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ABSTRA CT

The methods of geometrical optics are extended so that they may
be applied to gyrotropic bodies. Various internal and external reflections
are considered at non parallel planar interfaces and means of determining
the ray path or directions of energy flow are derived. Non-planar geo-
metrics may be represented by the tangent planes at the various points of
incidence. A method is given for computing the phases of the various

fields. These values may be used to determine the reflected fields from
such a gyrotropic body.

1116-45 ii



TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. WAVE MECHANISM IN A GENERAL
GYROTROPIC MEDIUM 4

A. Wave Properties in a Gzneral
Gyrotropic Medium 4

B. Direction of Ray Path 7

C. Special Cases 10

[ D. Electrical Path Length in
the Anisotropic Media 12

[ E. Modification of S and q on Reflection
from a Non-Parallel Interface 14

III. SUMMARY OF RAY OPTICS FOR ARBITRARY
GYROTROPIC BODIES 18

APPENDIX I - BOOKER'S QUARTIC EQUATION 24

[ APPENDIX II - THE SUSCEPTIBILITY MATRIX 26

APPENDIX III - REFLECTION AND TRANSMISSION
COEFFICIENTS AT PLANAR "FREE-
SPACE GYROTROPIC" INTERFACES 28

A. Wave Incident From Free Space up
to Gyrotropic Medium 28

iB. Wave Incident From Gyrotropic Medium
Up to Free Space 29

1116-45 iii



CONTENTS (cont)

C. Wave Incident From Gyrotropic Medium
Down to Free Space 31

BIBLIOGRAPHY 34

1116-45 iv



Page one of 35

GEOMETRICAL OPTICS FOR GYROTROPIC BODIES

I. INTRODUCTION

A modified geometrical optics method has been developed which
may be used to determine the electromagnetic scattering properties of
finite, homogeneous, isotropic bodies. The dielectric sphere and

cylinder have been used to illustrate the method[ 1] but is is not re-
stricted to such shapes. It has been postulated thac these same met-
hods may be applied to obtain the electromagnetic scattering proper-
ties for the gyrotropic case. Similar methods would also apply to
any anisotropic body. However, the usual form of geometrical optics
or ray methods essential to the application of the modified geometrical
optics method is restricated to the isotropic media.

A version of geometrical optics is presented which may be used
to apply the modified geometrical optics method to gyrotropic bodies.
It has been shown for the isotropic case that the reflection and trans-
mission coefficients derived using an infinite planar geometry apply
remarkably well to curved surfaces with radii of curvature as small
as 0. lX. Such coefficients are thus considered to be valid, with the
exception of the region of Rayleigh scattering.

Reflection and transmission coefficients at a sharp boundary have
been obtained by Budden[ 2] and Wait[ 3 ], and numerical data presented
by Yabroff[4]. Unz has used a boundary value solution to study the more
general problem of transmission and reflection at the planar boundary
between two semi-finite gyrotropic media[5 ], and also to study the
transmission and reflection due to an infinite gyrotropic slab[6].
Since there are generally two reflected waves and two transmitted

waves when a plane wave is incident from free space on an aniso-
tropic medium interface, there are two reflection coefficients and
two transmissions coefficients. These coefficients are different for
the two principle polarizations (parallel and perpendicular) as is true
for the isotropic case. The propagation constants in the gyrotropic
medium for two waves can be found from Snells law

sin ,)= ni sin 0 pi = nZ sin 0p?,

where eI is the angle between the wave normal and the normal to the
interface (see Fig. 1).

1116-45



z

x-y Plane

Fig. I. Plane wave incident on a plasma gyrotropic interface.

Consider a plane wave incident upon the gyrotropic medium from
free space, as illustrated in Fig. 1. The two refractive indices, n,
and nz , of two waves in the gyrotropic medium could be found from the
above equation if Op and E) are known; but the values of O and 0Pz
depend on the orientation of he static magnetic field Y(YL,YT), which in

turn depends on n1 and n?. Solving Maxwell's equations with the sus-
ceptibility matrix derived from the constitutive relation (see Appendix
II) yields the Booker Quartic equation (see Appendix I). This equation
may be factored to find the component of the propagation factor in the
vertical direction (i. e., normal to the interface). The other components
of the propagation factor are those of the incident wave due to the re-

quirement that tangential fields be matched' at the boundary. Thus the
major step in obtaining the direction of the wave normal consists of
factoring this well-known quartic equation.

The four distinct roots of the Booker quartic equation are
associated with the angle of incidence. Two of these roots are associated
with the sQ-called upgoing waves and the other two with downgoing waves.
Two upgoing (or downgoing) waves incident from the gyrotropic medium
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on the "gyrotropic medium-free space" interface sets up two downgoing
(or upgoing) reflected waves in the medium and two transmitted waves
into free space. Reflection at a second interface not parallel to the
original one requires that Booker's equation again be solved. However,
a transformation of coordinates yields the appropriate values of n, Op
for the incident wave and thus reduces the complexity of the solution.

The use c' ion-parallel interfaces represents the appropriate
approximation for determining the angle of refraction and the reflection
and transmission coefficients for two- or three-dimensional bodies with
curved surfaces, such as the cylinder or the sphere. The tangent planes
at the various points of incidence provide the appropriate interfaces
which are used to represent the body to determine these parameters, as
has been demonstrated for the isotropic body[ 1 ].

