
o >-'
r- a,
? 8
vO uj

cd i—i
Q u.
H

i—i
D H
oo to
UJ ai

Group Report 1964-51

The Software Problem

D. B. Yntema

4 September 1964

Prepare

Lincoln Laboratory
MASSJ1

89

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

THE SOFTWARE PROBLEM

D. B. YNTEMA

Group 25

GROUP REPORT 1964-51

4 SEPTEMBER 1964

LEXINGTON MASSACHUSETTS

ABSTRACT

The question of making digital computers more useful to technical

personnel like engineers and scientists is discussed informally. It is

suggested that computing systems should be designed for a type of use

described as "step-display-look. " It is also suggested that once the user

has been put on-line, the problem of software becomes critical. In particu-

lar, the clerical labor that is usually required in instructing the computer

becomes an important obstacle to rapid interaction between man and machine.

The requirements for an experimental system intended to put these opinions

into practice are sketched, and some of the major decisions that have been

made in planning such a system are discussed briefly.

Note: This report is a talk given to the
General Research Panel of the Lincoln Labora-
tory Joint Advisory Committee on 9 April 1964.
The thoughts and plans discussed here were
the result of a collaboration between members
of Group 25 (Psychology) and Group 23 (Digital
Computers).

Accepted for the Air Force
Franklin C. Hudson, Deputy Chief
Air Force Lincoln Laboratory Office

in

For the last few months we have been considering the problem of

computer software, especially software for technical applications like science

and engineering. I shall describe the opinions that we have formed, and then

say a little about an experimental system on which we are working in an

attempt to put our opinions into practice.

The classical picture of the way one uses a computer is shown in Fig. 1.

The process starts with a question; the question is refined into a specification

of the problem; the specification is elaborated into flow charts; the flow

charts are translated into a coded program, which is debugged to correct

the inevitable errors; and finally the completed program is run.

Question —• Problem
Specification

Flow -— Code and — Run
charts Debug

Figure 1

When you consider how you would like to see a scientist or engineer

using a computer, the picture that emerges is quite different— more like

that shown in Fig. 2. Typically the user begins with a set of data on which

he thinks it would be revealing to perform some sort of calculation; or as we

Step Display Look

Figure 2

put it, he would like to make some sort of computational step. When he has

made the step he will want to see what he has done; so he will display the

results and look at them. After studying the display he may want to see a

different aspect of the results — perhaps he will want a graph with a different

scale — and he may go around the smaller loop several times, looking,

getting a new display, and looking again. Sooner or later he is likely to feel

that it would be instructive to do some other computation — i. e. , make a

further transformation on the results of the previous step, or go back to the

original data and do something entirely different. In either case he will

want to get a new display, look at what has happened, and so on, round and

round.

The word "step" is used here in a very special sense. As we define it,

a step consists of whatever computation the user wants done between times

when he feels compelled to look at the results. Thus the size of a step is

likely to change as a person works on a problem. At the beginning he will

probably take small steps, looking each time to see what has happened. But

after he begins to understand the problem he may want to run off a whole

series of small steps before bothering to see what he has done. When that

occurs, the series of small steps has by our definition fused into a single

large one.

The word "look" is also used in a special sense. During this interval

the person is not only staring at the display; he may also be considering his

next step, looking for regularities in the data, rethinking his plans for

doing the computation, or perhaps, on rare occasions, having the flash of

insight that restructures his whole conception of the problem. One could

say that it is during the time labeled "look" that the user does the sort of

work for which scientists and engineers are hired. It is during this time

that the man in the system earns his keep.

Let me make a couple of remarks about these two diagrams. The

"step-display-look" procedure is intuitively appealing, but it is not an

efficient way to use a conventional installation where you wait three or four

hours to get answers after you submit a job to be run on the machine. If

you proceeded a step at a time, looking after each step, you could make

about two steps a day. It would take weeks at that rate to do even a moderate-

sized job of computation.

