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iolution of the Soinmrerfeld-3exl Characteristic

Equation for the Stability of Couette Flow.

1.) Introduction

One of the basic problems of hydrodynamics is the stabi-

lity of Couette flow. This is shown by the importance which

since ever was attributed to Couettes observation of transi-

tion to turbulence [I] as well as to G.I. Taylors investi-

Lations which discovered-the occuronce of cullular laminar

vortices at certain iteynolds numbers [2] . The intrinsic

difference of these two observations, oncu transition to a

random eddy inotion and on the other hand transition to a

laminar vortex pattern is illustrated by Lhu two limitinL,

cases in which they occur, the transition to turbulencu

if the inner cylinder is at rest and the ouier rotatinG

and the generation of laminar cellu~ar vortices in the re-

verse case when the inner cylinder is rotoi•.. and the outer

at rest. CorrespondinGly the mathe.xJ2tical treatment is

different. Whilst for the rotating outer cylinder iiaylei•,'

perturbations [3] were introduced which still are the basis

for stability investigations in relation to the generation

of turbnlence, for the rotating inner cylinder G.I. Taylor

introduced perturbations forming rotational symmetric

cellular vortices.

Refering to previous work on the rotating outer cylinder

to which the following considerations are devoted, first

A. Sommerfelds investioation of Couette flow between plane

parallel walls [24] has to be mentioned. AlthouGh in the

following Ccuette flow between concentric cylinders will

be. regarded, this- work has to be mentioned as plane parallel

walls represent the lititing case of a small gap between

concentric cylinders. Sommerfeld proceeded to the equation

which determines-the eigenvalues but did not analyse or



even discuss this equation. The only comment given to this

equation is that it yiclds the time constant which itself
is expected to determine critical Reynolds numbers. Sexl [5]
gave the analogue derivation for centric cylinders. The
equation which yields the time constant is the same as

derived in the following. But also here no solution of

this equation wau attempted obviously because of the com-

plicated functions occurinG in this equation which are

similar to Sommerfelds case Bessel functions of complex

order and argument. L. Hopf's investigation on plane Couette

flow [6] may be left aside as his boundary condition of

constant pressu'e mea;,ns a free surface and not a rigid sur-

facc .,s it is presented by the cylinders of the Couette

apparatus. Finally von Miseq treated the stability problem

of the plane Couctte flow as an oscillation problem [7]
The cigenvalues of a parameter are deterwinud by the zeros
of a polynonial. Introducing approximations only real values

Of this parameter were found whilst the physical meaning

of it demands an imaginary quantity. This result was inter-
rorctated in the w-y that Couette flow should be stable for

all modes and 11cynolds nirmbers [ 8 3 • t•ut this is in con-

tradlction to Couettes experiments as well as to more

recent experimeits performed by Miallock [io] , TaylorI i[ll

':cndt [12] . Souinerfold re2ards this contradiction as
i:,ipcrtant enough to ask in his book [131 if the well established
,aQCood of small ozcillations should tit be applicable or

if £'inite disturbances have to be introduced or if even
the Navier Stokes equations would be insufficient. Later a

wore cautious interpretation of the theoretical results

was given by Lin [14] which expres•ses thaL a complete stabi-

iity proof still is missing.

Recent oxnerimental results [153 however showed that the

carlier observations should be regarded with scepticism.

Indeed it was found that turbulence at least not needs
to occur. Objections on the method of observiation [16] of

thl~i result may be put aside. It was ar-;ued that the ionmersed



particles which made the flow visible should have beer, sedi-

mcntated by ccntrifu.ai forces so that no turbulence could

bo observod. But attention had been ,)aycd to this phenoraenon.

icalmontation clearly could be observed and turbulunce if

i.t ikad occui'ed would hjive! eA .

