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ON PANEL FLUTTER IN THE PRESENCE

OF A BOUNDARY LAYERt
,

John W. Miles

University of California, Los Angeles

SUMMARY

The energy transfer from the uniform flow outside a boundary

layer to a transverse surface wave at the boundary is calculated on

the hypothesis that the boundary layer may be represented by an

inviscid, approximately parallel shear flow. This energy transfer

is found to consist of two components; the first is similar to that

found previously for supersonic panel flutter in the absence of a

boundary layer and is relatively diminished by the presence of the

boundary layer; the second is intrinsic to the shear flow and is

present whenever the surface wave speed is smaller than the free

) stream speed (whether subsonic or supersonic). Approximate

solutions to the differential equations for the4itsturbed motion of

the boundary layer are estabhlehed and compared with more exact
,p.j--I=-'-- s" ""- *ýThe application of the results to actual flutter

calculations is discussed and an example of a pressurized cylinder

considered. It is concluded that the presence of a typical boundary

layer may reduce the degree of instability for supersonic flutter of

a long, monocoque shell by an order of magnitude, thereby

providing a possible explanation of discrepancies between earlier

theories (in which boundary layer effects were neglected) and

observation. ( j

TThe material in this paper appeared originally as Ramo-

Wooldridge Report GM-TR-299 and was presented at the
3rd Symposium on High-Speed Aerodynamics and Structures,
San Diego, March 25-27, 1958.

Professor of Engineering; also, Consultant, Space Technology
Laboratories. a division of the Ramo-Wooldeidge Corporation.
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1. INTRODUCTION

The dynamic instability (flutter) of an infinite panel exposed to a

supersonic air stream has been discussed in references I and 2. It was

found there that the flutter speed was approximately ai + (Vo)rnin, where

,A denotes sonic speed and V the speed of a transverse wave on the free

panel, and that the wavelengths for monocoque structures were sufficiently

small to justify the neglect of panel curvature on the aerodynamic (but not

the structural) forces and to justify the assumption of an infinite panel. The

smallness of the wavelength implies that the effects of a relatively thick

boundary layer may be important, and the following analysis is intended to

establish the qualitative nature of boundary layer effects and to provide

approximations to their magnitude.

We adopt as a model for our calculations an inviscid, parallel shear

flow over an infinite, approximately plane panel. Assuming a periodic

surface wave displacement of the panel, we will establish the equations of

motion for this shear flow and the resulting pressure on the boundary in

Section Z. after which the eigenvalue problem for the panel will be established

in Section 3. We then will consider, in Section 4, the general nature of the

possible instability and show that, in addition to the essentially supersonic

instability of reference 2, there also appears a new type of instability

associated with energy transfer from the shear flow; this latter mechanism

is closely related to that which enters the boundary layer stability problem.

The boundary value problem considered in Section 2 leads to a second-

order differential equation that has a regular singularity in the range of

integration if the surface wave speed is less than the air speed at the outer

(free stream) edge of the boundary layer. We consider, in Section 5, the

nature of solutions to this differential equation in the neighborhood of its

singularity, its solution by expansion in powers of the ratio of boundary

layer thickness to wavelength, and its solution by numerical integration.

The application of these results to actual flutter analyses is discussed in

Sections 6 and 7.
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We emphasize that the model on which the present analysis is based

is highly idealized. and experimental confirmation of the results is most

desirable; moreover, even though the predicted conditions for the initiation

of flutter should prove correct, nonlinear effects must be decisive in

determining the severity of such flutter. In th~e abrence of experimental

confirmation and at least a qualitative understanding of these nonlinear

effects (especially with reference to structural fatigue), our results must

be accepted with considerable reserve and should not be regarded as adequate

for major design decisions. It appears, nevertheless, that typical boundary

layers may reduce the negative damping factor--i. e., the degree of

instability--by an order of magnitude (this statement applies only to long,

monocoque cylinders, for which the critical wavelength and boundary layer

thickness are of the same order of magnitude), thereby providing a possible

explanation of previous discrepancies between theory and observation.
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2. EQUATIONS OF MOTION-BOUNDARY LAYER

We require the equations of motion that govern the disturbed flow produced
in a prescribed boundary layer by the surface wave displacement*