Determination of the refractive indices, the reflection and trans-
mission coefficients, and the direction of the wave normals does not, how-
ever, complete the geometrical optics formulation. It is also necessary
that the direction of energy flow, herein designated as the ray path, must
also be determined, since, in general, it does not coincide with the wave
normal. Application of the concept of stationary phase yields a relatively
simple expression for the ray path.

Conservation of energy now readily yields the magnitude of the
fields, with respect to some reference point associated with any diverg-
ing ray system within the usual restrictions of geometrical optics. The
phase of these fields (f) is readily obtained by using the component of
the vector_propagation constant (n) in the direction of the ray path (r),
i. e.,. n -r. Thus the fields may be written as

A o ej O F(I) e-jkn * r

where
Ao ej 5o is the field at the reference point,

F(/) is the spatial attenuation factor obtained from the
conservation of energy, and

I is the distance from the 3:eference point along the
vectorr (where I = r in Fig. 4, assuming o as a
reference point).

The above equation will be discussed in Section II-.D.

1116-45 3



II. WAVE MECHANISM IN A GENERAL
GYROTROPIC MEDIUM

A. Wave Properties in a General

Gyrotropic Medium

Consider the case of a plane electromagnetic wave propagating
in a gyrotropic medium at some arbitrary angle, 6, with respect to
the positive z axis. The usual spherical coordinate system is used
(see Fig. 1) and e j t time convention is assumed. Then

(j) -Jkn,r= -jk(Six + Szy + qz)

where
Inj = is the refractive index,

v

k =-2
C

c = velocity of light in free space,

q n cos Op

n = vector parallel with axis of wave normal, and

r = vector from origin to the point (x,y,z);

and

n 2 = S2 + S22 2 ?(2) n s l +S +q.

The parameter q is the solution of a fourth order algebraic equation
known as "Booker's quartic"[7,8] equation and has four roots. This
equation is given in Appendix A. Two of its roots (qi, qz) are char-
acterized by

Im(ql)< 0 and Im(q2 ) < 0

These give waves propagating in the +z direction and are known as
"upgoing" waves[9]. The other pair, q3, q4, are such that

Im(q3 ) > 0, Im(q4) > 0,
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I and propagate in the -z direction; consequently, they are known as
"downgoing" waves. This value of Im(q) indicates the direction ofI energy flow, while the value of Re(q) indicates the direction of the
phase velocity vector or the direction of the wave normal. The
paramaters Si and S2 satisfyI
(3a) Si, +S z = n sin Op

(3b) cos T -S, COS and cos E) = q
n n Pn

where T , and T", and Ep are the angles between the wave normal andI the respective coordinate axes (x, y, z). The angle of the wave normal,
0, shown in Fig. 1 is readily obtained from Eqs. (3a) and (3b) when

Booker's quartic equation has been factored, i. e.,I
(4) 0 p = tan- Sl+z•

SIn order to set up boundary conditions in as simple a manner as
is practicable, it is necessary to express all of the fields in terms of
one field component, E7, in the manner developed by Unz[5 ]. This is
done by first writing Maxwell's equations for the gyrotropic media as

(5) [S]o -[ te- P andTo

(6) [SI n] o*!,

where

0 -q Sa

[S] q 0 - - -fo

-Sz Si 0

and

[I] is the identity matrix.

1116-45 5



The constitutive relation

1-(7, -0P [M] E
Lo

relates P and IE, where [M] is the susceptibility matrix. The
matrices [S] and [M] are given in Appendix II as developed by
Budden[ I0].

Substituting Eqs. (6) and (7) into Eq. (5) yields

(8) {IS] Is] + [I] + [MI} E = 0.

Equation (8) is equivalent to three homogeneous equations with three
field components, Ex , Ey, and E z . Expressing Ex and Ey in terms of
E z , from Eq. (8),

( 2 - S2
2 + Mxx)Ex + (SISz + M &y)E y 

= - (Siq + Mxz)E z and

(SISz + Myx)Ex + (I - q2 - Si 2 + Myy)E = - (Szq + Myz)Ez.

Then -(Siq +h z){1-qz2 +4 s + )+(sIsZ+M )(Sq )E
(9a) Ex = xEz = -(Siqs +Mx)(l-qZ_512+M )_(S Sz+Mvz))(Sz+M x)

and
(9b)- ( qZ Sz+Mxx) (Szq+Mz )+(SI+bxz) (SSz+ X)  Ez"

(9b) y y z - ( -q2 _S, 2+Mx)(l -qZ-Si 2 +Myy)-(S1SZ+Mxy)(SIS2+Myx)

From Eq. (6) one may obtain

(9c) H.- = S"-x E Ez'lo z 'o

(9d) Hy = 2 YE - -Si+qTrx E , and
'TI0  11o
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(9e) Hz =2z E = Es~,+lr
S10 z TIO z

For each value of q (i. e., ql, qz, q3, q4), one may obtain a set of
values as 7r., y x' E79 z' E x, Ey, ix, Hy, and H z .