The risult that Couette flow with rotating outer cylinder

may be stable lead the attention to side effects that could

have influenced the earlier experimental results. Indeed
it could be shown experimentally [15] and theuretically [17]

th.2t ha.dden excontricities and vibrations cun be responsible

for the transition to turbulence. The theoreLical investi-

gation showed that this is not an instability but a sepura-

tion effect occurinr bey6ni certain lieynold6 numbers. W'ore

recently in an already mentioned G ttinoer thesis [t6] atten-

tion was payed to end effects. A huavier liquid was in-

serted as to soperate the test liquid fCowa the lower end

of the apparatus. ubviously the feature of a ball bearing

was attributed to the heavier liquid. iiut z, slip neither

occurs at walls nor at contacting surface6 of liquids by

thii.; provision in no wa,,s the end r'i'ect is annihilated

but merely rever~edL

"This revieQaJ un reccxit 'io,-k showu thit tLhe intrinsic
ztability problueM of Couctto flow with the view to the

transition to turbulence jet is not iolveu -,atisfactorily.

"There romains to b'e deduced a concluive theoretical stabi-

litj )roof excluding, any pre3umptiv• sidc .i fccts on thQ

basis of a FaylAJi, :crturbation. This will be done in the

ffollowing in the work of a corscc li,,oear pertur-

bation theory. The uquation which yiclds Lh ceicnvaluo.

is a.s was mentioned before Identic with thL one derived

by ;exl [51 ] This equation will be analysed by taking 1%11

account of the functions occuring in it.

flefer-ing foil the sake of couniletonoss to the second problem

characterized by a rotatia- inner cylinder' and the outer cy-

linder at rest Taylors calculations shovied excellent ar-ree-

ment with observations [ 2]
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2.) Perturbation Theory

An Was mentioned before two kinds of perturbations were

introduced in the stability theory of Couette flow. To begin

with Taylors rotational symetric ceiluia, voete.& partur=

bation the following notations will be usedt y the radial

wall distance; z the axial coordinate; u, v, w the tangential
radial and axial perturbation velocity components; t time
and /, 8 real constants. Then this perturbation is expressod
by

u = eft u1 (y) cosy z

v = et.t v 1 (y) cosy z

w - eot w1 (y) siny z

It readily may be seen that the continuity equation is

satisfied.P'O mocans stability andp>O initability. On this
perturbation bases G.I. Taylors stability criterion for a

Couette flow with rotating inner cylinder and ýn outer cylinder

at rest. Application to the reverse case of an inner cylinder

at rest and an outer cylinder rotating did not yield results

[2] so that for the present purpose this perturbation is

not the proper one.

The other kind of perturbation was introduced by Ray-

leigh [18] . For its representation instead of the polar

coordinates r,*-t there will be used the distance y frou

the outer wall with positive direction to the center and

the circumferential coordinate x refering to the outer "all

x - r l1  , (1

where the radius r1 is related to the outer cylinder. Then

the perturbation is represented by the streamfunction

p 9 (y) ei(• - t) (2



d% is a real and ( a nomolex constant:

(3 [5 r+ i(%~i (3

d is related to the wave length X by

and to the number k of waves on the circumfercnce

k d (5

Ar is the angular frequency of the p•rturbation whilst

A.-c 0means stability, /3 i'o instability.

The complex velocity of wave propagation is

a r + i a 3r + i31 (6c r + i c -: ••

It is related to r1 according tol the meaning of x. The

&n~ular velocity of thc:3e perturbation waves with radial

fronts is

ar 3 3rSr- - : (7

This perturbation will be introduced. It may be mentioned

that ini this way recently the stability of a liquid ro-

tating as rigid body could be solved ii closed forw in-

cluding all modes [19 1 . The eigenfunctions were found

to be the Bessel functions3 of the first kind. As the zeros

of these functions are located on the real axis there

exiats stabilly.
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3.) Pasic Equations

Introducing (2) in the Navier Stokes equations by

taking full account of the viscous terms and limiting

-to linear inertia terms one obtains the differential

equation [15]

r ,r 2 2 " r'y U1' u
d( .(.__ (U -- c) + . (-U" + - +

Srr)
2  4 r 2rI 4r

_L [ r' 1 2 q ' 1 2

r,"Y r -YV
-li(ri(r, 1-Y)

+ " rrI- Irv2

' is the kinematic viscosity. T1 denotc= the velocity of the

undisturbed Cout.tt .flow. If V is the: vtoAeity of the 9uOe..

