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solution of the Somnerfeld-Jexl Characteristic
Equation for the Stability of Cuuette Flow.

1.) Introduction

One of the basic problems of hydrodynamics 1s the stabi-

lity of Couette flow. This 1s shown by the importance which
since ever was attributed to Couettes observation of transi-
tion to turbulcnce [1 ]as well as to G.I. Taylors investi-
gations which discovered 'the occur.nce of cellular laminar
vortices at certaln lieynolds numbers [2] . The intrinsic
difference of these two observations, oncce transition to a
~random ¢ddy motion and on thc other hand transition to a
laminar vortex pattern is illustrated by the two limiting
cases in which they occur, the transition to turbulencc

i the inner cylinder 1s at rest and thc outer rotating

and the generation of laminar cellular vortices in the rec-~
verse case when the inner cylinder is rotavii: and the outer
at rest. Correspondingly the mathe.otical trcatment 1is
different. Whilst for the rotating outer cylinder dayleigshs
perturbations [3] were introduced which still are the basis
for stability investigations in relation to the generation
of turbulence, for the rotating lnner cylinder G.I. Taylor
introduced perturbations forming rotational symmetric
c¢ellular vortices.

Refering to previous work on the rotating outer cylinder

to which the following considerations are devoted, first
A. Gommerfelds investigation of Couétte flow between plane
. parallel walls [&] has to be mentionéd. Although in the

following Ccuette flow between concentric cylinders will
' be regarded, thils work has to be mentioned as plane parallel
walls represent the limiting case of a small gap between
concentric cylinders. Sommerfeld proceeded {o the equaﬁion
which determinces the elgenvalues but did not analyse or
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even discuss this equation. The only comment given to this
equation 1s that it yiclds the time constant which itself

is expected to determine critical Reynolds numbers. Sexl [5 ]
gave the analogue derivation for centric cylinders. The
equation which ylelds the time constant is the same as
derived in thec following. But also here no solution of

this equation was attempted obviously because of the com-
plicated functions occuring in this equation which are
similar to Somnerfelds case Bessel functions of complex
order and argumcent. L. Hopf's investigation on plane Couette
flow [6] may be left aside as his boundary condition of
constant pressui'c mecns a frec surface and not a rigid sur-
facc 2s 1t is presented by the eylinders of the Couctte
apparatus. Finally von Miseg treated the stability prohlen
of the plane Couctte flow as an oscillation problem [7] .
The eigenvalues of a parameter are determincd by the zcros
of a polynonizl. Introducing approximations only real values
of this parameter were found whilst the vhysicel meaning

of 1t demands an imaginary quantity. This result was inter-
nrctated in the woy thot Couette flow should be stable for
2ll modes and Reynolds numbers[ 8] . Put this is in con-
tradiction to Couettes experiments [9] 2s well as to nmore
recent experiments performed by Mallock [10] s, Taylor L11] s
sendt [12] . Svumerfcld recards this contradietion as
iaportant enougzli to ask in his book [13] if the well established
wedzod of small oseillotions should ndt be applicable or
if finite disturbances have to be introduced or i1f even

the Navier Stokes equations would be insufficient. Later a
wore cautlous interovretation of the theore¢tical results

was given by Lin [14] which expresses that a complete stabl-
1ity proof still is missing.

Recent cxperinental results [15] however showed that the
carlier observations should be repgardced with scentieism.
Indeed it was found that turbulence at least not needs
to cccur. Objections cn the method of observation [16] of
this result may be put aside. It was argued that the immersed




particlics which made the flow visiule should have been sedi-
mentated by centrifugal forces so that no turbulence could
be observed. But attentlion had been paycd to this phencnenon.
Scdimentatiou clearly could be observed and turcoulence 1f