So in practice you put a number of steps together and submit them to

be done on the computer in a single run — in other words, you work in the

classical manner shown in Fig. 1. The trouble with trying to take a lot of

steps in one run is that you must exercise a painful amount of foresight.

For example, if you think it would be instructive to take the logarithms of a

set of measurements, and if the measurements are subject to enough error

so that some of them could be negative and have no logarithms, you must

anticipate that difficulty and tell the computer what it is to do if it encounters

a negative number. If you do not, the answers you get may be flatly wrong,

or, more likely, the program may stop in a disorderly jumble that will cost

you hours of detective work to sort out. You are not only required to foresee

the direction in which you expect the computations to go; you are also

required to anticipate all of the other things that could happen but probably

will not. You must tell the machine what to do in each of these special

cases, or at least tell it how to stop gracefully. This is a lot of extra work.

To take a small example, one of our staff has written a routine for

doing floating-point addition on the TX-Z computer. He says that a little

over two-thirds of the instructions in the routine were included just to take

care of special cases — things that might happen but usually do not. He also

says that writing those instructions represented a good deal more than

two-thirds of the labor expended in writing the routine. This is probably an

extreme example, but it shows how expensive the necessity for foresight

can be.

There is also a larger, more subtle sense in which foresight can be

difficult or impossible. In dealing with actual data it is often hard to say in

advance exactly what calculations you will want to make. As the results

begin to emerge you notice an unexpected pattern in the numbers, or you

plot a set of curves and discover that one of them shoots off at an odd angle;

so you feel constrained to do additional calculations to find out why. This

sort of occurrence seems to be more the rule than the exception. I doubt

that I have ever seen a data-analysis project— at least, not one involving

more than a few dozen numbers — that went exactly according to the pre-

conceived plan. The natural and efficient way to work with data is therefore

to proceed a step at a time in the fashion symbolized by Fig. 2.

Let us assume that we are now moving into the era of logic plenty, the

time when computing power will be cheap — as it is already beginning to be.

In that case we should be starting to design computer systems that will make

optimal use of people, not optimal use of the machines. If a person works

most efficiently when he proceeds a step at a time, then our first task is to

reduce drastically the interval between times when he can "look. " It simply

is not practical to take a single step and then wait for hours to see the result.

Our second task, once we have gotten to the point where the "step-display-

look" process is feasible, is to make that process efficient. What we have

to do is obvious. The man earns his keep during the time labeled "look"; so

our job is to minimize the time he must spend on the other two parts of

Fig. 2, taking a step and getting a display. In a way the two tasks really

come down to the same thing. If we want to make optimal use of the man we

must minimize the time between his "looks."

The time between looks can be considered in two parts. First, there

is the time required for the man to give his instructions to the computer.

He has to say what step if any he wants to take and what display he wants to

see. Second, there is the time he must wait for a response to the instructions

he has given.

I shall not say much about reducing the wait for a response. That

problem has received a great deal of attention in the last two years, and the

place to begin is fairly obvious. The first step is to put the user on-line —

for example, give him a typewriter connected to the computer so that he can

get a response in minutes, maybe seconds, instead of waiting three or four

hours. The advantages are very familiar to us here at Lincoln. Our TX-2

computer was designed for on-line use, and we have been using it that way

for about five years. More recently we have had a couple of smaller

machines that were designed to be used in the same way, and now we are

fortunate in having two teletypes connected to the computer down on the

campus at Project MAC, which has a multi-user, time-shared installation.

When you have worked on-line and have discovered what it feels like

to get a response in a few seconds, you become very conscious of the other

factor, the time required to tell the machine what you want. With those

teletypes you often get a great deal of computing done in, say, fifteen seconds

after you press the button that tells the machine to go. But before you press

the button, you have probably taken at least fifteen minutes to think out and

type the instructions that tell the machine what to do. There is a bad mis-

match here. Once the user is on-line, the time he spends instructing the

machine is much longer than the time he spends waiting for his work to be

done. The ratio is ten to one at the very least — more likely a hundred to one.

