree Car bridff N~esearch
Laboratories, B~edford, \Iassachiisctts, .Tunc- 4, !IG' . The resa'aruii in this
paper was supported by AXir F'orce Cambridge Ntes a.rch i aboratcwo-s Lonier
Contract AF lN(62P)-2371.
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I. INTROI}UTI0!N

The first known use of reactive loading to minimize scatiering was by fams 1

who applied the technique to metallic posts used in a parallel plate pillbox struc-
ture. The idea of using this technique to decrease thte radar cross secion of

ob-ects in space was suggested and employed by Slettn 2 in 1950. The backscatter-
ing of a cylinder with and without a central load has be en studied b,, several

authors.3,'4, 5 The information available to date is that if a cylinder of near a half

wavelength is loaded with a high reactive impedance at its center, its backscatter-
ing cross section can be significantly reduced. The exact way in which the

reactive loading behaves and the optimum method of loading are still not well

understood. It is the purpose of this paper to present a theoretical and an experi-

mental study of the subject in order to clarify the nature of the loading qnd also to
present an optimum loading for reducing to zero the broadside backscattering from

a cylinder.

We study the problem from the viewpoint of the induced current on a metallic

object illuminated by an electromagnetic wave, since the induced current plays the

most fundamental role in the scattering. We consider a perfectly conducting cylin-
der with a small radius and a length shorter than 2 wavelengths, and assume that

a plane wave is incident broadside on the cylinder. A current is induced on the

cylinder by the incident plane wave, and this induced curre -t in turn produces a

scattered electromagnetic field. If an impedance is added at the center of the
cylinder, the induced current and the scattered field are modified. There are

three methods by which the addition of a central impedance can reduce the scattered

field. These are: (a) by reducing the magnitude of the induced current; (b) by

reversing the phase of the induced current over some part of the cylinder; and

(c) by a combination of (a) and (b). The third method is the most effective for

reducing the scattering, and we shall show that with central loading it is possible

to reduce the broadside backscattering to zero.

In Section 2, we determine theoretically the induced current on the cylinder
with central loading by applying an integral equation method. This induced current

is expressed as a function of cylinder dimensions and the central impedance. In
Section 3, we study the induced current on a cylinder without loading. In Section 4,

the induced current on a cylinder loaded with an infinite impedance is found. In

Section 5, we study the induced current on a cylinder with a resonant length for

various central impedances. In Section 6, the induced current on a cylinder with

an anti-resonant length is studied for various central impedances. Through Sec-

tions 3 to 6, theoretical and experimental results are compared. In Section 7, the

experimental method is described. In Section 8, we obtain the optimum impedance
for zero broadside backscattering from a thin cylinder. The optimum impedance

required to minimize the broadside backscattering from a thin cylinder over a wide

range of frequencies is also included.
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In this paper, attention has been given only to the broadside case, since the

highest return is in this direction. %Ve have limited our analysis to a thin cylinder

in the interest of simplicity in developing the theory. The case of a thiLker cylin-

der and the case of the oblique backscattering will, however, be studied later. The
wise of multiple loading on a cylinder will also be inveztipated in the future.

2. INI)LCEiD CURRE\T

The geometry of the problem is as shown in Figure 1. A cylinder with a radius
a and a length 2h is assumed to be perfently conducting. A plane electromagnetic

wave with the E field parallel to the axis is incident norniallv to the cylnder. At

the center of the cylinder , lumped impedance ZL is connected. fhe dimensions

of interest are

1 < 2h < 2X

22 <

where X is the wavelength and po is the wave number. The second condition

implies that the cylinder is thin and that we can assume that only the axial current

is induced.

-zh

EOL i I I
EoL z = 0 I/4X<2h<2X

Incident T , I
EM Wave _z

-2a-

iL - zm-h

Figure 1. Cylinder with Central Loading Illuminated by an Electromagnetic Wave
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2.1 Integral Equation for [he Induced Current on the Cylinder

In order to determine the induced current on the cylinder, we apply an integral

equation method. The integral equation for the induced current is derived first.

The incident tangential electric field is assumed to be

E n = E (!)z 0

where E is constant along the cylinder.

The tangential electric field at the cylinder surface, maintained by the current

and cbarge on the cylinder, is

S= _iwA (2)
z Z Z

where 0 is the scalar potential maintained by the Tharge, and Az is the tangential

component of the vector potential maintained by the current. By using the Lorentz

condition

= j V. A (3)

Eq. (2) can be expressed as

Ea . a2 + P2) A (4)

The electric field maintained across the gap at the center of the cylinder is

related to the voltage drop across the centur load as follows:

'5

Egdz = -VL = ZLIz(zO) = ZLIO (5)
-5

where VL is the voltage drop across the center load ZL and 10 is the induced

current at the center of the cylinder. From Eq. (5), Eg can be expressed asz

E g = ZLIo 6(z) (6)

If the cylinder is perfectly conducting, the tangential electric field at the sur-

face of the cylinder, excluding the gap, vanishes. That is



Ea +E i n = 0 for ;<z<h and -h<z< -5. (7)
z z - --

At the gap, the electric field is ;ontinuous. That is

E+ E n  = E g = ZLIo6(z), for -5< z< 6 (,)

Actually, a single equation can be obtained by combining Eqs. (7) and () and usino

the result %ith Eq. (41 over the whole length of the cylinder to obtain

C12A g 3-( - Z I o I (z ) for -h < z <h (a z 2  z 0oz e 0 L 0

Equation (9) is an inhomogeneous differential equation for A.. The general solu-

tion is the sum of the complimentary function and a particular integral as follows:

A - cos 3oz + C sin Aoz + n (z (10)
z v 0 i oC1 2 0

In Eq. (10) v0 is 1I'TE, C 1 and C2 are arbitrary constants. O(z) is a particu-

lar integral and can be expressed as

o (z) . [E0(S) - ZL Io(S)j sin P()(z - s) ds

E
0 (1 - cos f oZ) - tZL 1 sin lZi (11)o 2
0

If E0 is assumed to be constant along the cylinder, (2 can be proved to be

zero from the symmetry. Equation (10) then becomes

E1Az(Z) v°  1 cOSoz + -2 (1 - cos poz) - 7 Io sin o z
z ~ [ C1  0z o 2 L 0 o0

for -h< z< h (12)

From Eq. (12), C1 can be expressed in terms of A z(h) as



14

Eo I E

C1 = sec oh voAz(h) -- 2 (1 -hcoh)-ZLIosin o . (13)

With Eqs. (J2) and (13) we obtain the following equation:

A (z) -A (h) -- sec, h A (h)(Cs0z-os3h

+ IZLIosin# (h-Iz for -h<z<h. (14)

On the other hand, the left hand side of Eq. (14) is related to the induced

current on the cylinder in the following way:

h

A (z) - A (h) -L0 . Iz(z-) K(zZ') dz' (15)z z 4-, d~z
-h

where

Kd(zz') K a(z,z-) - K a(h, z') (16)

r - ;)-2 2

exp [-jo 'V(z + a2
K a(Z Z" ) (17)a(z -z') 2 + a 2

and I (z) is the induced current on the cylinder.

An integral equation for the induced current on the cylinder 's then obtained

by equating Eqs. (14) and (15) as follows:

- Iz(z') Kd(z, z') dz' -- se- ph (j v A (h) -- 0 ) (cos Roz - cos 3oh)

-h

+. ZL Io sing (h -Izj (08)

where to = 120ir and (18) is valid for -h>z>h. It is noted that Az (h) and I in

the right-hand side of Eq. (18) are the functions of Iz (z) and are still unknown.
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2.2 .olutin for [l Induced (.urr'nt on a (- lnder

The right-hand side of Eq. (13) 6uggests a form for the solutior, - :Z. Au

I ( C) C(Cos 1 3z -cos 3h) + C s sin3(h - IzI). (19)

It is then reasonable to divide Eq. (13) irto tvmo parts as follo, .:

h

Cc V (cos 3 0 z' - cos 0 h) Kd(z,Z') dz'

-h

-j4 / '°

- sec ;3 h  v. A(h) - o) z - cos h) (20)
j3 0 hz gV 0 A 3h) (:!oc 1 0z o 30h

h

C 5  sin j30 (h - ,z'1) Kd(z,Z') dz'

-h

- j2,. sec 3 h Z I sin 3 (h - 1z!) . (21)

Equations (20) and (21) are valid for -h< z<h and also well matched at the end

points, z = +h. To find the constants, C c and C, we can match both sides of

Eqs. (20) and (21) at the center of the cylinder, z 0.

By setting z = 0 in Eq. (20), C is determined as

-j4 r E- 0
cc Tcd se Jf30 h v 0 Az (h) - (0 - cos 0 h) (22)

where

h

Tcd = (cos po z : - cos i3oh) Kd(0, z') dz' . (23)

-h

By setting z = 0 in Eq. (21), Cs is determined as

-j2r

Cs - Tsd sec gh Z Io sin oh (24)

where
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h

Tsd = sin 30 (h - z'i) Kd(, z'! dz" (25)

-h

Substitution of Eqs. (22) and (24) in Eq. (19) gives

I (Z) = - j 4 z Lkd jv ° Az(h) - -o (se 3oh - 1) (cos 3oz - cos soh)

1 ZL ° tan 3h sin 3,(h Iz).(26)
sd

Equation (26) is not the final form of the solution of Iz(z) because Az(h) and i °

are still unknown.

Since 10 = Iz(Z = 0), we can express I° in terms of A z(h) by letting z = 0 in

(26), and Eq. (26) can then be arranged ds

I = ( A A' (cos 0 - cos 3oh) N' sino (h - zj

(27)

where

M' = 1 (sec 3o h - 1) (28)

-ZL tan 30b(sec $oh + cos 3 h - 2) (29)
Tcd Z 0L tan oh sin 3oh - j 60Tcd Tsd

Equation (27) still has one unknown, A z(h), and to determine this we do the follow-

ing. From the definition of vector potential, we have

h
AIh) -- z(Z') Ka(h, z) dz' (30)

-h

where K (h, z') is defined in Eq. (17). If Eq. (27) is substituted in Eq. (30), we

obtain

jEo MIT ca + N"TsaA (h) = (31)
Vop 1 - MTca - NTsa



where

h

Tca = C(cos 3 z' - cos 3 h) K'h, z') dz' (32)

-h

11
Tsa = sin o(h - 1z' 1) Ka(h, z')dz' (33)

-h

Now a final form of the solution of Iz (z) can be obtained if Eq. (31) is substituted
in Eq. (27). After rearrangement, the final solution for Iz (z) can be summarized

as follows:

Iz(z) = 30,3o $h 1 XT I(cos 3 ozcos;h)-sin 3o(h-!z

3 \o  s $oh - ca - sa L34)

(34)

where

1 (1 - cos 30h) (35)
cd

-ZL sin 3 0h(l - cos 3oh)2

Tcd ZL sin2 
0 h - j 60Tcd Tsd cos 30h

and Tcd, Tsd, T ca' Tsa are defined in Eq. (23), (25), (32), and (33).

Equati-, (34) gives a complete expression for the induced current on a cylinder
with a central load, ZL, when illuminated by a constant electric field, Eo, at
broadside. The accuracy of Eq. (34) is high and its form is simple and suitable
for the firther development oi theory. It is checked experimentally in later

sections.
As a matter of completeness and convenience, integrals Tcd, Tsd T c a' and

Tsa are expressed in terms of better-known integrals as follows:

Tcd Ca(h, 0) - Ca() , h) - cos 0h [Ea(h, (1) - Ea(h, h)] 37)

Tsd= sinf 1h [Ca(h ' - Ca(hh I - °S oh Sa (h, 0) -Sa(h,hj (38)

Tca = C a(h,h) - cos qo h E a(h,h) (39)
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Tsa = sine' i (h, h) - cos 30h Sa(h, h) (40)

where

h

Ca(h, 0) = cos poz' Ka(0, z') dz (41)

-h

h

Ca(h,h) = cos 3o z ' Ka(h, z' ) dz (42)

-h

h

Ea (h, 0) = . Ka(0, z1 ) dz' 43)

h

h

Ea(h, h) = K(h, z') dz' (44)

-h

h

Sa(h, 0) = sin P 0z" Ka(O, z') dz' (45)

-h

h

Sa(h, h) = Csin3oz K a(h, z') dz' (46)

-h

The integrals of Eqs. (41) to (46) can be calculated by using a digital computer.

3. INDUCED CURRENT ON A CYLINDER AiTIIOLT CENTRAL LOAIDING

The first and the simplest case to be studied is a cylinder without loading.

The induced current on the cylinder can be found from Eq. (34) by letting ZL = 0.

That is

I jE0  ( l-cos %h (o )z-Cs8h
z 30 o ((Tcd + Tca).cos 30h - Tca) (co sOz-coskoh).



1'4

With Eqs. (37) and (39), I (z) can be expressed as
z

j E o 0 Q1 - cos 0 oh)(cos ., 0 z - cos 3o0h)
I z(z) . .........30 o  Ca(h, 0) cos oh - Ea(h, 0) cos 30 h - Cath,h)- Ea(h,h)kos 0 h

(47)

The distribution of the induced current along the cylinder in this case is a shifted

cosine curve. The maximum induced current occurs at

z = 0 for 3oh <
(48)

z = X/2 for -- < 0oh < 2r
2 0

and is given by

jE° (1 - cos z3h5)
1 (0) =a )cs3h
z 30 o a(h, O)cos ohEa(h,0)cos2 3o-h-C a(h, h)Ea(h,h)cos3

(49)

or

1 X2 jE 0  
sin 23 h

z30 o Ca(h,05~cOSoh - Ea(h, 0) cos 2.3oh - Ca(h,h) -Ea(h,h) cos3 h

(50)

Theoretical and experimental results of I Z(0) as a function of h are compared

and shown graphically in Figuve 2. The theoretical results are calculated from

Eq. (49) with a computer. The experimental results are obtained by measuring

the induced current at the c&nter of a 3/16-in. -radius, variable length cylinder;

the cylinder length can be varied between X/4 and 2X. The cylinder is illuminated

by a plane wave with a frequency of 1.088 kMc. The agreement between theory

and experiment is good except at a point near h = 0.7 X where a resonant peak

occurs. The discrepancy at this point may be due to theoretical error or to the

fact that the incident electromagnetic wave in the experiment is not constant along

the cylinder for lengths greater than X. Since the general behavior between X/4

to 2X is quite well predicted by theory and confirmed bN experiment, we have not

attempted to minimize the above disagreement.

The current distributions along the cylinder of various lengths are shown

graphically in Figure 3. Theoretical and experimental resuhs are in good

agreement.
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1.4

1.2 Theory
0 o 0 Experiment

o 2o

0. I- 1.
Ld

00
s-O0.8
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taQ6
>0

l0.42....1.

C0

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8' 0.9 I.0

h/X

Figure 2. 1 z(0) vs h/X when oa 0.11, f 1.088 kMc, ZL = 0.

The results obtained in this section are not unexpected. The induced current

reaches a resonant peak on a cylinder with a length of 0.43X or a length of 1.4X

for goa = 0.11. Obviously, these current peaks imply large backscattering signals.

Iv e propose to eliminate these current peaks by the use of suitable impedance

loading.

. INDL ("ED CI ,lIIENT ON A CI UNDER ITIt AN INFINITE IIPEDANCE AS I'r. CENTRAL LOAD

The second case to be studied is a cylinder % ith an infinite impedance loaded

at its center. Theoretically, the induced current can be obtained from Eq. (34) by

setting Z L z Experimentally, an infinite impedance is approximated by a

coaxial cavity tuned at its anti-resonance position. This coaxial cavity is built

inside of the cylinder as described in a later section. The induced current on the

loaded cylinder is then measured by a small probe.
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Figure 3. Distribation of I (zhen Z L .

When , from Eqs. (35) ana (36)

N=-(l-cOS3oh)
N 0 for 3oh t nr. (.11
M sin 0h

The substitution of Eq. (51) in Eq. (34) gives

(z) -j E (1 -cos h) [sin 0 f z-sin 3oh sin3(h -1z[)I
z() 30o 0 sin $h [ C (h, 0) - (2- -cos o3h) a(h,h) - COS3 0h fa(h' 0 (h'h)

-(01-cos,3 h) 2 S a(h, h)J
(52)

The induced current in this case is zero tt the center of the cyhndei, and is dis-

tributed along the cylinder as a combintd curve of a -;ine and a shifted vine curi e.

The maximum induiced current occurs at

h
z = 2 for oh< 2r (53)
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and is given by

2h

Izh -j E °  2 sin _-- (1 - cos ) (1 -co"J3,h)
( _ sin3oh[Cah,O)-(2-cosSos oh l-a(h,O) Ea(h,h)]"0 0

L ~~ ~~ - cos3 0oh)2S h,)~(l~C0i~oh)Sa~h, h)

(54)
The theoretical value of 1,() as a fanction of h/Ak is shown gr phically in

Figure 4 in comparison with an experimental curve. The experimental results are
obtained with the coaxial cavity set near its anti-resonance position The agree-
ment between theory and experiment is not very good. The discrepitncy is due to
the fact that it is impossible to obtain experimentally an infinite impedance from a
coaxial cavity structure. This reasoning is supported by the fact thi t there is
closer agreement between theory and experiment for ZL = j2000 Q.

THEORY
t . THEORY 12(h/2) h

o o o EXPERIMENT A U
- (with a cavity of c. = 4
J-. 21= 6.34cm, 28 = 0.127cm) E -4 20

.a
L ZL

wQ8\
0 L0 0

C

_L Z j2O0O1l
hQ6- -

s0.
-0.24-

W 0

02 0 ~ 7 h ~ h

h A

Figure 4. 1I (h/2) vs h/X when go a 0.11, f 1.088 kMc, Z L large.
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The distribution of the induced current on three cvliinders of different lengths

and loaded with infinite impedance, is shown graphically in Figure 5. The agree-

ment between theory and experiment is good for these cases.

THEORY ZLI

I.Oi S'0 0 EXPERIMENT 2
0o o21 :6.34cm

1 28 = 0.127cm
08

C

0.6 . / h/. 326
-

0 0

{0LI 0.4- h/X=.253 A

0- 4 -II // x0.I3 !/ "x "

0.3 0.2 0. o6 . 0.2 0.3 .4
Izl/X \ Izl/X

Figure 5. Distribution of I (z) for h = 0.213X,
h = 0.259X, and h = 0.326X wAhen ZL =x .