~
sraventad seddnons

it i:ad occuraed would have

The result that Couette flow with rotating outer cylinder
may be stable lead the attention to side effects that could
have influenced the carlier experimental results. Indeed
it could be shown experimentally [15] and thevuretically [17]
that hldden exccntricities and vibrations cun be responsibvle
for the transition to turbulence. The theorctical investi-
wation showed that this 1s not an instability but a sepcru-
tion effect occuring beydni certain lieynolds numbers. idore
recently in an already wmentioned GoOttinger vhesis [16] atten~
tion was payed to end effects. A hecavier liquid was in-
serted as to scperate the test liquid irowm the lower end
of the anparatus. vbviously the teature of a4 ball bearing
was attributed to the heavier liquid. Lut au slip neither
occurs at walls anor at contacting surfaces or liquids by
titls provision in no ways the end at'i'ect is annihilated
but merely revcrscd.

This review on recent work shows that the intringie
stalility problem of Couctte flow ulth the view to the
trancition to turbulence jet 1s not solved satisfactorily.
There remains to be deduced a conclusive theoretical stabi-
11ty nroof excluding any presumntive side oifecets on the
waslis of a Raylcigh ~crturbation. Tils wili be done in the
following in thie {frame work of a corgzcct liacar pertur-
bation theory. The cquation which ylclds tae ecizenvalucs
is os was montionced beforce ldentic with thc one derived
by gexl [5] « This equation will be unalyscd by taking [ull
account of the functions occuring in it.

Refering fovr the sake of counletencss to the seccond problem
characterized by a rotatiag inner cylindér and the outer cy-
linder at rest Taylors colculations showed excellent arree-
ment with observations| 2] .
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2.) Perturbation Theory

Aan was mentioned before two kinds of perturbations were
introduced in the stabllity theory of Couette flow., To begin
with Taylorzs rotational symmetric celliular vortex pertur-
bation the following notations will be used: y the radial
wall distance; z the axial coordinate; u, v, w the tangential
radial and axial perturbation velocity components; t time
and 5, § real constants. Then this perturbation is expresscd

by

u, (y) cosy z
v, (y) cosy z
W, (y) siny z

It readily may be seen that the continuity equation 1is
satisfied.f < 0 acans stabllity and> 0 instability. On this
perturbation bases G.I. Taylors stabiiity criterion for a
Couette flow with rotating inner cylinder and sn outer cylinder
at rest. Application to the reverse case of an inner cylinder
at rest and an outer cylinder rotating did not yield results
[2] 80 that for the present purpose this perturbation is

not the proper one.

The other kind of perturbation was introduced by Ray-
leigh [18] . For its representation instead of the polar
coordinates r, {1 there will be used the distance y from
the outer wall with positive direction to the center and
the circumferential coordinate x refering to the outer wall

x = r.a |, (1

where the radius r, 1s related to the outer oylinder. Then
the perturbation is represented by the streamfunction

1(4x - Bt)

Y = ¢ (y) e (2




& 13 a real and 5 a comnlex constant:

B o Baetfy (3
& i3 related to-the wave length A by

& = 2R (h
and to the number k of waves on the circunfercnce

k =4&r, (5

N r is the angular rréqucncy of the perturbation whilst
f»; <0 means stability, 3, >0 instability.

The complex veclocity of wave propagation is

A B.+ il
e =c,+1ie = * = L ~ 1 (6

It 1s related to r, according to' the meanilng of x. The

angular veloeclty of these perturbation waves with radial
fronts is
c &

1 -

e

(7
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Thls pertucrbation will be intiroduced. It may be mentioned
that in this way recently the stabllity of a liquid ro-
tating as vigid vody could be solved ia closed form in-
cluding all modes [19 ]. The eigenfunctions were found
to be the EBessel functlons of the first kind. As the zeros
of these functions are located on the real axis there
exiats stabiiicy.