We feel that this mismatch of perhaps two orders of magnitude consti-

tutes the software problem. Or, strictly speaking, it constitutes the problem

in the use of computers by technical personnel. Software may pose other

problems in other fields, but in the present state of the art the ratio of

instruction time to response time is the primary difficulty in the use of

computers to answer technical questions.

Why should it take so long for the user to tell the machine what he

wants it to do? For one thing, he spends a lot of time on plain, stupid

clerical work — labor of the sort that is particularly painful to see a person

doing because people do it so badly and computers do it so well.

Let me give some examples to remind you just how burdensome the

clerical labor can be, even when you are using a language like FORTRAN. *

* In the discussion that follows I often use FORTRAN and the Project MAC
teletypes as illustrations. Since I discuss ways in which the use of computers
should be improved, it is conceivable that some readers might misconstrue
my remarks as disapproval of FORTRAN or of the Compatible Time-Sharing
System used by Project MAC. In committing this discussion to paper I wish
to make it quite plain that if anyone thinks I am disparaging two such important
accomplishments, he has missed the point entirely.

Suppose you want to multiply two matrices together: matrix A is to be

multiplied by matrix B and the result is to be called matrix C. Figure 3

shows what you have to do. You must have remembered the dimensions of

A and B, or have jotted down a reminder like the note in the upper right-hand

corner of the figure. The six lines of FORTRAN then say that A is to be

post-multiplied by B and the result is to be called C.

A is a 25 x 11 matrix.
B is a 11 x 4 matrix.

DO 152 I = 1, 25
DO 152 K = 1, 4
C(I, K) = 0.
DO 152 J = 1, 11

152 C(I, K) = C(I, K) + A(I, J)*B(J, K)
DIMENSION C(2 5, 4)

Figure 3

There are two things to notice here. First, the time required to type

these six lines is not trivial (an average of a little over two minutes for six

users of the teletypes that I mentioned). Second, there are quite a few

things that have to be checked against each other. The so-called statement

number, 152, must match in the four places in which it appears, and you

must check that there is no other statement numbered 152 anywhere else in

the program. Note too that the dimensions, 25, 4, and 11, must be typed

(even twice) and must check against the dimensions in your reminder. In

effect you are telling the machine something that you have told it already —

namely, the dimensions of A and B — and something that it should be able to

figure out for itself — namely, the dimensions that C is going to have.

The problem of clerical labor can be avoided to some extent by using

a prepackaged subroutine, either a routine that you have written yourself or

one that you have found in a library. This is not a total solution; a certain

amount of clerical work is still required in meshing the routine into your

program. As an example, Fig. 4 shows the use of a routine for finding the

latent roots and vectors of a positive semi-definite symmetric matrix.

E is a 12x12 matrix.

N = 12
IGEN = 0
CALL HDIAG (E, N, IGEN, U, NR)
DIMENSION U(12, 12)

Inside the routine:

DIMENSION H(12, 12), U(12, 12), X(12), IQ(12)

Figure 4

There are four lines of typing that you have to include in your program.

Even worse, you must go down into the routine itself and change a line, as

shown at the bottom of the figure. And note that you have to tell the machine

over and over — nine times to be exact — that this is a 12x12 matrix.

(FORTRAN programmers will realize that there is a way in which one can

avoid making the dimensions inside the routine correspond exactly to the

dimensions of the matrix, but that raises other problems.)

Let me take one more example. Suppose you have computed the

matrix C that I described a moment ago, and now you look at it and decide

to perform some further calculation on it. Figure 5 shows the easiest way

I know of doing it on the teletype. The two statements shown at the top of

the figure are included in the program in which C was originally computed

(note that you had to foresee that you might want to use C again) and the new

program begins with the three lines shown at the bottom. Again there are a

number of things that have to check: the tape number, 24; the dimensions,

25 and 4; the format, 6012; and so on. (FORTRAN programmers may be

surprised at the tangles of parentheses that appear in the input and output

statements. The version of FORTRAN available on the teletype apparently

requires that you do it this way.)