The important information obtained with infinite impedance at the cen ,'-r of

the cylinder is as follows: The induced currents at resonant lengths, namely

2h 0.43X and 2h = 1.4A, are greatly reduced by this loading. However, the

induced current appears to have a peak when 2h = 0.9X with this loading. This

current peak should be suppressed if a low scattering over a wide frequency range

is desired. We then conclude that an infinite impedance, or a very high impedance,

for the central loading is not an optimum from the viewpoint of minimizing the

scattering over a wide range of frequencies. We shall seek an optimum loading in

later sections.
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INDI1 CEl CLIIIIE\T O\ A CYLINDER OF NM All llEO\AT L.ENGTI 9111 % .Ai1lO1 " (;E\TIIAi.
I\IPEDo\NCEz,

In this section the effect of the central impedance on the induced current of

the cylinder with a resonant length is studied. For experimental convenience, we

choose the following specific case:

a = 0.0173;k

2h = 0.43?

ZL = JXL

The last condition restricts the central impedance to be purely reactive, since

only a reactive impedance is obtained experimentally from a coaxial cavity.

With tne above coniii..ns, the theoretical value of the induced current can be

expressed as

JE L(cO oz- 0. 216) + 2L sin (77. 10 -3Oz

z) 0(55)30 j 0.215 - (0.218 - j 0.25)
I AI

where

L • -0. 7 6 5XL (56)
Al 0.955 XL - 24.6

The relative magnitude of I z() is calculated and shown graphically in Figures

6a and 6b for the following values of ZL: 0, - , -jl600SQ, -j80, -j60012,

j 1600M, j 8002, j 600M2, and j 40OS2. In these curves, we observe the following

facts:

(1) When ZL = 0 (no loading), the induced current is very large and distributes

along the cylinder as a shifted cosine curve.

(2) When Z L = v, the magnitude of the induced current is greatly reduced

from the alue for ZL = 0 and the distribution of the induced current becomes

double humped with a null at the center.

(3) When ZL is capacitive and finite, the induced current is smaller than the

case of ZL = 0 but larger than for Z L = -.

(4) When ZL is inductive and finite, the magnitude of the induced current is

smaller than the case of ZL = 0 and the induced current starts to have three loops

along the cylinder; it is of interest to note that the phase of the current at the

center loop is reversed.
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Figure 6. Current Distribution, I(z), on Cylinder of h=0.215X , a 0.0173X
for Different Central Loads, ZI, (Theoretical).
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The most important and significant information obtalned from Figires 6a and

6b is that when ZL is inductive and of some finite value, the magnitude of

the induced current is reduced to a value smaller than the case of ZL --

and the phase of the induced current is reversed at the center p3rt of the

cylinder. It is, therefore, possible to reduce the broadside backscattering

from a cylinder tv zero by proFer.! adjusting the value of ZL . In effect,

the optimum impedance for zero broadside backscattering from a cylinder of

this size is inductive and it has a small resistive component, as we shall

see in a later section.

To obtain an experimental verification to the tneoretical results shown in

Figures 6a and 6b, we measured the induced current along a cylinder of this

specified dimension and with various cavity lengths. The experimental results

are shown in Figures 7a and 7b. We obtained a family of curves which close-

ly resemble the theor~Lical curves shown in Figures 6a and 6b. When the

cavity length (total length) iz longer than 6. 2 cm, the impedance of the cavity

is capacitive; it becomes inductive for cavity lengths shorter than 6. 2 cm. It

It should be noted that the effective cavity length is greater than these values

since it is loaded with a dielectric material for which F = 4. 0 . The approxi-

mate value of the cavity impedance is calculated by using a standard impedance

formula for a transmission line and assuming that a capacitance of 0. 4 ppf

is shunted across the gap at the center of the cylinder.

The comparison between theory and experiment is made in Figure 8 w'here

theoretical curves for ZL = - j 800P , - , and j 800q are shown, fhese

curves are compared with experimental results for I =-3. 32 -m, 3. 10 cm,

and 2. 91 cm where £ is the half length of the coaxial cavity. The agree-

ment between theory and experiment is very good. This indicates also that

the calculated value of the cavity impedance is quite close to the corresponding

theoretical impedance.

6. INDHIIl (: CI;]NI' ON % (;fIIMEl OF NEAI \'NTI-IIESONA\T LENGTh I ll N %1i1OI ,":
CENVTIm \I IEi)gA\CE

In this section we study the effect of the central impedance on the induced

current of a cylinder with an anti-resonant length. The dimensions of the cylin-

der and the central impedance are chosen to be

a = 0.0173X

2h = 0. 9X

Z1, XT i.



28

h = 0 215 theory for ZL= c

2a = 0.2cm experiment fori= 3.10 cm
2a 0.92 cm .... theory for ZL= i 800 -S2
X = 27. 57 amL.
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theory for ZL= -i 800 -Q

O* • experiment for f= 3.32 cm
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Figure 8. Current Distribution along a Cylinder as a Function of Central Load
h = 0.215 A (Theoretical and Experimental).



Again we consider oaly the reactie lo,.Aing.

The theoretical %alue of the induced curin! for ihis ca:e is:

I~o~O4091~sn13e Z (Zl3 (57)
0 0.911 -jU.'1, (0'.111 - : 0. 128)J

where

N. -0.604 XL
%1 0.096XL + 71 - j 52.2 03)

The relative magnitude of I z) Wis calculated and -hovn graphically in F:gui e

9a and 9b for values of ZL as folloi s: ',, --16)O , - i8O( . , - 60-., .btt'i.2,

j 80-0. and j 600U. This family of curves is quite different from those of the pre-

ceding section. Although a purely reactive impedance reduces the magnitude of

the induced current and tends to reverse the phase of the induced current, it lb

not possible to reduce the broadside hackscattering to zero because current nulls

do not occur in this case. Actually, an optimum impedance for zero broadside

backscattering from a cylinder of this size should have a large resistive compo-

nent, as is shown in a later section.

The experimental results for the induced current on the above cylinder with

various cavity lengths are summarized in Figure 10. The general shapes of the

experimental curves are similar to those in the theoretical curves. The compari-

son between theory and experiment is made in Figure 11. Three typical theoretical

curvet: are compared with the corresponding experimental results. The agreement

between theory and experiment is good but not as good as in the case of a shox ter

cylinder.

7 TI E\ I'EIRIEI'

In Figure 12 is shown the block diagram of the equipment used for fhe current

measurement on the reactively loaded cylinders. In the experiment the cylindei

is illuminated at broadside by a plane wave of 1.088 kMc from a L-band horn

antenna with the electric field vector polarized in the direction parallel to the

cylinder. A conventional probing method with a small current probe was employed

to measure the induced current amplitude on the cylinder.
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Figure 9. Curr&it Distribution, l7(2,) , on a Cylinder of h 0.45N , a =0. 0173A
for Different Central Load (Theoretical).
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Figure 11. Current Distribution along a Cylinder as a Function of Central Load
for h = 0.45 X (Theoretical and Experimental).0

The coaxial line leading from the probe was covered with radar absorbing

material (RAM) and oriented perpendicular to the E field to niinimize the influ-

ence of its p,-estnee. The measurement area was lined with RAM to reduce

unwanted reflectons.

Figure 13 shows partially dsassembled components of the loaded cylinder.

The diameter of the cylinder js about 0.95 cm and its length can be changed from

10cm(h z 0.182X) to 51.29cm(h = 0.q3X) by the combinadion of center and ena pieces

of different lengths. The center sections of the cylinder contain a symmetric
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Figure 12. Block Diagram of the Experimental Setup

Figure 13. Cylinder w.ith Coaxial Ca-vity

coaxial cax ity vvitih is input gap at the center of the (-- 1,ndei . 13% varvng fihe cavityv
length, various input ieactances that represent 1he centt~i loads of the cviinder iie
obtained. The coaxial ca-xity is filled xv ilh ) dielectric im ot dei to reduce thlele
quired caxitY iength. The dielectric used is , -tvraca,;t xxih i dielectrio -onstant

of 4 and a loss tang ent of 0I.11110l.
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8. OPTIlI ! I'tPEI}V:E FOil ZERO I|RO,\D)llA(k\TTEII(, l:RO0I . TiIl\ {X LNDER

In the preceding sections we have concentrated on finding the induced current

on a cylinder as a function of the cylinder dimension and the central irrpedance.

We now seek to find an optimum impedance for zero broadside backscattering

from a thin cylinder.

The induced current has been found in Eqs. (34) and (36). The scattered tield

due to this induced current can be found as follows:

The vector potential maintained by the induced current on the cylinder in the

far zone of the cylinder is

A o jEo 1
z = 4- 30,30 cos 3oh - MTca -NT s a

F h exp(-13 R)
M (cos 0z - cos ,30 h) R dz

-h *

h exp (-j3 R)
sIn 0(h - 1z1) R dzj (59)

-h

where

R - z cos 0 = distance between a point on the cylinder and the

observation point.

The scattered electric field in the far zone of the cylinder can be obtained as

E = -j w A = j w Az s i n 0 (60)

The corresponding Poynting vector is

ps = 1 1E 12 (61)
2 t 0o

The scattered field in the broadside direction can be obtained by letting

0 = 900 and R=R 0 (62)
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We then obtain

s 2 exp) R (sin3h-3hcos 3h)N(l-cos3oh)

E(A = 90") E R

(63)
and

E 2 1 M(singh-3hCOS3oh) +N(l -cosoh)2 (64)
p S(0 =9C°) = 2r 0 0 cO0o (64)-.~s

0 p jRCos Ooh -1 MT -NasT0 o0

The Poynting power density of the scattered field in the broadside direction is

thus expressed as a function of the central impedance because N in Eq. (64) is a

function of ZL' as expressed in Eq. (36).

To minimize the broadside backscattering to zero, we can simply make

pS(o - 900) equal to zero. That is,

_ sin 30h - i30 h cos 3ohX- = - -- 0(65)
M I - cos 0oh

Using Eqs. (35) and (36), Eq. (65) can be rewritten as

ZL sin80h(l -cos $oh ) sin 0oh - 3h cos 30 h(
2= osj (66)

ZL sin oh -j60Tsd cos 30 h 0 -cosh

By solving for ZL in Eq. (66), we obtain the optimum central impedance for zero

broadside backscattering as

[ L1 j-j60Tsd(1-3hcot°h)zi 0 (67)
0- 2c Ooh - 2 + oh sin 3oh

where

Tsd = sin,30 h IC (h, 0) - Ca(hh) I -cos3 0 h [S a(h, 0) - S a(h, h)'

as expressed in Eq. (38).

Equation (67) gies the complete expression for the optimum central impedance

for zero broadside backscattering from a thin cylinder. This optimum central
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impedance is a function of the cylinder dimension and its numerical value can be

calculated quite easily. The expression should prove useful in practical design

We consider a cylinder with a = 0. 0173 X and calculate 1ZL 0

as a function of the cylinder length h. The result is shown granhically in Figure

14. From this figure we observe the following:

(1) In general, the optimum central impedance for zero broadside backscat-

tering should have both the resistive and the reactive component.

(2) For a cylinder shorter than 1 wavelength (or h< 0.52), the optimum

impedance is inductive and requires a resistive component.

(3) For a cylinder longer than I wavelength (or h > 0.5X), the optimum

impedance is inductive or capacitive but requires a negative resistive component.

800

600 XL ji
'I 2

400 / ZL: RL+jXL

200 RLZ
.. . . XL

lRL
ri j60Tsd (1-,8h cot,80h) N

-2()o KLIo-2cosfoh-2+fohsinP h

-400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
hA 0

Figure 14. Optimum Central Impedance, [ ZLJO , for Zero Backscattering from
a Cylinder of Radius a=0. 0173 X , as a Function of Cylinder Length

These results indicate that for a cylinder shorter than 1 wavelength, a passive

impedance loaded at the center of the cylinder can reduce the broadside backscat-

tering to zero. However, an active impedance is required to obtain zero broadside

backscattering from a cylinder longer than 1 wavelength. 01 'ourse, an active

impedance may not be needed if the cylinder is loaded at two points.

We also consider the case of a thicker cylinder with a = 0.0517x. The opti-

mum impedance for zero broadside backscattering is obtained as a function of the



cylinder length 1; and shown graphicallN Yn Figure 15; .aid .- seen To be siziia

to that in FIure 14. The resistive component rezains eLtP:ei. consianl A.-.il,

respect to the change of the cylinder thickness, but je r.-actuve component is

reduced almost by a factor of tw'o for the thicker cylinder.

400,
XL

h

200t 
ZL= RL+jXL

,.RLt: XL

X/RL
-j6OTSP(I- h co.toh)

-I00i [ZLo 2cosP h-2+,8hsineoh

-200I

4 -- t -

0.1 02 0.3 0.4 0.5 0.6 0.7 08 0.9
h/X

Figure 15. Optimum Central Impedance, I Z L J0, for Zero Backscattering from
a Cylinder of Radius a=0. 0517 X , as a Function of Cylinder Length

To determine bandwidth characteristics of this technique, we calculate the

optimum impedance for the purpose of minimizing the broadside backscattering

from a fixed cylinder over a wide range of frequencies. We consider a cylinder

with h = 4cm, a = 0.476cm to cover a frcquency range from 1 kMc to 3 kMc. The

frequency characteristic of the optinmum impedance is shown graphically in Figure

16. Within this frequency range the optimum impedance is inductive and requires

a resistive component. This impedance appears to be obtainable by a simple net-

work synthesis. It is also noted that to cover a wider range of frequency, an

active impedance is needed to reduce the broadside backscattering to zero.

A final remark is necessary at this point. Although % e have exclusrvely

studied the broadside illumination, the optimum loading obtained in this, study is

also effective for the case of the oblique illumnination. To su, tort this statement

the experimental measurement of the induced curr ont by a plane wave incident

from different angles are presented in Figures 17 and 18. In these figu]res we
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2001 [ZL- RL+jXL -7T

800

I ! XL h=4cm6L0 a0.476cm

- i
x

x ~40 r

200.

RL .

0 2 3 4
Frequency iKmc)

Figure 16. Optimum Central Impedance, I ZL 0 for Zero Backscattering from a
Cylinder with h=4 cm , a=0. 476 cm Over the Frequency Range of 1 kMc to 3 kMc
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59-I - -o,

POSITION ALONG THE CYLINDER IN INCHES

Figure 17. Current Distributions on a Center Loaded Cylinder Due to
Plane Waves of Different Incident Angle.

h = 0. 2 15No
26 = 0.050 in.
Er 4

5.83cm

The current scale is Relative to the Maximum Current (,.0) on an
Unloaded Cylinder with h 0.215Xo , 6 0.
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Figure 18. Current Distributions on a Center Load C~linder Due to
Plane Waves of Different incident Angles

h = .2l5Xo
26 = O.O50Oin
Er = 4
L =6.:>1cm

The Current Scale is Relative to the Maximum Current (I .u) on an
Unloaded Cylinder with h = .215xo, o = .

observe that the only change on the induced current for the oblique illumination .s
the reduction in its magnitude. The distribution of the induced current is prac ,-
cally unchanged from thle case of the broadside illumination. Additional study or

the oblique illumination case will be made in the future.

9. COM:Li SIO0

We have studied the effect of central loadings on the induced current on a thin
cylinder that is illuminat.ed by a plane wave at normal incidence. It is found that
both the induced current and the scattered field can be greatly modified by a cen-
tral load. Through theoi etical analysis and experimental measurermeni, we have
good understanding about the exact nature of the loading for the reduction of the

scattering.
We have also obtained the optimum cential loading to eliminate the broadside

backscattering from a thin cylinder. A relatively simple formula for tlie opt imnm
impedance is presented, and it should prove useful in practical design ituatioras.
Although an impedance which can easily be obtained 1)y a simple net wot k synthesis
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is sufficient to reduce t. zero the backscattering f. om a cylinder shorter than 1

wavelength, it appears that an active impedance is required to eliminate the back-

scattering from a cylinder longer than 1 w,velength. This difficu.ty can probably

be overcome by loading the cylinder at two points with two passive impedances.

An investigation of this possibility is in progress.
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III. Backscatter Reduction of Long Thin Bodies
By Impedance Loading

I 1. IHansen. Jr.
-\ero- -'pace i i~ion

The Boeing (omiman
--eattle. Ua.-ington

Abstract

An impedance-loading technique for backscatter reduction of long thin bodies is
discussed and experimental verification of the technique presented. It is shown that
a significant reduction in the backscatter is possible while providing a receiving
capability. The body is thus con;-erted into an antenna that has a high ratio of
receiving cross section to backscattering cross section under conditions oi lon
backscatter.

i. IvnIIOIICTION

Backscattering from a long thin body in the region of longitudinal incidence has

been evaluated by Pe:ers 1 , 2 in terms of a tr:tveling-wave antenna mode excited on

the body by an incident wave. In this paper, an impedance-loading technique is

described which effectively results in cancelling the backscatter field produced by

such a mode. The body is considered as an asymmetrical dipole antenna, and the

value ot load impedance necessary to accomplish the cancellation of backscatter is

determined. Using the Smith-chart representation of Kennaugh and Green 3 for
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antenna scattering, the backscattering cross section is evaluated for any load imped-

ance at the frequency under consideration.

An inciden; wave with the plane of polarization parallel te the axis of the body

excites a traveling wave on the body. This wave is reflected from the rear point,

producing a secondary traveling wave on the body. It is this backward wave that

results in the large backscattering cross section. Elimination of the reflected wave

from the rear point would affect a large reduction in backscattering over a range of

aspect angles in which the travelling-wave mode is the primary mode. It is thus

postulated that a set of antenna terminals be constructed near the rear point so as to

absorb the incident wave without reflection, or to reflect part of the received signal

with the proper uhase and amplitude to cancel that which is not coupled to the ter-

minals. In this paper, such a technique is shown to be possible.

2. IMPEi)\CE LOADING

In order to evaluate the backscattering characteristics of a long thin body with

an impedance load near the rear point, the general concept of antenna scattering

sho-.d be considered. The electric field scattered by an antenna as a function of

load impedance is given by3

E(ZL) E(O) - LZA A 1 T(1

where

ZL = R L + jXL is the load impedance,

ZA = RA + jXA is the antenna impedance,

2(0) is the scattered field of the antenna with ZL = 0,

T is the electric field transmitted by the antenna when excited by a unit

voltage source, and

1(0) is the current through the load ZL = 0.

3
This equation may also be written as

E(ZL) = (z)+r AM (2)
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whc-rc-

ZA i, the complex con Iuaate of Z.A ,

E(ZA) is the structural scattered field,

9

- Z._ I(0) E is the antenna-mode zcattered field,

N

r - Z$ is the reflection coefficient, and
1+ l

_ZL + JX

Z L +JA is the normalized load impedance.

