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SUMMARY 

This report is an extension of the work reported in a series of STL reports 

entitled "Generalized Missile Dynamics Analysis. " For completeness, the per- 

tinent assumptions and derivations given in the Generalized Dynamics series are 
repeated in the present report. 

' E'>uations «<= for the motion of a missile in a plane, including 

bending, sloshing, engine swiveling, axial acceleration, and aerodynamics. 

The bending and sloshing are treated by means of combined bending-sloshing 

modes in which the first slosh mode in each tank is represented by an equiva¬ 

lent lateral spring-mass system. The body of the missile is represented as a 

main beam to whichare attached sub-branches, which represent, for example, 

a flexible payload inside of a nose fairing. The swiveUng engine or engines are 

treated as an integral part of the missile, clamped at zero engine swivel angle, 

when computing the bending -sloshing modes. Quasi-steady aerodynamics based 

on wind tunnel data are used to determine aerodynamic forces due to angle of 

attack and due to pitching, and slender body theory is used to determine the 

aerodynamic forces due to plunging (rate of change of angle of attack). 

Aerodynamic forces resulting from missile bending are demonstrated to be 

negligibly small and are omitted from the equations with the exception of the 

angle of attack due to a "slosh" mode displacement (the external airframe often 

rotates as nearly rigid body in modes which consist mainly of sloshing motion) 

and the apparent increase in the damping ratio of the "bending" modes due to 

aerodynamic forces. The contribution to the velocity coefficients of the bending- 

sloshing modes from damping in the individual tanks is also included in the 
equations. 

The result of the analysis is a set of differential equations which are valid 

for intervals of time which are short enough that changes in missile mass, bend¬ 

ing-sloshing frequencies, etc. , are negligble^Also included are equations for 

the moment and shear in the missile expressed in terms of a psuedo-static 

moment and shear plus correction terms which account for the dynamic over, 
shoot of the bending-sloshing modes.^ 
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I. INTRODUCTION 

The general design of a missile is established on the basis of over-all 

performance, treating the airframe as a rigid body. Using the resulting pre¬ 

liminary design values, such as skin thicknesses, propellant configurations, 

materials, etc. , more detailed analyses can be rrade which take into account 

the dynamic response of the elastic missile. The purpose of this report is to 

provide a set of equations which can be used to obtain: (1) general dynamic per¬ 

formance characteristics, such as missile loads and dynamic stability; (2) 

detailed responses , suchas structural vibration, propellant sloshing, and 

engine motions; and (3) exchange ratios, or the effect of changes in a para - 

meter on the dynamic behavior of the system, such as damping of the propel¬ 

lant sloshing verus autopilot stability and airframe bending moments. 

This analysis is intended as a direct extension of the work reported in the 

series of reports entitled "Generalized Missile Dynamics Analysis" (Refer¬ 

ence 1) in which these problems were first attacked. In the present analysis, 

the pertinent derivations and assumptions given in Reference 1 are repeated for 

the sake of completeness. Most of the philosophy, methods of approach and 

coordinate systems will be unchanged from those used in Reference 1, however, 

experience with the equations h£ s led to several modifications and extensions. 

The new features to be included are: 

1. The use of branched beam modes. 

2. The inclusion of the effect of axial acceleration in the 

computation of bending modes 

3. The inclusion of sloshing directly ir the computation of 

the bending modes rather than as separate coordinates 

4. Explicit formulation of the effect of the damping in the individual 

tanks on the bending-sloshing modes. 

5. Explicit formulation of the interaction of the "slosh" modes 

with the aerodynamic forces. 

6. The inclusion of damping due to aerodynamics in the 

bending-sloshing equations. 

7. The use of aerodynamics in the form of wind-tunnel data. 

8. Inclusion of linearized equations of motion for small 

perturbation of missile attitude 0. 

9- The explicit use of the "mode acceleration" method in the 

computation of bending moments and shears. 
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Again, the general procedure will be to set up the expressions for the kinetic 

and potential energies of the complete system and then use Lagrange’s equation 

to determine the equation of motion for each coordinate. The definitions and 

assumptions to be used are: 

1. The lateral bending of the missile will be described in terms of 

normal modes computed by treating the missile as a collection 

of beams attached together e.g. , a payload enclosed by a nose 

fairing would be treated as two parallel beams with a common tangent 

at their attach point. The "main beam" is defined as that part of the 

missile to which all of sub-branches are attached, and is assumed to 

be the only part oí the missile exposed to aerodynamics. Thus, in 

the above example, the nose fairing would be part of the main 

beam continuing on down the length of the missile. If more than one 

beam is exposed, special care must be taken in evaluating the integrals 

involving aerodynamic pressures. The bending theory used is 

Timoshenko beam theory modified to take axial acceleration into account. 

The eigenfunctions and frequencies are calculated with the swiveling 

engine clamped relative to the rest of the missile in its unrotated 

position, and the liquids in the tanks are concentrated along the 

corresponding sections of the missile axis. The effective rotatory 

inertia of the liquids (i.e. , inertia due to their lateral dimension) is 

accounted for on a rigid tank basis by adding enough rotatory inertia 

to the missile, uniformly along the length of the liquid in question, 

so that the rigid body mass moment of inertia of the resulting equiva¬ 

lent fluid is the same as the "capped-tank" inertia found for an ideal 

liquid in the tank. For the aspect ratios of typical tanks, this rotatory 

inertia term is usually negative. Sloshing is represented by attached 

spring-masses giving the proper frequency, horizontal force, and 

moment of the first slosh mode of each tank. 

2. The analysis is restricted to a consideration of motion in a plane. 

3. Variations of mass, bending-sloshing frequencies, mode shapes, 

quiescent level of propellant, air density, axial acceleration , and 

acceleration of gravity are negelected. The equations are therefore 

valid only for short sections of the over-all trajectory. 
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4. The origin of the moving coordinate system is taken as the mass 

center of the entire missile including the swiveling engine and the 
liquids in the fuel tanks. 

5. Longitudinal deformations relative to die mass center are neglected 



r 
STL/TR-60-Ü000-00083 

Page 4 

2. COORDINATE SYSTEM 

As shown in Figure 1, the magnitude of the velocity of the mass center of 

the missile is denoted by v , and the inclination of the trajectory tangent 

measured from the vertical is denoted by ß. The term "mass center" in this 

analysis is used to denote the mass center of the complete missile including the 

swiveling engine and the liquid in the tanks. 

The missile configuration is described relative to a set of moving axes, 

X and y, for which the origin is at the mass center. The angle from the ver¬ 

tical to the x-axis is denoted by 0. Transverse deflections of the axis of the 

ith branch of the missile relative to the x-axis are denoted by u^(x, t). Longi¬ 

tudinal deformations relative to the moving axes are neglected. 

The orientation 0 of the coordinate system is defined by imposing the 

condition that the angular momentum of the missile (including engine swiveling, 

sloshing, and elastic bending) relative to the moving axes is zero. The reason 

for choosing this particular condition is that it simplifies the equation of motion 

for the angular orientation 0. In fact it will be shown later that with this 

definition of coordinate system, the expression for angular acceleration takes 

on the simple form 

(1) 

where I is the moment of inertia of the missile about its mass center, and 

is the moment of the external forces about the mass center. M 

To express the above concepts analytically, we start by taking u^(x, t) in 

the following form, 

oo 
Ujlx.t) = c0(t) + xCjit) + V*)q„ (t| 

n- 
(2) 
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Figure 1. Coordinate System and Missile Geometry. 
QOOt 
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The parameters Co(t) and C^(t) in this expression are to be determined 

such that the conditions imposed on are satisfied. These parameters 

represent a rigid body displacement are rotation, respectively, of the missile 

relative to the x, y - axes. The <j>. (x), i = 1, Z, 3* • • R, n = 1,2, 3- , are 
Tin 

the eigenfunctions of the missile considered as a collection of R beams or 

branches, and qn(t) are the corresponding generalized coordinates. 

Before proceeding to the determination of Cq and , we need to review 

the properties of the eigenfunctions. This is done in Section 3; in Section 4, 

the evaluation of C and C. is then carried out. It will be seen there that 
o 1 

Cq is determined by the condition relating the origin to the mass center, and 

that Cj is determined by the condition regarding the relative angular momentum. 
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3. PROPERTIES OF THE EIGENFUNCTIONS 

The bending frequencies and eigenfunctions are available from a digital 

computer routine that uses a modified Timoshenko beam theory which includes 

the effect of rotatory inertia, shear, and axial acceleration. 

Let 

co n 

‘♦»in 

in 

= circular frequency of the n* mode. 

= eigenfunction representing the total deflection (due to both 

bending and shear) of the i branch in the nth mode. 

= eigenfunction representing the slope due to bending alone 
th th 

of the i branch in the n n mode. 

deflection of the spring of the j1*1 slosh mass in the n th 

mode, i. e. , the total deflection of the j1*1 slosh mass is 

<{>. + r . . 
Tjn *jn 

.th <t>jn = deflection of the beam containing the j tank at the 
A.l_ J 1 

attachment point of the j sloshing mass, in the n 

mode. 