In old program:

WRITE OUTPUT TAPE 24, 137, ((C(I, J), 1= 1, 25), J = 1,4)

137 FORMAT (6012)

In new program:

DIMENSION C(2 5, 4)

READ INPUT TAPE 24, 1, ((C (I, J), I = 1, 25), J = 1, 4)

1 FORMAT (6012)

Figure 5

It is worth a moment to mention that the clerical gymnastics shown in

Fig. 5 are not required when you want to save a program — only when you

want to save a file of results. The system to which the teletypes are

connected was designed, like most current on-line systems, as a tool for

programmers to use in debugging programs. The designers provided a

delightfully convenient way of retaining the things in which a programmer is

most interested, the various versions of his program. To save a new

version you type a single word followed by the name by which you want the

version to be called; then whenever you want it again you need only type its

name and one other word. We assume that a man doing computations would

be equally delighted to have the same sort of convenience in retaining the

things that are of primary interest to him, namely, the files of numbers on

which he is working.

What can be done about the problem of clerical labor? The only

solution we can think of is the obvious one — use a prepackaged routine when

you want to make a step or get a display. The system may include a library

of routines that perform the desired actions, or it may include routines that

will on demand put together a program to perform an action; for the moment

the difference is not crucial. Then too, the routines may be ones that some

public-spirited person has deposited in a library, or they may be ones that

the user has written for himself. Occasionally the user may even stop work

and write a new routine. That is not crucial either, provided he does not

have to write a new routine too often. The crucial point is this: If routines

are used to make steps and get displays, then during every interval between

looks the user will go through the process of applying at least one routine.

Thus it is important that applying a routine should not involve the sort of

clerical labor that was illustrated in Fig. 4.

This is the place where innovation is needed. There is seldom any-

thing mysterious about routines that do the sort of calculations and display

the sort of graphs that engineers and scientists want. Building up a library

of such routines may be a lot of work, but in the present state of the art it is

usually a straightforward job. What is lacking is a convenient way of applying

the routines. *

* A notable exception is the system designed by Glen J. Culler and Burton D.
Fried. See their report, An on-line computing center for scientific problems,
M19-3U3, revised June 195T. TRW Computer Division] Thompson Ramo
Wooldridge Inc. , Canoga Park, Calif.

The best way to summarize what I have said so far is to list what we

consider the minimal requirements for an experimental system that will

make it feasible to work in the "step-display-look" fashion represented by

Fig. 2. In particular, the objective is to reduce the interval between "looks'

by putting the user on-line and by holding the clerical labor down to some

reasonable level.

1. Fast response by the machine. Obviously we should

make the machine reply as quickly as we can manage.

2. Retention of results. Unless the user deliberately

erases the results of a step they should be preserved

in such a form that they can be used as the basis for

further calculations on which he may decide later.

3. Minimum clerical labor in applying a routine. We

have assumed that the user will normally take steps

and get displays by applying routines that he or

someone else has worked out beforehand; so we are

particularly anxious to minimize the labor of calling

a routine.

4. Ease in combining steps into larger steps. We want

to make it easy for a person to talk in units that he

regards as steps. When he progresses to thinking

in larger units it should be easy for him to combine

a series of small steps into a single big one.

5. Moderate ease in adding a new routine. The easier

it is to write new routines, the more of them we will

be able to provide in the library. And when the

library is insufficient, the user will have to write his

own. For both reasons there must be no special

obstacles to making up a new routine and fitting it

into the system.

10

6. Leisure to look. As before, "look" is used to

cover all the activities by which the user earns

his keep. If he is to do any serious thinking he

must have the leisure to sit and ponder; he must

have access to the computer for good long periods

of time.

Obviously this list does not cover the entire problem of software for

the use of computers in answering technical questions. Let me emphasize

that point by mentioning three omissions of which we at Lincoln have

particular reason to be conscious.

First, technical men often like to communicate with each other by

drawing pictures and graphs; sometimes they would like to communicate

with the computer in the same way. We are not likely to forget that fact;

work on graphical communication from man to machine has been going on

here for several years.