Unz has applied equations of the above type to the boundary between
the gyrotropic medium and free space to obtain various reflection and
transmission coefficients for various interfaces[ 5 ]. In particular, he
has obtained the reflection and transmission coefficients for plane wave
incidence from free space up to gyrotropic media, from gyrotropic
media up to free space, and from gyrotropic media down to free space.
Without loss of generality, the coordinate system is chosen so that S1 =S and
S? = 0. This reduces the complexity of the solution. These coefficients
are tabulated in Appendix III for the convenience of the reader.

B. Direction of Ray Path

One method of obtaining the direction of the ray path consists of
computing the poynting vector in the anisotropic medium. A much sim-
pler method, given by Budden[10 ], consists of the application of the
concept of stationary phase to compute the direction in which the energy
is traveling.

The phase of the electromagnetic wave in the anisotropic medium
is given by

(10) = k(Six + Szy + qz).

The phase is stationary when its first partial derivative vanishes or

(ila) = k (x +as z) 0

and

lb) _ k (y + - z) = 0.

1116-45 7



The ray path is therefore along the direction that satisfies Eqs. (11) or

(lZa) tan g z 8S

and

(I2b) tan 0gs, z 3q

where 0g is the direction of the ray path measured from the positive z
axis (the normal to the interface as shown in Fig. 1).

Without loss of generality, the coordinate system is chosen as before,
so that Si = S and Sz 0. Equation (1Z) then becomes

(3a) tan 8 g -
q

a Si Sl = S

and

(13b) tan 8 8q

gsz azS2 s=o0

Booker's quartic equation is

(14) F(I) = a q4 + p q3 + yq2 + q + = 0

where the coefficients are functions of Si and Sz . For the lossless
case, the collision frequency is negligible and

( 4 a) a = (l-Y 2 ) + X(YzI-l) = (l-Y ) + X(2iZy2-l)

(14b) = X(SI YzYx+SZYzYy) = 223 XY (SitI +SZ I?

(14 c) y = -2(l-X)(C?-X) + 2Y(CZ-x) + x[YZ-Cy zI+ (SlYx+SzYy) 2

= -2(l-X)(C2 -X) + ZYZ(c2-x) + XY2 [l-cze3z (si l+Sz)z]

1116-45 8



(14d) 6 = -zcX(SIYzYx+SzYzy) = _C73 XY Z(SII +S2z 2 ),

and

(14 e) = (1-x)(cZ-x 2 )2 - CZYZ(CZ-X)_ C X(SiYx+SaY )

= (1-X)(C-X)2 - C2Yz(C 2-X) - C2XY 2(SiIh +Sztz)

where 1I, 1z, and 13 are the direction cosines of the Y vector with
respect to the x, yv z axes.

Equations (14) are valid for all incident angles or all values of
S. Thus

(15) dF(g) = dF(g) = 0
dSi dSz

Differentiating Eq. (14) with respect to Si yields

dF(g) 8F(q) 8 q +aa 4 +82 q+q+ = 0 .

dSi 8 q Si 8q 8aS as 1  S aSl

There is a similar equation for d in which Si is replaced by S.

Solving Eq. (16) for aq and evaluating the result at Si S yields8Si

a_9_o +ay +  a +6
(17) tan = as=  q asq - -

iq
S1 = S

when
SS =0 .

ap 3+8y z 36 ac

(18) tan 0 -
gsz 8F(g)

8 q

1116-459



The derivative of the coefficients of Booker's equation may be obtained
from Eqs. (14).

C. Special Cases

The above system of equations gives a rather complete method of
determining the ray path. Certain useful cases are now considered to
demonstrate the application of these equations. In particular, for
S1 = S S2 = 0, the derivatives of the coefficients of Booker's equation
may be obtained in the form

(I9a) a 0
as'

(19b) _ =P 22113 XY

(19c) a -_ [4(1-X) - 4Y- + Z XYz(1lz+1 3z)] S,
as,

(19d) =- Z,1 3XYZ (1-3S2) ,
as1

and

(19e) asi [-4(I-x)(C -X) +4CZy2_ 2YZX XYZ,(z_4sZ)] S,

where C = I S

If the static magnetic field Y lies in the x-z plane (12 =0), then
the coefficients , y, 6, and E depend only on Si. Thus the partial
derivatives with respect to S2 all vanish for S2  0, i. e.,

ac a a 3
(20) = _ 86 a -08Sz a Sz aS2 aS2 8S2

and

1116-45 10



(21) 8..-.F- 4aq3 +3P q z + Zyq + 6 = 0.
aq

Several conclusions may be drawn from the above equations. Substi-
tuting Eq. (20) into (19) yields

tan Og s = 0
2

or

8gsz =0.

Thus the ray path must lie in the x-y plane when the static magnetic
field and the incident ray are in x-y plane, i. e., Si = S, Sz = 0, and
2= 0.

If the magnetic field is directed along either the x or the z
axis, then the four solutions of Booker's equation are related by
q3 = -ql and q4 = -qz. These relations also hold for normal incidence,
i. e., Si = 0, without this new restriction on the magnetic field. This
last case is of particular interest since the ray path retraces itself
upon reflection, in the case of the slab, as illustrated in Fig. 2.