P(x) = longitudinal force at any section, positive for 

compression. 

These quantities are calculated using the following assumptions: 

1. The missile is treated as a collection of beams which 

extend from ~• 

2. The engines are clamped at 6 = 0 and considered as an 

integral part of the collection of beams. 

3. The mass of the liquid in each tank, less the sloshing mass 

defined below, is assumed to be concentrated along the cor¬ 

responding beam centerline. The rotatory inertia of the 

liquid is assigned as a uniform value over the length of each 

tank, such that the resulting moment of inertia for the equiv¬ 

alent fluid is equal to the "capped-tank" inertia of the liquid 

in a rigid container. 
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4. Sloshing is represented by attached spring-masses giving 

the proper frequency, horizontal force, and moment of the 

first slosh mode of each tank. (The tanks are considered 

as rigid c .:ainers whose walls are arbitrary surfaces of 
2 

revolution when calculating the sloshing parameters. ) 

5. The eigenfunctions or mode-shapes are normalized to the 

total missile mass M. (See Equation 3 below. ) 

The orthogonality relations for the eigenfunctions calculated under the 

above assumptions are given below. A derivation of these relations is given 

in Reference 3. 

i=lj£ L 
(pA). 0. 0. + (pi). 4j. 4j. 

i im rin r i im in 

N. 
dx + m.(0. + £. ) ((/). + Ç. ) 

jTÍ J jm bjm' '*jn sjn' 

0 for m/^f n 

= «< (3) 

M for m = n 

R P dijj. ddj. 
im in 

£\. <EI)i i=l Ji. i 
dx dx 

R r 
dx + X!\ (KAG). 

i=lJl; 1 

d^j. 
im 

dijj. 

- 
in 

- Ji- dx 

R P d0. dó 
p im in 

i= 1 Ji. 1 

dx im/\ dx m 

N 

N 

* * Z * m. 
x ‘—• J j=l J 

asr ^ Z «j ^jm V 

ijj. (0. +^. ) + dj. (0. + r. ) 
jm rjn sjn' vjn vvjm ^jm' 

z'" 
0 m n 

Mw m = n n 

(4) 
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It is useful to mention that the first orthogonality condition above could be 

simplified in form by including the contribution of the slosh masses m. in the 

integrals , thus eliminating the second sum in Equation (3).. In order to do this, 

however, the definitions of and (pA)^ would have to be modified to contain 

appropriate discontinuities to account for the lumped slosh masses. Such a pro¬ 

cedure would certainly cloud the issue for some readers so it is not used here, 

but nevertheless, it is useful to think of the terms containing fn. as being part 

of a more general integral over the missile mass. 

For the missile in the free-free condition, it is useful to write down the 

results of applying orthogor.a’ity condition (3) between an arbitrary mode and 

the two rigid body modes (i. e. , translation, «J», = 1, = 0, Ç. = 0, and 

rotation, <J>. = jc, = 1, £. = 0, where x is measured from the center 

of gravity of the entire missile). 

0 

0 

Equations (5) and (6) merely state that the linear and angular momentum of 

the bending modes, with respect to the axes from which they are measured, are 
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4. THE DEFLECTION FUNCTION 

The location in the longitudinal direction of the mass center (and hence the 

origin of the x-axis) is determined from the relation 

R r N 
2 x (pA). dx + 2] x.m. 

1 j = l J J 
= 0 (7) 

As previously stated, longitudinal deformations of the missile relative to 

the mass center are neglected. Consequently, the longitudinal position of the 

mass center is fixed and independent of lateral deflections. 

The lateral deflection of the axes of the various beams making up the 

missile is taken to have the form given by (2), namely, 

op 

u.(x, t) = C0(t)+xC1(t) + 2:^(1) 
n= 1 

(Ö) 

The corresponding angle of rotation of a missile element is given by 

oo 
* (x,t) = c (t) + 2] +inqn(t) 

n=l 
(9) 

First, the constant Co is determined. For the origin of the coordinates 

in the lateral direction to be at the mass center, one must impose the condition 

R f N 
2^ (pA).U dx + 2 (U: + U™; + r-\ 
i=Wi. j = ! J J J 

ZÔ = 0 (10) 

th 
where u. is the deflection of the beam containing the j tank at the attachment 

J 
point of the j slosh;ng mass. The last term in (10) arises from the swiveling 

of the control engine. The angle 6 is measured from the tangent to the missile 

axis at the hinge point. The total lateral displacement of the engine c. g. is 
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u(I) + zb, where u(z) is the displacement of the engine treated as an integral 

part of the missile with 6 = 0. The influence of rryi (I) upon the mass center 

determination is included in 

X! i (pAj.u.dx 

i=lJ|. 
i 

(in fact, since the engine is allowed to be flexible in the computation of bending 

modes, a more exact influence on the missile mass center is accounted for in 

this integral). The m z6 term represents the additional mass moment due 

to 6, treating the swiveling engines as a rigid body. No restriction is made 

concerning whether or not all of the engines swivel, since me is to be inter¬ 

preted as the mass of only the swiveling engine or engines. 

Substituting (8) into (10) gives 

fRf N1 rR r ^ 
Zj (pAijdx+Zm^ +Cll_gJ, X(,>A)idX + ?lXjmj. 

(11) 

n=l 

N 

2 [ (PA>AndX + f. ^jn + Cjn)mj J + 
1=1J|. J“* -1 

m z 6 = 0 
e 

In the above expression, the coefficient of Co is the total mass M. The 

coefficient of C1 vanishes identically because of the choice of the origin of 

the x-axis, as seen from (7). The coefficients of qn vanish identically because 

the mode shapes are orthogonal with respect to a rigid body translation, as 

shown by (5). Thus, the rigid body translation term Co is merely the result 

of the missile moving in the opposite direction from an engine deflection Õ. 

C o 

m z 
e 
M Ko6 U2) 
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To determine C^t), the angular momentum of the missile with respect 

to the moving set of axes is set to zero. This condition is expressed by 

o 

Substituting ú. and ¢. from (8) and (9) into ( 13) gives 

\ x(pA).dx + 

Jl. 
i 

+ C, 
' R 

£ 
i=l 

N 
+ Y] X. m. pi J 1 

00 

n=l 

N 
+ Y] x.m. (<f>. + £• ) 

pi J J Jn Jn 

XÍ [x(pA).i ttpDi+iJdx 

1 

rb 
6 \ z(pA)e + Z2 (pA)e + (pl)e] dz = 

(14) 

The coefficient of Cq vanishes because the origin of the x-axis is at the 

missile c.g. as specified by (7). The coefficient of is the mass moment 

of inertia I of the missile about its c.g. The coefficients of q vanish c n 
identically because the sloshing-bending modes are orthogonal with respect 

to a rigid body rotation as expressed by (6). The coefficient of 6 was modified 

by substituting x = f e + z. Integrating the resulting equation with respect 

to time and taking the integration constant as zero so that = 0 when 

6 = 0, Cj becomes 
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where 

K1 = f(Ie + me,ez) c 
(16) 

Substituting CQ and Cj from (12) and (15) back into (8) and (9), the 

deflection functions are 

op 
u.U.t) = - (Ko + KjxJÔ + (t) 

n=l 
(17) 

oo 

S', (x, t) = - K.6 + i|j. q (t) 
i 1 —xin n ' ' n=l 

(18) 
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5. KINEMATICS 

As shown in Figure (¿), let 

p = Position vector from the inertial axes origin to a point on the axis 
i 

of the i branch of the missile. 