Second, many technical people do not type well; they would much

rather talk to the machine. We are conscious of that too; a project on

computer recognition of speech has been underway here for some time.

Third, there are obvious advantages in letting a person use the

language and symbols to which he has become accustomed in the field in

which he is working. In other words, it is desirable to use what is often

called a problem-oriented language. We have a comparatively new research

project on a very general translator that will allow people to define symbols

and even specify syntax on-line. We think this translator may prove con-

venient enough so that a person working on a technical problem may be able

to create his own problem-oriented language as he goes along.

So we realize that our list of requirements is not exhaustive. It

concentrates on what we regard as the big, obvious problem — clerical labor.

We are following the strategy often adopted in adjusting a piece of apparatus

or in debugging a program. You don't try to do everything at once. If you

see some large, obvious trouble that you think you can fix, you deal with it

first, and then the remaining problems may be easier to understand.

11

We are currently trying to build a system that will satisfy the require-

ments that I listed. We are using TX-Z as the computer, the Lincoln Writer

keyboard as the primary input device, and the scope and Lincoln Writer

printer as the primary outputs.

Suppose again that the user wants to multiply matrix A by matrix B

and call the result C. He types something like "MATMUL ABC," and the

machine performs the multiplication, taking care of all the clerical details.

To be more explicit, the statement "MATMUL A B C" is put in a sort of

temporary storage. The executive system inspects the first item, "MATMUL,1

finds it is the name of the matrix-multiplication routine, puts that routine in

the location in which it was designed to run, and transfers control to it. The

routine itself fetches the second name in the statement and asks the executive

to put the file having that name in some location that the routine specifies.

The file having the third name, B, is treated in the same way. The routine

then consults headers on files A and B to see whether they are indeed

matrices that can be multiplied together. If they are, it determines what

the dimensions of the resulting matrix will be, fetches from the statement

the fourth name, C, and tells the executive to create a file called C that will

be large enough to hold the new matrix. Finally the routine performs the

multiplication and puts on the new matrix a header showing its dimensions.

The matrix C is then ready to be used as the input to any further operations

on which the user may decide. *

The statement "MATMUL A B C" is not very pretty to look at; but as

I said, problem-oriented languages are not on our list of minimal require-

ments. On the other hand, we are including two features that should go a

long way toward making the system convenient to use. First, there is the

creation of synonyms. If the user is doing lots of matrix multiplication and

* The sequence of events described above is correct in spirit but not in
detail. The plans have been changed slightly since this talk was presented.

12

gets tired of typing "MATMUL, " he can decree that some shorter expression

like "MM" shall be synonymous to "MATMUL. " Thereafter he can just type

"MM" and the system will understand that the matrix multiplication routine

is what he wants. Second, there is the concatenation of steps. If the user

finds that he is typing the same sequence of four or five statements over and

over, he can decree that the whole sequence of statements shall have a single

name. Then whenever he types that one name it will be as if he had typed

all four or five lines. In other words, he can combine a series of small

steps into a larger one.

It is not my task to describe the system in detail, but I shall conclude

by listing five of the major decisions we have made in designing it:

1. Time-sharing. We have decided to time-share the computer so

that several people can use it at once. This decision does not imply any

judgment about the ultimate merits of time-sharing. The computer we have

to work with is TX-2, which is already in heavy use. If we give the machine

to one person at a time he will not have much leisure to sit and think.

2. Routines are files that operate on files to create files. This heading

really summarizes several decisions. We suppose that the library of routines

will be too big to keep in core all at once; it must be broken into pieces that

can be brought from an auxiliary memory when they are needed. Typically

each piece will be a routine, and in that sense we say that a routine is

normally treated as a file. Similarly, when a person works on a problem

for a while he is likely to accumulate a mass of data and results too large to

keep in core; the mass of information must again be broken into units that

can be handled separately. Blocks of data or of results are therefore treated

as files: each block to which the user has given a name is handled as a unit

when it must be brought from the auxiliary memory. The system makes no

essential distinction between files of data and files of results. The results

of one routine may be used later as input to another routine; so inputs and

results must look alike.