cllader, re t.• '..:radiu3 of the ikL-io' uylijndor one has

L - (J -•-- • ) (9

(r1)2 ro r-11-

Thu, the velocitý £cdcld is a supernop,sitiiri,•nbf a rigid bPd.
rotation and a' "ntential vortex. Int od-iein•: (9) in (8);,
,ond, ,aking use..of-the. operator

L,(y) 2, ' •
2- 01 (y'

owe obtainu

( -TY c)L - r1-y 1,2 2 -

rI F rl-Y

With (lo,11) the fourth order equation (8) is reduced to

two equations of second order.



In*. J2odUe 2 g !en~ionleem i•_ntltie

_• Y r1 R• (12

S- L - (I- ý )L'q L- L (1

Now Introduoing (9) and the abbreviations

,1

B r 2 (15
( )-1

92 k2 _ i k R B (16

b i k R -i k R P _) ,(17'r0

further introducing the substitution

% - b (1-,1 ) j, (18

(14) transferm if multiplied by k R/i to the Bemmel

equation [15]

z2L'' + z L' + (z2_2 )L - 0 (19

Introducing the cylinder functien oZ? f complex nrder

the solution of (19) ean be written

b LL-Z (Z) (2o



ifterting th16 Roluti~on •, (1Y , Oon obt&Jna

CP + i _ ( (21

The solution of fha howoganous piart of (21) Is

C - c3 z 1 +. C4 z1 (22

The particular solution ip of (21) is faund by th*e method

of variation of constants. Satisfying the bounuary con-

dition

px o (z0 ) (zo) it 0 (23

one has

z ZI z t-k IC _ z k 4- 1

PP =_ •k - k-lkC-1'4- k L9 (ý)d . (24

Herr ý"o correspo,-i-Is to - 0 what meats according to (18)

z 0 b (25

Prom (24) follows

z
1•Zz- k1) Z+ (E) + • (26

TrP 2 1 ,f~zk c1 I
zo

With the notations
z z

11 (z) - z () d . , 2 (z) - 4-k+1 z ( d) 4 (27
X0 z0

the partioular solution in

p - - z-k Il - 12]



The derivativus with rnpet to z of theo I-terale In (26)

wIll be •1eded. Ono has

4 f k+1 ZQ~de z k+1 z (2) k -+1 kz1 (Z)d
--- * 1 -'VZO 0

With theme ..... a-- derives fro-- (26) when intro-

ducing (27)

VP x (- 1 + .k 12) .

The complote solution and its derivative are
q),C z k + C zk I (z1 k I - k I)

2C1 - 2)

k 2 I .1 k(+ kc-i
. - 1  C2  2) - Z-kI1 4 2 12

Introducing the boundary conditions • - V 0 at

. one has iT introduoing q'p - 0 at thi :houndax

.k -k
C Z + Cz - 0

CI zo6 C zok -20

what usna

C1  " 2o 0 (28

Further the same boundary oonditiona at z yiold when

,.,,rding (28)

- ("1) + 0 1 2 (z) -

"k II(z 1 ) + , k I, (z 1 ) . 0



As z Is a arbitmry toýouida7y there *urts be

Il= I N 0 1 Z2(z,) -0 (29

NoW Separatiug the oylinder tunotionk In itAb two linearily

independent parts N.H with oonatsnts C,. C4

z 9 = c3 N + C4P

oue obtains rrzim (.7. 29)

C 3 f c k+1 N(F.) dC+ C4 Ick+l (•) M(Q d 0

z0 x0

CJ F-k+1 N(&) d F + c• J k1 M() d 0
zo zo

Ae C , C4 are arbitrary the determinant mut be zero, This

oondition giveszi,.
J /k+1 N dt f -k+1 d(F) d i - Jk+1 dc F. -k÷1 N dF.

z 0 'a 0 0x

whioh is the relation derived by Sexil for oiroasereatia1
Couette flow[ 5] and before by somerfeld for irotilii.ar r
Couette flow[ 4 .The boundaries are aooording to (18, 25)
if r is written for I

zo -b z 1 so b (I-)(1



so that (3io) u-hould bo satlsfied a' loet by one pair of

va-lue b, lt- iUs @eon thaot (3e) in atnfied for arbi-
trar values q by b - 0. Minm would wian noutral atfibl-

lity and a wave propagation with the rigid body part of (9).
MU, Vo, '01) shoW that b - 0 would not yield a perturbition

as T would be independent from L what oontradiots to the

meaning of L. Thus b - 0 has to be excluded.