3.) Pnasic Equations

Introducing (2) in the Navier Stokes equations by
taking full account of the viscous terms and limiting
I to lineer inertia terms one obtains the differential
"‘equation [15]

v F1 2 2 ¢' Ty ) + (-U't + v’ + v )
o =5 T.~y (U-—=—e ¢ A D
_ T 1 1 1
2 2r 2r 4r
= - g -y\/ - w ’ ———-.-7
* [ Tyl T ey)® D (rgey)S
- ] -
+ T4V 1y @ A 2 o't (8

(1 - - D - -' -
¥ 7Py mlemyy Ty

v 1s the kinemutic visoosity. U denotcs: the vaiocity of the
undisturbed COUGtt» flow. If V is Lne vclocity of the outer
llader, L taz radiua of the Muee cylinder one has

Nk MR A U |
vo= ;, - 12 - =) : @
ro r r.,~y ’
AyTaq o B
&) -1

[s]

:ﬁTbu; the veloecity. fibld 1s a sudernosition. or a rigid bpdy
"ﬁrot;tion and a.yqtential vortex., Introduoinf (9) in (8)
and making use of the operator ‘

Y] 2(-“"_'2

IJ ﬁiAl|‘_
(v) o r1_y Ty

Rt {10

oae obtalns

r.~y i1V r.-y 1 r
(11 - | m e e (e gt g2
T e)L pry ( T L T 1, | A Ty

L) (11

With (10,11) the fourth order equation (8) is reduced to
two equations of second order.




Introducling dlmenslonless guantities

Ve
n vy £ S os R 3 (1
and (8). (18.11) tranaferm tn
2 N o n
(= )" @7 = (I~ qle’~ %" ¢ = vf (1-9)7L ., (13

¢ i ' ' k2
"\1"7)5; L-—n (1-71)14 - L - -r:;-lL . (1h

Now introduoing (9) and the abbreviations

 opmemanm—|
<

. ‘ 1
B - w7 (15
(1) -1
o
9= ¥ -1 kRB (16
2 r1 2
b= 1 kRE -1 kKRB (3) , (17
(o]
further introducing the substitution
2 = b(""‘() » (18

(14) transferms if multiplied by k R/{ to the Besael
equation [15]

zaL"’+ z L' 4 (za—ya)L - 0 (19

Intreducing the oylinder functien Z¢ ef complex order 9
the selution of (19) ean ke writton

b2
z L = zf (z) (20
1

-




ingerting this solutian 1n (13) one obisins
2
] i e =Y
'’ v~ o' - By 0 = 7, (2)
£ o £

The selution of the homogenous part of (21) 1a

@h d C3 z k +'Ch z ~k

The particular solution g, of (21) 1e found by the method
of variation of constants. Satisfying tne bouncvary oon-
dition )

gp () = h (zg) = O
one has
b/
J z-kgk - zk a-k ( )
] = - —— z V(5)d § .
P ) _ Ekkfs k 1_kéc 1€ k “o

o]

IHerc e, corresyvois to 7 =« O what metus according to (18)

From (24) follows

2 .
0p = -pk [T¥e MM TE 2o () et
z

o]
With the notations
z
I,(2) = J & Z, (8) 4% , I(z) = | £ z, (8) 4 %
'0 zo

the partiocular solution is

(22

(23

(24

(25

(26

(27




The derivaetives with respeat to g of the integrales in (20)

gill ba neserdsd. Ono has

- =
a [ s+ 1 K1, oo, G f’ e
g ) E 0 Z(8)ae =2z (z) L 5 | BT 2, (R)aE
%o %o
. With these asxpreassions one derives froas (25) when intro-
ducing (27)
t - [}
op = il; (2 k I, + 2" 12) .