(x- Vt.) exp {4k [(x-Vt)coo a+ysin (2.1)

of the boundary from its equilibrium position z = zo; x and y, together with z,
are Cartesian coordinates in a reference frame fixed in the panel. t is the
time, V the phase velocity with respect to the x-axis, a the angle of propa-
gation (of the wave normal) with respect to the x-axis, and k the wave
number- - viz.,

1W (2.2)

X1 being the wavelength of the surface wave. The amplitude of the wave,
although for convenience posed as ruity in Eq. (2.1). is assumed to be small
compared with all other characteristic lengths- - in particular, both dhe wave-
length and the boundary layer thickness. We remark that the assumption with
respect to boundary layer thickness might not be satisfied in many cases of
practical interest; but, of course, the effect of the boundary layer on panel
flutter almost certainly would be unimportant if the amplitude were of the
same order as or large compared with the boundary layer thickness.

Our model of the boundary layer is an inviscid, non-heat-conducting,
parallel, shear flow that, in the absence of the traveling wave disturbance,
is characterized by the velocity profile U(z), the temperature profile T(z),
and the free stream pressure p1 (which is constant through the boundary
layer). The sonic velocity a(z) and density p(z) then are related to the

temperature according to

a (z) Pl T(z) (2.3)

a I p(s) T1

Cf. •
Cf'. E~q. (3.13), Ref. 2, x and yI therein being replaced here by x and y.
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by virtue of the constant pressure; the subscript I on the fluid variables

denotes the free stream conditions outside the boundary layer. We neglect

the x and y variations of all of these quantities with the implicit assumption

that local values may be used (as in the boundary layer stability problem).

If the boundary layer is laminar the essential approximation in our shear

flow model is that the viscous forces associated with the traveling wave are

•egligible coan-pared with the corresponding inertia forces (the neglect of heat

conduction is almost certainly of less importance than the neglect of viscosity).

This approximation is similar to that adopted in the inviscid approach to the

boundary layer stability problem,3 although in the present problem the approxi-

mation remains valid in the neighborhood of the boundary by virtue of the finite

acceleration there. As in the boundary layer problem, the approximation breaks

down in an Inner viscous layer (Rof. 3, page 136), where the inertia forces tend

to sero. The result is a singularity in the inviscid equations of motion (see

Sections 4 and 5), which may be said to represent the inner viscous layer in the

limit of zero viscosity . We infer from the known results for the boundary

layer stability problem that this representation is significant for small but

finite values of the viscosity if the perturbation motion is unstable.

If the boundary layer is turbulent and we interpret U, To p, a. and p, am

mean values, the approximations implied by the model are more severe. First,
*

we neglect the perturbation Reynolds stresses associated with first order

coupling between the perturbation flow and fluctuations in the original flow.

Secondly, we implicitly neglect cross-correlations between the fluctuations of

unlike quantities - - e. g.,density and velocity. We suggest that the latter

approximation is not likely to introduce uncertainties greater than those

inherent in presently available profile data for compressible boundary layers;

this conjecture is supported by the observation that these cross-correlations

would not appear in the corresponding incompressible problem and probably

represent only minor compressibility effects compared with the variation of

mean Mach number (which Is incorporated in our model).

We next remark that perturbations having the phase velocity V with

respect to the steady shear flow will appear as steady disturbances to an

observer moving with this same velocity V. with respect to whom the

origLanl flow will have the velocity distribution U(s)-V. This allows us to

*Cf. Appendix, Ref. 7.
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use Ward's result4 that the perturbation pressure p-pl and the perturbation

velocity components v and w (along y and z, respectively) may be derived

from a potential + according to

P " - -= l (2.4a)

p (U - V) v - y (2.4b)

P (U- V) w = * z# (2.4c)

where + satisfies

(I - M ) 4xx +*yy +0zz- (2(My*y+ Mz z)1 -0, (2.5)

with M as the apparent (to an observer moving with the wave at elevation z)

Mach number

M = M(Z) = U(z)-VMa=M)z)" (2.6)

We emphasize that * is not a velocity potential in the classical sense and that

the flow is not irrotational.