Ray Path And Roy Path And Ray Path And

Wave Normal Wave Normal Wove Normal

I z zA

Tyy =ty Yz--t Y - "bYX= t Y

T..y........xx-yione x-y Plane

I I1 0 R I

E \X EE

(G) (b) (c)

Fig. 2 - Ray path and wave normal of a wave normally
incident into an anisotropic medium

1116-45 11
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It is also of interest to determine the special cases for which
the wave normal and the ray path coincide. There are three such

cases. If the static magnet.1- field is oriented in the y direction,
i.e., 17 = 1and t13 = 0, then providedSi = Sand S2 = 0, Eq. (17)
becomes

8Yq q +

tan eg s - 4aq3+2yq

Substituting derivatives obtained from Eq. (14) yields

[4(1-X)-4Y2 ]Sq+-4(l-X)(c-X)+4CzYz-2Yz X I S
(22) tan Ogs - 4(I-X-Yz)q 3+2[-Z(I-X)(ce-X)+2Y(C 2 -X)+XY? ]q

S
q

Equations (3a) and (3b) yield

(Z3) tans - S
P q

provided Sz = 0, where Op is the direction of the wave normal with re-
spect to the z axis. Thus the wave normal and the ray path coincide
for this case of the extraordinary wave, which may also be proved by
use of the Poynting vector.

If the incident ray is normal to the interface, i. e., S1 = S2 = 0,
and the static magnetic field is oriented in the z direction, i. e., 13
and I and 12 = 0, then it can be readily shown from Eqs. (17) and
(23) that the ray path and the wave normal again coincide with
Op= Ggs, = 0. A similar result is obtained when the static magnetic

field is oriented in the x direction. These conclusions are summarized
in Fig. 3.

D. Electrical Path Length in
the Anisotropic Media

The electrical path length is to be referenced to the point of
incidence shown in Fig. 4, which is also the origin of coordinates,
i.e., x =y = z = 0. Thus the phase of the wave at any point in the
medium is given by Eq. (1) as e If the plane of incidence is
the x-y plane, i. e., S2 

= 0, then

1116-45 12



T BWove IB
IRay Path Normal I Wove--, Ray Pcth

[L 0 2 )3Q0 jNormald d
30300[d)

B- B

Ax A x
AjL 0 2 C X =0.25 oC

Normal Incidence Y =2 Normal Incidence

Fig. 3 - Three special cases where the ray path

and wave normal coincide

z

Ray Path (7)

r Cos( 8p-8g) ot

8g -- A A
Y i Y~X + k YZ

Fig. 4 - Eectrical path length in an anisotropic medium
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(24) i = k(Sx + qz) = k(n . r) .

It is seen from Fig. 4 that this can be written in the form

(25) p = knr cos (Og- Op).

It should be noted that this method of obtaining the electrical path
length is based on a plane wave incident upon a planar interface. This
is generally true in the rigorous application of Snell's law, but its
application to other configurations has proved highly accurate and
extremely useful. For the present application it is the best available
approximation.

E. Modification of S and q on Reflection
from a Non-Parallel Interface

All of the equations for the reflection and transmission coef-
ficients at an interface are based on a coordinate system in which the
z axis is normal to that interface. If a ray is transmitted through
this interface to a second non-parallel interface, as shown in Fig. 5,
it becomes necessary to transform our coordinate system in order
that previous results be applicable.

Consider the phase of Eq. (24) in the original x, y, z coordinate
system. The new coordinates are

(26) x= (x-a) cos 0 + (z-b) sin 8

and

(27) z= (z-b) cos 0 - (x-a) sin 0,

where z' is normal to the second interface. It follows that

(28) x =x' cos 0 - z' sin O+a

and

(29) z = zI cos 0 + x' sin + b,

1116-45 14



(qI

4, j 2
8 [( 3 )z

xix

82

Fig.~~~~~~~~ 4 -rcn frnnprlllitrae

and q. (4) bco Pe

(3) ~ k~xcoe-'sn~a+k~zcoe~~n2eb

or,

(32) Eq.i ~ (24)obecome
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then

(33) = kn sin(Op+O)x' + kn cos(Oe+O)z' + kn(a sin ( +b cos )

or

(34) = kn sin(Ep+O)x' + kn cos(O +O)z' + k(n - at 0'

or

(35) q= kS'x' + kq'z' + k(n • r) at 0'

Note that the x', z' in Fig. 5 for upgoing wave q' are all negative
values. In the following, the notation Si ', S2 ' indicates the value of
S' for ray 1 and ray 2 at boundary B, respectively.

In the transformed coordinate system

(36) qI = n cos (p + 0)

and

(37) S'- n sin(O + ).

Hence,

(38) q' = q cos( --
Cos p

and

(39) S,= sin(0+0)
sin Op

As the two interfaces become parallel, 0 vanishes and S S'

and Si' = S?' = sin 01 as before. However, if 0 A 0, then S' assumes
two different values for the two incident waves, as may be seen from
Eq. (39), since e~l and 0 p2 differ. Recalling that the coefficients

of Booker's quartic equation are dependent on S, it is clear that two
different quartic equations must be factored to find the values qI,

1116-45 16



q?, cj3 , and q4' in the primed system of coordinates. There are now
two sets of values for q'. One set of values (qi', q(4 - q3, D
is associated with Sl at point 01' (shown in Fig. 5); the other set

N pq'z, q'(3)z' q'4) is associated with S'z at point O'z. One of the
,vallies (q'l in one set and qz in the other) is readily obtained from Eq.
(38) for each set. This, the two sets of Booker's quartic equations
r _)w may be reduced t . two sets of cubic equations, which must be
factored to find the pioper values of q'3 from one set associated with
cj and q'4 from the otber set associated with q'2 .