R = Position vector from the inertial axes origin to the origin of the 

moving axes. 

ij = Unit vectors in the x and y directions, respectively. At any instant, 

these rotatate at an angular velocity 0 with respect to the inertia axes 

From the figure, one can write 

P. = R + xi + ui J (19) 

The velocity and acceleration of a point on the missile axis are found by 

differentiating (19). In doing this, observe that d^dt = - ej and 

dj/dt = #T. Also, x = 0 since longitudinal displacements relative to the 

moving axes are neglected. Performing the differentiations gives 

dP. 
— = + u.0i + (u. “ x0)j 

dt dt i i 
(20) 

d2R + (u.0 + 2U.0 - X0¿)T4 (u. - X0 - u 
'll í 

dt dt 

The velocity and acceleration of the mass center (origin of x, y-axes) can 

be expressed in terms of its components along the directions of the x and y 

axes, that is 
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dR — 'Y — 
“tt = y i + y j 
dt X. VJ 

(21) 

d R — -V — 'V 
—T = a i + a j 
dt^ x y 

Substituting (21) into (20), the velocity and acceleration components of a point 
.th 

on the axis of the j branch of the missile are 

v • = V + U.0 
XI XI 

f , — 
yi = v + u. - xö 

(2¿) 

axi = ax + ui« +2u.e - x8‘ 

ayi " ay + Ui - *6 - uj8 

(23) 

The velocity of a point on the axis of the swiveling engine can be found 

from the above by replacing u. by + 6z , where is the deflection 

function for the missile branch which includes the engine. There could be 

more than one engine and more than one branch (or two engines which can be 

considered as one) but by proper interpretation, the following equations are 
still valid. 

v 
x Vx + (u2 + 6z) 0 

v 
y 

(24) 

vy + u2 + 6 z - x0 (25) 
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6. KINETIC ENERGY OF THE SYSTEM 

For use in developing the Lagrangian equations of motion, the expressions 

for the kinetic energy of the complete missile will be found. First to be con¬ 

sidered is the kinetic energy associated with the velocity of points along the 

missile axis, including sloshing and the swiveling engines, assuming them to 

be clamped at 6 = 0. Denoting this portion of the kinetic energy by T , and 

using (22) and (23), this energy can be expressed by 

T 
u \ ^Vxi + Vvi^ dx + y + v2 ) Jl yi 1 2 j' xj yj ' 

(26) 

In Equation (26), v^ and vyj are the velocity components of the slosh masses, 

and are found by evaluating Equations (22) and (23) at x = x., as indicated. 
J 

Next, consider the kinetic energy due to the rotatory inertia of each 

infinitesimal transverse slice of the missile. The angular velocity of any 

slice is given by Ò- ¢., where ¢. is defined by (9) or (18). The minus 

sign arises only as a result of the choice of coordinate system. The corre¬ 

sponding kinetic energy is 

T* = I 2 (Ö - ^)2 dx (27) 
1 = 1 'Sjt 

i 

For the swiveling engine, the total kinetic energy is given, using (24) and 
(25), by 
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T6 = I J [(7x + u29 + 6z®>2 + + u2 + 6z - x0)2] (pA)e dz 

rb 
+ I j (0-^-6)2 (pl)e dz (28) 

where again, the subscript 2 refers to the branch containing the swiveling 

engines. This can be written in the following form, 

C b b 

T6 = I J [<vx + V>2 + + "2 - ^8)2] (pA)e dx + j C (9 - i 42) (pl)e dx 

rb 
ï \ (\ + “2®) + 62z282+2«z(vy + ¿2-xé)+63z2J (pA)e dz 

-26(0 - J (P^)e dz (29) 

The first two integrals in the above expression represent the kinetic 

energy of the swiveling engine when 6 = 0; this portion of Tß is already 

included in ^ + The second and third integrals give the additional 

kinetic energy due to swiveling through an angle 6. Denoting this addition 

kinetic energy by Tg , it is given by 

o 
(30) 



STL/TR-60-0000-00083 
Page 19 

The total kinetic energy of the system is the sum of (26), (27) and (30); 



ST L/TR-60-0000-00083 
Page 20 

7. AERODYNAMICS 

The aerodynamics to be used in this study will be based as much as possible 

on actual wind tunnel data. For the most part, this data consists of plots of run¬ 

ning load versus missile station for various fixed angles of attack of a rigid mis- 

a.le. It has been found that these aerodynamic loads vary linearly with angle of 

attack up to about five degrees so that for the purposes of this analysis only a 

single load curve wa(x) pounds per inch along the missile per unit angle of attack 
is necessary. 

The load distribution ^wjx) is the steady aerodynamic load which results 

When the rigid missile is held a, a fixed angle of attack a. . If the rigid missile 

is now permitted to ha-e an angular velocity Ô (pitching) and a rate of change of 

angle of attack ó (plunging) one must deal with unsteady aerodynamics. The 

aerodynamic forces due to an instantaneous angle of attack are taken to be the 

same as those which would result if the angle of attack were constant a, its instan¬ 

taneous value. The additional aerodynamic forces due to pitching and plunging 
can be estimated by three alternate techniques: 

â. quasi-steady theory, 

b. slender body theory, or 

c. piston theory. 

For slowly varying motions (of the order of a few cycles per second) the quasi¬ 

steady theory is recommended to give the best estimate for the aerodynamic 

forces due to pitching. The aerodynamic forces due to a constant pitching ve¬ 

locity 9 could be obtained directly from wind-tunnel tests on fixed models bent 

into a bannana shape to give an apparent pitching velocity, but it is anticipated 

that such data will seldom be obtained. Quasi-steady theory cannot be used to 

give the aerodynamic forces due to plunging. Slender body theory will be used to 

determine these forces. Piston theory for unsteady motion becomes accurate 

only for motions with a frequency much higher than are likely to occur in the mis- 
sile dynamics considered here. 

Aerodynamic forces due to an acceleration ë are quite small and will be 
neglected. 
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Most of the aerodynamic forces due to missile bending will be neglected as 
small with two exceptions: 

a. angle of attack due to motion in a sloshing mode (the airframe 

often moves as a nearly rigid body in a sloshing mode; see 
below) and 

b. damping of the structural modes due to aerodynamics. 

Other aerodynamic forces due to missile bending have a negligible effect on the 

motion. For example, the ratio of aerodynamic "stiffness" (i.e., the coefficient 

of , in the bending equation, due to aerodynamics) to structural stiffness 

Mw ) for the first "bending" mode of a two-stage liquid propellant missile is 

. This ratio for the first sloshing mode is 1:3700, based on quasi-steady 

aerodynamics. The ratios of aerodynamic damping (Um. the coefficient of Õ 

due m aerodynamics) strucmral damping (assuming b, . .01) for the firs,n 
three bending" modes of this missile are 1/3, l/l2, and 1/10, respectively a, 

maximum dynamic pressure. This effect could be conaiderable and will be in- 
eluded, as indicated. 

The quasi-steady aerodynamic theory mentioned above consists simply of 

computing the apparent angle of attack at any station due to an effect in question 

and multiplying this angle by wa<x) a, tha, station to obtain the load there. For 

example, the load distribution due to a pitching velocity Í is 

ew¿(x) > ^wq(x) • ,32) 

Similarly, the load distribution due to a bending velocity 

q w. 
n q n 

wq(x) 

is 

(33) 

where again, the subscript 1 refers to the missile branch exposed to aero- 

dynamics. Computing the generalized force on the n,h mode due to this las, 

load, the contribution to the modal damping ratio bn due to aerodynamics is 
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Ab 
n 

1 
2Mu V 

n o Wa<X,Vx>dx (34) 

The load distribution due to a plunging a, using slender body theory, is 

aw^(x) = Qpv^S(x) (35) 

where p is the density of the air at the altitude of the missile and S(x) is the 

cross-sectional area of the missile. 

The total load p(x, t) acting on the missile is an appropriate summation of 

the effects discussed above. The total rigid body angle of attack a is 

Qrp = ß - 0 - K J ó 
K 6 N y 

-° + ¿ a q-- cos ß 
v0 n n vo 

(36) 

where 

an = effective" angle of attack per unit "slosh" mode amplitude, i.e. , if 

appreciable bending occurs in a slosh mode, a should be taken as 
n 

a mean slope over the region of large w (x). 
a 

n — 2, • N are the bending-sloshing modes which have very large 

sloshing amplitudes. These have been called "slosh" modes. 

vw = wind velocity at missile altitude, assumed directed parallel to the 

ground, positive in the y-direction with 0 = 0 

The total effective pitching velocity of the airframe is 

N 
0 + K 6 - q q 

1 n n 
(37) 

This is the pitching velocity that should be used in (32) for the quasi-steady load 

distribution due to pitching. However, the aerodynamic load due to pitching will 
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% 

be small and Kj6 and are small compared to Q (a typical value of Kj is 

0.0015 and of an is 0. 001 rad/in) so that and co^ in the pitching aero¬ 

dynamics become "higher order" terms, i.e., the product of two small effects, 

giving rise to forces much smaller than the uncertainty in the quasi-steady theory. 

For this reason only è itself will be considered for the determination of pitching 

aerodynamics. 

The total à^, to be used in determining the aerodynamic load due to plunging 

is found by differentiating (36). Combining the aerodynamic loads due to quasi¬ 

steady angle of attack, pitching, and plunging, the total aerodynamic load distri¬ 

bution p(x,t) is 

p(x, t) = qtwq(x) + éw^(x) + 

where 

08) 

WQ(X) * steady load distribution 
per unit angle of attack, 

wè(x) = 7-wc,(lt) 
O 

wà(x) s PV0SW 

(39) 

and aT is given by Equation (36). One other aerodynamic load distribution is 

included, by implication, in addition to this p(x, t). These additional forces are 

due to the interaction between the bending velocities qn and the aerodynamics. 

These forces are small and their only significant effect is to change the apparent 

damping ratios bn of the bending modes, as indicated by Equation (34). 