The linearized boundary condition to be imposed on * at the wall (z = z0 )

is, from Eqs. (2.1) and (2.4c).*

We note that if M(z) is introduced in place of z as an independent variable
the boundary condition (2.7) may be regarded as imposed along the streamline
on which M = M = M(z ) in the absence of the disturbance, after which the
variable z maye inte•'preted as a parampetric streamline coordinate, rather
than the linear distance from the wall. LThe validity of this interpretation may
be established in two dimensions, say x and z, by introducing the independent
variables x and 4o, where to is a stream function for the compressible flow, in
place of x and z (von Mises transformation) prior to the linearization of the
equations of motion.] This strategem avoids the restriction (that would be
Implied if z were interpreted directly as a linear measure) to amplitudes
that are small compared with any distance in the boundary layer over which
appreciable changes in velocity occur; such a restriction would be highly
undesirable because of the large velocity gradient near the wall. We also note
that, while U = 0 at the wall, it might be desirable in some applications to
Impose the boundary condition (2.7) at some other streamline- -e. g., the edge
of the laminar sublayer; this would be permissible insofar as the distance
between this streamline and the wall were negligible compared with the wave-
length. In effect, we assume that the sublayer moves with the boundary.
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= P(U-V)- : - ik cos a P(U-V) 2 z,, z 0 • (2.7)

This boundary condition (together with the anticipated form of the expression

for the pressure at s = z0) suggests that we assume a solution to Eq. (2.5)

in the form
2

+(x- Vt, y, z) = i P1 aa sec a f(s) C (x-Vt, y) . (2.8)

Substituting this in Eqs. (2.5) and (2.7) and introducing

U_(Z) - V .)
m = M(z) co. a () sec a (2.9)

we obtain

m 2 j (m'2--z) -k 2 (l-m 2 )f-=0 (2.10)

and

df I 2=-0 m~lzo . (2.11)
1 Z=ZO0

The differential equation satisfied by f(m), to wh.ch the perturbation

presE -re is proportional, was obtained by Lighthill5 in his studies on shock

wave, boundary layer interaction; it is appreciably simpler than the differ-

ential equation satisfied by w (the latter usually has been used in boundary

layer stability studies 3). We also note that if m = 0 (U1 = V) at, say, Z=z c
in the boundary layer, the differential equation (2.10) has a regular singularity

there.* The immediate (z) neighborhood of this singularity constitutes the

inner viscous layer, where the inertial forces, being proportional to (U - V) ,

cannot domdinate the viscous forces; however, the thickness of this layer

approaches aer'o for large Reynolds numbers (Ref. 3, page 136) if the disturb-

ance is soei-excited, and we therefore neglect it in the following development

(except insofar as it is represented by the singularity at z = zC),

*This singularity is amly apparent if (Ul/T)' vanishes at z =zc; cf. Eq. (4.7).
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The differential equation satisified by f(s) outside of the boundary layer,

where m assumes the constant value min, reduces to

d2f - 2f 0, (2.12)
dz 2

where

P= k(l - m ) 1/2= kf I1[ I s " (2.13)

We then have/-p
5~) ez> 1' (Z. 14)

where z = zI denotes the edge of the boundary layer; from this we deduce

the boundary condition
•f (2.15s)

Sdf--- + A = 0. z= I

The finiteness condition that f be bounded as z--* co requires Rj -s 0,

while the radiation condition requires Im P to have the same sign as V - U if

R . P = 0. These requirements will be satisfied everywhere in the complex

V-plane if we draw the cuts for P from the branch points V = UI *aI sec a to

* ao and exclude points on their top sides. Of course, 4t is not necessary to

satisfy the finiteness and radiation conditions everywhere in the V-plane but

only at those points for which solutions to Eq. (2. 12) are to be considered (thus,

in reference 1, the cuts were drawn into Im V;0 and only points in Im VO0

considered); in the final analysis, we may deform the cuts in any way that

ensures the existence of the solution to the differential equation and the satis-

faction of the boundary conditions. We remark, in this connection, that a

periodic disturbance of the type (2. 1) cannot exist by itself, and in a complete

initial value problem we would be led to consider an integral superposition of

such disturbances over a prescribed path in the V-plane.