In other words, ray tracing is accomplished by means of the
- - eqit;ation

(40) a Iq" + Iqt3 + Ylqz + q: + =0

for the prime system, where f3', y', 6', and E' are functions of S' and

a ' -' 6 3I 21 are all known quantities. For ray I at point 01'as' as'asT ' Tas7
(s:ee Fig. 5), since qi' is known, Eq. (40) reduces to

(41) alt q C + (P 11 + aitqi 1'h' 2 + (Y1' + Pi1 'qi' + all qil 2 ) qt

+ (61 1 + yilqil + P i'qi'2 + cai'qi 3) 0,

wh'-re all, P 1', yj', and F,i' are associated with Vi. Once the three
so] tions, q', q3 I q' (4 , are obtained from Eq. (41), the relation
h.-ts been estk.15ished that-if

qi' >q(2), th'-n

q3' <q 41

:tnd q3' is the solution we are set-king for ray 1, on the assumption that
I R4 and 2 R3 are negligilble. Once q3' is obtained, the angle e~ is
given by

q3

11,6-45 17



and e' 3 is obtained from Eq. (17).

Similarly, for ray 2 at point Oz' we may obtain q4' from a cubic

equation similar to Eq. (41), but with respect to Sz' and qz' at point

O'. The coefficients of the Booker's equation may be replaced by
(z', z', Yz', and 6z' in Eq. (41). The q4' is chosen by the relation as

shown in Eq. (42) (if qz'< q'(1, , then q4' > q'(3) ). The technique

applied for ray 2 is the same as for ray 1. However q'(4)1 is needed
to calculate I'i ', and q'(3) is needed to calculate R4'

We need to note that the symbols S1', S2 ' used here should not be
confused with the symbols Si, S2 used in Eqs. (17) and (18). We have
mentioned that the plane of the incident wave is the x-z plane, hence

we use S instead of Si; and S?, which is zero, will not appear in the
following. When the incident wave reaches the boundary A (shown in

Fig. 5 ), S is equal to sin 0 I. Once the incident wave is traveling in

the anisotropic medium, it will split into two waves. One of them
reaches boundary B at O' (shown in Fig. 5) as ray 1. The other
reaches boundary B at O ' as ray 2.

At boundary B, the prime coordinate system is used; hence,

SI' = sin 'TI (for ray 1)

and

Sz' = sin 0'T. (for ray 2),

where 0'TI, 'T are shown in Fig. 5.

At this point, the effect of the skewed interface has been

completely determined.

III. SUMMARY OF RAY OPTICS FOR ARBITRARY
GYROTROPIC BODIES

All of the fundamentals needed to trace a ray path through a

finite, homogeneous, gyrotropic body, and to compute the magnitude

and phase of the emergent rays, have now been developed by con-
sidering only planar interfaces. This might appear to be a severe
restriction; however, modified geometrical optics as applied to a
general isotropic body is also based on the planar interfaces. Snell's

1116-45 18



law and the various reflection and transmission coefficients are
all derived under the assumption of infinite planar interfaces. Yet

-- this modified geometrical optics method has been remarkably
successful in computing the radar cross section for isotropic
spheres and cylinders. This modified geometrical optics method
also yields remarkably accurate radar cross sections for the plasma
cylinder with an axial static magnetic field[ I I].

The same assumption made in developing the modified geometrical
optics method in these previous cases would also be made here for this
general anisotropic case. That assumption is that the planar interfaces
of Fig. 5 would represent the tangent planes of any curved body at the
point of incidence and the point of reflection. The ray technique which
has been developed for finite homogeneous anisotropic bodies will now
be summarized.

A ray is incident at the origin as shown in Fig. 5. The value of
S is obtained from the incident angle 0I as S = sin 01 and C = cos eI
where it is recalled that the incident plane wave is given by

U1 = Uo e-jk(Sx+Cz) .

The parameters of the gyrotropic plasma medium are given by
X and Y which are given in Appendix IL The direction cosines, 11 and
13, of the magnetic field vector are obtained in the x, y, z coordinate
system. These represent the physical parameters of the anisotropic
body to be treated. If that body has a curved surface it should be noted
that S is a function of the point at which the ray enters the body for a
particular plane wave incidence; or, conversely, that the coordinate
system of Fig. 5 is always chosen so that the z axis is normal to the surface
at the point of incidence which coincides with the origin. Thus the
values of S, C, l1, t z, and f3 are all functions of this angle of
incidence 0I.

Once 0I is found, values of S, C, 11, 12, and 13 are readily
obtained. These parameters uniquely determine the values of the
coefficients of Booker's quartic equation (as, y, 5, E) given by
Eqs. (14 a-e).