If the condition

rEAM  - (ZA) (3)

is ialfilled, then the scattered field E(ZL) is zero. Ir. order to accomplish this

over some range of aspect angles, one should have

EAM E(ZA
". (4)

over that range. The load impedance is then adjLsted to provide the proper phase

and amplitude of the reflection coefficient so as to fulfill Eq. (3).

The long thin body with a set of terminals near the rear point may be con-

sidered as an asymmetrical dipole 'antenna. For a high degree of asymmentry,

the primary mode in the region of longitudinal incicence is the traveling-wave

mode. When short-circuited, this asymmetrical dipolc reduces to the long thin
1,2

body considered by Peters From Eq. (1) the structural scattering E(Z") may

be written as

R(Z) i2(0) - E A M e -j 2  (5)

where o is the phase angle of the antenna impedance. One can also write 1

E )= ,EA M )
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.%herc- , is the reflec*_on coeftiLert aT the end of the bod. and AA is the field

radiated b% the "raveling- .m.ae antenna rnode exc:ted on the short-circuited bodv.

Thus Eq. (4) should hold for the long, thin Uody in the region of longitudinal inci-

dence. Considering only the components o Eqs. (3), (5), and (6), the reflection

coefficient necessary for cancellation then becomes

EAM -~
-r E M  -Cj'' (7)

IfE A M = and -y is constant as a function of aspect angle, then it should
0 -

be possible to find a load impedance that would result in cancelling the structural
AM AM

scattering. If E0 J E , then the load impedance would need to be varied as a

function of aspect angle to affect the cancellation.

For the case considered, the terminals are some finite distance from the end

of the body so that EA M- and E A M are not identical. However, if the distance is

sufficiently small they are nearly the same. In this case it should be possible to

find a load impedance that would result in considerable reduction in backscattering

over some range of aspect angles.

3. EXPERIMENTA. E\-IA ATION

In order to verify that effective cancellation of the structural scattering is

possible, an experimental evaluation was made. The test model, shown in Figure

1, consists of a 30-degree ogive with a coaxial-fed probe extending from the rear

of the model. Backscatter and receiving cross sections were measured at a fre-

quency of 2000 Mc with the plane of polarization parallel to the axis of the body.

For these measurements, the model was supported on a polyurethane foam tower.

A smali coaxial cable was brought out from the model and connected to an adjustable

load inpedance, a power meter, and to other equipment located at the base of the

tower For the polarization used, the coaxial cable was perpendicular to the inci.-

dent electric field, hence its effect on the measurements was sufficiently small.

The model was positioned at an aspect angle corresponding to the peak of the

main lobe, and the load impedance was adjusted for minimum backscatter. In this

manner, the peak of the main lobe was reduced by 30 db. The entire backscatter

pattern was then measured, the results of which are shown in Figure 2. It is seen

that an effective backscatter reduction of 20 db is accomplished over the main lobe.

The 30-db reduction of the peak of the main lobe is not maintained for other aspect

angles because of the difference between the two antenna modes EA M and E (, as
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indicated by Eq. (7). In order to maintain nearly complete ca-icellation, the load

impedance would need to be adjusted as a function of aspect angle.

The receiving characteristics of the model were evaluated under conditions of

minimum backscatter and maximum received power. These characteristics are

shown in Figure 3, and indicate that the received power under conditions of mini-

mum backscatter is 3 db less than the maximum received power obtained. Thus,

one-half of the received power is reflected from the terminals with the proper

phase and amplitude to effectively cancel 'he structural scattering. For the condi-

tion of maximum received power, a backscatter reduction of only 5 db wao accom-

plished. The measured values of antenna impedance and the load impedance neces-

sary for minimum backscatter were found to be

ZA = 82 - j15 ohms

and

ZL = 68 - j98 ohms.

As shown by Kennaugh and Green, Eq. (2) may be represented on a Smith-chart

impedance diagram. This allows the backscattered field to be evaluated for any load

impedance by experimentally evaluating the backscattering cross section for two parti -

cular values of load impedance. From ZA and ZL given above, the normalized load
7N

impedance ZL corresponding to minimum backscatter is found to be 0.74-j 1.3 .

Circles about this point represent constant backscatter, as shown in Figure 4. Addi -

tional measurements allow calibration of these circles inbackscattering cross section.

The reflection coefficient I r I is found to be 0. 61 so that I r 2 = 0. 37. Thus,

only about one-third of the received power should be required to cancel the struc-

tural scattering. It is expected that if various losses can be eliminated in the

experimental apparatus, the increased power corresponding to this reflection

coefficient could be measured.

4. CONCLUSION

It has been shown that backscattering due to the traveling-wave mode on a long

thin body can effectively be cancelled by an impedance-loading technique. Further-

more, the cancellation is accomplished with only a small reduction in received

power. Using the Smith-chart representation of antenna scattering, the backscat-

tering cross section is evaluated for any load impedance at the frcquency under

consideration.
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Figure 4. Backscattering Fr-orn an As- mrretric Dipole

Although the impedance -loading techniquel as described for the long thin Inody

is rather frequency sensitive, it may be possible to extend the bandw..idth by -,elect-

ing the proper thickness and asy,,mmretry of the scattering body. This coupled '.. iTh

a feedback system for control 01 the load impedance may result in a lar-ge back-

scatter reduction over a wide band,..idth and -. ide range of aspect angles. P,-ell n,,-

inary experiments in this area indicate hopeful results.
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IV. Theoretical and Experimental Investigation of
Backscattering Frooi' a Cavity-Loaded

Monopole
Werner W. Gerbes and William J. Kearns

Microvuave Physics Laboratory
Air Force Cambridge Research Laboratories

Bedford. Massachusetts

Abstract

Backscattering from a monopole (linear scatterer) can be considerably dimin-
ished and almost suppressed if it is grounded in a cavity and the protruding length
of the monopole does not exceed 0. 45X . The optimum depth of the cavity is about
0. 25X.

The good agreement between theory and experiment justifies the rather bold
theoretical assumptions made to avoid involved mathematics and implies their use-
fulness in similar problems.

1. INTRODUCTION

So far as we know, backscattering from a linear scatterer grounded in a cavity

has not previously been studied, either theoretically or experimentally. The only

work coming close to ours is the experimental and theoretical work on unloaded

antennas cited by R. W. P. King in The Theory of Linear Antennas, Harvard Univer-

sity, 1956, pp. 508, 509, 516.



In our initial (1956) study of backscatteiing from a grounded scatterer, we

restricted our-selves to the case of a monopole projecting from the center of a

cylindrical cavity in % plane, perfectly conducting screen (Figure 1); the monopole

was excited by a wave traveling along t.e surface S with an electric vector E

parallel to the scatterer. The restriction to cavity-loaded monopoles was actually

unnecessary, since the formulas ebtained led easily to a generalization for mono-

poles loaded with an arbitrary impedance. Although we demonstrate this possibility

in the text, we did not change our study to the general case because it had been

stimulated by, and the experiments conducted for, the specific question of cavity-

loaded monopoles.

A further restriction we set was to consider only unmodulated, harmonic,

electromagnetic waves. In a sequel to this report we will deal with cases of

oblique-incidence waves and modulated or pulsed electromagnetic waves.

I-,,
El

\I

S7S

,X,

Figure 1. Scheme of Scatterer Arrangement

As in almost all antenna problems, an exact solution with present techniques is

difficult if not impossible; the more oi" less (dubious initial assumptions of a theore-

tical treatment must be justified by experimental substantiation. To keepthe
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m..thematical treatment relatively simple, we made rather far-fetched assumptions;'

hwever, we carefully checked the theory by conducting very reliable experiments.

These experiments were conducted by Mr. William Kearns after some exploratory

measurements by Mr. H. Poehler. The experimental setup and method of meas-

urernents are described in Appendix A.

2. THlEORY

Our theoretical approach tC the problem (see Figure 1) was based on the idea

that (1) the part of the monopol" outside the cavity could be regarded as a lossy

line of length f, having a char..cteristic impedance Z with an additional voltage

dV per element imposed by the in,.oming electric field E ; and (2) the part of the

monopo'e within the cavity could be reg .rded as a lossless line of length 6, having a

characteristic impedance Zc , grounded at the bottom of the cavity. Strictly, this holds

only for 6 > r c (rc = radius of cavity), but to simplify the mathematics we ex-

tended it to cases where 6 << rc -

Length x and xc on lines I and 6 are measured toward the screen surface

S. Their currents are considered to be positive in the direction measured. The

electrical field strength E of the incident wave is taken to be normal to the sur-

face and positive in the outward direction. The fieii str(-ngth of the incident wave

is arbitrarily considered to be zero in the cavity.

We then get the two basic relations:

a = - RI - L - E(t, x),

(1)
a = Gv - C v  (
x at

where, as customary, V is voltage, R is resistance, I is current, G is shunt

conductance, L is inductance, and C is capacitance, all per unit length.

If we suppose that the incoming plane wave is incident parallel to the screen

surface S , then E along the scatterer is a function of only the time t.

We subject Eq. (1) to a Laplace transform with respect to time and then to

another with respect to length. This simplifies the rather involved analysis and

An essential disagreement between experimental and theoretical results would
demand a "second- or third-order" closer theoretical approach. flow immensely
such a closer approach complicates the formulas is seen by comparing our formu-
las given in King's book for an even easier problem.
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gives the final formula:*

rf - tanh (rl1 1 + c tanh I(r6) 2tanh ( 2

1 + - tanh (rc6) tanh (1l)

where represents the backscattered energy

r= [R+wL) (G+jwC)]

and 1c and Z are the analogous quantities or the cavity parameters R c , L0 ,

Gc , and 'C. Specialized for 6 = 0,

o ~ ri - tanh (ri)12 , 0= 0 for I = 0 only. (2b)

Equation (2b) describes the behavior of the unloaded monopole direcetly connected

with a conducting plane and also, of course, the backscattering of a dipole of

length 21 in freespace.

If 1<<),, then 2tanh (r) goes to 1. Therefore, everything after the minus

sign of Eq. (2a) becomes a constant that will be snall compared with ri. Thus

- 1 r J2 _ 1. The backscattered energy increases as the second power of the

ler-th of a very long moncpole. -i 12 _ r 12
Ifl<<X, then 2tanh -1- = tan (rt) and -1ri -tan (ri)12 I(r)3I2 16.

The backscattered energy increases as the sixth power of the length of a very short

monopole.

Unfortunately, tWe evaluation of Eqs. (2a) and (2b; is so complicated [even the

seemingly simpler formula (2b)J that it was not feasible to carry out calculations

for genera2Lprcperties. .Lq.pation (2) was, therefore, calculated with a computer

for cert.dn combinations of the parameters so as to obtain families of theoretical

curves for comparison with the experimental ones. The parameters Z c/Z, r,

a-nd i had to be chosen as close as possible to the experimental conditions, but

-,ith -s rplifications necessary to keep the calculations within reasonable limits.

lThe complete analysis is given in the report AFCRL-63-355 "Theoretical and
Experimental Investigation of Backscatteriag From a Cavity -loaded Monopole"
by Werner W. Gerbes and William J. Kearns.
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The complex propagation constant for the upper part of the monopole, r=a+ip ,
where a is the attenuaton constant and P is the phase constant, is naturally only

approximately a constant. But w#' can set p equal to that of frecspace, so that

3 = 2-../X = w£c. The attenuation constant a is related to the radiation resistance

of the monopole. To avoid complicated c-.lculations, we considered a a parameter

and calculated a family of curves for every depth of the cavity, setting r = a + iw /c.

In the complex propagation constant for the lower part of the monopole (r c),

we set a c = 0 because the radiation of this part can be neglected. The phase con-
stant was again taken as approximately equal to that of freespace. Therefore,

and r =iPc c c c

For Z c we used the formula for capacitance of a coaxial cable, and for Z we
used the formula for capacitance of an elongated rotational ellipsoid. The charac-

teristic resistance is inversely proportional to the capacitance per urdt length C

Thus Zc/Z = C!C . Now

C C C
C r c  arcosh

2 1n C r---
rm m

Therefore, with I I 2 rm p,

Z c  r c  - 2C- n Cm acs p (3)

z - rM arcosh p
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where rm 15 the radius of~tle 1onopole, rc is the radius of thc cavity, nd I

is the upper length of the monopole. Evidently, Z c/Z is a function of I and

further complicates the numerical calculation.

For monopoles of small length, if p - 1 , Zc /Z - 0/0 . Ordinary cvduation

by differentiation gives

Z r_--c - in_. cZ r
m

a constant with respect to I . For monopoles that are very long, if p >> 1, a

short calculation gives us

r
l n Fc

z I
In -

showing that for very long monopoles Eq. (2a) changes to Eq. (2b), the equation

for a monopole without a cavity. This means the cavity has no effect on the back-

scattering of very long monopoles. To simplify calculation of the curves in

Figures 2 and 3 we used Z I Z = 1 as a convenient mean value, which aiitomatcally

precludes use of the formula for long monopolez-.

Basically, there are two ways of deriving the attenuation cons~tant a

(1) directly, from the radiation resistance of a monopole divided by the length;

(2) indirectly, from measurements of a monopole projecting from a plane surface

without a cavity. But both ways, owing to the assumptions on which our whole '
theory had to be based, lead to more involved calculations without assuring any

greater accuracy. We therefore arbitrarily chose 6 and a as parameters for

the calculation of the families of theoretical curves, and compa.-ed them with the

families of curves measured for the parameters 6 and r m . All measurements

and calculations wvere based on six values of the parameter 6 listed as follows,

in inches, and as related to the wavelength used (33 mm):

curve

-0 1 2 3 4 5

S(in.) 0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.04 0.08 0.12 0.16 0.20

Figues an 3 w usd Z/Z =1 a .convniet man vlue whch atomt-:all
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It may be appropriate to mention at this time that the theoretical and experi-
mental sets not cnly match substaatially in shape, but even coincide quantitatively

more than we had a right to expect from the somewhat far-fetched assumn'ptions of

the theory.

The theoretical set of curves of b-ckscattered energy as a function of the pro-

truding length I of the monopole for a = 0. 05 ( which means a somewhat low

radiation resistance or a high characteristic impedance) is shown in Figure 2.

The curves rise with the sixth power to a first sharp maximum, then drop to show
an area of low but nearly constant backscattering followed by an additional slight

depression. They then rise to a second ma.imum and drop to a second depression

that is not nearly as low as the first. This behavior repeats itself over and over.*

Obviously, the first depression after the first maximum is the .l'.zy area that

exhibits sufficient backscattering suppression. With a recess 0. 20 k deep, the

unsuppressed backscattering is apparently ely 2 percent of the maximum scatter-

ing of the unrecessed monopole.

Figure 3 shows the thceretical set for a = 0. 10, which means monopoles

with somewhat higher radiation resistances than shown in Figure 2. The curves

nresent the same characteristics as the curves of the previous set, but naturally

not so pronounced since a higher radiation resistance means more strongly damped

circuits with smaller resonance effects. In this case, also, a recess of at least

0. 20X suppresses about 98 percent of the maximum scattering of the unreccssed

monopole.

Figures 2 and 3 indicate that for satisfactory scatter suppresusion the protru-

ding length of the recessed monopole must be less than 0. 45X. If the monopole

protrudes more than 0. 45 X, backscattering cannot be sufficiently suppx essed by

means of a cavity.

These theoretical results are thoroughly confirmed by the experiments. Fig-

urL 4 shows the experimental set for a rod 1/16 in. thick. The shape of the curves,

the shift, and the areas of possible scatter sappression are the same as in the

theoretical sets, except that the first maxima are relatively lower with respect to

the second maxima than in the theoretical sets (probably due to the choice of

Z /Z = 1). Figure 5 shows the experimental set for a rod 1/32 in. thick. This
c

set also shows good agreement with the theory.

Both experimental and theore~ica curves show a definie shift of the maxima

of the curves with increasing depth of the recess. Although it appears that the

positions of the maxima would coincide if the curves were plotted versus the sum

of the protruding and recessed lengths, closer investigation reveals that they would

still not exactly coincide.

* Our simple theory obviously yields the same characteristics as those produced by
the more complicated formulas cited in King's book.

j
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In Eq, (2a) the parameters of the cavity appear only in the grouped form.

Z tanh (rc 6), which represents the impedance of the recessed part. Thus, since

the recess acts as an impedance, backscattering could be suppressed just as well

by grounding the monopole over a specified impedance. Consequently, if in Eq.

(2a) we substitute a general impedance -9 for the term Z . tanh ('c 6), we obta:i

Lhe formula for the general case of backscattering from a monopole grounded over

an impedance:

1 + !12 tanhl 1, f 2
~~ ZL -2an7( (2b)r t tan (N 1 .I t nh (rt)

In this form the final formula also covers the case of backscattering from a

center-loaded rod in space.

Two theoretical curves and two experimental curves for each of the basic

parameters are compared in Figures 6 to 11. The shape, and even the size, of

the curves demonstrates the surprisingly good agreement between theory and

experiment.

The results of experiments conducted for some recesses deeper than assumed

for theoretical evaluation are given in Figures 12 and 13. These indicate that sup-

pression of backscattering can be achieved with recesses deeper than 0. 20 X, but

that the frequenc3y range of suppression becomes smaller with increased depth.

It has been shown, both theoretically and experimentally, that backscattering

from a monopole can be considerably diminished and almost suppressed if the

monopole is grounded in a cavity and its protruding length I does not exceed

0. 45 X ; with increasing length, cavity-loading becomes increasingly ineffective.

Suppression is optimum when the cavity depth is about 0. 25 X ; deeper recesses

narrow the suppression bandwidth considerably.
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Figure 10. Baekseattered Energy vs Protruding Length of Monopole
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AD.JUSTABLE
DIPOLE SCATTERER ROD

Figure 14. Cross Section of the Mechanical Setup
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Figure 15. Scheme of the Experimental Arrangement
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Appendix A

1. EXPERIMENTS

The backscattering from a monopole grounded in a cavity was measured for

various heights of the monopole above the ground plane and for various depths of

the cavity. A variable-depth cavity was obtained by machining a hole into the

ground plane and precision-fitting a sliding circular brass bar into the hole. A

brass rod was precision-fitted into a hole drilled through the center of the bar.

This was the monopole, also variable in height and independent of the adjustments

made in the cavity (Figure 14).

In the block diagram (Figure 15) showing the experimental arrangement of

the apparatus, the symbols are as follows:

T 1  a stabilized frequency source operating at 9080 Mcps, modulated at

1000 cps

PA precision waveguide attenuator

E transmitter arm

HY hybrid junction isolating arms H and E

H receiver arm, containing a crystal detector and a bolometer amplifier
for recording the signal level

ZT adjustable impedance transformer attached to the third arm of HY,
offering better isolation from the rest of the circuit when used with L
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L precision adjustable load, attached to the third arm of HY

TR fourth arm, carrying the transmitted signal and reflected signal

2. MEASUREMENT PROCEDURES

2. 1. Without a scatterer on the ground plane, ZT was tuned for the minimum

signal return, which was found to be at about 85 db below the transmitted signal.