The ocomplate solution and its derivative ars

k ~k

w-C12 -r‘Caz -%-E(z-k11-zk12).

o = % (c, 2K - ¢, 2"k

M-

1 z-k-1

I, + % zkj1 I,

Introducing the boundary conditions 9 = ¢' =w 0 at
T, ORE has 1rjintroduqing ?p = 0 at thi!:bqundary

ke -k

k _
C1 2, 02 z

-k
o

X what means

« 0

- 0 »

(28

- Purther the samo boundary conditions at %4 yiold when

N regarding (28)

I
"5y Iy(2zq) ¢ 8,71, () =0

-k
e, I,(z,) + =,

k

I, (z1) = 0




wileh zquaticns esan

“E ’ A P %.‘ - I 4 s -
1\51}‘ L * 51 .LE \%?} =y e

I ¢

23

As 2, ig sa arbiltrary boundary there must he
11(39 -0 ., 12(11) -0 (29

Now separating the oylinder funotion in ils two linearily
independant parts N,M with constants Cj. C‘

Z_ = C

P) 3 N + Ch M

otie obtains rrﬁn (27, 29)
' 1]

1 A
c,f e n(g) ak+ ¢, J e me) at - 0
z

'O o

c

81 31
3J £ ng) aE o c‘] e uz) a8 = o
z [ -

o o

As C3 C4 are arbitrary the determinant must be gero. Thil
condition gives

1 1 %1 '1 ‘
2 b

o 0 o o (39

which is the relation derived by Sexl for oirowsfereatial
Couette flov[:s and before by SO-lerreld for reotilinear
Couetta rlov[:i] The boundaries are aocordin; to (18, 25)
ir M 1s written tor‘f(1

z, = b , z, = b(1-7) (31



= 1] -

80 that (30) should be satiasfied at least by one palr of
values byq « It im seen that (30) is satisfied for arbi-
trary values 7 by b = O. This would mean neutral atabi-
lity and & wave propagation with the rigid body part of (9).
put (Zo, 27) show that b = O would not yield a perturbation
as ¢ would be independent from I what contradicts to the
meaning of L. Thus b = 0 has to be excluded.

4,) Transformation of the transcendental eaquation of

Sommerfeld-Jexl

. ,

To analyse (30) series expansions of the integrands
starting at Z, will be introduced. Writing I for M, N one
has with (31)

the 1 +ic+1 tie+ N
2 H(E) = b H(b) + (& H(E) ) (&-b)
&=b
+k+ 1 1 ) 2
+ (§ E) )Y — (ED)° 4 seeneen
=b 2!

By integration onc obtains witi (31)

1 | (1p)2 '
B PV HE) a8 - -t () 4 —-;‘—;—-— (& m) L (32
E=b

N S~——N

o

- Bquating the coefflcients one obtains when writing k for
+ k and H for H(b) as to simplify the notations

. . i _ :
€¥* gy o (ke1) D€ H + DX g

wb

(5‘f1 H)" w (k+1) k bk“1 H + 2(k+1) bk H' + bk+1 H'"
§=b

(gt NG (et D)ic (= 1) B30 1)k 0571 H'43 000 1)65H 0 1y Pt 1gen s |

wb




Rearranging now the terams of (32) with respeat Lo the

derivatives of H one obtains

Z
P
J e wag . Py s D g ay o+ BT e L
Z
? | (33
The coefficients are determined by
' @
’ n 'qn n"1 k"‘1
a, =2 (-1 L ) ( ) (34a

i ¥ +1 n! Nev=1 n=9=1

.

Introducing (33) lu (30) and the notation
a(k) =a, a(-k) = ¢ (34b
one ohtains

6., . _
B° (MN'-M'N)(aoc1-a1co)+b (Mu"-M"J)(aoc2~a20°)

+b7{(MN' t I_M' UL ) (aocj-a}co)+(M'N' toym! 'N' )-(a102-3201)} {-
+b8{(MNIV-MIVN)(aoch'au°o)+(”'N'"-M"'N')(a103'1301)} (35a

Iv.

+b9{(MNv-MVN)(aOQS-asco)+(M'NIv-M 4")(a,0,-850,)

A(MUINY gy ) ("20}'&302)}_ \

+b1°{ (MNWLH“N)(aoo6-a6co)+(n'wv-nvn')(a1os-aso1)

IvV_,IV

+(M' "N N"):’(azloraaoz)}."_.