3. Clerical labor is done mainly by the library of routines, not by the

executive system. The executive maintains an index of the user's files, but

13

the main burden of the clerical labor, the labor we are trying to take off the

user's shoulders, falls on the individual routines that he calls from the

library.

This is a rather interesting point. We started with the idea that the

executive system would assist the library routines by checking their inputs

to see whether the operation was legal, by preparing the header to put on the

results, and so on. But as we proceeded, it became clear that these clerical

functions would be different for almost every new routine. To keep the

executive from expanding indefinitely we decided to take these functions out

of the executive and put them into the individual routines that they served.

4. Routines are in absolute binary. They are in binary so as not to

lose time compiling or interpreting them every time they are used. In

absolute, because relocation registers looked faster and simpler than

relocatable routines.

5. Hardware to shuffle addresses. When the executive brings a file

from auxiliary storage it may have to move other files around to make space

for the new one. There are in principle two ways of moving information

from one address to another. First, you can copy the information from the

magnetic cores at one address into the cores at the other address. Copying

can take a lot of time if there are many registers of information to be moved.

Second, you can leave the information in the register where you found it, but

change the address of the register. We have chosen the second course. We

are modifying the memory-address hardware on TX-2 so that blocks of 256

registers may seemingly be moved very rapidly to any of a thousand positions

in core memory.

And we have made one further decision: as you may have guessed from

the examples that I have used, the first set of library routines that we plan

to provide are routines for matrix arithmetic.

To sum up, the fashion in which one would like to see technical people

working with computers in the era of cheap logic is the fashion that I have

described as "step-display-look. " When the response time has been cut down

to a reasonable level, the big remaining problem is that of software, the

14

problem of telling the machine what you want it to do. One important com-

ponent of the software problem is the large amount of clerical labor demanded

of the user, labor of the kind that people do badly and computers do well.

We think it possible to take much of this labor off the person's shoulders.

We shall attempt to do so, and then the remaining problems may be easier

to understand.

15

Security CIi assification

KEY WORDS
LINK A LINK B

ROLE

LINK C

Software
Step-Display-Look
Computer
Programmers
Teletype

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authors) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank end branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATIi Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i. e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must

. be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S). (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

S*»r-nritiil flOQtMlUHai

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report ia classified)

1 OR1GINATIN G ACTIVITY (Corporate author)

Lincoln Labs., Lexington, Mass.

2a. REPORT SECURI TY CLASSIFICATION

2b GROUP UNGLA33IFIED

N/A
3 REPORT TITLE

The Software Problem

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

Group Report
5 AUTHORfS) (Last name, first name, Initial)

Yntema, D.B.

6 REPORT DATE

•3ep fr*

7a. TOTAL NO. OF PASES

 12

7b. NO. OF REFS

) „
8a. CONTRACT OR GRANT NO.

AF19(628)500
b. PROJECT NO.

9a. ORIGINATOR'S REPORT NUMBERfSj

GR-1964-i 51

9b. OTHER REPORT NOfSJ (Any other numbers that may be assisted
this report)

E3D-TDR-64-370
10. AVAILABILITY/LIMITATION NOTICES

Qualified Requesters May Obtain Copies From DDC.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

EoD, L.G. Hanscom Field, Bedford, Mass,

13 ABSTRACT

The question of making digital computers more useful to technical
personnel like engineerings and scientists is discussed informally. It is
suggested that computing systems should be designed for a type of use described
as "step-display-look." It is also suggested that once the user has been put
on-line, the problem of software becomes a critical, In particular, the
clerical labor that is usually required in instructing the computer becomes an
Important obstacle to rapid interaction between man and machine. The requirements
for an experimental system intended to put these opinions into practices are
sketched, and some of the major decisions that have been made in planning such a
system are discussed briefly.

DD .tttt, 1473 UNCLASSIFTED
Security Classification