,.tce this was approximately the same as the inherent noise level of the amplifier,
the reference level was arbitrarily chosen to be 10 db above noise. For all meas-
urements the reflected signal was attenuated to the reference point, and the amount

of attenuation read on a calibrated db scale was recorded at the value of the sig-
nal return.

2. 2. For the first set of measurements, the top of the circular brass bar was

left on a level with the ground plane so that no cavity existed. 'The top of the
1/16-in. -diameter monopole was raised to a height of UX above The ground plane,

and a measurement taken. The monopole was then successively depressed so that

its height above the ground plane was regularly reduced in increments of 0. 025 in.,

and reaoings taken until the monopole had reached zero height above the plane.

2. 3. The monoucle was then again extended to a height of 1 X above the plane.

This time the circular bar was depressed into the ground plane, creating a cavity,

and the measurements described in Step 2. 2 were repeated. The depth of the
cavity was regularly increased in increments of 0. 05 inch. In each case the mono-

pole was raised to the same 1 X height above the groz:nd plane and incrementally

reduced until the height was again zero.

2. 4. To determine the influence of the ratio of monopole diameter to wavelength

on the curves, identical rneasureMnnts were made with a monopole of half the

diameter (1/32 in.) and an appropriate cavity bar. A comparison c. the data for

both monopoles shows that the curves are essentially the same, exccpt that the

shape is more pronounced in the case of the thin rod.

5. As a standard reference, a hemisphere 0. 437 in. in diameter was placed at

the same point at which the monopole had stood. 'T'he return from the hemisphere
was noted to be 13. 8 db above the arbitrary reference level for the monopole.
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V. Scattering From Thick Reactively Loaded Rods
C. J. Sletten, P. Blacksmith, F. S. lolt, and B. B. Gorr

Microwave rhvsics Laboratory
Air Force Cambridagt Research Laboratories

Bedford, Massachusetts

1. INTRODUCTION

For objects whose dimensions are large in terms of wavelength, considerabk

reduction in backscattering cross section, a, can be obtained in certain specified

directions by shaping the object. Again, for objects laige compared to waveleng'h,

considerable reduction in a for all target attitudes can be attained by coating the

object with absorbing material. For objects whose dimensions are of the order of

a wavelength, it was conjectured that the techniques of shap,'ng and coating with

absorbing material would lose their effectiveness in reducing a0, and thlat addi-

tional techniques would be required for effective cont: -S. One such additional

technique, namely passive reactive loading, has been the subject of considerable

experimental investigation at AFCRL.

This paper is principally concerned with an examination of the effectiveness of

the three techniques - shaping, coating with absorbing material, ahd passive re-

active loading - individually and in combination, in reducing a for objects of

resonant dimensions.
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2. EXPERI.MENTAL SETUP AND DEFINITIONS

All experimental measurements were made at S band on the AFCRL freespace

scattering range at the Ipswich Field Test Site, Ipswich, Massachusetts. All tar-

gets were placed on a styrofoam column and rotated 3600 about the vertical axis of
the column. Elongated objects were always mounted with their long dimension
horizontal; for such objects, horizontal polarization means polarizatioi. parallel

to the long dirmasion, and vertical polarization means polarization perpendicular
to the long dimension.

The terms peak OH and peak aV are used to designate the maximum a un-
der, respectively, horizontal and vertical polarization conditions for those target
aspects attained by rotating the objects 36W= about a vertical axis. The term
overall peak a denotes the larger of peak aH and peak aV . For some of the

plots the peak a's are normalized for each target to the overall peak a for that
target under unloaded er shorted conditions. The angle of rotation of the target
about the vertical axis is designated by e. Unless otherwise explicitly stated,
all elongated objects are approximately 2 in. !ong, that is, X12 at S band.

3. BACKSCATTER REDUCTION BY MEANS OF ABSORBING NiATERIAL

Conductron, Inc. absorbing material, Sample No. 17 - 109, has been tested
on several shapes in the resonance region. In all cases the targets were metal
plates- coated with the absorbing material on one side only. The target 2onfigura-
tions were a 1. 2X by 1.2 X square, a X/2 by X/ 2 square, a X/12 by X1/4 rec-

tangle, and a X/2 by X/8 rectangle. Figure 1 presents the results for vertical
polarization, and Figure 2 the results for horizontal polarization.

The solid curves are a vs. target angle 0 for the metal side of the target,
and the dashed curves are a vs. 0 for the absorber sid4 of the target. The a
scale is in db with an arrow denoting a reference value of ao = 29. 2 sq cm (the
backscattering cross section of a 1. 25-in. -diameter metal sphere). *

For vertical polarization (Figure 1), the absorbing material produces a large
reduction in peak aV for all targets. For horizontal polarization (Figure 2), the
absorbing material is very effective for the square targets but relatively ineffective

for the elongated targets (Figures 2c and 2d). Note that for the metal side of the
X /2 by X /8 target, the peak aV is down from the peak aH about 8 db. Thus for

elongated targets of this type, the condition under which least reduction in eeak
can be achieved by means of absorbing material (that is, horizontal polaxization)

is just the condition under which peak c. is greatest. Conversely, for the same

, This reference value a0 appears in many of the subsequent plots.
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type of target the condition under which greatest reduction in peak a can be

achieved by means of absorbing material (that is, vertical polarization) is just

the coidition under which the peak a is least.

80. ~80 ...
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Figure 1. Backscattering Cross Section a vs Target Angle 0 for Conductron, Inc.
Absorbing Material Sample Number 17-109. Polarization Vertical.
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Figure 2. Backscattering Cross Section a vs Target Angle 0 for Conductron, Inc.
AbsorbiLg Material Sample Number 17-109. Polarization Horizontal.

4. BAC iL-,ATTER REDUCTION BY NEANS OF TARGET SIAPING

In Figure 3 backscattering cross section a vs. target angle 0 is shown for

a cylindrical rod and a truncated cone under horizontal polarization. fhe dimen-

sions of the targets are shown In the figure. Changing from the cylindrical shape

to the conical shape, although reducing the volume by a factor of approximately 3,

did not reduce the peak all; rather, it slightly increased it. Also note that a did

not decrease for the nose-on aspect of the cone compared with the rod.
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the effect of rod diameter on peak aV and peak aH for rods approximately

X/2 iong is shown in Figure 4. The cu,-ves show that peak oH is essentially inde-

pendem: of rod diameter over the range of values considered and that peak aV

inci eases with rod diameter. For rods approximately X/2 long, it is clear that

overall peak a occurs for horizontal polarization. It is also clear that peak aV

can be controlled by rod diameter but peak aH cannot.

If the desired level of reduction in overall peak a is arbitrarily set at 15 db

below the overall peak a for a solid X12 rod, then, at least for vertical polariza-

tion, this can be achieved by using a rod whose diameter is A/8 or less. Clearly

then, to achieve the desired level of reduction in overall peak a for a rod, peak

arH must be reduced. Neither the absorbing material nor the target shapes tested

were effective in reducing pea-_ oH . This leads than to consideration of the pas-

sive reactive loading technique.

5. BACKSCATTER REDUCTION BY -EANS OF PASSIVE REACTIVE LOADING

Early work in the techniqut of -educing peak aH appears in a patent filed in

1946 by Harley A. Iarrs. 1 In this disclosure lams described the use of coaxial

loading together with dielectric coating to effect wide-band scatter reduction for

metal spacer posts in parallel plate construction. lams claimed that symmetrical

loading at separated, symmetrically placed points (double loading) produced

wider-band performance than asymmetrical loading at separated asymmetrically

placed points or loading at one point (single loading).

In 1948 C. J. Sletten at AFCRL successfully designed spacer posts for the
2

parallel plate region of the Volir Antenna , using the lams idea Sletten also

atterapted to multiply load a rod to produce a low backscattering freespace object.

This ,tempt was unsuccessful but Sletten's ideas motivated both a theoretical and

experimental investigation of passive reactive loading of monopoles over a ground

plane to reduce backscattering by Gerbes, Poehler, and Kearns in 1957. 3

In 1958 AFCRL supported further research in passive reactive loading of thin

monopoles (about X/45 in diameter) over a ground plane to reduce backscattering by
a 4As and Schmitt at Cruft Laboratory, Harvard University. The Harvard experiment,.l

results agreed well with their theoretical results and included multiple as well as

single loading.

Independent work using passive reactive loading techniques has been carried

out by Andrew Alford Consulting Engineers, Inc. in the reduction of scatter from

radio towers. Currently this company is investigating the possibilities of wide-

band backscatter reduction by means of active control of reactive loading.

In the last few years under Air Force support the Ohio State University

Research Foundation and the University of Michigan Radiation Laboratory have
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Figure 4. Peak a vs Rod Diameter for Rod Length X/2

investigated reactive loading of various configurations, including rods and slots,

to reduce backscattering.

Current investigations at AFCRL have been primarily concerned with the effec-

tiveness of passive reactive loading in reducing peak aH for metal rods approxi-

mately X/2 long and X/8 to 3X/8 in diameter. Three typical single-loaded rods
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are shown in Figure 5, and cross sectionb with dimensions are shown in Figure 6.

Note the gap extending circumferentially around the rod and the symmetrical

coaxial loading cavities. Figure 7 shows a typical double-loaded rod.

Figure 5. Typical Single Loaded Target Models

Curves of a vs. target angle 0 for the target shown in Figure 6a under

horizontal polarization conditions as a function of the total loading cavity length

C are shown in Figure 8. The curve labeled C = 0 is for the unloaded or solid

rod. As C increases, a drops significantly until, at C = 0.281 in., peak OH

has dropped approximately 25 db below overall peak a. Note that in the broadside

aspect a has been reduced by approximately 40 db. The value of C for minimum

peak a0H designated as Cmin' is most easily determined from a plot of normalized

peak aH vs. C. Curves of this type are shown in Figure 9 for two different rod

diameters (see Figares 6a and 6b). For D = 0..5 in., C mi n = 0.281 in.; for

D = 1.0 in., Cmi n 
= 0.105 in. Apparently the tuning for minimum peak a. is less

critical for D = 1.0 in. than for D = 0.5 in., as evidenced by the broader minimum.

The dua! cavities used in the loading configurations (see Figure 10) are effec-

tively in series. This was experimentally verified by using only one cavity and

tuning for minimum peak a.. The resultant inductive load was equal to the sum of

the loads of the two symmetric cavities of the usual configuration und_,r minimum
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peak 0 H conditions. The circumferential gap that is present in the loading con-

figuration acts as a shunt capacitance across the cavity loads. To determine the

effect of the gap width G on the load impedance z equired for minimum peak aH0

loaded rods witi gaps of 0.040 in. and 0.080 in. %,ere tested. Figure 10 shows

that for the two different gap sizes the individual cavity depth? C' required for

minimum peak cH conditions were nearly equal. It is therefore concluded that

the effect of the shunt capacitance associated with the gap is small.

xc

Figure 7. Typical Double Loaded Target Model

The effect of rod diameter D and rod length L on C min is shown in Figure 11.

From Figure Ila it is clear that Cmin decreases as D increases, and from

Figure Ilb it is apparent that Cmin changes little with L over the range con-

sidered. The latter indicates that there is some hope for bandwidth.

6. MONOSTATIC, BISTATIC, AND BAND IDTI! \IEASUREMIENTS ON VARIOUS TARGETS

6.1 Monosiatie Comparison of Cylindrical Shape ,ith Double Conical Shape

A comparison of the backscattering from a cylindrical rod loaded and unloaded

with the backscattering from a double conical shape loaded and unloaded is shown
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in Figure 12. Dimensions of the objects are given in Figures 6a and 13a. The

solid curves of Figure 12 are a- vs. 0 for the unloaded configurations, and the

dashed curves are a vs. 9 for the loaded configurations tuned for minimum peak

aH. Comparison of the solid curves of Figures 12a ana 12b shows that peak aH'

the maximum a under horizontal polarization condition, * is the same for both

target shapes. The dashed curves in Figures 12a and 12b show the large reduc-

tion in peak aH to be gained for both shapes by reactive loading.

For both shapes with polorization vertical, it is strikingly evident from com-

parison of the solid and dashed curves in Figures 12c and 12d that the reactive

loading has practically no effect on o, that is, there is very little difference

between the solid and dashed curves.

The conclusion here is that for vertical polarization the loading cavities as

presently designed do not couple with the induced currents on the surfaces of the

targets. Comparison of Figures 12c and 12d indicates that peak a . is about 6db

less for the double conical shape than for the cylindrical rod shape. This result

is to be expected since the average diameter of the double cone is considerably

le'-s than that of the rod.

Clearly, then, changing the shape from cylindrical to double conical did not

reduce the overall peak a, whereas reactive loading reduced the overall peak a

by at least 15 db. The condition for which shaping had an appreciable effect, that

is, vertical polarization, is just the condition for which peak a., for the rod is

already down 16 db from peak aH- Note the similarities of these conclusions to

those obtained from using absorbing material.

6.2 Bandwidth Characteristics

Three differert reactively loaded target configurations were examined over

the frequency range 2500 to 3000 Mcps. In each case the target was tuned for

minimum peak ap at a frequency near the center of the band. The configurations

were a single loaded rod, a single loaded double conical shape, and a double loaded

rod. The dimensions of the targets are shown in Figures 6b, 13a, and 13b. Curves

of normalized peak aH vs. frequency are shown in Figure 14, and the approximate

-15 db bandwidth is indicated for each target.

Apparently double loading produces considerably wider bandwidth than single

loading, while double conical shaping with a single loading results in even wider

bandvidth. It is interes.ing to note here that although shaping does not decrease

the overall peak a at a single frequency, it does apparently increase the bandwidth.

6.3 Bistatic Characteristics

Bistatic reflection measurements for horizontal polarization were made on a

single loaded rod (see Figure 13c) and on a double loaded rod (see Figure 13b).
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For each bistatic angle a , each target w'as rotated 360" and the pea': bistatic cro s

section determined. These measured peak bistatic cross sections were then nor-

malized to the overall peak backscattering cross section of the unloaded conf"gux a-

tion. Curves of normalized peak bistatic cross section ,'s. bistatic angle 6 for

both targets are shown in Figure 15. For each target the peal. bi.static cross

section increases with bistatic angle; in the neighborhooA of ( 
= 90' it apprcOaches

the reference value, that is, the overall peak a for an unloaded or solid rod. For

bistatic angles in the range a = 0* to a-- 30*, the single loaded -od has lower

peak return than the double loaded rod though both are down at least 13 db from

the reference value. The peak return from the double loaded rod is 15 db or more

down from the reference value o'er the bistatic angular range o = W' to a = 0.48*.

7. CONCLUSIONS

For elongated objects of length app -oximately X/2, coating them with absorb-

ing material or shaping them into the double conical form does not significantly

reduce overall peak o-. The condition under which these two techniques have their

greatest effect in reducing a, that is, vertical polarization, is just the condition

under which the a for an elongated object is already well below its overall peak

value. Fortunately, the condition under which overall peak a occurs and under

which the two above techniques are least effective in backscatter reduction, that

is, horizontal polarization, is just the condition under which reactive loading has

its greatest effect. Therefore, the three techniques tend to complement each other,

and it is reasonable to expect that a combination of all three techniques should pro-

duce a good wideband minimum backscattering cbject.

8. CURRENT AND FLTURE ViORK

The following investigations are either currently in progress or will be under-

taker in the near future:

a. Use of slightly lossy rather than purely reactive loading to improve band-

width characteristics.

b. Redesign of the slot configuration so that it will couple into the surface

currents under vertical polarization ';,nditions.

c. Determination of the existence of higher harmonic- resonances of the load-

ing cavity that may undesirably enhance the scattering.

d. Design of loading configurations to successfully reduce the scattcl ing

from spheres and Jacks in the resonance region.
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VI. Analysis of Loaded Terminal Scatterers*
Edard M. Kennaugh

Antenna I.aboratory
Department of Electricel Engineering

The Ohio State Lni'ersit
Columbus. Ohio

1. INTRODUCTION

The echoing properties of antennas, or scatterers with one or more terminal
pairs, have been the subject of continuing studies at our Laboratory. In addition

to the new scattering parameters introduced by arbitrary terminal loadings, we
are interested in the subtle difference between scattering by "good" antennas and
by arbitrary objects. Since a "good" antenna acts as an efficient device for trans-

fer of energy from a wave field to a terminal pair when receiving, and in the re-
verse direction when transmitting, it appears that its scattering properties should

possess certain unique features. Among tl ese, of course, is the strong depend-
ence of these properties upon the coupling between the incident wave and the
antenna upon termination.

Several of the applications of this study can be described. First, the deter-
mination of the parameters that relate scattering by an antenna to its load, and
the selection of loads that will maximize or minimize the echo area. Next, the

*The research reported has been supported in part by Aeronautical Systems
Division, USAF, under technical supervision of Mr. William Bahret, ASRNC-32.
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design of more efficient modulated scatterers for use in field probing, passive

communication links, or in radar target simulation. In many cases, the control

of the echo from a specified object is desired, although neither an antenna nor

terminal pairs have been apecified. Use of antenna concepts can still be made,

however, to find the characteristic modes that car. most significantly contribute

to echo area and determine what loadings are required. Finally, a unified theo-

retical treatment of scattering and radiating properties may best be achieved, at

least for objects of resonant size, by considering these objects to be multi-mode

antennas.

2. EFFECT OF TERMINATION UPON ANTENNA ECHO AREA

Initially, a fixed-source frequency and aspect were assumed, and the scat-

tering properties of antennas or bodies with antennas mounted upon them were

investigated as functions of the terminating impedance. It is easily shown that

the echo signal is a function of three complex parameters and the load impedance:

E s Z +E' Zs = oc L sc A (1)
ZL+ZA

where Es is the phasor echo signal received when the antenaa is terminated with

ZL, E s  ;s that received when terminated with an open circuit, E is that re-
oc sc

ceived with a short circuit termination, and ZA is the antenna impedance at the

load terminals. A more useful form of this equation is readily derived by use of

the phasor Em s the phasor echo signal received when the antenna is terminated

with ZA, the complex conjugate of the antenna impedance:

EE s  r (EM - "  (2)

is the modified voltage reflection coefficient corresponding to the load ZL:

ZL = ZA (3)

ZL +ZA

Note that the definition of r differs from that normally used, whenever ZA is

not a real quantity, and is such that r will always lie on the unit circle for re-

active loads Z1 and inside the unit circle for passive lossy loads.