The resultant aerodynamic force in the y-direction found by integrating 

p(x, t) over the length of the missile branch exposed to the atmosphere: 
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Performing the integration, using p(x, t) from (38), gives 

where 

Fy = -N«°T- Vt-N00 

Ç i2 
N = \ w ( 

° J-¿1 ° 

Cl2 
N. = pv \ 

0 ° J-Í 
] 

N- . -L V' 
0 V v) I O vJ-i 

S(x) dx 

xw (x) dx 
CL 

(41) 

(42) 

The moment of the aerodynamic forces about the mass center is given by 

M 
c. g. ■i; xp(x, t) dx (43) 

Performing this integration gives 

M = M q_ + M.á_ + Mió 
eg. o i a i o 

(44) 



w / V ’ '{TW 

where 

xw (x)dx = 
a 

V N • 
o 0 

M. 
a Pv. 

V 
o 

xS(x) dx 

2 
X w a 

(x)dx 
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(45) 

The generalized forces on the bending modes due directly to the aerodynamic 

forces are given by 

■: ■ • $.: p(x. t) ♦jn (*) ^ 

Using (38), this integral becomes 

where 

$: 
p <|> dx = H a + H. a + H* 0 
r ln an T an T 0n 

H an 

H. 
an 

r'z 
(x) <t>ln (x) dx 

S(x) <i>ln (x) dx 

H 
Ôn 

.-L r 
vo J-f 

XWQ (x) 4>ln (x) dx 

(46) 

(47) 

(48) 
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8. MOTION OF MASS CENTER AND ROTATION 

from the general principle of the motion of the mass center, it is known 

that the total mass times the acceleration of the mass center in a given direction 

equals the resultant external force in that direction. Thus, referring to Figure 

(3), which shows the forces acting on the missile, one can write 

= - VTc - MScos9 + F* (49] 

May = - Tc <ue + 6) - Txu'e + Mg sin 8 + F* (50) 

where Fx and F* are the resultant aerodynamic forces in the x and y 

directions, and are approximately equal to the drag and lift respectively. An 

explicit expression for Fy is given in the previous section. 

The equation of motion for rotation 8 takes on a form similar to that for 

the motion of the c. g. because of the choice of coordinate system. Just as the 

equations of motion for the origin of the coordinate system (i. e. , the c. g. ) are 

formed by equating the total applied force to the mass time the acceleration of 

the c. g., the equation of motion for the orientation of the coordinate system (i. e. 

the axis about which the moment of momentum is aero) is formed by equating 

the total external moments to the rate of change of angular momentum of the 

missile. Of the quantities 9, qn, and 6 which specify the configuration of 

the missile, only changes in 8 affect its angular momentum by definition of the 

coordinate system. Recall that if the engine is given a displacement 6, the 

rest of the missile moves through an angle -1CÔ as measured in the moving 

coordinate system so that there is no change in the moment of momentum about 

the moving axes. Similarly, the bending-sloshing modes are computed to have 

aero angular momentum with respect to the axes from which they are measured 

Using the forces given in Figure 3, the equation of motion for 8 is then given 
simply by 

[ T (u' + 
c e 6) + T “i] - (T + T )u + M* c s e c. g. (51) 
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where Mcg is the moment about the mase renter of the aerodynamic forces. 

In Equation 51, I is the instantaneous mass moment of inertia of the 

missile including the effective moment of inertia of the liquids in the tanks. This 

moment of inertia I varies with time since the configuration of the missile 

changes with respect to the *, y-axee. However, in most practical cases the 

magnitude of this variation will be small compared with the total and it is appro¬ 

priate to take the moment of inertia as a constant given, as for Equation (14), 

ISSIc = t\\ [(PA)^ + (pi).] dx + ¿ 
i J = i 

Wiib this approximation, the left hand side of (51) may be 

2 
X. 

J J 
(52) 

replaced by I 0. 
c 
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-p (*•♦) 

MISSILE BODY EXPOSED 

TO AERODYNAMICS, 1=1 

BRANCH, ASSUMED HERE TO BE 

SHIELDED FROM AERODYNAMICS 

Figure 3. Forces Acting on Missile. 
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9. BENDING - SLOSHING EQUATIONS 

The most expedient way to derive the bending-sloshing equations is to give 

each mode a virtual displacement and compute the generalized force on each 

mode due to all of the external forces acting on the missile. The inertia forces 

due to the swiveling motion 6 of the engines must be included as an external 

force because such motions are "external" to the bending modes which have been 

computed with 6 = 0. 

The general form of the equations of motion for the bending-sloshing modes 

is 

q + 2 b w q +uq 
Mn n n n n n 

Q (t) 
n 

M 
(53) 

in which the bending modes have been normalized (i. e. , scaled) to give a gener¬ 

alized mass equal to the total mass, as indicated in Equation (3). Equation (53) 

(with the exception of the qn term) can be derived by a straight-forward applica¬ 

tion of Lagrange's equation using the kinetic energy given by Equation (31) and 

the potential energy of bending. The coupling terms can be eliminated by use of 

orthogonality conditions (3) and (4) to yield the simple form given. 

The time functions Q (t) are the generalized forces mentioned above. 

The constant u> is the circular frequency of the n mode and bn is the damp¬ 

ing ratio, found experimentally by shaking an assembled missile, calculated from 

experiments on components, or assumed conservatively small. It should be 

mentioned that strictly speaking, one can seldom represent the damping of a 

structure in this way. In order that this representation be strictly correct, all 

damping forces would have to be of the viscous type (i. e. , proportional to velo¬ 

city) and would have to be distributed along the length of the missile in the same 

way in which the mass and rotatory inertia are distributed, or the same way in 

which an appropriate combination of the elastic forces are distributed. If the 

damping forces are distributed in any other wav, application of the Lagrange's 

equations would result in the equations of motion for the bending modes having 
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velocity coupling through the viscous damping forces. That is, the bending- 

sloshing equation for the n mode would have additional terms of the form 

^mn^m’ w^ere na = 1, 2, 3* • • . For reasonably small values of damping, 

however, (corresponding to a few percent of critical damping in any mode) these 

coupling terms have a negligibly small effect on the motion (see Reference 4) and 

can be omitted as was done in Equation (53). Similarly, if the damping is of 

hysteresis type (structural damping) rather than viscous, it can still be repre¬ 

sented by an equivalent viscous damping ratio bn for sufficiently small damp- 

ing. The contribution to b^ from aerodynamics is described in Section 7. 

The fluid damping in the slosh tanks has a serious effect on overall missile 

stability (see, for example, Reference 5) and its influence on the bending- 

sloshing modes must be treated more explicitly. The effect of slosh damping in 

the individual tanks on the bending-sloshing equations is essentially different 

from the phenomena discussed above in that the coupling terms C q between 

thp slosh modes must be considered. This is because the frequencies of the 

"slosh" modes are quite close together, in contrast to the "bending" modes. 

These coupling terms are easily found by considering the generalized forces on 

the modes due to the damping forces in the individual tanks. Again, the detailed 

nature of how the damping forces act need not be considered. From the stand¬ 

point of the spring-mass models which are used in this analysis to represent 

sloshing, the damping in the individual tanks maybe considered as coming from 

dashpots across each lumped spring, as shown in the sketch on the following 

page. 

The equation of motion for the free vibration of eacn spring mass model, 

with their tanks fixed, is simply 

mj VcjVVj = 0 <54> 

or 

Vi. + Zy.w.ri. + wfri 
'j J J 'j 

0 



1 Y 

STL/TR-60-0000-00083 
Page 31 

where is the damping ratio for the first mode of sloshing of an Individual 

This ratio is available for each tank from either direct experimental 

measurements or from the application of approximate theories. Comparing 

(54) and (55) the equivalent dashpot that would give this damping ratio can be 

computed from 

where 

= 2YjmjUj (56) 

is the frequency of the uncoupled slosh motion. 

When these spring-mass-dashpot models are attached to the flexible missile. 
th 9 

the generalized force on the n bending-sloshing mode due to the dashpots is 

Q 
nc CJ Vin m (57) 
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th 
Equation (57) is obtained by giving the n mode a virtual displacement Aq 

th 
and computing the work done on the n mode by the dashpots C. during the 

th J 
displacement. The force in the j dashpot is Cj times the relative velocity 

between the missile centerline and the lumped slosh mass, i. e., 

F. 
J 

oo 

= - c- 2 q (58) 

where 4jm is the relative displacement of the j 
.th th 

slosh mass in the m 

so that the ‘n’ 
mode. The virtual displacement at each slosh mass is £jn Aq 

total work done by N such dashpots during a virtual displacement ¿vqn is 

N 
v; 
j=i ci£i titn,m 

(59) 

Dividing this work by Aqn gives expression (57) for the generalized force. 

Equation (57) is more conveniently written as 

x: c 
m=l 

mn (60) 

where, using (56), the coefficients Cmn are given by 

C 
mn 

N 
2Y . m. cj. £. (,. 

pi J J J Jm Jn 
(61) 

The coupling coefficients between the "bending" modes (i. e., m,ji> Nj m^/n) 

will more than likely have a negligible effect on the motion and may be omitted if 

a significant simplification results. 