4. ) Transformtion of the transoendental enuation of
Soinerteld-8.xl

To analyse (3o) series expaasions of the integrands
starting at z will be introduced. Writing H for M, N one

has with (3i)

+k+1 +k+1 +k+1
4" H(4) - b H(b) + (F- H(C) )' (c-b)

+k+l 1 2
+ (F. -(,) )" - (•-b) 2 +

4-b 2•

By integration one obtains with (31)

zi (b) 2  ,

Cf++ H(t) dF. --Cb H(b) + - (F- +1 H) (32
21

Equating the coefficients one obtains when writing k for
l k and H for H(b) an to simplify the notations

(.F9+ H) - (k+l) bk H + bk+l H'C-b

k-kH) - (k+1) k bkI H + 2(k+1) bk H' + bk+l H''
Caub

k+1 kc-2 k-1 H , k., k+1(C+ H)''' (k+1)k(k-1)b H+3(k+l)k b H+.(k+l)bkH+ b+b H',C,-b



Rearranglng now the cro of (5)w~iti r,."peot to the

dez'ivativos or H one obtalnu

ýk' H rjFl~+ a + b"+ If' a + bk4H a 2+ .*

The coefficients are determined~ by

00 1
I n-1 i~

ao nm +1 n! 11-0-1 n-4-1 3a

I xtroduc'..ng (3_) In (3o) atid the rotation

a(k) =a ,a(-k) c (34b

one obtains

b5 (Miq'I-M 1,) (&c 1-a c )+b(0 44:0, '-M' '(a c a a

C }+MN?-lV (a aa

+b 84 (M NI4V -m IVNi' ( o 4 a co + M N "MN')5 a 5 o - c )( 5

c -c)+(iIV MIV,~ (~c-~

+bf M4vmN)(.05 a50 +(M' N 9 '-M ''i'' )(a. 204-&401)}

+b (MNA-MRI) (a 00 6-a 6co)+(m tN-M Nt)(alo5... 5 C1)

+- +(Ml INqIV- MIVt (a0Ia4

After dividing by bthis equation io represented by



Shr (Mr(n) N,(r-n+l)-.(r-n+l) .(m),,•_ • """'• A•anur-n+l -a "-n+ 1o a n

r_0O n-O

(35b

which is the transformed Sommerfeld-Sexl equation (3o).

This new uxpreasion permits as will be shown the direct
numerioal evaluation of the stability parameters r'

for all modes k with any desired exactness.

5.) 3olution of the fundamental equation (35b)

The Wronski determinant W will be introduced. One

has

W - •N' - NM', W'' Ml'' - rm'' (36

With the abbreviations

Sf = - , g = " (.37
z z

the equation

y"i + f y' + g = 0 (38

has the solutions M, N according to (19).

The differential equation for W is

w

z

and therefore



1J4

c.w 2W =L 2 W

z
f3%w - w(-f r + r'-

WIV W(- f''' + 3 f,2+ 4 ff''-6 f2f, + f4 24 (4o

z

W V W(- f IV + 1o f'f'' + 5 ff''t - 1 fr, 2 .10 f2f,

+ 1o f f 4' - f 12o
+ -0 T W

From this one deduces

W(m) ()m ' (41

zTM

On the other hand it follows from (36, 39)

fj,:,j" '-M' ", .' - (M'N '' '' '

MIV -MIV N W''' - 2 (M'N'''-M'''•:')

(42

MNV - MVN - W - 2 (M''N'''-M'''N'')-3 (,GNIV-MIVN')

rNvI - MVIN = Wv - 2 (M''NIV - MIVN'')-3 (W''NIV-MIVN'I)