It should be recalled that for our present case 1z is set equal to
zero to maintain the refracted angle in the plane of incidence. This is
not an essential step but simply reduces the complexity of the solution.
The more general case of t z 0 would follow the procedures given
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without any complication.

Once a, fs, y, 6, and 6 are obtained, Booker's quartic equation,
Eq. (14), may be factored a-.JA the four values of q obtained.

The two roots q1, qz (for which the signs of the ray path angles
3gi and 9g, are the same as ej) are the ones being sought since they
represent waves traveling in the positive z direction. Values of q1 ,
q7 may not always be positive and represent waves traveling in
positive z directiQn. However, the ray follows the path along which
the energy flows. This is a practical way to check whether the q1,
q? are correct.

The values of the angles 0 gi and 0 g, are obtained from Eq. (17).
These angles are the directions of the two ray paths associated with q,
and qz, respectively.

The angles 0p, and 0 pz of the refractive index n will be useful in
the following calculations, and are readily obtained from Eq. (23)
using values of qi and qz, respectively. The values of ni and nz are
obtained from Eq. (3). The relative phase of the ray at the point of
intersection with the second interface is obtained by use of Eq. (25).
It is necessary to determine this relative phase since the phasor sum
of the various scattered field components is to be computed to find the
total scattered field.

In order to specify the magnitude of the ray at the point of
intersection on the second interface, it is necessary to compute the
transmission coefficients at the first interface. These are given by
Eq. (49). At this time the reflection coefficient, which would be
associated with the direct reflected ray, may also be computed at the
first interface.

The fields associated with the two rays at their point of inter-
section with the second interface are given by

UT U iiT i e-jk[nlr, cos(0p1 -0g 1 )]

and

uT e U -Jk[ nz rz cos(ep,-0g)]
(2A)111-T"
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where rl and rz are the lengths of the ray paths. The direct reflected

fields are given by

AR - -jk(Sx- Cz)

11U (A) =Uo o11

and

R e -jk(Sx-Cz)

It is now necessary to determine a new set of parameters associ-
ated with the transmission and reflection at this second interface. The
first step is to transform the coordinate system such that the zi' axis
is now normal to the second interface, as illustrated by the xi', yi', z'
coordinate system for ray 1 shown in Fig. 5. The values q1' and Si' of
the ray incident on this second interface in this primed coordinate
system are given by Eqs. (38) and (39). The subscript (1) on the
coordinate axes refers to the system associated with q1'. A second
coordinate system designated by xz', yZ', zz' is associated with qz' forIray 2. This is necessary because ray paths ri and rz differ.

The value C1 'z 1 - S1'2 and the values of the direction cosines

II' and 13' of the magnetic field are readily obtained in this new co-
ordinate system. The coefficients of Booker's quartic equation (a',

|', y', 6', E') now may be obtained from Eqs. (14 a-e).

For ray 1, these coefficients are functions of Si' at point O1';
thus Booker's equation must be factored to obtain the roots qi' q()'
q3', q'(4)1 . However qi' is already known and Booker's equation

reduces to a cubic equation: Eq. (41). This equation is factored to
obtain the remaining three roots q'(z)1 , q3', q' (4)i- The coupling term
is to be neglected in the following work but there is no real need to do
so except to minimize complications.

The desired value of q'3 is chosen so that if q'i > q'(z)I, then

q'3 < q'(4)1, and the associated pair (q'I, q's ) is being sought. Now
(for ray i) e'L, as shown in Fig. 5, is found from Eq. (17), andeIp3
from Eq. (43). The index of refraction, n' 3 , is found from Eq. (32).
The same technique can be applied to find q'4 from q'z at point Oz
for ray 2.

The point of intersection of these ray paths with the next interfaceT may then be found for the geometry being treated. In the example of
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Fig. 5, this is the original interface. Calculation of phase at this
intersection follows the method described above. The reflection and

transmission coefficients at this boundary, i. e., at the point 0' of
Fig. 5, are given by Eq. (50). At point 0'1 the values q'i, q'3, '(

are used to calculate 1 'R 3 ' and 1
3T(I1 orL); at point Cf? the values q'?

qI4, q:(3). are used to calculate 2 RP4 ' and Z'T(,, or.,)-

The fields transmitted into free space at the second interface
are given by

HUT(B =U .Ti 1
t T eJ~ -jk(S'xl' +L C1 'z1 ')I

IIB) U0 11T _LT ei'1j j(S 1 x'

HU 11 (2ZB) =U 0 11 Tz 2 T1 e-jo e ~kSx'C'z

and

Ti .LZ) U -~TJ~ jk(S2xz'+Cz'zz')

where

4 i ~kni r cos (0 Pi- 0g1 )

4zkn~rz cos(ep.-i0g.)

and all phases are referenced to the original origin of coordinates at
point 0, -(i. e., x, = y = z = 0). The fields of the ray reflected back
to the anisotropic medium to the point 01" and Oz" are

UR =U 0 ITi i R3 e-j(Y1+(P1)
(113)

and

U(2B) =U 0 it 2 ~~4 ~~
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where

9, kn3 73COS(O - (Z

and

,Pz kn4 r4cos(6~4  ' 4

and all phases are referenced to the original origin 0.