A graphical interpretaticn of Eq. (2) is that the phasor signal received as a

function of load impedance Z is proportional to the dtfference between a fixed
L
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phasor and the phasor r . Thus, if one plots the modified reflection coefficient

on a pseudo-Smith chart, the vector from r to the tip of the fixed phasor has a

length proportional to the echo signal received as r (or ZL) is varied. Such a

geometrical interpretation is shown in Figure 1 for several values of the fixed

phasor component.

P,

ECHO SIGNALEs ( LP

Figure 1. Dependence of Phas.r Echo Signal on Load Reflection Coefficient

We might assume that three different aspects of a single antenna correspond

to the phasor values OP5 O , OP3  For aspect 1, the fixed component exceeds

the load-dependent component and it is not possible to eliminate the echo signal by

use of a passive load, but it can be varied between amplitudes proportional to

OP1 + 1 and OP, - 1 by use of reactive loads. For aspect 2, the fixed component

equals the load-dependent component and the echo signal can be eliminated or

maximized by use of reactive loading. For aspect 3, the fixed component is less

than the load-dependent component and the echo signal can be eliminated by iusing
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a lossy load corresponding to the point P or maximized by a reactive load.

One must bear in mind that the geometrical diagram omits a factor of pro-

portionality, so that only relative echo signal amplitude and phase can be deter-

mined; the factor omitted is proportional to the geometric mean of the antenna

power gains in the directions of source and receiver as well as the usual radar

range parameters.

Since the variation of echo signal with load is uniquely related to antenna and

scatterer parameters, we have considered the use of variable reactive loads to

determine these parameters solely through scattering measurements. Combining

graphical and analytical techniques, it is possible to quickly reduce echo signal

amplitude data for several calibrated reactive loads to determine antenna imped-

ance, gain, and scattering parameters at a single aspect and frequency. These

techniques and their application are fully described by Garbacz. 1 , 2, 3

3. AVERAGE ECHO AREA AND TOT.AL SCATTERING CROSS SECTION

The graphical interpretations of Figure 1 are limited to individual aspects

of the scattering antenna, but it is frequently necessary to consider how average

echo area over a range of aspects or polarizations varies with ante~n-a termina-

tion. Green4 has shown how a slight modification to Figure 1 can be made to

permit its use in such a case. We merely add a positive constant to the square of

the distance previously derived for echo signal amplitude in Figure 1 to obtain a

quantity proportional to the average echo area and to determine its dependence

upon r. As shown in Figure 2, the average echo area of an antenna is propor-

tional to a constant C plus the square of the distance PL, where L is the point

corresponding to the modified reflection coefficient of the load defined by Eq. (3).

Depeniing upon the position of the fixed point P, one would achieve minimum

average echo area with a reactive (P outside or on unit circle) or lossy load (P

inside unit circle). In every case, maximum average echo area can be obtained

with a reactive load. The echo power can be averaged in this manner over orien-

tations of source and of receiver, including variations in polarization, but it is

assumed that the source frequency remains constant. From averaged cross sec-

tion values obtained with as few as four loads, it is poss Ae to construct a dia-

gram such as Figure 2 that will yield the average cross section for any load

impedance.

Of special interest is the case where the source remains fixed and the receiv-

ing antenna varies over all bistatic angles to obtain the average scattering cross

section of an antenna. One may then consider how the total energy scattered by

an anteana compares with that absorbed as a function of termination. In the early

literature on antenna scattering, it was often erroneously assumed that an antenna

- -~ --..-- ~ ~ -
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must back-scatter at least as much energy as it ai)sorbs. Although no such re-

striction exists, a mcre fundamental relation possibly applies betweei, total scat-

tering and absorption cross sections of an antenna. If we postulate that an antenna

may not absorb more than it scatters, this would imply that the value of C and the

location of P in Figure 2 wonuld be restricted in the case of averaged bis.atic

scattering.

AVERAGE ECHO AREA cc C + (PL) 2

Figure 2. Dependence of Average Echo Power on Loa,' Reflection Coefficient

Green 4 used the concept of Figure 2 to present calculated arezige scattering

cross section for a cylindr cal antenna as a function of load, and included contours

of constant average scatteing and constant absorption cross section on the chart,

as shown in Figure 3.

It is possible to f£i, J a load impedance that will maximize the ratio of absorp-

tion to scattering crnss section; the maximum ratio obtained in this case is 4- ' !,

obtained at point B where the power absorbed is approximately 50 percent of that
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for a matched termination. Note that the scattering and absozption cross Sections

are approximately equal when the absorption coefficient is a maxir.,iUm.

• '.O22); .0_.

\ A 0 --2-)s
"'O'154X Y ''0600'

;=SCATTERING CROSS-SECTION
ASORPTION CROSS-SECTION

Figure 3. Contours of Constant Total Scatt.ering and Absorption Cross
Sections as Function of Load Reflection Coefficient, Cylindrical Antenna

The relation between scattering and absorption cross sections of any object

is implied by its albedo, which is the ratio of scattering cross section to extinc-

tion (total) cross section. Since the extinction cross section is the sum of scat-

tering and absorption cross sections, an object with =n albedo less than 1/2

absorbs more than it scatters.

Results obtained by Deirmendjian 5 for the scattering by Ilossy dielectric

spheres show that the albedo is below 1/2 for lossy dielectric spheres less than

2 wavelengths in sliameter, for a complex index of refraction 1. 315 - i. 4298. For

the same index, the ratio of absorption to scattering cross sections is approxi-

mately 5 for a sphere circumference of 1 wavelength, where the absorption cross

section is slightly less than the geometrical cross sectWn.

Tc what extent can a lossy dielectric sphere be considered an antenna with a

lossy termination? From a practical point of view there does not appear to be any

way to extract useful power from such a structure, but a more fundamental differ-

ence is the distributed loss rather than the lumped loss corresponding to a definite

termninal pair.
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4. APPLICATION OF ANTENNA CONCEPTS TO ARBITRARY LOADINGS

It would be useful to fit more general types of leading or scatterer perturba-

tion to the model of Figures 1 and 2. For example, the effect of a slot or gap of

variable depth in a conducting object might be considered as a variable reactive

load on a hypothetical terminal pair. From Figure 1. if this model may be used,

we would expect the phasor echo signal to trace out a circular locus as the depth

is varied. Thrugh experimental or theoretical studies of the effect of gap depth,

we should then be able to determine the applicability of Figure 1 to more general

types of loss-less perturbations. Similarly, it may be shown that a purely resis-

tive load variation should lead to a circular locus for the phasor scattered signal,

and it might be possible to assess the effect of changes in conductivity of a part of

the scatterer by the single terminal pair concept with an effective lumped load of

variable resistance.

In short, when the single-mode concept applies, we should expect a circular

locus for the phasor echo signal under loss-less perturbations of the scatterer.

When this is not obtained, it may be possible to treat the scatterer as a multi-

terminal antenna with variable loading at more than one terminal pair. The analy-

sis of such configurations is currently under study.

5. ANALYSIS OF ARBITRARY SCATTER AS MULTI-MODE ANTENNA

When one considers an arbitrary scatterer as a multi-mode antenna, it

follows that the echo area as a function of source and receiver directions can be

expressed as

U(0 s ;0r ' Or ) =F CiFi(es, Os)Fi ()r ' Or)  (4)

i

where e s , p are the spherical coordinates of the source and e r' Or those of

the receiver (both assumed infinitely remote), and

F, (e, 0) = radiation patterns of the individual modes and

C. = constants determined by "terminal" conditions.

It is assum!:x that the mode fields are mutually orthogonal and that there are a

finite number with I CiI greater than some arbitrary minimum value. The number

requir0d w. td nccessarily increase with the size of the scatterer, but in the

resonance region the number would be less than 10 in many cases.
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These orthogonal or "normal" modes as we have called them are simply re-

lated to the eigenvectors of the target scattering matrix, and the Ci are determined

from the corresponding eigenvalues. The associated patterns are useful for analy-

sis of the transmitting, receiving, or scattering properties of the object. We

would expect the effect of perturbations to the object shape, such as those pro-

duced by slots, cavities, or changes in surface impedance, to be represented by

change, in the constants Ci, as reflecting the change in "terminal" conditions.

Further, the relative importance of the various modes is indicated by the magni-

tude of the associated C r. so that one may determine what radiating or scattering

patterns will be most readily excited on the object.

Our present goals are to extract, by a combination of theoretical and experi-

mental methods, the "normal" mode patterns of a scattering object (at a single

frequency) and to determine the associated constants Ci as influenced by various

perturbations of the scatterer surface and by lumped loadings.

6. EXPERIMENTAL INVESTIGATIONS

Experimental techniques have been developed for measuring antenna parame-

ters with conventional echo-measuring systems, using modulated or variable re-

active loads. To permit rapid measurement of echo-signal amplitude as a function

of load, a self-contained programmed load unit was devised. This battery-driven

device can be mounted within a model of a scattering object containing an antenna

and will automatically vary the position of a sliding coaxial or waveguide short

through a full cycle, giving characteristic pips on the echo pattern corresponding

to each 1/72 in. of travel. Typical 10 kMc echo patterns obtained from a stub

antenna on a 7. 0 - in. - diameter sphere and from z 1 1/2 in. x 2 7/8 in. compound

rectangular horn are shown in Figure 4.

A second means of varying antenna termination under consideration employs

an electrically switched load. As a part of this study, the echo area variation with

bias of a germanium switching diode was investigated. Figure 5 presents the

variation in broadside echo area obtained with bias over a range of X-band frequen-

cies. It is clear that large changes in cross section of an object in the resonance

region can be obtained through electrical tuning.

The effect of a rectangular slot upon the echo area of a small flat plate was

also studied. An analysis by Green using the superposition of plate scattering

and slot radiation patterns to predict the effect of the slot was verified. By use of

a small shorting bar at the center of the slot, the echo area of the slot-plate com-

bination can be varied by approximately 15 db. Some of the experimental results

are shown in Figure 6.
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Figure 4. Measured Antenna Echo With Programmed Load Variations

7. CONCLUSION

Various concepts of interest in the analysis ot scattering by objects that

possess one or more terminal pairs (real or virtual) have been described. We

have briefly summarized the contribution of our co-workers, R. Green, R. Garbacz,

D. Moffatt. and S. Skarote. Additional information can be obtained from the

References and Bibliography listed below.



98

+30ma
, IG

+50Fo * 0 S

0

0% 0

-10

V + Fowr Bias•-5Fo

*- .

S -Reference Bias

-0 02 9 ---04
008

/ / 9

-10i °': o/ 'oo

A// +29- F"-orwad i

b.... I -!efrncIBa

-159. 95 /.

Frequency kmc

Figure 5. Effect of Bias and Frequency Upon Echo Area of Germanium Diode

Oimension



99

7.5

o / /" Ope Short Circuit

-50L~

-12.5 '/

75 60 30 0 30 60 75
Aspect Relative To Broadside (Degrees)

Figure 6. Echo Patterns of Retapgular Plate With Slot
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Vii. Some Bounds to the Behavior of Small Resonant
Scatterers

Roger i. llarrington

Electrical Engineering Department
Syracuse Univ;ersitv

Syracuse 10. Ne% lork

A loaded scatterer is an object to which one or more lumped-parameter im-

pedance elements are connected. It has been shown that a small scatterer can be

resonated to greatly enhance its scattering cross section. 1 In the vicinity of reso-

nance, the echo area of a small singly loaded scatterer is given by2

o" 2 G (1)
aX_ G in

in L

where X is the wavelength, G is the directive gain of the scatterer when used as

;t transmitting antenna, Zin = R + jX. is the input impedance to the scatterer0 n in in
when used as an antenna, and ZL is the loading impedance.

According to Eq. k1), the echo area of a small resonant scatterer is completely

determined by its properties when used as an antenna. Hence, known limitations

to the behavior of antennas 3 can be used to obtain corresponding limitations to the

behavior of scatterers. If the general formula for echo area Iis used instead of

Eq. (1), bounds to the behavior of scatterers of arbitrary sizes and loads can be

obtained.
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3
The following are results abstracted from the more general antenna theory.

Let a denote the radius of the smallest sphere that can contain an antenna. Then

for small (ka < 1) loss-free antennas, the minimum quality factor obtainable is

= 2" [ (ka)- 1 + (ka) -3 (2)

where k = 27,/X is the wavenumber. This minimum Q is obtained when the electric-

dipole mode and the magnetic-dipole mode are equally excited. If a high Q antenna

is resonated by an input reactance, the bandwidth of the antenna is related to the

Q by

w " (3)

r

where w r is the resonant frequency and Aw is the frequency difference between

points for which I has fallen to 1/4, its value at resonance. Under the condi-

tion of minimum Q, the maximum antenna gair is

G ma 3 (4)Gmax

for small loss-free antennas. If only the electric-dipole mode or only the magnetic-

dipole mode is excited, instead of both, then the minimum Q is twice that of Eq. (1)

and the gain is one-half that of Eq. (4).

Applying the above results to small resonant scatterers, irom Eqs. (1) and (4)

one finds that the maximum echo area obtainable from a small (ka < 1), loss-free,

resonant (ZL = -jXin) scatterer is

0a = 9 X2 2.86X2  (5)max r

In the case of an actual scatterer, losses can reduce a, as discussed later. Equa-

tion (5) can oe compared to an electric-dipole scatterer, or a magnetic-dipole
.1

scatterer, for which the resonant echo area is

9 9k2 I (6)
adipole 4r, = " max
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Hence, snat, loss-free, dipole scatterers can give one-quarter the maximum

possible echo area.

It has been noted 2 tha, because a small resonant scatterer behaves as a series

or parallel resonant circ-zit it is characterized by a gain-bandwidth product

/ Fv P = constant. (7)

Using Eqs. (2), (3), and (5) in Eq. (7), one finds the maximum gain-bandwidth

product for small, loss-free, resonant scatterers

'fmax = _.X) 1 2 3 -3 3.38 X(ka)3  (8)mx J- (ka) + (ka)

where a is the radius of the smallest sphere that can contain the scatterer. For

resonant dipole scatterers (electric or magnetic), both ,ra-and P are at most one-

half the m-ximum. Hence,

dipole -4 max

showing that gain-band-idth products for dipoles cannot be greater than one-

quarter rl the optimum.

When practical scatterers are made small compared to wavelength the radia-

tion resistance becomes small, and the conductor losses become significant. A

careful consideration of the general formula for echo area shows that, if the

current dist.ribution on the scatterer is not changed much, instead of Eq. (1)

2

X2 GRrad (10)
Z in + ZL

where R rad is the radiation resistance. The maximum echo area of a lossy

scatterer is obtained when ZL = -jXin, in which case Eq. (10) gives

2 2

1 2 Rrad R rad
amax 7a+loss Rrad Rloss
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where R is the loss resistance in both the scatterer and the load, and 70 isloss0
the loss-free echo area. Similarly, the Q of the scatterer, which is determined

by the resonance curve of Zin + ZL, becomes

Q = Q Rad (12)

oR rad + Rloss

where Qo is the Q of the loss-free scatterer. Forming the gain-bandwidth prod-

uct of Eq. (7) and then using Eq. (3), one finds

,,,Fa-= ,oo Po (13)

Hence, the gain-bandwidth product is unchanged by losses, assuming that the current

distribution on the scatterer is unchanged. The primary effect of losses therefore

is to reduce the echo area according to Eq. (11) and to reduce the Q according to

Eq. (12), wixncjut changing the gain-bandwidth praduct.
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VIII. A Determination of the Scattering From a
Cavity-Backed Plane Surface

J. K. Schindler, I/Lt, USAF*
Micr.)wave Physics Laboratory

Air Force Cambridge Research Laboratories

Bedford, Massachusetts
F. V. Schultz

School of Electrical Enginee, zg
Purdue UniversityLafayette, Indiana

1. INTRODUCTION

One possible technique for evaluating the scattered return from surface-loaded,

conducting, scattering bodies consists of separating the scattered field into two

terms. One term consists of the scattered field from the body with all loading

structures short-circuited at the surface of the body, that is, the unloaded body.

The additional term represents what is essentially the radiation effects of the aper-

ture that couples the loading structure and the exterior domain. Of course the inci-

dent field plus the unloaded returii gives a zero tangential electric field over the

whole surface of the assumed perfectly conducting scattering body. The additional

scattered field term is then necessary to account for the non-zero tangential electric

fields induced by the excitation in the coupiilg aperture.

;Formerly with the School of Electrical Engineering, Purdue University, Lafayette,
Indiana.
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With this technique the problem of analyzing the scattering from a surface-

loaded body is broken into two problems, the usual 4inloaded scattering problem for

the body under co..sideration plus the problem of determining the radation from

structures equivalent to aperture antennas located on the surface u; the scattering

body. The aperture antennas are of course excited in a very sp'ecial way by the

external radiation.

A key problem then is the determination of how the aperture fields are excited

by the incident radiation and, further, how the magnitude and phase of the aperture

fields depend upon the cavity parameters. A knowledge of this latter dependence

allows one to determine how the cavity may be made to control the reradiated energy

in such a fashion as to appropriately modify the radar re ,urn from the body.

In this work we briefly consider the analysis of the s. attering from a highly

idealized cavity-loaded structure. The structure consists of an infinite plane backed

by an infinitely long rectangular cavity and coupled through the plane by a narrow,

infinitely long aperture parallel to the cavity axis We do not approach this oroblem

in an effort to minimize the return from an infinite screen; rather, it is believed

that the results obtained for this idealized structure will be of assistance in the

analysis of more practi-al three-dimensional bodies.

For example, the aperture fields obtained may approximate those excited in a

cavity-loaded finite body, if the principal radii of curvature of the scattering surface

are large at the point of loading and if resonant aperture and cavity lengths are

avoided. A' worst, one would expect the same qualitative behavior of the aperture

fields in the finite body as is exhibited by the aperture fields in the present problem.

In addition, the results of the present work will provide a comparison for the results

of simpler though more approximate schemes for the calculation of the aperture

fields in finite bodies.

2. THE PROBLEM AND ITS FORMULATION

We conside± the scattering of a plane electromagnetic wave from a plane screen

of infinite extent in all directions and backed by an infinitely long rectangular cavity.

The cavity is coupled through the screen by an infinitely long slit parallel to the axis

of the cavity. A cutaway view of the structure is shown in Figure 1 and a cross

sectional view is shown in Figure 2. The structure is assumed to be excited by a

monochromatic plane wave (with time variation exp (jwt) ) having an arbitrary

polarization and arbitrary polar and azimuthal angles of incidence, 00 and 45 0

respectively. (See Figure 1.)