-4 (M'NV-MVN')

Inserting !,!, M in (38) and forming the m-th derivative

M(M) + (f 1, + M))(m-2) -O

N(') + (f N' + g N)(m-2) 0

and multiplying the firat equation with the n-th derivative

of N and the second with the same derivative of M one



Obtains When Mubtmrain

N "N ý"ZAIM %'il-14 % G I-M (r m ,÷g m ) , --o N " -, - (f N '÷g N )\- - /M %-"/
(-,3

With thia exprossion the higher derivatives can be ex-

pressed by the lower ones. Finally the Wroneki determinant W

can be intloduoed so that in the basic equation (35a or 35b)
all functions can be expressed by W. Thus in (35) all

functions M, N and their derivatives are replaoed by W,

whioh shows to be a oommon factor and therefore can be

canceled In (35a) und (35b) reap.

Indeed from (43) one deduces

N''M - M''N = - f W

N''t- M''N' - g W

N''M1'' - M''N''' - (fg,_gft.g 2 ) W

IV- NIVM' ' (fff+ 2 f-f2 fg,2,_f'fEgg')W

l'"4- M'' IT = (-f'-6+f2 ) W (44

N'M'- '''N' " (-fg+g') W

2_'' '- M'"" - (f 'g+ -fg') W

NIVM - MIVN - (-f't -2'+÷rff'+2gf-f3) W
NIVM, - MIVN' - (-2f'g-g9+f 2 g-fr'+ +'') W

•(,36#42) introduced In (35a) gives

b0 W(aoO -a o0)

11

+bI W'(a 0c 2 -a o

+b W(ao a -a (o)-(M'4 t-1M4 vN) [ (aoO -ao)-(alo 2 -a 2 o )I} +



~16~

' L ' -- IV

+bf {V (a006 _46co)-(14q'NIV~mlV~Jtf) ao66'd(24,0)

-(MtNV-MVN#) [+J(a a -a o )-(aia -a oi)

+b6 WI~a -a a )_(mttINIVMIVq~f#)r
0 76{W 0 (a'o7  7o

(MNVI.MV9 A 4 (a;ota -a a )-(ao 6 ao) o

(~)introduced in (45) given with .(4o) i't the common
faotor W is can~celed~

b. {(a c -a o0

+b2 {(aoc 2-a 00) (2f -1')a o -(

+0 {(&oc,-a~c0 )(-6f3_[2(a 0c4-a.4o)-(al 50 a 01)] (_f@

+b4JI(a o5a 5 )24 f4) [2(a 0 5 a ca )-(a55o05-50 2 3-a3c 2 )] (re+g2 -r')

- (0 5 )( 4a4 (-;2tvSig- 2;t22



,.17,

In f gnd g the bouludary z. 0 b ham to be innerted for

z a•coordl.ng to ()1). This means that !It the first coluwa

of (46) b cancels. Further it haa to be mentioned that

according to (34a) the first brackuts in the two columns

begins with the first power and the second with the third

power. Thus (46) represents a series expansion in powers

of

6.) Disoussion of the functions a(, ) c,

One has according to 34(a,b)

an n n-1 +k+1
=• -In•- ( (-(47

cQ n-o+ I n n-ý- I n-,ý-I

This expression shows that the fuulctions a) are polynomials

and that c,) are series with terms negative for even in-
dices ) and positive terms for the odd ones. One finds

that ao, 00 are the functions

a 1 1 +k+2+ -- (-" (48
0 +k+2 +k+2

This expression shows that a. is negative. For co one
has for k-1

oO - -
co1

The undetermined expression (48) for k = -2 is equal

to

Co = In



For k-3 one derivo- from (117)

1

The a's show to have first ascending and then descending

terms. For odd indices the sum of the ascending terms

is smaller than the largest positive term and for even

indices this sum is smaller than the largest negative

term if in each case the largest terms are excluded

from the addition. As the descending terms are descending

strongly and as there number is limited the a's with

the odd indices show to be positive and with the even

indices negative. This statement holds for all O0 ) q 1

so that in these regions the a's have no zeros.