Consider now the contribution to Qn in (37) from the inertia forces due 

to engine swiveling. The inertia force of an elemented swiveling engine mass 

(pA) dz is (pA) dz. z6 . Similarly, the inertia moment of such an element 
• • 

is (pi) dz . 6 . The contribution to the generalized force Q from these 
C XT 
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forces and moments are determined by again giving a virtual displacement ^qn» 

computing the work done by the forces, and dividing by £qn. 

Thus 

dQn6 = I> (PA|ed2 ' hn + (pI)edi ' ^n] (6i 

where the subscript 2n refers to the n**1 mode, and the branch of the missile 

which contains the swiveling engines (merely a convention first defined in the 

section on kinematics). Integrating over the swiveling engines gives the total 

generalized force due to swiveling: 

[z(pA)e *2n+ (pl)e +2n]d* (63) 

The contribution to Q from the other external forces shown in Figure (3) 
n 

are found in a similar way, so that the total generalized force Qn is 

Qn = - 6 ^ [2 (pA)e p2n + <pl)e +2J dz - ^ t 
p(x, t) <t> ln (x) dx 

1 (64) 

CO 
- Pr 6 + (T +t)u'~u (¿)- cq 

L c ' c s eJ 2n e mn m 

th 
where the subscript In refers to the deflection in the n mode, and the 

branch which is exposed to aerodynamic forces. Explicit expressions for the 

integrals dx are given in Section 7. 
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10. ENGINE SWIVELING EQUATION 

The interaction between engine swiveling and the other variables in this 

analysis is quite subtle and if one were to use the Newtonian approach used above, 

it is probable that some of the interacting forces would be overlooked. To avoid 

such a possibility, the engine swiveling equations will be derived with the use of 

Lagrange's equation for the engine rotation angle 6, which is 

d 9T 8T 8V _ n 
ÏÏT8& - 8&+ 8* - U6 

(65) 

Perhaps the most straight forward way to apply this equation is to take the 

kinetic energy equation (Z" using u. (x, t) and (x, t) as given by (17) and 

(18) respectively. Thus u. and are considered as functions of 6 when 

differentiating T with respect to 6 and 6. In this case, the external forces 

in Figure (3) contribute to Qg because a virtual displacement of 6 is accom¬ 

panied by a rigid-body translation _K06 and rotation -K^6. 

An alternative method of applying Equation (65) is to use u^ and ¢. as 

given in (8) and (9) respectively and consider C (t) and C, (t) as generalized 

coordinates when differentiating T with respect to 6 and Ô. In order to be 

generalized coordinates, of course, C (t) and (t) must be independent 

of the other coordinates of the system. Since both an£l 9 represent a rigid 

body rotation, they are not independent of each other, and similarly, a velocity 

Co (t) is not independent of the velocity v^ of the coordinate system. Hence, 

if Cq (t) and Cj (t) are considered as generalized coordinates, 0 and the 

lateral location of the origin of the coordinate system cannot be considered as 

generalized coordinates at the same time. This simply means that if Co and 

Cj are to be considered as generalized coordinates, u^ and must be 

measured from a fixed (except for axial motions) coordinate system. Alternately, 

one could argue that in order to define 0 and the location of the coordinate system 

in the manner in which it was done, Cq and cannot be independent coordin¬ 

ates. 

A * 

9
 

I J
I 
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The kinetic energy expression for fixed coordinates, however, is obtained 

by merely setting e = vy p 0 in Equation (31). When using the kinetic energy 

Equation (31) in the Lagrange Equation (65) for 6, the same result would be 

obtained even if one mistakenly considered é and v as generalized velocities, 

but this is only because è = vy = 0 is the acceptable interpretation for these 

velocities when CQ(t) and C^t) are considered as generalized coordinates. 

Thus, the alternate method of deriving the engine swiveling equation is to 

substitute u. and from (8) and (9) into the kinetic energy Equation (65) with 

0 - Vy - 0, and use the Lagrange Equation (65) considering C (t) and C (t) 

as independent coordinates. In this case, the external forces in figure (3) do 

not contribute to Q6. One can now substitute for these coordinates C and C 

the expressions (12) and (15), which define Co and Cj in terms of 6°, and 1 

revert back to the original coordinate system. This procedure is equivalent to 

assuming that u. and *. are independent of 6 until after deriving the engine 

swiveling equation, and not imposing the conditions (10) and (13) until after the 
swiveling equation is set up. 

This second procedure is evidently more expedient and will be used here. 

Differentiating (31), the first term of (65) becomes 

d ax ^ d 3t6 _ _d_ 
dt 3 5 ~ dt 0Ô ~ dt 

_ . . rb . . 
z(Vy + ii2 - xè + 6z) (pA)e dz + \ (Ô - 0 + 42) (pl)e di 

(pA)e + (pdJz + vy I z (pA)e dz - Ö T Qcz(pA)e + (pi) Jdz 

J" |ju2(pA)e + ^2(pl)¡]dz = Ie6 +mezVy - (Ie +meJeZ)'ê 

je« 2 (pA)e + '¿¿(pl)^! dz (66) 
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Substituting (17) and (18) Into the last 
term of (66) gives 

+^2(Pigdz = . 
ome5 + Kl(le + ^ïT] 

(67) 

+ rSiq" Jo Ein2 + Vpl^d: 

Differentiating (31) with respect to 6 
gives 

dT, 

36 3 6 ~ 1 P(^x + u2®) + ôz2ê£](pA) 

P¿óv_ m i 

dz 

(68) 
X e 

where terms containing ^ have been dropped in the approbate expression. 

The potential energy to be used in • _> 

one swiveltng engl or no j! “ ^ ^ ^ 

one engine swivels, they will he ac . g d f m°re than 
interpretation of 1 , m K K ^ J° SwlveI '“gether so that by proper 

The potential energy y'is found! ' ^ - one. 

swiveling engine from e = 0 to theCtólPlT! ^ ^ ^ r0ta“n8 *he 
energy is ^ nown. This potential 

V = 
meZ (g COS 0 " ax) ¡jos - COS (u¿ + ôj] 

nriggz sin Ô sin 6 + K^ô^/2 

which for small angles 6 and u' becomes 

(69) 

V = 
nV<S « - Ox)(6¿/i + 6u;, - m zg 6 sin 9 + K 6¿/2 

e /1. (70) 
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\bellows etc, represented by 
\ TORSIONAL SPRING CONSTANT Ka 
^ AND DASHPOTCONSTANT K0 

-mtaK 

4. Schematic Showing Forces Acting on Swiveling Engines. 
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The potential energy due to tne inertia force meay. must not be included here 

because it is accounted for by the kinetic energy term of Lagrange's equation. 

The potential energy due to the engine rotating through the angle u^ is not 

included in (70) because it has been assumed for this report that the bending 

modes have been computed with the effects of longitudinal acceleration included. 

This means that the work done by longitudinal acceleration forces in rotating the 

engine through the angle u^ is included in the potential energy of beam-column 

bending. The resulting engine swiveling equation is the same either way, but 

the terms 3V/3qn would be different. For the bending equations as written in 

Section 9, however, these terms have been implicitely omitted, as was done in 

Reference 1. These reaction forces 3V/3qn, where V comes from (70), are 

small in comparison with other forces affecting bending in either case, but in 

this report are even smaller than in Reference 1. 

Differentiating (70) gives 

-K-* = m z (g cos 0-a)(6+u')-mzg sin 0 + KJ5 (71) 
3 o e ° X e e 0 D 

The moments due to the engine actuator and the damping moment of the 

bellows and/or jet damping enter into equation (65) most conveniently through 

the generalized force Q^. A virtual displacement of 6 leads to a generalized 

force of 

Q6 = KA '‘a - 6> - V <72) 

where 

= torsional spring constant of the actuator 

Kp = equivalent viscous damping constant 

= actuator position called for by the autopilot. 

Substituting (66), (67), (68), (71), and (72) into (65), the following equation 

of motion is obtained for the swiveling engine: 
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(I - K m z - K,^ I ) 6 - K, I 9 + m z (g cos 0 - a ) (6 + u1 ) 
e o e 1 c 1 c e ^ x e 

CD P ^ 

+ meï(Iy - g sin 9) + J [^2n(PA)e + +2n<pI)e] dz = 

O 

= Ka (6a - 6) - K66 - Kd6 
(73) 

In writing this expression, a^ has been substituted for 

from differentiating the expression for the velocity of the center of gravity: 

This follows 
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11. SUMMARY OF PERTURBATED EQUATIONS OF MOTION 

In summarizing the equations of motion derived above, they will be written 

in terms of small perturbations of 0 and ß about their nominal values at the 

time of flight in question. These nominal values are found from another program 

which computes the trajectory taking into account slowly varying quantities such 

as missile mass, air density, etc., but neglecting the "high" frequency motions 

considered here. Denoting these nominal values by 0o = ßQ (only ß is com¬ 

puted in the trajectory studies, so the nominal value of 0 is defined here as 

0 = ß ) one can write o ro 

0 = ß + © (76) 
ro 

sin0 = sinß cos0 + cosß sin© (77) 
ro 'o 

cos 0 = cos ß cos© - sinß sin© (78) 
o o 

Considering only small values of the perturbation angle ©, these last expres¬ 

sions can be approximated by 

sin 9 :¾ sin ß + 0 cos ß (79) 
o o 

cos 9 cuícos ßQ - © sinßQ (80) 

For the angle ß of the velocity vector, one can write 

V 

ß ß + (81) 
r ro V 

o 

Using (76;, (79), (80) and (81) in the expressions derived in the previous 

sections, one can write down the perturbated equations of motion. These are 

listed below along with a summary of other equations derived in the report. 