The portion of space: where electromagnetic fields may exist is divided naturally

into two regions: the cavity, given by -b < x < b, -a < y < 0 , and the semi-infinite

half space, where y > 0.
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Figure 1. Typical Cross Section Taken Figure 2. Cross-Sectional View
between Two Constant z Planes Showing of the Cavity Showing the Dimen-
Cavity-Backed Infinite Plane Screen and sion Parameters of the Structure
Direction of Incidence of Excitation

In each of these regions, the electromagnetic field may be expressed as a linear

superposition of divergenceless solutions to the homogeneous vector Helmholtz

equation.

In the cavity region, the fields are expressed as the superposition of a discrete,
doubly infinite set of modes, both transverse magnetic to z and transverse electric

to z modes being included. To these expressions we apply the boundary conditions

which require zero tangential electric field on the cavity surfaces, y = -a, -b -< x

-< b and x = ±b, -a -< y < 0. The resultant expressions for the cavity electric

field, E , and the cavity magnetic field, H , are
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Go

x (n" dncos o -n c  cos n (x+ b) sinmn(y+ a)

n=0

+ iy (mnd n cos 90 + n sin 21 (x+b) cosmn(y+ a)
n" ly +n an Co (I)n~~ ) 2

" I sing o d n sin n(x+b)sinmn (y+a,

c Z mndn- j R CnCos0 ) sin 1-7 (x+ b) coS(mn(y+a)
Fj [-1 ( n n- 2b n2b csm

+ 2( n - jmncncos 00) cos -- (x+b) sinmn (y+a)

+ i z P sin o c cos A-(x+b)cosm (y+a)]. (2)

Here cn and dn , n=0, 1,..., are unknown complex constants, Z =

sin go S (k = 21/X), and m n = 2 . The assumed harmonic time

and z variation, exp P (wt + kz cos 00)], has been suppressed from these ex-

pressions.

In the exterior half space the total fields are w-ntten as the sum of three terms

in accordance with the discussion given in the introduction. The first term is the

incident field, Ei, which is known. The second term is the unloaded scattered

field, E S , which is the field which would exist when the aperture I -d - x-- I +d

is replaced by a perfectly conducting sheet. The unloaded scattered field is simply

the field specularly reflected from an infinite screen and is thus known from ele-

mentary calculations. The third term in the field expression is the loaded scattered

field. This field is that which is produced by the existence of non-zero aperture

fields. It is these field quantities, denoted by P s 2 and Hs 2 , that we wish to com-

pute.

Let us concentrate on expanding these latter field quantities. It is known that

if 4 is a solution to the homogeneous scalar Helmholtz equation and 9 is any

constant vector, the vector functions M and N defined by

M = Vx(F'P) (3)

= /k(VXM) , (4)

A a' - '--.
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are purely solenoidal solutions to the vector Helmholtz equation. Moreover, there
exist collections of the functions of Eqs. (3) and (4) which are a basis for the expan-

sion for the most general solenoidal solution to the vector Helmholtz equation.

With 0 of the form (suppressing the harmonic time dependence)

0(x,y, z) = fl(x,y) exp (jkz cos 0) (5

may be written as

00

, $x,y) 1/,2 c(a) exp {j [X(a)y - ax] } da (6)(27012 -
-o0

where

c(a) is an unknown to be determined, and

X (a) = (a 2  )/2 lc I P
P 2_ a2)1/2 1I{ --< P

It may be readily verified that Eq. (6) sub-tuted into Eq. (5) gives a result that

obeys the scalar Helmholtz equation. Further, as the cylindrical radius

= (x2 + y2)1/2 becomes large, Eq. (5) appears in the form of a diverging cylin-

drical wave and thus obeys the radiation condition,

We now use in Eqs. (3) and (4) the result of substituting Eq. (6) into Eq. (5).
Using both transverse electric to z and transverse magnetic to z field expres-

sions, the quantities E s 2 and Hs 2 take the form

E =x-\ [j X(a)C(+ a D(o,) cos 8 exp(jfj([a)y- ax]} dax o10
CO

+ y .O
-CO

(sin 60

+ i s0 D(r) exp f(j [(ra)y - ax]) da (7)+z - ,
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7 F---- LF,, c(a) cos 0,+ j(a)D(aexp (j X(a)y - ax]}da
o LA42 • 

-r

+ [- a ) -Aa ) cos 0o+ j, D(ai exp fjfx(a)y - axi) da
y 4-2-7rJ

- sin 00 I+ iz  c(a) exp {j[X(a)y - ax]) d (8)

Here D(a) is also unknown and is to be determined.

Our objective at this point is to use the results of Eqs. (1), (2), (7), and (8) to

form integral equations for the x tnd z components of the aperture electric field.

The technique used is similar to that proposed by Lewin 1 for a class of waveguide

discontinuity problems.

If E z(x) denotes the unknown z component of the electric field in the aperture,

then the boundary condition requiring continuity of the tangential electric fields at

y = 0 interface gives

/ z(X) 1-d -5 x -5 I+d

/ 0 otherwise

when -b -5 x -5 b. Substituting for Ec and using the orthogonality of the sine

functions gives

I+d

Pb sin 0 sin mp a p z(x) sin -L (x+b) dx

1-d

I+d2b pir
- F(x) cos ' (x+b) dx,

i-d

where

F (x) E W ,zX (10)dx-

The last equalijy follows from an integration by parts as suggested by the work of

Lewin.
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In a similar fashion the continuity of E relation gives

( i+ SlS2) zly = \ E (x) 1-d 5 x !5 t+d

I 0 
otherwise

for all x . Notesthat (E2+ El -, = 0 from the definition of these quanti-

ties. Substituting for Es2 from Eq. (7) into this result and computing the Fourier

transform of the equation gives

t +d0
f sin 0o D(W) - Ez(x) exp (ja.) dx

0 -d

1+d

PF 1 I F(x) exp(jax)dx_ (12)
a 1-d

The last equality follows from an integration by parts. Also, P denotes that: the

Cauchy principal value of the expression is to be taken upon an integration with

respect to c .

In addition to the conditions above, let us require the continuity of the tangential

components of the magnetic field in the aperture, 1-d -5 x 5 +d6. That is, we

require

(H i + Y + RS2) ~zIy=0=1 , I yO= 1-d :5 x:5 1+6 (13)

+ S+s 2 .i= 1-d< x < 1+c (14)

Note that due to the definition of i Hs 1 )  i zIy=O = 2H zz=0 and

(Hi 1  ). i xy=0 = 2H i. ixy=0 After substituting for s 2 fromEq. (8)

and for Hc from Eq. (2), we note that the second equation added to

-j cos e /P sin o times the x-derivative of the first equation gives a result in-
0

volving only the unknown quantities D(W) and dn, n=0, 1, 2 ..... Substituting for

these unknowns from Eqs. (12) and (10) respectively gives an equation in the single

unknown F . A rearrangement of this result leads to the integral equation
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+1

FQXd+1) G(x--r)+H(xT)I dX E E (Td + 1) -1 :5 T : +1 (15)
-1

where

i-L x-
d d

G(X-T) = p 5 .) exp [jad(-T) I da

H(X, ) )2d c  sin -71I+bcos-Od +tI + b)
a n 2b 2b

n=1

F-i~~ jcot6 0 i
Eo('d+t) = - 2 flsin 0o Zo  xy=0 d Iz I z

The solution to this integral equation, F, along with the relation

(x-l)/d

Ez(x) = d F(Xd+L)dX , (16)

makes possible the determination of the z component of the aperture electric

field. Remember in connection with Eq. (16) that F = d/dx E_ (x) and that

Ez(,-d) = 0.
Let us consider now the derivation of a second integral equation, the solution

of which is related to the x component of the aperture field. Let E (x) denote

the x component of the electric field in the aperture. Continuity of the x compo-

nent of the electric field at y = 0 then gives

-I Ex(X) t-d -5 x 5 I+d (17)
/ 0 otherwise

for -b -5 x -5 b. Substituting for c from Eq. (1) in this expression and adding

-jd cot 0 times the x derivative of Eq. (9) [with Ec substituted from Eq. (1)]
gives

i t

Ii

I
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-Pd m c nsinm acos n- (x+b) = W -5 5 d

n=0 0 otherwise

for -b<x <b. Here

G(x) - pdE (x) - jdcot 0 o F(x) (19)

Using the orthogonality properties of the Fourier cosine series gives

f+d

(- 3) m b pd c sin mna G(x) cos -n (x+b) dx (20)

1-d

where

1l n =0:n0
n 2 n 0.

In a similar fashion, continuity of E at the y=0 plane requires

(( i Sl :s2 ix I E x x )  1-d :55 x -5 I+d

= -- (21)0 otherwise

for all x . Again, noting that ( ' + t ) ix~y=0 = 0, substituting for E s2 from
Eq. (7), and adding -jd cot eo times the x derivative of Eq. (11) with Es 2 sub-

stituted from Eq. (7) gives

j 0k X(a) c(a)exp(-jax)da = 1 (22)

-o0/ 0 otherwise

Upon taking the Fourier transform of this result, there results

I+d

jpdX(a) c(a) - 91 G(x) exp (jax) dx (23)
I: F d
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At this point let us consider Eq. (13). Substituting for Hs 2 from Eq. (8) and

for Hi from Eq. (2) and using the fact that (H + S . Izy=O = 2 . z " we

find a relation in the unknowns c n , n=O, 1, 2,... , and c(a). Substituting for the

Cn'S from Eq. (20) and for c(a) from Eq. (23) and rearranging the result gives

the integral equation

+1

SG(d+f) [I(X-T) + J(X, T)J dX = E1 (Td+) -, :1 T 5 +1 (24)

-1

where

I (N-T) a - exp CjdXTjda

j('7 d n nff
J(,') cot ma sin -- (r'd+I+b) cos - (Xdd+I+b)

n=l

-j4Z o.-J4Zo 1 ,ii(Td+l)iy=o
El(7d+t) = sin 0 OT

Due to the relation defining G, Eq. (19), the solution to Eq. (24) along with

the solution F of Eq. (15) makes possible the calculation of E

3. PROBLEM SOLUTION

The complexity of the integral Eqs. (15) and (24) seems to preclude any exact

solution. Instead, we consider a standard perturbation technique in order to obtain

an approximate solution under the assumption of a small aperture width in wave -
lengths.

Consider the integral equation

V

Sf(x) A(x,y) dx gy) (25)

L

:1!
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where A and g are known functions and f is an unknown function to be de-

termined. Expanding A and g in a series in the dimensionless parameter e

and assuming a similar expansion exists for the unknown f results )n

&I

A(x,y) e nAn (xY)
n=0

Co

g(y) = En gn(,)

n=0

o

f(x) = E, Cn fn(x)

n=0

Substituting these expansions into Eq. (25) and assuming the equality of the coeffi-

cients of like powers of c yields the following sequence of integral equations:

f f 0 (x) AO(x,y) dx = g0 (y)

L

SfI(x) A(x,y)dx = gy1 )_ f (x) A 1x, y)dx
L L

and so forth. Thus, if an integral equation having a kerniel of the form of A0 is

solvable, then each integral equation in the above sequence is solvable for the suc-

cessive approximations f0, f1 , f2, . . . . It should be noted that the right-hand

side of each equation is a known function provided th . previous equations in the

sequence have been solved.

Let us apply this perturbation technique to the intigral Eq. (15) for F . The

small parameter c in this development will be taken to be fld . To apply the

technique, we require series expansions in Pd for the functions G , H , and E

defined following Eq. (15). A detailed evaluation of G(X-r) reveals that

G(,X-v) =- _-L1]+ O(Qd) 2 .
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Aiso,

H(X, -) = -P V!+ 0 (Od)

and

E,0(d+.1) = j 2r, sin 0o iz T exp (jPI cos 0o) + O(Pd).

Here F is a vector in the direction of the E polarization of the incident wave and

of magnitude equal to the incident electric field.

Substituting these results, along with the assumed pd expansion for F

F(Xd+l) = F0 (d-i) + pd F1(d+i) + . . (26)

into Eq. (15) and equating the coefficients of (0d) 0 gives

+1

- 0 -- A-T -j sin 0 1z  F exp jOp cos ) -1- -+! . (27)
-1

2This is a singular integral equation of the form considered by Tricom4. The

solution to Eq. (27) is

F 0 (Xd+t) = -jpX sin o i0. e exp (jpt cos 0 )
(1 - X2)1 / 2

where we have used the fact that

+1

F0(Xd+1) dX = 0

-1

This latter result follows since i11
E (It+ d) -E . Id) c,+1

0- d - d+) dX = nFn(Xd+) dX

-1 n=0 -I
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or

+1
+IS F n (A.d+1)d .X = 0 n = 0, ,2....

-i

Here the first equality follows since the z component of the aperture field must

be zero at the edges of the aperture. The second equ lity follows from the defini-

tion of F given following Eq. (10), and the third eqt a'-y follows from a substitu-

tion of the assumed pd expansion for F.

A continuation of the perturbation scheme yields integral equations of the form

of Eq. (27) in the urknowns F n  n=1, 2, 3. ..... These results substituted into

Eq. (26) along itth the condition Eq. (16) gives for the aperture field

(,f)= pd(l-x 2 ) 1/2 sin% 0 exto (jpf cos 0 OdL cos 65+ 0(3d) 2]

128)

Applying this same perturbation technique to Eq. (24) we arrive at a sequence

of integral equations of the same form as Eq. (27). Without going into detail,*

there results for the x component of the aperture electric field

2 io - exp (jpf cos 4o)
E (Xd+f) = + 0 (pd). (29)-- Pdd (1_2 -X 2 0°

Here 40 is the unit vector io evaluated in the direction from which the incident

wave arrives. fAlso,

2J iF lncos bJ ldl lnI2IAO -+ L + Ini -JT I + in I' I + I 11

0 ~ ) b4
-2Z lcoth(f ) 1C 5 (ibLcta

E Y j 2pb

where y = Euler-Mascheroni constant = C.5772157 and y n= [1 - (2pb/nr)2 1/2

The results of Eqs. (28) and (29) for the z and x components of the aperture

electric field are the main results to be obtained here. It should be noted, however,

*A detailed analysis of this and other aspects of the problem will be included in an

AFCRL report in preparation.



118

that by applying the method of steepest descent to the Fourier integrals in the ex-

pressions for Fs 2 and s 2 , Eqs. (7) and (8) respectively, it is possible to

evaluate the far scattered fields produced by the non-zero aperture fields E and
E We will not consider these resul, . here.
mx I

4. DISCUSSION OF RESULTS

In this section we consider Eqs. (28) and (29) for the z and x components of

the electric field in thi: aperture.

Consider the result for Ez first. We note that this field component is propor-

tional to the z component of the incident electric field and is independent of all

other components. Further, this field is 0(8d) &nd hence for a narrow aperture

will be small. A more complete analysis reveals that the first term in the solution
3to involve the cavity parameters a . b, and I is 0(pd) . Thus it would seem

that for a narrow aperture the cavity will do little to change or control the z com-

ponent of the aperture field.

Finally, it is interesting to note that near the aperture edge, X -- , -E'
varies according to the square root of the distance from the edge. This is the known

edge condition for electric field components parallel to a sharp edge.3

Let us consider also the mire interesting result of Eq. (29) for E . We note

that the dominant term for pd small is the first term, it being 0(l/gd) . This

dominant term has the san'e spatial variation as the static electric field which

would be produced in an infinitely long narrow slit by a potential difference across

the slit. Near the edges, X - ±1, this component of the field is proportional to

p 1/2 where p is the distance to the edge. Again, this is the known edge condi-

tion for electric field components perpendicular to a sharp edge.3

It is of interest to consider E at the center of the aperture (X=0) when-X

I=0, that is, Ex(0) , as a function of the cavity parameters a and b. A detailed

analysis of Eq. (29) for 0e 900 and 0o = 450 reveals that Ex(0) = 0 for ka = nr,

n=0, 1,2, ... as long as kb* pr , p=1, 2,. .. and kd 0 0. Thus the cavity appears

to short circuit the aperture when the cavity depth is adjusted to integer multiples

of a half wavelength.

There also occur combinations of the cavity dimensions a and b where what

might be called "anti-resonances" occur. Here the dominant first term in the

expression for E is a maximum in magnitude.

These Itanti-resonance ' dimensions are not odd integer multiples Cf a quarter

wavelength as might be expected. Rather, these dimensions are given by the condi-

tion that

I
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Further, it can be shown that this condition occurs in the range 0 < af\ < 112

when q < 2b/A <q + 1/2 , q=0, 1, 2 .... and in t-h range alA > l/z for all values

of 2b/. A numerical analysis for the conditions 2d - 0 1 = , E 9. 900 ,
A

= 450 reveals that under these conditions the "anti-resonnce" -valueb of a/A

tend to n/2 , n=l, 2. 3,... as 2b/A becomes large. Also, the "anti-resonances,

become sharper as 2b/A becomes )-rger since the magnitude of the fieli varies

rapidly to zero at a/A = n/2.
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IX. Some Concepts for ReduCing Reflectivity
From Antenna Apertures

Edvin M. Turtrr
Electromagnetic Environment Branch

Air Force Systems Command
Aeronautical Systems Division

Vright-Patterson AFB, Ohio

An elementary analysis of radar reflectivity will generally show that for high-

speed aerospace vehicles the most difficult surfaces to conceal are those occupied

by the antenna apertures. This is true because the antennas are generally focused,

reciprocal, and linear devices, and they must be strategically placed to perform

their assigned functions. Within the confines of these assumptions, one has a

number of readily available alternatives to reduce the backscattering from antenna

apertures; the alternatives include terminal loading, inductive loading, absorptive

loading, and choosing antenna designs which are inherently low in reflectivity.

Often a more productive solution for the backscattering problem may be found

from a study of the flight trajectory and the operational requirements of the sys-

tem. For instance, an antenna configuration may be used over only a small part

of the flight path, and it may be hidden from radar view throughout the remainder

of the trajectory without being operationally objectionable. This may be accom-

plished by either changing the antenna patterns to produce a beam pointing in sone

innocuous direction, or by breaking the aperture up into small segments, each of

which will resonate at frequencies above or below the operating frequencies of

the tracking radars. These objectives may be achieved by the use of biased diodes,

non-reciprocal ferrites in waveguides, switches, or by relay-operated shorts that
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will change the resonance frequencies or the patterns of the apertures.

Examples of the techniques suggested herein are shown b,-,ow in Figures 1

to 4.

Figure 1. A Horn Aperture Shorted by Means of a Diode Switch Reduces
Backscattering to Approximately That of a Flat Plate

LO°  LO°  e e
e.

eL e, e1

'
IN-PHASE '
PATTE RN ANTI- PHASE

PATTERN

Figure 2. A Conical Spiral Antenna Showing Patterns for Both In-I tase and
Anti-Phase Connections. A change in patterns can be achieved by means of
placing a short across the feed terminals.