After dividing by bb this equation is represented by




r+1

[

nT ; (H(ﬂ) y(r-nt1)_u(r-ne1) (@),

;> 4} T T U
r=0 n=(
(35b
which is the transformed Sommerfeld-Sexl equation (30).
This new uxpreassion permits as will be shown the direct
numerical evaluation of the stabllity parawmeters &r. &1
for all modes 'k With any desired exactness,
| 5.) Solution of the fundamental equation (35b)
The wronlki determinant W will be introduced. 2ne
has
W = MN' - NM' , W' = MN'' -nM'' . (36
-Hith the abbreviations
. 9 92 -
£ == 5 g = 1-—= (o7
. z o _
 the equation
y''+ry' +g = 0 (38
‘has the solutions M, N according to (19).
The differential equation for W is
W
W' @ = f W o= -— ' (39
z

and therefore




- 14 =

2
W' e PP o e
&
A
w"law'(_rl'+}rf'_'f})g__'_‘:gw
g

24 (4o

WY (= et 4 3 02 g pptia6 020 4 £ - —g W
' z

+ fofr'ft'" + 5 £p'' - 9m re'2 - 10 P

120
Py 4 i

+ 10 £f - f --—5—w

z

From this onc deduces

( m!
w®o(aq)® i (b1

On the other hand it follows from (36, 39)

Iﬁ‘;‘j"'-M"'(\r - V."" - (r";{"..M,'N')
MLV MV e Wt -2 (TN M)

~ (42
MY - MYN = WY -2 (MMt Nt )3 (i EVemIVNY)

MNVI - MVIN - wV -2 (M"NIV _ “IVva)_3 (M"NIV-HIVN")

-4 (N -MVN" )
Inserting ¥, M in (38) and forming the m-th derivative
M (e gm)(®2) 1 g
N L e Nt g (B2 Lo,

and multiplying the firat equation with the n-th derivative
of N and the second with the same derivative of M one




7
b
W
?

obtaling wnen subtraating

F N SN\ N N r
NUVRES IR e - (2 K H)

A\
/

l;:l:.
A N

(=) {em D)
ALY 3

- (f N'+g M)

[
\*r

With thie expression the higher derivatives can be ex-
pressed by the lower ones. Finally the Wronski determinant W
can be introduced sc that ln the basio equation (35a or 35b)
all functions can be expressed by W. Thus in (35) all
functions M, N and their derivatives are renlaced by W,
which shows to be a common factor and therefore can be
canceled in (35a) und (35b) resp.

Indeed from (L43) one deduces

N''"M ~M'"'N ==~ W
N''M' = M''N' = g W
N'TMU'Y - MUY - (gl -gf'-g?) W
ntuIV oo IV 2petPyuerg' - T -2gg' W

MY o (rf'gegSrer

NUUTM - MU' = (of' ) W {
N'''M' - R'UIN' - (-fgeg') W
NYUTOMTY o Mttt (r'g+ga-tg') W

VN - (-r"-ag'+}rr'+2gr-r3) W

TVN' w (-2r'g-g®+12g-1g'+g" ") W

NVM - M

HIVMY - N

-(j6.42) introduced in (35a) gives
b° w(a o,-a, )

+o! W (a 0C2°82%, )

{ n)
ST

ol

Ly

+b2 {H"(a 0y=a4C )= (M ‘V"-H_"N') (aj05-a4¢,)-(a,0 2'“201)']}"

~
—_—



m'iér:\

2(%’:38'@&.&@0)&(e&.icxl5 38 ?)]}

2(a,05-a50,)-(8,0,-8,0,) ]

*H.} {gt L e(aﬁouﬁaggo)m(%agv g 'Hﬁ' “H')