By the use of ray optics for the anisotropic body, a ray incident upon
the body from the external medium has been considered and followed com-
pletely through one internal reflection. All of the fields associated with
this case have been given; and any additional internal reflections may be
treated simply by repeating these same steps. In addition any coupling
terms may also be readily included in any case where coupling becomes
significant.

Any changes in amplitude introduced by diverging ray systems,
i. e., spatial attenuation, have been neglected. However, this
problem can be handled by the modified geometrical optics method.
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-APPENDIX I
BOOKER'S QUARTIC EQUATION

The wave form is

EXP {-jk(Six + S.y + qz)}

and we may write symbolically

a

X = -jkSi

8= -jkSz,

and

a
-jkq,8z

where Maxwell's equation give

(44) -q S E Hx"
q 0 -Si1 £y 0 H

LSz S1 0j E JH

11 SI t~ ~~z PzJ

Combining the above equations ard using the relation

o [P] [M )] [E,

we get
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(45) '-q 2-Sz + MXX Sz S?+ Siq + Mz' E

Si Sz+ MY l~qZSiZ+ Myy Szq + Myz E =0.

Siq + M S~q +M C Z+ M E

The form of the above equation becomes

(46) F(q)= q 4 + q3 + yq + 6q + E=0,

which is the wvell-known Booker's quartic equation.

Using the elements of [M] we obtain

a= (UZ- yZ)+ X( Y _U)

2X (Sly~Y +ZZ

-y =-?U(U-X)(CzU-X) + 2Y 2 2,U-X) +

X {yZ_ C2 y 2 + (Si yx+Szy) Z

6= -2G2 X (S1Yy y+y Y )

and

= (U-X)(C 2 U-X)I C ya(CZTJ-X) - ex (S1Yx,+Sz Y)

All symbols X, Y, U are defined in Appendix IL.
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APPENDIX II
THE SUSCEPTIBILITY MATRIX

Let

X -a 
NeZ

w- 0 Yi+ i+Y

w mw YO X Yy+Y eo+ zz

U = -jZ 1-j-

w= operation frequency, Eo permittivity in free space,

v = collision frequency, =L permeability in free space,

w H= cyclotron frequency, N number of electrons per

unit volume,

(A)N= plasma frequency, e =charge of an electron,

m = mass of electrons, and H0 =applied static magnetic
field.

The cons titutive relation

-E 0 X E =UP+ji(Y XP)

or

E =E [Y] [P]

whe re
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(47) u -YZ 1
[y jyz u -jYx

gives 
L-y 

y

I [P] [Y]_" E] [M] [E],
0

I where

(48) U?-Yx jUYz-YxY y -uyyy

jUyy-yxyz~ -juyx-Y~Yyzu-

and Pis electric polarization.
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APPENDIX III

REFLECTION AND TRANSMISSION COEFFICIENTS

AT PLANAR "FREE-SPACE GYROTROPIC" INTERFACES

The coordinate system used in this Appendix is chosen so that

S1 = S and S? = 0. There are four possible waves in the gyroptropic

medium; paired as upgoing waves, designated by subscripts
(1) and (2), and downgoing waves, designated by subscripts (3) and (4).

Thus a wave (1) or (2) in the gyrotropic medium may be reflected as

wave (3) or (4), the reflection coefficient of which is designated 1 R 3 ,

1 R4, 2 R3, or 2 R4, etc. The quantities -9, Tr are obtained from Eq. (9)

by setting S2 = 0.

A. Wave Incident From Free Space up
to ,rotropic Medium

For parallel polarized plane wave incidence (E§1 0)

ET ET I
(49a) T1 = = C ZI - 1lx? )

1 ii1 Er- Di yr'1 2

IT
T z E zz C Ez2  2 2C ( r l - I l

Ha x Di I

Ht R E == R (llxl~yz-7 yjjx) +-(xTX -]lx )= HI D 11

11i1 y Di i a izixx

-C(,ryiiiy, -Tya - (TrxIT Y2 7ry,7x,)]

and

__R 2

For perpendicular poiarized plane wave incidence (Ex 0),

(49b) ITI EzIT 2

(9 - (Ixz CD1y2 ).

y
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(49b) _LT = Ey7 - r(Txi +C11 l1 )

(cont) 
EyI

LRL _ ER R I [- yZ - y1x2) + 1 (Vxllx - xlrx )

C(7y1yz - lyliy,) + (Tx 1 yz - rylrX.)]

and

T10H R 2

where

Di = (' 1  y, ) - - ( Tlx -Tx1 xz)

- C(y Y1 7y2 - jy1 Wy ) + (7xlwyz y JCxZ ) •

Transmission into the gyrotropic medium yields coefficients of the
form jTi, # TZ , where the subscript ii designates the polarization of the
incident wave and (1) or (2) designates one of the upgoing waves. Conven-
tional definitions of polarization are used so that subscript ii or . means
that the E vector is "parallel to" or is "perpendicular to" the plane of
incidence, respectively.