Equations which are merely listed here with no changes will be given the same 
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number as in the body of the report. Those which are incorporated with the 

perturbation equations above will be given their number from the body of the 

report plus an asterisk. 

Deflection Function 

oo 
u.(x(t) 

(x, t) 

-(K + K. x) 6 + Xi 0. q (t) ' o 1 ' rin nn ' 
n= 1 

oo 
- K. 6 + 4>- q (t) 1 Tin nn' ' 

n= 1 

(17) 

(18) 

where 

K 
m z 

e 
TT 

l K. = =— (I + m i z) 
1 I ' e e e 

c 

^ [z2(pA)e + (pl)e^| dz 

R 

= £ 
i=l 

x (pA)^ + (pi). 
N 2 

dx + y! x. m. 
jTi J J 

Motion of Mass Center and Rotation 

(12) 

(16) 

(14),(16) 

(52) 

Ma T - T - Mg (cos ß - © sin ß ) + F 
sc o ox (49) 

Ma - T (u1 + 6) - T u' + Mg (sin ß + © cos ß ) + F 
CG S 0 O O > 

(50) 

• • 

i e 
c 6 + (T + T ) u' 1 

C S ' e J 
i 

e 
(T + T ) u + M 
' c s' e c.g. 

where F is the drag force on the missile, found from trajectory data for the 
x 

time of flight in question. Also, F and M are the resultant aerodynamic 
Y c»g» 

force in the y-direction and the resultant aerodynamic moment about the mass 

center, respectively. Specific expressions for these are given in Section 7 on 

aerodynamics. 
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Bending-Sloshing Equations 

M«n + 2V„%^qn> = [MpAe)*2n+(py 

•Í _t P^t) ^in(x)dx -[Tc6 +(Tc + T8)u¿]02n(íe) 

00 - z: c ¿ 
mn m= 1 (53),(64) 

where 

and 

N 

c™ = cjn 

P 
b„ = bn (structural) + \ (x) ^ dx 

n o U - 

(61) 

(34) 

pi 

Detailed expressions for the inteerals \ + a integrals J ^ p ^dx are given in Section 7. 

Total Angle of Attack 1 

aT = ^(V-Ko¿ - (36) 

where 

Vy M (ay+9v*,dt 
o 

and a mean value of v 
x is used in order to linearize the equation. 
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Engine Swiveling Equation 

(I K 
me Z ' K1 V 6* " Kl ^ ® + me z (g cos ßQ - a ) (6 + u' ) 

U X 0 

+ meziav ' gcosß - 6cosß 
GO C 

2 (pA)e p2n + (P«e +2n] dz 

= Ka(6a - 6) - K66 - Kjjj 
(73) 

where a nonlinear term - me zge,61 u;, sinß() hae been dropped (this is an 

extremely small term) from the left hand side, and a mean value is to be taken 

lor ax m order to make the equation linear (the terms neglected for this 
approximation are also negligibly small). 
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U' BENDING MOMENT AND ™ BY MODE ACCELERATION 

written as the sum of the tending'branCh °f ‘he missile ^ be 
bendmg moments at that section due to each mode: 

OO Mi<*.«) = i:Min,x,q 
n=l 11 n 

where 
(82) 

dijj. 
in 

vu vu 
Miíx) = (EI). ~Í 

1 i dx 

rri: irr rrr ---- - *•—• »»■... 
85 « Percent of the generalised I S¡"« f-m 

to the concentrated engine force. Th 0" ^ m0de8 is due 
(82) is used, both the "static" and d conver8ence is poor mainly because if 

for example, the missile were flyinlT”’0 are expanded into modes. If, 

were no dynamics involved, many m drimm<! a‘ 3 il:<ed engine an81e and there 

the engine gimble point. On the other Znd^l ^ ^ fÍ"d Shear near 

merely apply the equations of staf ’ ’ °ne Were ‘0 £orget modas and 

would be exact and found quite simply flrTsTaë ^ 

to respond dynamically, of course th Syftem " aU°wed 

considered. Bu, rather than applying m°deS mUS‘ ba 

from the point of view of convergence to use Z 1' “ ^ advantageous 
ing modes merely as a correct' h dynamic response of the bend- 

-nd by neglectilg the rrf"" ^ £a 

- ba d»a. ceeall that the bendinZ::^^ ^ ^ ^ ^ 

•• 2 
qn + w q 

n n 4n 
Qn(t) 

M (83) ” JYl ^ 

The reason for not including the damping terms will be d' 

pseudo-static moment M (x t) in tK ^h v be discussed later. The 
is (-. t) m the . branch of the missile will be defined 
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as the moment that would result if the inertia forces of bending-sloshing modes 

are neglected. Rigid body inertia forces are not neglected because they are the 

only reaction forces for the rigid body modes. Neglecting the bending-sloshing 

inertia forces means setting = 0 in (83) so that in this case, substitution of 
(83) into (82) gives 

oo Q (t) 
Mis(x’t) = £ Min<x) 

n=l in Mu 
n 

(84) 

If the inertia forces of bending are included, substitution of (83) into (82) gives 

oo 
M (x,t) = V M. (x) 

1 rri in' ' n-1 

ÍQ (t) n x ' 

, Mu^ 
V. n 

(85) 

Combining (84) and (85) this total moment can also be written 

oo 

£ 
n=l 

m q (t) 
M (x,t) = M (x, t) - 2ÜM. (x) ~— 

1 18 ■‘ri m 2 (86) 

n 

Equations (61) and (86) are identical, of course, and nothing has been gained if 

one thinks of M.s (x, t) as coming from (84). If, however, one realizes that 

M.s(x, t) is the moment that results from applying the external forces, which 

give rize to Qn(t), to the missile considering it as rigid (and also including the 

rigid body inertia forces) a great improvement in convergence results. When 

the moment M.s (x, t) is found by such a separate calculation, the only terms 

in (86) which depend on the mode response have in the denominator and 

converge faster than those in (82), especially for rather slowly varying con¬ 

centrated loads, which is the case here for the force applied at the engine 
gimble point. 

If the damping term 2bnun4n were included in (83), a term 

oo 2b q 
M. (x) —n- n rri in' 7 ~ w n= 1 n 
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would appear in (86). Since the damping ratios t>n will be small, these 

terms will also be small compared to the other terms in (86). To s’fee this, 

one can examine the ratio between the contribution to the moment or shear 

from such q terms and from the *q terms in (86). If the coordinate 
n n 

qn is oscillating at a frequency u, this ratio (q^ contribution over q'n 

contribution) for either moment or shear is 2b u /w. Thus, for high driving 
n n 

frequencies w, this ratio is certainly small, and for low frequencies, the 

psuedo - static loads predominate. At intermediate frequencies oj«wn» the 

fact that b is very small (in the range of 0.01) insures that velocity 

terms can be neglected and equations such as (86) are satisfactorily accurate. 

Identical reasoning leads to the following "mode-acceleration" expression 

for shear: 

(87) 

where 

It should be mentioned that the interactions between the bending displace¬ 

ments qn(t) and the forces acting on the missile have been treated by a "mode- 

displacement" procedure as seen from Equations (8) and (9) for u^ anuljl^. 

These interactions are entirely with the slopes (d^^/dxjq^ and q^ and 

displacements ^n9n» which converge much more rapidly than shear and 

moment so that it is not inconsistent to use "mode-acceleration" to find the 

moment and shear. 

Expressions for V.g(x, t) and KLg(x,t) remain to be determined. There 

are four general forces to be used in determining these pseudo-static loads: 

1. Aerodynamic (branch 1 only, by definition). 

2. Missile rigid body inertia forces due to lateral accelerations. 
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3. Swiveling engine inertia forces. 

4. Lateral engine thrust forces. 

If one computes these loads by integrating from the tip of the missile, and is not 

interested in the loads in the engine bells themselves, only the first two of these 

forces need be considered directly, because the effect of the latter two are 

included through the previously derived equations of motion which insure that 

the missile is always in dynamic equilibrium. 