123

-I- Ht -,

Figure 3. A Dipole Antenna With Forward Biased Diode Switches. A change in
Oc bias across diodes will segment the aperture.

TRANSMITTED

BEAM

NORMA

S1
RECEIVED BEAM

Figure 4. An Open-Ended Wave-Guide Radiator Showing Non-Reciprocal Ferrite
Phasing Element. The angle of divergence between the transmitted and received
beams is proportional to the magnetic field across ferrite phase shifter.
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X. Radar Cross Section of Perfectly Conducting,
Dielectric and Dielectrically Clad Infinite

Cylinders at Arbitrary Incidence*
Abdelnour S. Thomas

A. S. Thomas, Inc.
Vlestv.ood, Massachusetts

1. INTRODUCTION

1 -7

The work reported in the literatu:'e on dielectrically clad cylinders prima-

rily treats normal incidence and in most cases is restricted to the geometrical

optics region. As far as could be ascertained by the author, the dielectrically clad

infinite cylinder at normal (broadside) incidence for - TM incident field was first
7

treated by C. C. Tang with computed values of normalized radar cross section

experimentally verified. The more general "ase of arbitrrry incidence was treated

by J. R. Wait 8 for a homogeneous non-metallic cylinder for an incident TM mode.

He, however, did not present any numerical data. The dielectrically, clad cylinder,

following the work of Wait and Tang, is extended here to the more general case of

oblique incidence of either TM or TE modes for N concentric layers. The normal-

ized radar cross section in the plane of incidence has been computed for normal

and oblique incidence.

It is believed that a comparison of the normalized radar cross section of the

dielectrically clad and solid dielectric cylinders for small radii with that of the

*This work was sponsored by Lincoln Laboratory, Subcontract No. 265, under
Prime Contract No. AF19(604)-7400.
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perfedt.) conducting cylinder would provide some insight into the problem of re-

ducikg the radar cross section of objects of small geometrical cross section.

2. FORMULATION

2.1 Genera!

The equations of the incident, internal, and scattered fields at arbitrary inici-

dence are presented here fcr a cylinder consisting of N homogeneous, concentric,

non-metallic cylindrical layers. The expressions for the scattering coefficients

for a single layer about a perfectly conducting core with an incident TM field

(H z = 0) are derived, and then the expressions for incident TE mode are given.

These general expressions reduce to those for the solid homogeneoas d-electric

cylinders as well as to t' e solid metallic cylinder.

Consider a plane-wave incident on a:, infinite cylindrical obstacle at an angle

0, with respect to the normal to the axis of the cylinder to be a pure TM wave.

Using the coordinate system given in Figure 1, the incident, internal, and scattered

fields may be written as follows:

(1) Incident Fields

inc CI
Ein= E0 cos (1)jnJn(Por)Fn (I)z o

inc: c -nk ° sin%\

E E cos' Jn(3or) F (2)
0 0 L.... 2 r n on

Hinc 0 (3)
z

7__

H -o j Ji(n cF (4)

H 0 os OE WA _

(2) internal Fields

E m i jn (mH(1) BmH ( 2)  Rm F (5)z n n ntmm n Pn n
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z

10

Wx

Figure 1. Cylindrical Coordinate System

Em=Ejn/-k 0si * [ m () ( R + B'H(2 )(13 Rl
E ~ 2 R~~ksn [AnH n)(P n nx m i

+ij7~n ( R )+fmH() I3R] F ~ (6)
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H M n (-nko 0 oin*0amH (1) (PR ) BmHH(2)n nj

m In

_ m [An H(l) '(m Rm) + Bm H( 2 )'(p R F

(3) Scattered Fields

E se .r n H(2) (0)z n -nfln o

sc n n-nk (sin° 1) ( 2 ) -  (-" 1) H( 2 ) 'E¢ =2j C32  n Hn (o r)+4 n (P.or F n  (0

scPo.n - r (2)O

"H s = n - (2) (Po r)F n  (11)

SJk2

" s c = -"n n n H(2)(o r) o C n H(2), (P r)F (12)

where it is understood that the summation is from n = - o to n =

E = magnitude of the incident field

' = angle of incidence with respect to the axis of the cylinder

Pm = km Cos lIm, with rz = 0, 1, 2 ..... N relating to the mth layer,

with m = 0 free space external the cylinder

km  = 2 v, XP I Em ,

f = operating frequency

Pm = normalized permeability of the mth layer

&m = normalized permittivity of the mth layer

F n = exp[-j(n6-k m zsin ' m
) ]

Am Br C m  arbitrary constants relating to the TM moden' n' n

m, n m = arbitrary constants relating to the assumed internal and
n n' n

scattered TE mode

jn, Hn' H(2n) = Bessel and Hankel functions with the primes relating to

differentiation with respect to the argument.
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2.2 $ingle Laver ab%,ut a Perrecti-, Conducting Cylinder

Now, by equating the internal fields to the sum of the inc-dent and scattered

fields at the air interface:

E cosI (x)+Cnn 2)(x A HM1(x)+B H(2) (13)
0 o n * 0 n n 1 n n

nk0 sin E Cos * J (x) +C H (2) (x -j -o E H (2)'(x
Po C°Son 0 n n o P nn 0

Wksin k M (2) 1 l H(1), (2)'r 0 IA Hn n(x +Bn HH.. (x n (x1)+En)H n(x) (14)
[Ax Ln~ n HjP Lx 1 nn Hlxdji"'H

C H.1(2) (x) A H1l) (x) )+B H (2)(x )(15)
n o n n n 1

-ind

jk2  1 k sin
0 rECos*' J(x)+C H ( 2 '(x) 0 -- 2 & H (2) (x)

g Po 0 fl 0 n n o 0 x0  n n 0
~. L

-nkO sinko' F HM(xl) +)'E H (2) (xl) + l[AnHl)(x)+BH 2)(x)] (16)PiX L n n 1+n W_ p__Fn

where k1 = angle wave makes with normal in coating

x0 = pHoRo

R 0 = outer radius

X= pi R0

and setting at the metallic interlace

B H()(x 2)- (.. n 2 (17)

n H n (x 2n 2

and
(1)"

Bn H n (x 2 ) (18)
- - 1(2); ( 8

An Hn (x 2 )

the Cn and C n may be readily obtained for the incident TM mode, giving:
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cTM  VP-q nl ol n(xo  }  (19 n o

Pr. [= H- (1X9)J2

and

o[H (x oJ -H (x J,(
E qn so )n o)jn(xo)-H n_)_xo)_n (20)

PN -
1ol2) 

(xj2

where: N = s H(2)(Xo)D- s H ( (x )i n 'o on o

P = r H(2)(x )L-s H(2)'(xO )in 0 on o
V = s 1 Jn (xo) D -so Jn (xo)

H (1) 1(xl)H(2) (x H(2) (x H()x
D= n 1 I n ( I)n ( 2 )iiD1) (x 1 ) H( 2 ) ( x2 ( H, 2 ) .... (1)Hn (x1)Hn "2Fn (x I )Hn (x 2)

H (1 1 ( H ()' ( )-H(2)'(x) A(
L H (x1 H,(2) (x2) H(2) (x) H (x2 )

Hn IXl n 2- n "1" r 2"

Sl" -sin2 %I
S, O

1 0

1

S 00OS

In the plane of incidence (€ = 0°), ur may be written

(7= - 1 (- 1)nCI. (21)

r

Now note that the Cn,~ Eq. (20), may be written as follows:
nX sin *

--= 7, - n n (22)

! "
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where
G P= G n"

hence, for

n= 0

Co =0

and

C n +C 0 for 1 0.

Therefore, in the plane of incidence, the orthogonal mode is identically zero.
However, the scattered field in planes other than the plane of incidence w-ill

contain the orthogonal mode which will increase as a function of the angle q', and

the angle 6 of the plane of observation, with a maximum in the plane ( = 900.
Also, if the axis of the cylinder is skewed with respect to the plane of incidence,

the scattered field in the plane of incidence will contain the orthogonal mode.

In the plane of incidence, the C n may be obtained for the TE incident mode

(Cn ) by replacing E by H and H by - E, c by p and / by e throughout, giving:

2 )H(2) (x

cTE MN-qnn(X ) n 0 (23)n PN(-on

where

M = rI Jn(Xo) L- soJ(Xo),

and all other symbols are as previously defined.

For normal incidence, *0 = 00, qn = 0. 0. Eqs. (19) and (23) become the well-known

equations for normal incidence

cTM "V (24)n =1-7

and

,TE M
n- (25)

2.3 Solid Dielectric Cylinder

If X is taken equal to zero, that is, a solid, homogeneous, non-metallic

cylinder, Eqs. (19) and (23) immediately reduce to those for the solid dielectric

cylinder at oblique in'idence, with
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2i

VP-q 2  (x H ( 2) )J2 (x
CT m  nfl 0 n  -o n 1 (26) V

PN - nN

0 TE =_ MN-q2 J (xo ) H( 2) (xo ) J2(xl)CEnn n n (27)
nPN - Luqn H n (xo0'1J n(l 2 O

where

V s J (xo ) Jn (X- S J (X) J (x)
i n on 1 on on 1

P =r i H (2 ) (xol J n- (Xl) - so H (2 ) ' X )J n( l

N=s H(2) (x )-s H (2)'

1 n S1 1l2 ( o n1 )s 0  2(xo)J'Tn(x_

M = r 1 Jn(xo) Jn (xl) - SoJn(xo) Jn(xl ) "

Again, for normal incidence,

C T = V (28)

n I'

cTE M (29)n

2.4 Perfect!v Conducting Cylinder

Setting E = , Eqs. (19) and (23) for the dieiectrically clad cylinder reduce

to the following expressions for the perfectly conducting cylinder at oblique

incidence:

c TM JnlXo)  (30
0T. Y1C (30)

n 72--TXo

TE Jn0 n(31)H)n 0(o

Equations (30) and (31) are of the same form as the well-known equations for

the perfectly conducting cylinder at normal incidence, except that at oblique

incideice xo = koRo cos O . In all of the above, the factors Eocos 410 and HoCSoP o

have been surpressed for all of the Cn's. It is interesting to note that, ignoring

the factors E cos 4 0 or H cos I, the a for the perfectly conducting cylinder at
0 0
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oblique incidence is identical to that of norinal incidence v. ith the radius reduced

by the factor cos * 0o -

3. COMPUTED NORMALIZED SIGMA

The normalized radar cross section

S ao co(32)

was computed for perfectly conducting solid, homogeneous, dielectric, and dielec-

trically clad cylinders.

3.1 Metallic Cylinder

For the metallic cylinder, a single computation of a versus R for both TE and

TM incident modes is sufficient since, for other than normal incident, multiplying

R0 /? by cosl, 0 will convert normal incidence to another angle of incidence I0

Figure 2 is the well-known alR 0 of normal incidence for a perfectly con-

ducting infinite cylinder with the TM mode decreasing monotonically with increas-

ing R0  and the TE mode increasing monotonically to unity and then oscillating

with damped oscillations as R 0I is increased and finally settling to the limiting

value of GIzRo = 1.

3.2 Solid Dielectric Cylinder

In Figure 3, the normalized sigmas at normal incidence for TE and TM

incident modes are given for 0.0002- R 0 --< 1. 0 and c = 4. 0. Here the normalized

sigmas for both TE and TM modes are monotonically increasing for values of

R o/ < 0. 10, and then both commence to oscillate with the oscillations increasing
in amplitude and rising above unity with increased R 0A. It is interesting that the

TM mode for small R /X is approximately at the same level as the TE mode for

the perfectly conducting cylinder. The level of course depends on the value of c

and will be higher for larger values of c and lower for the lowe:- values of c. In

Figure 4, the R 0IA versus S is given for E = 4 and P = 840. In comparison with

the metaliic cylinder, the TE mode is considerably higher up to Ro/A = 0. 2 with
the TE and TM modes very close in amplitude.

It has been found that the relative number of fluctuations (min to min) is related

to the dielectric constants of the mat,'-ials as -q1 - I / 2 - , where E is the1 2
permittivity ox one cylinaer and C2the permittivity of another cylinder.
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3.3 Dielectrically Clad Cylinder

The normalized sigma versus R /A for the range 0. 0002 :5 R /X:5 1 for
0 0

shell thicknesses as determined by RI= 0. 9R 0 and dielectric constant of the

shell equal to 4. 0 at normal incidence is given in Figure 5. Here again,

unlike the perfectly conducting cylinder, the oscillations of the TE mode do not

dampen out in the same manner as the TE mode of the perfectly conductingj

cylinder; rather, they increase in amplitude after R IX = 0. 5. For small RJX

/0

the TE mode of the dielectrically clad cylinder is significantly higher than that of

the perfectly conducting cylinder, and the TM mode is significantly lower tha- that
oo

oFith gprectlyconiduDctri cCylinder v ealcClne.Nraie

= 84, E 4., R X= 002-1.0

Sigma vs R/;L o o5
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It is interesting to compare the dielectrically clad cylinder at normal incidence

with the dielectrically clad sphere* , Figure 6. Note the considerable similarity

between the sphere and the cylinder at normal incidence. Both .he sphere and

cylinder have burst of osci]lations that dampen out and then resume. The first

burst of uscillations from the sphere corresponds with the TE mode of the cylinder,

and the second burst with the TM mode of the cylinder; when the oscillations of

both modes of the cylinder are damped, so also are those of tue sphere. Both sphere

and cylinder have equal numbers of oscillations occuring at the same R oA; however,

the sphere differs from the cylinder in that the amplitude of the oscillations is larger

for the sphere than fox the cylinder.

Figure 7 shows normalizdd sigma, S, versus R oIX for a shell thickness of

0. 1 Ro, E =4.0, and the angle of incidence equal to 840, for 0. 0002 -- R /xs 1. 0
0 01 0

in comparison with the perfectly conducting cylinder. Here the S for the TE mode

of the aielectrically clad cylinder is significantly larger than the corresponding

mode of the perfectly conducting cylinder for Ro /X5 0. 2.

Figures 8 and 9 give scan in angle for R 1 = 0. 9R and R° = 0.78X, respec-

tively, for c = 4. 0 and e = 2. 56. Here there is considerable similarity between

the two values of c; however, for the large E, the S rises higher above unity

than it does for the smaller P.

The normalized cr, S, versus c is given i,L Figure 10 for %' = 450, Ro/X = 0.78

and R, = . 702X.

Re"here was computed by J. Rheinstein of MIT, Lincoln Laboratories
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X1. Effect of Surface Diffusivity Upon the Scattering
Characteristics of a P!asma Sphere*

Philip J. ANatO'4
Plasmadyne Corporation

Abstract

The effect of varying the suriace diffuseness of a spherical plasma region is
examined in the resonance region. It is found that large changes in electron den-
sity may be readily compensated by modest changes in surtace diffuseness as
regards the scattering characteristics of such regions.

Since the re-entry characteristics of a great many objects ofter, include large
regions of highly ionized material, it is of particular interest to consider how
slight structural modifications of these plasma volumes can appreciably affect the
scattering of electromagmtic waves in the resonance region. For purposes of
illustration, a hypothetical plasma will be examined whose structure is assumed

to be sphericlally symmetric. I In this event, an earlier formalism developed by

This work was completed while the author was at Plasmadyne Corporation and
was performed entirely at company expense. Much of this material may be
found in J. Appl. Phys. 34: 2078, 1963.

* Now a member of the Technical Staff of the Defense Research Corporation,
Santa Barbara, California.
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the author 2 and oihers 3 , 4 will become imnmediately applicable as soon as an asso-

ciation between the conventio-.al plasma variables and the so-called index of

refraction is made.

For ! plasma in local thermodynamic -- :librium, the electron density, N,

and collision frequency, v, are sufficient param-eters to characterize its gross

structural features. The minor contributions from the heavier ions are usually

neglected in this approximation. The electron collision frequency itself is in

general a rather complicated function of temperature anc electron density. 5

Def ning the plasma frequency,w, , by

2= 4 Ne 2 /m (1)
P

one may introduce the local dielectric constant

2

2 = - 2 --- (2)

whicn depends upon the incident angular frequency w as indicated. The electron

charge and mass are indicated by e and m respectively.

If new the plasnta frequency and collision frequency are functions of position,

then e also will be a function of position. The complex refractive index is given

by the square root of c and thus also varies with position. Since all variations

are for the present example assumed radial, one has the situation dpscribed by
2Wyatt , namely a medium whose refractive index is a function of r only.

Consider now the following situation: Radiation of frequency w127, is incident

upon a spherically symmetric plasma with a uniform interior. In terms of the

vacuum wavelength, Xvac' the dimensionless parameter p = 27rr/x vac may be

introduced. Thus

n(p - (P)2 [1 _ ivP()Iw] I [w2 + v(p) 2 ] (3)

For p less than some value a, say, both w and P are assumed constant and

therefore one may write

n(p) = nOR + in0 1 , o< p < a . (4)

Surface diffusivity may now be introduced by letting nIP) vary from the value

given by Eq. (4) to the value 1.0 at some point b(> a), say, by letting
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n(p n(=p) + ini(p), a< p < b (5)

n(p) = 1.0, p > b

where nR(P) and ni(P) are real functions of P. This functional dependence of the

complex refractive index may be deduced by assuming some realistic variation

with P of u.p and v or, alternatively, by assuming a variation of n(p) directly.

Although either approach will yield a diffuse surface with similar characteristics,

the latter assumption is more convenient for the present discussion.

In order that n(p) and its first two derivatives be .ontinuous throughout the

entire range of interest, % convenient foi m faAor of the Green-Wyatt type may be

introduced as follows:

n(p) = nR(P) + ini(P)

where

nR(P) + (nOR-l) (P) (6)

nI (p) = n0 i (P)

and the form factor (p) is given by

(p) = 1, o~p<a

1 15Z/16 + 10Z 3 /16 - 3Z5/16, a<p < b (7)2

= 0,p> b

Z =[p -'ib+a) / .1ib-a)]

The parameters a and b may be related to the half fall-off distance

Po (=2,rrokvac = kro) and the surface thickness T (diffuseness), if one defines

the term "thickness" to nean the 0.9 to 0.1 fall-off distance. Thus for the form

chosen in Eq. (7)

a = p0 - 0.99868T (8)

b = p + 0.99868T.

The variables of interest are illustrated in Figure 1 for the case where

nOR = 1.67 and n0 i = 0.734.
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2.0 = Po-0.99868T

I.' b Po+0.99868T

on'I x,. 1 o0.67 Z'Ip)

In) 0734 f ()

i.e.,pkvac _

For the present example the incident frequency has been fixed at 3kMc,

V 10 1 and po = 5. Thus the problem concerns an S-band measurement

of a plasma whose mean radius is about 8 cm.