[ —  gr———

+b4 {HIv(ahoﬁ-a,;O“)-(H' INTE It Iyt
PITUA A" LTI FEY

]
|
M 'NIV. IVN") [5(a 0g~ "60 )= (’20#"’4"2)}

+0° {wv(aoos—taGco)-(

-(n'NV-n N') [-o-h(a. o~ 5 o) (a105 5 1)} (
g

‘+b-6 {HVI(a 07-870 )~ ("onNIV HIV,‘H') [5(. 07 ‘70 )= (n °h &aﬂ ]

VI VI )[

_ (." N b(a 07 7 o) (a °6 aﬁo )} - 0

(Bk) 1ntroduced 1n (45) gives with: (40) 1r ‘bhe common
factor W 1is cu‘xcpled

b° {(aoc1 -8,0, )
+b1_{(a°ca-a2c°)(-r)

2

{(a 03783 o)(af - [ (ageyn 3°o’ (‘1 2742) ] 5 }
+,b3{(a °h"‘4° )( -61° )= [2(l On~=8y0, ) (‘*1 3 & 1)] (-f&ﬂ')}
2

-(lé

+b" |(a e 5850, (24 ¢ )- lz(aoos age, )- \a2c3 302)] (r' m -t‘z )

- [3(;005-%%)-(:10“-.‘01)] (-2r' 3-3241'2‘}

-rg'+g'")

+oo|¢|¢|-oo-00
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In f sand g the boundary z, = b haa to be inserted for

z according to (31). This means that iu the first column
of (46) b cancels. Further 1t has to be mentioned that
according to (3la) the first brackets in the two columns
of {40) invrease wiith powers of q o The Tirsi ooluimn
beging with the firét power and the second with the third
power. Thus (46) represents a serles expansion in powers
of q .

6.) Discussion of the funations ay (1), e, (n)

One has accerding to 34(a,b)

o0
&) n n-1 +k+1
S ep L (MU e (47
cJ ned+ 1 n! n-v=1 n-v-1

This expression shows that the functions a, are polynomials
and that ¢, are serles with terms negative for even 1in-
dices Vv and positive terms for the odd ones. One finds ’

that 8., U, are the functilons
8o 1 1 +k+2 _
e = + (1-n) (48

o +k+2  +k+2

fhis expresaion'shows that ao'is negative. For c, one
has for k=1

The undeterumined expressicn (48) for k = -2 is equal
to

o, = 1In (1-q)




For k=3 one dorives from {(47)

1

2 -

The a's show to have first ascending and then descending
terms. For odd indiges the sum of the ascending termsa

is smaller than the largest positive term and for even
indices this sum is smaller than the largest negative
term if in each case the largest terms are excluded

from the addition. As the descending terms are descending
strongly and as there number 1s limited the a's with

the odd indices show to vbe positive and with the even
indices negative. Thils statement holds for all O0< m < 1
8o that 1in these regilons the a's have nc zeros.

Table I glves the values of a, ¢ for k = 1,2,3 and
table II the values of the brackets occuring in (46).
All these values refer tom = 0,5.

7.) Evaluation of the stabllity

Inserting (37) and z = z, = b in (46) one obtains

8,C,"a,c
'(ao°2'a2°o) | 1 (49
+2(aoc3~a3c0) - (aoc}-a)co)-(a102~aac1)- (be- 92)
-6(a_cyraye ) - ;2(aocu-auco) (4103-5\}01 ‘(~b2+}92) 1
+2k(aemage,) - »2(a°°5'as°o>‘(aecj’ajcgf %-bz_ga“bz_ggﬂ
i h3(ao°b a5y )=(aqcy ayey) {3"2‘”92‘('32'92)2]




Inéerting with table IT the values for k = 1 the real
and imaginary part of (4Y) yield two equations,

Flret the eanation
18,68760851 + 7,61593802 b° - 7,42023802 ¢°
-~ 0,15278165 (b -92) » 0

ia onhtained. With (15, 16, 17) and the numerical value

»* .. corresponds to the assumed value m = 0,5 the se-
paration of the real and imaginary part of (50) glves
the two equations