At this point it is helpful to reiterate the definitions concerning the branches 

which make up the missile. These definitions are shown in Figure 5 and are 

listed below: 

1. Only the main branch (i = 1) is exposed to aerodynamic forces. This 

assumption has been made only in the interest of keeping the nomencla¬ 

ture within reason. If one wishes to apply these equations to a missile 

having more than one branch exposed, he can easily change the 

formalism of these derivations to fit his case. 

2. The engines are defined as branch i = 2. If in the computation of 

bending modes they are actually treated as part of the main beam, 

there will be no i = 2 branch. 

3. All of the other sub-branches are attached to the main branch at only 

one point; x = h^. At this point, the bending slope ^ ant^ total deflec¬ 

tion 0 of the sub-branch are the same as that of the main beam. 

4. The other ends of the sub-branches, located at x = d^, are free. 

5. These sub-branches are to be numbered sequentially according to 

their attach points, starting from the nose of the missile. Thus: 

^3 ^ ^4^ • • • ^ ^R- 1 ^ ^R 

Consider first the psuedo-static shear and moment in the sub-branches. 

The only lateral forces acting on these branches, with the above assumptions, 

are due to the lateral acceleration a . of points along the branch. This 
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Figure 5. Branch Nomenclature Example for R = 6. 

^_L 
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* 2 
acceleration is given by (23). Dropping the term with 0 and noting that 
• • • • 
u j = "(Kq + Kj x) 6 for a rigid missile, the acceleration to be used here is 

given by 

a . = a - K 6 - x0 - K, x5 yi y o 1 

Integrating the resulting lateral inertia loads, shown in Figure 6, the psuedo- 
tVi 

static shear and moment in the i1 branch, i = 3, 4 R, are » • • • 

X 

(pA). (ay - Ko 6 - ee - K1 e 6 ) de (89) 

d. 

and 

d 
i 

X 

(pi).(e + K, 6) de (90) 

d. 

where the dummy variable e is measured from the same origin as x, as 

shown in Figure 5. Equations (89) and (90) were written with a branch project¬ 

ing toward the nose of the missile in mind, but if one writes similar equations 

for a rearward facing branch, the expressions are identical because the sign in 

front of the integrals must be changed at the same time that the limits of integra¬ 

tion are reversed. Also, these expressions have been written as though there 

were no slosh masses in the sub-branches merely to avoid the clumsy nomen¬ 

clature that would result for the summations over limited ranges of j. If a 

branch indeed contains slosh masses, all of the formulae derived here can be 

used if (pA)^ is taken to have appropriate discontinuities at the slosh mass 

attach points. 

Taking the integrals over the branches out as parameters to be determined 

for each missile station of interest, Equations (89) and (90) become 
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/■\ 
X 

Figure 6. Free Bodies of Branches. 
(All moments and shears are drawn in the positive sense 
for the coordinate system of Reference 6, from which the 
bending mode program was written. ) 
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Vis<*’'> = -pn<ay - Ko’6'> + p2i <9 + 

Misu.t) = (P2i - xPu)(!y . Ko 6 ) + (XP2. - P3.)(9 - KjS) 

where 

pu<*> = 

p2i<x) = 

^ (pA). d| 

'd. 
i 

'd. 
i 

X 

N, 

e(pA) id6 + Zi X m 

j=l 3 3 

px Nl 
i<x> = \ [e2(pA)i + (pDjde + z X2 m. 

Jd j=l 3 3 

(91) 

(92) 

(93) 

In Equations (93), it has now been convenient to actually give the slosh mass 

contributions explicitly. The summations are to be taken over all of the slosh 

masses between station x and the free end of the ith branch. 

The shear and moment in the main beam are found in the same way, except 

that aerodynamic forces must be included, as well as the cumulative sum of the 

shears and moments transmitted to the main beam by the sub-branches. Again 

integrating from the nose end of the missile, the shear and moment in the main 
beam are given by 

V 
Is 

(x, t) 

(94) 

where the reaction shears V.s (h..t) aie to be added in the positive sence for 

forward facing branches, and in the negative sense for rearward facing branches, 

(see Figure 6). Similar care must be taken for the reaction moments in (95): 

m mtOmSJktr 
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Mls (x, t) ^ “ g)[p(6.t)+{pA)1(ay - Ko6 

N, 

(pDj^G + Kj 6) d| - x.m (a 
./ j=l j j y 

+ Z4-Mi8(hi(t) 
i=. 

- e'e - Kj e*6 )] de 

- Ko6 - X.0. KjX.6) 

(95) 

where is the index of the last branch on the nose side of the station x at 

which the moment and shear are to be evaluated. That is, Rj is adjusted such 

that hRl< x <hRl + j. Similarly, Nj is the index of the last slosh mass 

between k and the nose of the missile. Using p(£,t) as given by (38), the 

pseudo-static moment and shear in the main beam are given by 

VlB(x,t) = -L 
1qT ’ L29 - Vt • Pll<\ - K06) 

+ p2l(0 + Kl6) + fV (hj.t) (96) 

MjsU.t) = (voL2 - xL1)aT + (L3 - xL2)0 + (L5 - xL4) ^ 

+ (P21 - xPll)S - K0*6,) + (xP21 - P31)(0 +KJÔ) 
R i 

+ SÎMifl ^hi’ ^ (97) 
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where 

wQ(i)de 
'-i 

7" \ 
O J . 

1 

O J . 
■ 1 

•4 pv„ \ s(e)de 

'-i 
i 

i pv0 ^ is(e)de 

(98) 

and the P's are evaluated using (93) noting that d^ = Notice that the 

integrals in (98) are all running integrals which were evaluated over the whole 

missile in the section on aerodynamics. Thus, the only complication added here 

is that the values of the integrals needed previously should be printed out for 

values of x of interest for loads, as well as over the entire missile. 

If one wishes to simplify these expressions for moment and shear, it is 

worthwhile to mention that aerodynamic forces due to pitching 0 and plunging 

a,p have been included in this study mainly because of their effect on rigid 

body stability. Their contribution to moment and shear will be quite small 

and if an appreciable saving in computation time or complexity can be made, 

it would be quite reasonable to omit the terms in (96) and (97) containing 9 

This would eliminate the need for tabulating the running integrals for 

L^, and L^. 
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13. TABULATION OF INTEGRALS 

For convenience, all of the integrals which define the coefficients of the 

differential equations are listed here. 

Integrals Involving Only the Rigid Missile 

,b 

I = ^ [z2(pA)e + (pl)e]dz (14), 
(16) 

R f ? N . 

2 [x (PA)i + (pDil dx + S xi 
i=l^ L j=1 J J 

(52) 

Pli(x) 

2i 

p3i(x) 

(pA). d^ 

i 
x 

i(x) = ^ ^(pA.), d| 

'd. 
i 

x 

[^(pAii + (Pl)i] dl +SXj^ mj 

(93) 

M. 
i 

The j summation is over all slosh masses between station x and the free end 

of the branch in question. The "free" end of branch i = 1 is defined as the nose 

of the missile. For this branch, the location of slosh masses in a sub-branch 

must be interpreted as acting at x = h. when deciding whether it is between 

station x and the nose of the missile. 

,b 

m (pA)e dz 

o 

b 

z(pA)e dz m z 
e 

o 
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l4(x) = pvo^ S(e)de , L4(i2) = 

(42),(98) 

Lc(x) = p V 

-Í 

eSU)d£ , L5(i2) = 

Integrals Involving the Bending-Sloshing Modes and Aerodynamic Data 

2 Equations (3) and (4) giving the integrals for the generalized mass and for 

Mo)n are not repeated here because they are already programmed in the 

bending-sloshing mode package. 

b 

’X = ^ [* (f,A)e *2n + (,,I,e Vl dl (63) 

2Mu> Ab 
n n wa(x) ^in (x) dx 

LiW = ^ wa(e)de , L1(f2) = n 

(c) 

(42),(98) 

L2(x) = ± 

-i 

iw^eide , l2(/2) = Ma 

L3<x) = (T \ t2wa(i>dê ' L3</2) = 

(45),(98) 

(45),(98) 
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H 
an 

H* 
an 

<x) 0in(x) dx 

S(x) ^ln(x) dx 

-1 

XWa(x) ^ln(x) dx 
-1, 

(48) 

Total number of integrals = 8 + 31 + 5n. 
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14. NOMENCLATURE 

The principle notation used is defined below. Symbols used only in 

intermediate steps of deviations are defined where used and are not listed 

here. 

A 

(pA). 

Co(t). Cjit) 

C 
mn 

G 

(KAG). 

H , H. , 
an an 0n 

I 

cross-sectional area of missile section. 

mass per unit length of i**1 branch. 

variables in deflection function; defined by 

(12) and (15). 

coefficient of cj in generalized force of 
th *** 

n mode; defined by (61). 

modulus of elasticity. 

bending stiffness of i^1 branch. 

resultant aerodynamic forces in the positive 

X and y directions, respectively. See (41). 

shear modulus of elasticity. 

tH 
shear stiffness of i branch. 

aerodynamic coefficients in generalized force of 
th 

the n mode; defined by (48). 

total mass moment of inertia of missile. 