Consider first the effect upon the radar cross section of such a region when

the surface thickness is varied. The curves shown in Figure 2 illustrate this

result for a variety of values of w p(N 1/ 2 ) at the uniform interior region of the

plasma scatterer. Rather than express the results in terms of the radar cross

section, the abscissa refers to the backscattered intensity in units of (kr)- 2

normalized to unit incident flux.

I~mI,

SI i + ,| I 1 I 
, ,

, OJ LO

Figure 2. The differential scattered intensity of unpolarized radiation in units of
(kr)" 2 at 1800 shown for various surface thicknesses as a function of plasma fre-
quency (po=S, w = 6r X 10X sec-1, v = 1010 sec- 1 )
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Several important results are clearly illustrated by Figure 2. At the smaller

electron densities, that is, when the interior plasma frequency is less than the

incident angular frequency, small variations in surface thickness cause appreciable

variations in the backscattered intensity. This would be expected in general since

an increased surface diffuseness usually results in a diminished reflection. This

trend is continued throughout the region where the plasma frequency is comparable

to the incident angular frequency, except for the particularly sharp surfaces. For

these latter exceptioi.s, the zefiection coefficients are critically affected for even

slight variations in the surface regiuz..-,dthus produce the resonance type phenomena

illustrated. It is interestingto note that from a given measurement of backscattered

intensity, it is in general impossible to deduce anything concerning the structurt

of the scatterer. This result is vividly illustrated in Figure 2 since a given back-

scatter may be produced from an infinite variety of cp and T combinations.

Not only is the radar cross section appreciably affected by variations in sur-

face diffuseness, but the scattering at all other angles as well. Assuming for the

moment that the source of radiation is unpolarized, then Figures 3 and 4 illus-

trate the differential scattered intensities for various i,,terior plasma frequencies

at two distinct surface thicknesses (0.0 and 1.0, respectively). Thus for the case

of larger surface thickness, the scattering characteristics at a particular angle

behave in an essentially inonotonic manner. For the sharp surface (Figure 3) on

the other hand, this simple behavior is no observed. Indeed, the sharp-surfaced

structure may be said to have a high Q (at a variety of dielectric constants) which

is easily "spoiled", thus resulting in the resonance behavior illustrated. The

diffuse structure may be said to always have a poor Q.

If the interior plasma. frequency is fixed, then the diffusivity effects upon the

differential scattered intensity may be examined direztly. Figure 5 illustrates this

situation for w = 101sec Note the general shifting of the diffraction patternp
toward smaller angles with increasing surface diffuseness. For W less than

this value a significant drop in the backscattered intensity is also observed.

The above example illustrates that marked variations in the scattering charac-

teristics of plasma vo.umes may in general be expected subsequent to small varia-

tions in surface diffusivity. In addition, large changes in ionization density may be

easily "disguised," in;sofar as conventional radar measurements are concerned, by

relatively small changes in surface diffuseness. Applied to larger systems at other

freque-;cies, the above indicated results could have interesting practical applications.

Although this is completely unrealistic insofar as microwave sources are con-
cerned, this assumption permits an a, erage differential scattering pattern to be
presented. As was so vividly brought out at the Symposium, it is not enough to be
just concerned with the effects upon the scattering of certain mudifications or load-
ing techniques for a given polarization of the incident radiation. The effects upon
two mutually perpendicular polarizations must always be considered simultane-
ously. Thus, the assumption of an unpolarized source (which, incidentally, renders
the computations somewhat more difficult) results in a clear picture of the net effects.
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T' 0

Jo

I ...............................

3p,2 x 10t ............
3 x 0.-----

.I 5 x ioO° -

1012. . .
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SCATTERING ANGLE (DEGREES)

Figure 3. The Variation of the Differential Scattered Intensity in Units of (kr) 2

of Unpolarized Radiation as a Function of Plasma Frequency for T = O(p o = 5,
w = 67rX 109 sec - 1, v = 1010 sec - 1)
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Figure 4. The Variation of the Differential Scattered Intensity in Units of (kr)" 2

of Unpolarized Radiatio as a Function of Plasma Frequency for T = 1. 0(po = 5,
6-rX10 9 sec , v =101 0 see-0
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Figure 5. The Variation of the Differential Scattered nmtensity of Unpolarized
Radiation in Units Bf(kr)-2 with Chngp Surface Thickness (p0 = 5, &j = 61r X
109 sec-1 , v = 101 sec-1 and p=11s ec)
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XII. Absorption Resonance Effects in Plasma Spheres
N. Pedersen

Research Directorate
Research and Advnneod Development Dii ision

%%eo Corporation
Iilmington. MIassachusetts

L. \talmstrom
Department of Physics

Harvard Lni'ersitv
Cambridge. %lassachusetts

1. INTRODUCTION

It is the purpose of this paper to report on theoretical work dealing with the

absorption of electromagnetic power by plasma spheres. The electromagnetic

energy is propagated to the plasma sphere in the form of plane-wave radiation.

The sphere is assumed to be homogeneous and to be surrounded by a medium

whose refractive index is near unity. Under these conditions, Mie scattering

theory may be used to compute the absorption cross section of the sphere as a

function of its complex dielectric constant, its radius, and the frequency of the

incident electromagnetic wave. In particular, the conditions for maximum power

absorption efficiency will be discussed. It will be shown that strong absorption

resonances are to be expected only for cases where the ratio of sphere radius to

free space electromagnetic wavelength is less than unity. Consequently, models

which assume infinite or semi-infinite media are not applicable and would not yield

the absorption resonances that are predicted by the application of electromagn
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scattering theory. On the other hand, treatments based on electrostatic or mag-

netostatic solutions o' the wae equation will yield a discrete .Let of characteristic
"resonance" conditions in the dielectric constant or in the permeability but will

riot lead to a determination of absorption cross section or to the conditions for

absorption cross section maxima.

2. APPROACH

Since it is the objective of this work to optimize the efficiency for power

absorption in dielectric spheres, the results of formal Mie theory are used to

write down the exact expression for absorption cross section. It is first deter-

minted that strong absorption resonances are to be expected only in the low fre-

quenc. limit. A low frequency approximation is then applied which reduces the

problem to that of optimizing the absorption cross section of lossy spheres having

small radius to wavelength ratio. This is done by first determining the optimum

values of the real and imaginary parts of the appropriate partial wave coefficient

and then computing the maximum possible value for the power absorption efficiency

as a function of ka, where k=2 r 'X and a = sphere radius. Next, the optimum

values of the real and imaginary parts of the dielectric constant are found as

functions of ka by means of performing a power series expansion of the partial

wave coefficient in terms of ka. In this step, the condition that !Ca << 1 is again

used. Since the magnitude of the optimized absorption efficiency is proportional

, (ka) -2, and since the approximations ased become inc-easingly accurate as ka

decreases, this method should be quite valid in regions of very high absorption

resn;aance.
Finally, the effect of an applied magnetic field is investigated and it is found

that the existence of the magnetic field berves to decouple the parametric equations

for absorption resonance.

3. RESULTS OF FGRMIAL IE THEORY

The absorption efficiency factor Qabs for a scatterer is defined as the ratio

of its absorption cross section to its projected area. Fcr a sphere this is

=abs abs 2, where abs = absorption cross section and a = sphere radius.

Likewise, the extinction and scattering efficiency factors are defined as

cext/&a2 and Qsca = 0 sca /va From conservation of energy, it follows

that
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Qabs Qext - Qsca (1)

The extinction and scattering efficiency factors are usually given by.the fol owing

series representations:

Qe 2 =  (2n+l) Re(an+bn), (2)Qext =-T En= 1

Q a~2 F (2n+l) tan2 + lbn1 1  (3)Qsca ( n

where x = ka = 2r a/A, and an and bn are, respectively, the coefficients for the

n'th electric and magnetic partial waves. These can be shown to be the contribu-

tions due to the induced electric and magnetic dipole, quadrupule, and higher-ordler

moments of the sphere. They may be written as follows:

1 (4)an 1 ~j nn(X) "[YJn(y) ]- cJn(Y) [xnn(x)] i

iJn(x) Y -()I (y) [XJn(x)j -

b = I (5)
n enn(x) [yj(y) - 4(y) fxnn(x) ] /

1-i

C n(x)[yJn(y) Jn(y ) [xJn(x)]

where the jn(y) and nn(X) are spherical Bessel functions of the first and second

kinds respectively, x = ka, y = x -,., and E = complex dielectric constant. The

prime in Eqs. (4) and (5) indicate derivatives with respect to the argument. Since

the Bessel functions will in general be complex, the an and bn will also in general

be complex. Substituting Eqs. (2) and (J) into Eq. (1), we have

- bs 'Ia

Qabs -- b s 2 (2n+1) Re(an) -1a +Re() - lb n (6)
ra X n= 1

Equation (6) indicates that it is reasonable to expect resonances in Qabs when

resonance exists for one or more of the partial wave coefficients. Such resonances

can only occur for plasma-like media with E'< 1, as shown by approximations of

the first few partial wave coefficients.
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A computer code for the computation of the Q's has been developed by J. C.

Pedersen of the Avco Corporation. Some results of this program have been

checked against published* results of a similar program at RAND Corporation

and good agreement was obtained for ka values as low as 0. 2 (the lower linit on

the published RAND results). Both programs were operable for dielectric con-

stants having a negative real part as well as an imaginary part. Such cases

represent plasma spheres. In the case of a plasma, the complex dielectric

constant is given by

2
i ne 1

"- " o - e w (7)a0

-9 + i

where ne = electron density, e = electronic charge, u = electron collision fre-

quency, and co E permitivity of free space. It is convenient to define 7 -- (w p /W)2 p
e and 7 = (w g1w), where w is the plasma frequency. The real and

imaginary parts of the dielectric constant are then given by

9
+ -Y2 (8a)

1 +y

E - -. (8b)

Some general statements can be made about the limiting values of n and -Y as

related to absorption. First, it is obvious that no absorption can occur for E'" = 0.
Thus, the cases of n = 0 (no electrons) or y = 0 (no collisions) will yield Qabs = 0.

The case of n = - with y finite represents a perfect conductor (imaginary refractive

index). No absorption can occur in this case. Finally, for y = - and 17 finite, we

have c" = 0 and agaz no abborptior can occur. It has therefore been shown that

any resonances in the absorption cross section will occur for finite values of both

,1 and y.

A number of sets of computer runs were made for plasma-like spheres, and

the results are shown in Figures I through 5. Each set of curves is a plot of Qabs

vs y for a particular fixed value of ka, with n the running parameter. The max-

imum value of Qabs for a given ka is seen to be characterized by a discrete value

*D. Deirmendjian and R. J. Clasen, Light Scattering on Partially Absorbing
Homogeneous Spheres of Finite Size, RAND Report R-393-PR, Feb. 1962_n
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Figure 2. Qabs as aFunction of ql and y for ka 0. 5

II

Figure 3. Qabs as a Function of 17 and y for ka 0. 8



161

01

C'm 01h

Figure 4. abs as a Function of 17 and -yfor ka= 1. 6

Figure 5. Q abs as a Function of 71 and 'y for ka 2. 5
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of n and a discrete value of -Y. Thus, for a given ka, this set of values of P and

y represents the resonance condition for Qabs" Of particular interest in these

results is the fact that the maximum value of Qabs, which we define as Q . (max),
as

increases strongly with decreasing ka. The various Qabs (max) in Figures 1 to 5
have been identified with resonanceg in a1 , the electric dipole partial wave coeffi-

cient. For ka values below 0. 4, only the a1 coefficient need be considered.

Although resonances due to the higher order an coefficients have been observed in

some computer runs, these are very much sharper than those due to the electric

dipole term and arise from values of y which are too small to be of practical

interest. Since the magnetic permeability was set equal to yo, no magnetic

resonances were expected in these runs, nor were they found. Resonances due to

-he bn can cccur only in the case of negative permeability and were therefore not

investigated.

4. -iPPROXiI,TIO,\5 TO MIE THEORY

Since small ka implies large Q abs(max), and since it has been demonstrated

that the use of aI alone will suffice under these conditions, it is next meaningful

to make two approximations.

(a) Assume that Qabs results from only the electric dipole term a1 .

Find Qabs(max) as a function of ka. In doing this, it will be necessary

to find the optimum values of the real and imaginary parts of aI for the

occurrence of Qabs (max).

(b) Write a I as a power series expansion in ka and make the appropriate

approximation for ka << 1. Separate the approximate expression of a,

into its real and imaginary parts. The optimum value of these, found

from (a) above, will then be used to arrive at two equations which define

the necessary values of r" and E" as a function of ka for the occurrence

of Qabs (max). Finally, Eq. (8) will be used to obtain a set of equations

in 71 and y giving the resonance values of these as functions of ka.

For the determination of Qabs (max), assuming a particular an to be the only

contributor, Eq. (6) reduces to

2 (2n+l)FR (an Ian12 +R(b lb 21 .
Qabs - e n) en n

If we now let an = (c+ id)- , we obtain
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=2 (2n+l)[-I (10)
abs _T

To find Qabs = Qabs (max), we must have

Qabs (max) = ( 2n+ 1)(12)

or

Qabs (max) = 32 (electric dipole resonance). (13)
2x

Exact machine calculations verify Eq. (13) for values of x below 0. 5.

The next step is to calculate the optimum properties of the medium as functions

of x. It will be most convenient to first find the absorption resonance conditions:

E = f1(x) and c" = g1(x). Equation (8) will then be used to find ij = f2 (x) and

= g2(x). For this purpose, it is convepient to write a I as a power series

expansion in x and to then make a low frequency approximation, making sure

that sufficient terms are kept in the denominators to prevent the occurrence of

infinities which would otherwise result. Due to the algebraic complexity of this

operation, the series expansion for the general an term is given in the Appendix.

The result is given by Eq. (A-12). Since Eq. (11) led to Ihe result a = (2+i0) 1

for Qabs = Qabs(max), we obtain the absorption resonance conditions by equating

the real and imaginary parts of the denominator of Eq. (A-12) to 2 and 0 respec-

tively, which yields Eqs. (A-13) and (A-14). We now let x <<1. The zero'th

order approximation of the absorption resonance conditions in Eqs. (13) and (14)

is a - n l  0. This is obviously not of sufficiently high order in x since

the x dependence on E and c " does not appear. In addition, this result gives

zero collision frequency. The next higher-order approximation gives

(n+1) (2n+I) 2n+1 (14)

[(2n+l W!]
2 (n+l)n

' x

n 1+l i+x2 2 (2 n+ 1)

a - n n(2n-l)(2n+3) (15)

In the case of electric dipole resonance (n- 1), we have the resonance conditions:
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2x 3  (16)

r=-2+ Yx . (17)

Substituting Eqs. (16) and (17) into Eqs. (8a) and (8b), we finally get

23" X (18)

2
3 + Y . (19)

Equations (16) and (17) constitute the necessary conditions for electric dipole

resonance in the absorption efficiency factor for homogeneous plasma spheres

having small radius-to-wavelength ratios. Since Eq. (13) shows that x must be

small in order for large absorption efficiencies to occur, Eqs. (18) and (19) are

useful in the region of interest.

5. DISCUSSION

it was demonstrated in the last section that large absorption resonances can

occur in plas~ma spheres (Eq. 13). The conditions for electric dipole absorption

ree.nance (Eqs. 18 and 19) show that in the region of strong resonance (small x),
the value of i goes to a constant value of 3, while y is proportional to x3 . Thus,

-3
the ratio of plasma frequency w p to collision frequency w is proportional to x .

Thus, for Qabs = 150 (Eq. 13), we would require w p1w = n IT L 2600. As x is

further decreased, this ratio will greatly increase. It is probably this fact more

than any other which will limit the highest physically realizable values of Qabs
Another consideration is the mean free path of electrons within the plasma sphere.

This distance is really the mean distance a "hot" electron must travel in order for

it to equilibrate with the surrounding ion-neutral atom medium. Obviously, the

sphere radius should not be smaller than the mean free path. On the other hand,

the radial homogeniety of the plasma sphere is not believed to be too important in

this case. The reason is that, since a/X is small, the wave will "see" a sphere

with some effective dielectric constant and some effective radius. These assump-

tions have been at least partially confirmed by Dr. P. Wyatt* , Defense Research

Corporation.

*Private communication.
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The only real way to predict the degree of physical realizability of this absorp-

tion ±'esonance phenomenon is to combine the electro-magnetic resonance conditions

(Eqs. 18 and 19) with appropriate physical expressions for the equation of state and

the collision frequency, and to derive a set of equivalent thermodynamic resonance

conditions. A preliminary calculation of this nature was performed by one of the

writers (N. P.) who used the weakly ionized approximation of the Saha equation.
Difficulties were encountered in that, in the region of interest (small x), the

assumption of weak ionization was not valid. Mr. J. Davis of the Avco Corporation

is presently extending this work to include strong ionization. These results, when

they are available, will be investigated for violations of the assumption of equilib-

rium, etc. If the assumption's implicit in the calculation prove to be valid in the

resonance region, we will conclude that this is the proper thermodynamic model.

If not, we will proceed to the more complicated non-equilibrium case. Present

indications are that this may be necessary.

One of the writers (N. P.) has done some preliminary work on the effect of a

strong magnetic field on the absorption resonance conditions. The anticipated

results are:

2
3 +" 12 2 (20)

g 2

Sj x3 (2i)

where
= - e electron cyclotron frequency.

S me

Although Eqs. (21) and (18) are identical, Eqs. (20) and (19) differ in that W

replaces w in Eq. (19). Thus, the application of a strong (w P >>w) magnetic

field serves to decouple the resonance conditions, and leads to an extra degree of

freedom in physically realizing strong absorption resonances. If severe limita-

tions should be shown as a result of the zero magnetic field calculations, the

strong field case will be investigated in detail regarding its relaxation of thermo-

dynamic requirements.
When the correct thermodynamic description of the plasma has been found,

the power input and the power output will both be written in analytic form. Thus,

an analytic equation for steady state can be written. This equation will be set up

ard the required incident electric field strength will be computed. A more interest-

ing study will be an examination of the steady state equation for stability. Is the
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plasma sphere, under the (initial) steady state conditions stable against fl,,ctuat-ons

of the thermodynamic parameters? This question will hopefully be answered when

the thermodynamic resonance conditions are expressed in analytic form.
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Appendix A

Upon expressing the Nn and jn in Equation (A-4) as power series in x and lor v,

an can ba expressed as a power series expansion:

n
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