- 0,15278165 K65 - 7,9215013 RE, + 11,11458885

+ 0,15278165 R2(E,r-1)2 = 0 ,

7,9215013 (§ -1)- 0,005233>
0:3055633 (CP-1)

RCi =
Inserting (52) in (51) one obtains exactly a biquadratic
equation in Er-1 ’

2 4 , 2 .
RE(§.=1)" + 2088,949384(§-1)° - c,0455760 = 0

in which R appears as parameter. The numerical solution 15

R = 1 -1 = & 4,69 102
R = 10 E.1 = 4,07 10"
R = 100 -1 = % 4,67 + 107>
R = o0 E-1 = 0

r

(50

(51

(52
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Only the nepative valucs have physical meaning. Intro-
duclng them in (52) one obtalus

" - nE - s Y 4]
n haad s l\‘ai - - [
R = too Réi = = 71,03

This result means stabllity and it is seen that & in

inverscly proporcvional to the Heynolds number R. Tﬁe numerical

values obtalned for £ -1 show that the clrcumferential

propagation velocity or the pertuirbation 1s extremely near
to the circumferential velocity of the outer cylinder with

a nebllbable influcuce of the ueynolaa number. This result

1s analojue to the result found for the oudbillty of a
liquid rotating cu ri;ild vody for whicn 1u our notatiod

[~

r1/ro = oo, vhere § =1 = © was founu [19]

For k = 3, m = 0,5 (49) ylelds by ne;lecting the last

term of (46)
7 2 .‘ . o 2
- 0,01070G = = 0,006207 b° + 0,00845 ¢

Separating the real and imaginary parts with (16 17)
one ohtains the two equatlons '

- o,o1o766'- 0,008207 kRS, + 0,00845 K2

’

r. <

~ 0,008207 kN (§ - B{=l) - 0,008716 kKRB = 0

r
o

The first equation ives
and the second equation, when introducingz with (15) r /r

&r = O, 981 .

-2,




Agaln stabllity and a propagation veloelty near to the
eircumferential veloelty of the outer eylinder is found. o
Here f,. appears to be independent of the Reynolds number R.
Indeed the Influence of R appears only in the next higher
approximation that means, when the last term of (46)

' =i APV enmm o P )
is congidered. Therefore in any casce the influsncs of

R on Er is weak as it was found numerioallj’in the case ;5
"k = 1 by considering also the last term of (46).

8.) conclusions

-~ The Sommerfeld-Sexl transcendental equation which -

' 1gyle1da the stabilit& parhheters"bf COuette'tlon was first
o transforned (sce eq. 35b). Then by introducing the Hronski

'determinant it was possible to eliminate the unknown Bcasa)
'~runctions of 1maginary argument and 1maginary erder, whiob
until then prohibited the solution of the original Sommer-

<' feld-Sex1 equation. A series expansion in the wall diatnnce
- with the stalbility parameters in polynouial forn was obu

.tained (see cy. 49) which can be sulved pumserically for

:any modes and wictha of the pap. Fur a ratio of the 1nner

and outer radius of 2 stabllity was found for the first
and third wode. :
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Coeffi~ients a; , ¢, fory= 0,5

Koo 1 kK = 2 k=3
1 _ 79
%0 - %F - Eg 160
1
co - E - 1ln 2 -1
11 B 19
By T 5 oo
1 G 63
c'1 T 10 - 12u 28 6o
a - ‘1— - -1—- - -ﬂ.
2 19 1o 1120
o 1 1 _ 14k
2 &5 3300 - 105
. i1 1 16
3 90 - 120 1650 16-16-24-To
1 o] 1 '
°3 355 o T T ms
s .29 ) 39 1
’ 9-96-35 32-32-16-35 54-1635
c o . 6887 _ 1439
4 32.120 32.288-48 35 32.27-64-35
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