B. Wave Incident From Gyrotropic Medium
Up to Free Space

For wave (1) (EzzI = 0)

1

HT T ExT -
(5 0a) IT" =---- ) -_7 EYD-1Y 3 rX4 )

+ ry 1 ( x31x 4 -311x3 irx4) + Crxl(y 3 1y4 -Ty 3 Ty4 )

- Cryl(Tx 3r1y 4 -yy3 rx 4) + CT'yL(xrX3'Iy 4 -y 3Ex 4 )},
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(50a) iT- - 1 17y,l(1x3 TlY~ 3t1X4 ) -I,7y - 41(cont) EZII D2  3Yr4

+ ~Yl(r3Ty3 X4 - IX3 7rY) 7r X1 (7Y 3 qX4-1X 3  WY4 )

+ 7r (7r X1.T1Tq3X) - -TXi('X 3 7rY4-'rYS11X4

iR3  E Z3 [(lxioyry 1 1 4  1j7xix 4 tx~
El D2  4lllX)+c(rlI4 X"4

+ C(TII4-llr4 + (X"4'~7X

and

SR4 T1 [(11- 1111 + I7xTx Ix~EZ1I D2  q XY 3 y1X 3  * Xn 3 ~X3)

+ C(rYl Yl'1Y3 ) + Y

For wave (2) (FEZ 1 I =0)

(50Ob) 2TI -1 yI~.-I -CE2 C ? C~ f {lrXZ(l3lYflYlllX4) 
- '1 X 3 TlY4-l1Y 3 lrX4 )

+ 11 Yz(7T 3 1 4 -qX 37rX 4 )+ C 7rX,(ry3 11Y4- IY3'Y4)

- CiTY 2 (irTiY4gT1Y3 7rX 4 ) + C 11Y2 (7rX 3 7rY 4...iY 3 irX4)},

F D2 Y43Y3 'X4 ) - 2 VYT'4Y37rY4)

+'Y2 (7rY3liX4 lX3i"Y4) - T7Tx2 (rY 3 IXlX3TY4)

+ :TrY2 K 3 'X4 -r)X3 7rX4 ) - nX2(VX3TZY4- y7iX 4I
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(50b) zR3 = zI 1X Y4- y21X 4 ) "X- TXZwX4

(cont)

+ IIZ'Y4 + (1XZ1TY 4 -TWYZWX 4 )]

and

1: R

EZl +, [("I Y'3 Yz X3) + ±(C 1X11~

+ C (rrY? - Y3 -iq Y? 7rY 3) + (7xiY-wzr31

where

DZ (1Tx 3 11Y 3 TIY3)X+ + ;rX3 T1X4-'X 3 7rX 4) + C(7r'. TlY 4 -TjYlr

+ (T"X 3 r-y 7X).

The dominant reflection coefficients are 1R3 and ZR4 . Coefficients 1R 4

and ?R3 are usually negligible.

C. Wave Incident From Gyrotropic Medium
Down to Free Space

For wave (3) (EZ4 ' 1 0)

(51a 3 I, i -HyT- CExT C
E - JEF ID {7rX3 (7XiT I YI1X2  llX 3 (1TXlyzfI'lrXz)

+ 3(Trx 1 1I iX~1 Trx,) - C 1rX3(rYI"1Y-TlYIwYZ)

YCr3(7rX1 IY2 'Iiy1 rx) -C71Y 3 (rXITry lryirx)},
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(51a) 3 T± - Ez 3 l''yZ'~ll2 - l37~TY-'lr.(cont) E Z3 D3~
2  -~ 13( Y i 2- i 1 r

+ 11 Y3 (7rYITxz-11Xilyz) + ra X3('Y'XZ-'X1'Y,)

- Y3 1 y(7rXlT1X2 -TkC1IX 2 ) + 'X (7X 7r Z 7r r )b

ER
3 Ri- (li 

-i '7XZ 11X -X 3)E Z D3  2 3-'ZX)-Ck r)

- C (-ry,-qY3 -'q 2irY3 ) + (7TXZ7rY 3 -7ryZlX,)}

and

3 ER 1,x7Y11 +I(rX~ I1E l Z3 D3Il 3 3 E X 3 1X11rX3 )

+ C (7TYj1.9Y 3 711Yir)T (7rXl1TY3 -7yi7rx3)}.

For wave (4) (E7,31  0)

(51b 4zO 4 E
x 4Z4 E 4 I D3yxz )+1y4(lxl~z~ 1X

X4 C1 (7x1 1 T y- 1 Yi 7 y) + C Y4(7XllIX, zll~l x)

C i X4Ory Iyz-T1 i'y)- C1Y4(TXITY2-1rY 11r 2)1

E T
E Z31I 2 1y Yz)

+ 'qY4(1TY111x2 llxi 7y2) + C 7rX4(7rTyilxj1xiIr Y?
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IIX
(cont)

E Ri { ('1 2 i,-q1~1 4 - +ZI ('rX2 TX 4 - XZX 4 )

and

24

+C4b1-r -iiY7O - (1X1IY4 7Y1'X4

where

DS Ox17ilyzlyi'lxz2) - (7'Xl' 1XZ-'1XITXZ) - C (7rl'YIy:rY2)

+ (,rxiwy2...*iyirxz) -

In this case the dominant reflection coefficients are 3 RI and 4 R2 . The
coefficients 3 R2 , 4 Ri are usually negligible.
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