Table I gives the values of a, c for k - 1,2,3 and

table II the values of the brackets occuring in (46).

All these values refer to-q = o,5.

7.) Evaluation of the stability

Inserting (37) and z zo == b in (46) one obtains

a oc 1 -a 0

"-(a 0 o 2 "a20°) (49

+2(a 0 c3-a 3 co) - [(aoc 3 -a 3 co)-(a 1 c 2 -a 2 C) ] (b 2 - 92)

-6(aoc 4 -a 4 co) - [2(aoc 4 -a 4 co)-(a 1 c3-a 3c)1 )](-b 2 +39 2 )

+24(a c5-a co) - [2a a ( C ýJ 2+b2 21

1 0 -50 14 41L_

------------------------------------------------ 0



Inserting with table II the values for k - 1 the real

and imaginary part of (49) yield two equationa.

h4 I -_,t th •n Ila t.1 fn

18,6876o851 + 7,61593802 b2  7,42o238o2 (2
(50

- o,15278165 (b 2 -92 0

in o-tained. With (15, 16, 17) and the numerioal value

1 _ 2
r

W) , corresponds to the assumed value ? - 0,5 the se-

paration of the real and imaginary part of (5o) 1ives

the two equations

- 0,15278165 R 2 I - 7,9215o03 R4i + 11,11458885

(51
+ 0,15278165 R2 (41-1) 2 =

7,9215013 (4r-1)- o,o652333 (52
0,3055633 (4r-1)

Insertind (52) in (51) one obtains exactly a biquadratic

equation in 4r-1 ,

R2 (4r-1)4 + 2o88,949384(ý r-1)2 - c,o 4 5576o - 0

in which R appears as parameter. The numerical solution is

R - 1 - 1 4,69 • lo"3

R = lo 1 - ± 4,67 @ lo-3

R - loo r-1 S + 4,67 • lo"3

R = o 1r- 0



Only the neiative values havE physical meanfnge futro-

ducinng them Iin (52) olle obtaTiA,

R Ai Hi = - y1,44

S71,63

This result means stability and it is seen that 4., ina-

inversely proporGiorial to the Deynolds number R. The numerioal
values obtained for 4 r-1 dhow that the circurmferential

propa;atioa velocity of the pert-aoation i"s extremely near

to the circumferential velocity of the outer cylinder with

a negligable influeAtc of the 7,eynold6 number. This result

ia analo,,ue to the resiilt found for thk ;t;•bility of a
liquid rotatin- au riýJc id ody for which Iii our notation "

r-/ro oo where .r.1 0 was fo]U 1.9

For k = 3, 0 = o,5 (49) yields by nej;lectirig the last

term of (46)

o,olo-(66 = - o,oo82o7 b + o,oo845_2

2eparatinr the real and imotginary part,- with (16, 17)
one obtains the two aqu.tloans

- 0,010766 = 0,008207 kRt + o,00845 k 2

r.-o,oo82o7 kfl (4k, - D--)- o,oo87i6 k1B - 0•
0

The first equation .ives

and the second equationa, when introducing; with (15) rl/r - 2

ýr= o,981



Again stability and a propagation velocity near to the

cireumferential velocity of the outer cylinder in foundf

Here F appearts to be independent of the Reynolds number R.P

Indeed the influence of R appears only in the next higher

approximation that means, when the last term of (46)

R on Er is weak as it was found numerioally in the case
r

k - I by considering also the last term of (46).

8 .) Conclusions

The Sommerfeld-Sexl transcendental equation whiob

-yield the stability parameters of Couette flow was first

transformed (sue eq. 35b). Then by introduoing the Wronsici

"determinant it was possible to eliminate the.unknown BeSs.).

fUnctions of iuaginary argument and imaginary order, whioh-

:until then prohibited the solution of the original Summer-
feld-Sexl equation. A series expansion-in the wall distance

with the staiility parameters in polynomial form was ob-..
t.rained (see eq. 49) which can be solved rnumerioally frr

any modes and widths of the 6ap. Fur a ratio of the inner

and outer rudius of 2 stability was found for the first

and third mode.

i
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