Ic = constant part of I; defined by (52), 

Ie = moment of inertia of the swiveling engine or 

engines about the gimbal point; defined by (14) 

and (16). 

(pl)^ = mass moment of inertia per unit cross section 

of the i1*1 branch. 
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Ko’ K1 

K. 
J 

KA’ Kd' Kô 

L r • • • 

M 

M. 

M 

M 

c.g. 

I* 
c.g. 

Mq. Mè 

N 

Nj = 1,2, ... N 

constants in the expression for the deflection function; 

defined by (12) and (16). 

th 
spring constant at j slosh spring-mass system. 

torsional spring constants in the generalized force 

of the engine swiveling equation; defined by (72). 

aerodynamic coefficients in expressions for pseudo¬ 

static loads; defined by (98). 

R p R^ 
¿I (pA) dx + £ , m. = total mass of missile. 
i=l I j=i J 

1 

th 
bending moment in i branch of the missile, 

including dynamics; defined by (86). 

th 
psuedo-static bending moment in i branch; 

defined by (92) and for i = 1 by (97). 

moment about the mass center of all external forces; 

defined by (51). 

moment about the mass center of the aerodynamic 

forces; defined by (44). 

aerodynamics coefficients in expression for 

defined by (45). 

M 
« 

c.g.’ 

total number of liquid tanks or slosh masses. 

number of slosh masses between the nose of the 

missile and section x; used in (94) and (95). 

aerodynamic coefficients in expression for F*" ; 

defined by (42). ^ 
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pi = p,w = - (pA). dx - a 

■u 

Ni 

x2 
J = 1 

m. 
J 

= total axial 

Pli’ P2i’ P3i 

Qn, Qr n 6 

R = 

Rj - 3, 4 » * R 

compression force in ith branch. 

constants in expressions for pseudo-static loads; 

defined by (93). 

generalized forces in bending and engine-swiveling 

equations, respectively. 

total number of branches, including the main 

beam, i=l, and the swiveling engine, i=2. 

number of branches with attach points between the 

nose of the missile and section x, used in (94) and 
(95) 

S = S(x) = nRo = gross external crossectional area of the main branch; 

Rq is the outside diameter of the missile. 

Tc = thrust of the swiveling control engine or engines. 

thrust of engine or engines which do not swivel in the 

plane of motion being considered. 

= total kinetic energy of the missile. 

= component parts of the kinetic energy; defined in 

section 6. 

s 

T 

* 

Tu' T«' T6’ Ts 

V = potential energy. 

V. 
i 

V. 
is 

a ., a . 
XI yi 

total shear in the i1 branch, including dynamics; 

defined by (87). 

= pseudo-static shear in the ith branch, defined by 

(91) and for 1=1 by (96). 

= acceleration components of a point on the i1"*1 

branch; defined by (23). 
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ax’ ay = acceleration components of the mass center; 

defined by (75). 

bn = damping ratio of the nth bending-sloshing mode, 

from the structure (estimated or measured) and 

from aerodynamics, calculated using (34). 

dj = x"coordinate of the free end of the ith branch, 

g = acceleration of gravity. 

... R = index, referring to the ith branch, numbered 

sequentially according to their attach points, start¬ 

ing from the nose of the missile; except for the 

main beam, i = 1; and the swiveling engine, i = 2. 

... N = index, referring to the jth slosh mass, numbered 

sequentially according to their attach points, starting 

from the nose of the missile. 

Kj ° sPring constant of the jth sloshing spring-mass 
system. 

K = shape factor in shear rigidity KAG. 

= distance from mass center to the nose end. 

i2 = distance from mass center to the tail end. 

*e = distance from mass center to the engine hinge point 

me = total mass of tbe swiveling engine or engines. 

3, ... = indicies, referring to the mth and nth bending- 

sloshing modes; l^m, n^N are "slosh" modes 

and m, n>N are "bending" modes. 

mj = mass of the jth sloshing spring-mass system. 

P(x.t) = aerodynamic force per unit length acting in the 

y-diriction. 

1 

-- 

! 
I 

j 

I 

\ 
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% = %“> 
tV» 

generalized coordinate of the n bending~sloshing 

mode. 

t 

u. = u.(x,t) 

u. 
J 

u 
e 

u ' 
e 

V 
o 

time. 

th 
deflection of the i branch relative to the x, y-axes; 

defined by (2) or (17). 

th 
deflection of the branch containing the j slosh 

mass at x = x . 
j 

Ue(ie) = deflection at the engine hinge point. 

du/ dx at x = i . 
e 

magnitude of the velocity of the mass center of 

the missile. 

Vw “ °f the wind velocity, assumed directed 

parallel to the ground. 

V 
xi 

V . 
yi 

V V 
y 

w 
Wcl’ 

w 
6 

x. y 

X. 
J 

z 

z 

velocity components of a point on the axis of the 

i**1 branch; defined by (22). 

velocity components of the mass center of the 

mif.sile; defined by (74). 

aerodynamic forces per unit length per unit 

a, à and Ô, respectively; defined by (39)- 

coordinates of the moving axes. 

th 
coordinate of attach-point of j slosh mass. 

coordinate of points along the engine, measured 

from the engine hinge point, 

NOTE: x = + z in the region x>ie. 

distance from the engine hinge-point to the mass 

center of the engine. 
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Uj - total angle of attack which gives rise to 

aerodynamic forces; defined by (36). 

ß = angle from the vertical to the tangent of the 

trajectory of the mass center. 

ßQ = nominal value of ß for region of time being 

studied, as determined from trajectory 

program. 

e 

0 

P 

0 . (x) 
in 

angle of swiveling of the control engine. 

equivalent swiveling angle of the engine actuator. 

damping ratio of the first mode sloshing motion 
t h 

in the isolated j liquid tank. 

that part of the n**1 eigenfunction which 

represents the stretch in the j1*1 slosh spring. 

angle from the vertical to the x-axis. 

ö-ßo = perturbed angle of the x, y-coordinate 

system, measured from the nominal angle 

e = ß . ro 

air density at nominal altitude given by trajectory 

program. 

NOTE, when p refers to the mean density of the 

missile, it always appears as (pA). or (pl)^. 

eigenfunction representing the total deflection of 

the ith branch (due to both bending and shear) 

for the n1^ bending-sloshing mode of the missile. 

fln(Xj) = that part of the n1^ mode eigenfunction 

which represents the total deflection of the branch 

containing the j**1 slosh mass at the slosh mass 

attach point. 
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4-. in = dj. (x) 
^in ' 

u 
n 

u . 
J 

= ^(x.t) 

eigenfunction representing the slope due to bending 

alone of the i branch for the n^ bending-sloshing 

mode. 

4-in(Xj) = that part of the n* mode eigenfunction 

which represents the slope due to bending alone of 
th 

the branch containing the j slosh mass, at the 

slosh mass attach point. 

circular frequency of the n n bending-sloshing 

mode. 

\JK./m. = circular frequency of the first sloshing 
j j t h 

mode in the isolated j liquid tank. 

angle of rotation relative to the x, y-axesof a 
th 

transverse slice of the i branch; defined by 

(9) or (18). 

( )' = differentiation with respect to x. 

(' ) = differentiation with respect to t. 
r 

= integration over the i branch between the 

limits x = d^ to x = h^ (more explicitly 

defined in Reference 3). 
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I. INTRODUCTION 

The general design of a missile is established on the basis of over-all 

performance, treating the airframe as a rigid body.. Using the resulting pre¬ 

liminary design values, such as skin thicknesses, propellant configurations, 

materials, etc. , more detailed analyses can be made which take into account 

the dynamic response of the elastic missile. The purpose of this report is to 

provide a set of equations which can be used to obtain: (1) general dynamic per¬ 

formance characteristics, such as missile loads and dynamic stability^ (2) 

detailed responses, suchas structu ai vibration, propellant sloshing, and 

engine motions; and (3) exchange r :oa , or the effect of changes in a para - 

meter on the dynamic behavior of the system, such as damping of the propel¬ 

lant sloshing verus autopilot stability and airframe bending moments. 

This analysis is intended as a direct extension of the work reported in the 

series of reports entitled "Generalized Missile Dynamics Analysis" (Refer¬ 

ence 1) in which these problems were first attacked. In the present analysis, 

the pertinent derivations and assumptions giver, in Reference 1 are repeated for 

the saks of completeness. Most of the philosophy, methods of approach and 

coordinate systems will be unchanged from those used in Reference 1, however, 

experience with the equations has led to several modifications and extensions. 

The new features to be included are. 

1. The use of branched beam modes. 

2. The inclusion of the effect of axial acceleration in the 

computation of bending modes 

3. The inclusion of sloshing directly in the computation of 

the bending modes rather than as separate coordinates. 

4. Explicit formulation of the effect of the damping in the individual 

tanks on the bending-sloshing modes. 

5. Explicit formulation of the interaction of the "slosh" modes 
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