2 1/2
In Section 5, P is redefined as K (I - 1  , where X k6, and 6 denotes
boundary layer thickness.
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The prt:ssure an the panel at z so# as obtained from Eqs. (2-4) and

(2.8), Is given by

S(P 
l =o -P l 4 k ? (x - V t, y)o (2.16)

where we have introduced

S , f (2o (2.17)

and

A =a1 sec o. (2.18)

Our boundary value problem now may be posed as: find a solution to

the dJiferential equation (2.10), subject to the boundary conditions (2.11) and

(2.15). and evaluate it at z = a 0
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3. EQUATIONS OF MOTION - PANEL

We present in this section a brief derivation of the eigenvalue equation

for the panel. A more detailed derivation has been given in reference 2.

We assume the existence of an operator L, such that L; is the

reaction force per unit area associated with a transverse displacement ,

L may imply both differential and integral operations with respect to the

space coordinates, but not with respect to the time- -i. e., L 4 is in

phase with r . The equation governing the panel motion then reads

=Pi " Pap (3.1)
ata

where pi denotes the perturbation pressure of the fluid beneath (inside)

the panel, pa the perturbation pressure outside the panel, and 4 the
panel mass per unit area. If the compressibility of the internal fluid is

neglected, pi represents a virtual inertia force, which, for the traveling

wave defined by Eqs. (2.1) and (2.2), is given by

pi ` pik (V cos a ) , (3.2)

where p i is the fluid density. (This follows directly from the fact that

the effective depth of an incompressible fluid for a surface wave motion

is i/k; see reference 2 for an alternative derivation.)

The eigenvalue equation corresponding to the traveling wave of
Eq. (2.1) may be derived (see reference 2 for details) by relating the

operator L to the wave apeed V that would result in the absence of
0

the aerodynamic force (but including the virtual inertia force of the internal
fluid); thus, substituting r, and pi from Eqs. (2.1) and (3.2) in Eq. (3.1)

with V = V therein, we obtain
0(

L r- =0 + -!(kV cos a )?7'. (3.3)

We emphasize that V is an eigenvalue of Eq. (3.3) and is a function of
0

k and a.
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ktbetitutig pa from q. (Z.16), and L4 from Sq. (3.3) in the

complete equation (3.1), with - jl vo in ; and Pi, and dividl•g through

by the coefficieat of V3 , we obtain the elgenvalue equation (for V)

V3 +PAZQ i ) - V2  (3.4)

whore

P (3.5)
p1 + u

is the aerodynamic-mass parameter, and F and A are defined by

Eq.. (2.17) and (2.18).
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4. SOME GENERAL CONSIDERATIONS REGARDING STABILITY

The explicit determination of the stability boundaries for a given panel,

as represented in the specification [or derivation from Eq. (3.31) of. V

as a function of k and a and the mass parameter 1, and a given boundary

layer, as represented by the specification of velocity and temperature

profiles, requires the simultaneous solution of the differential equation (2.10).

subject to the boundary conditions (2.11) and (2.15), and the transcendental

equation (3.4).* This represents a formidable problem, which is especially

complicated if V = U within the boundary layer, giving rise to a singularity

of the differential equation (2.10). In order to clarify the role of this singu-

larity with respect to panel flutter, we develop in this section an implicit

solution to the boundary value problem.

We first rewrite Eq. (3.4) in the form

v { To) F , ve (4.1)

where the phase of the radical is defined such that V = V at i = 0. It

then follows, neglecting structural damping (V real), that the imaginary
0

part of V will be opposite in sign to the imaginary part of F. so that

instability requires Im F>0.

We obtain an implicit solution for F by multiplying Eq. (2.10) through

by m' 2 -7 (where the overbar denotes the complex conjugate), integrating

from z = z0 to z = z,, integrating the term T (m_2 f')' by parts, imposing

the boundary conditions (2.11) and (2.15) to eliminate f' at the limits, and

solving for T" (z ); the end result is

= z ( 0) If(zi)I mj ~I I m)

+ •f'W 12 + k-(I - m ) If 12] (4.2)

Alternatively, Eq. (3.4) may be combined with Eq. (2.11) to obtain a homo-
geneous boundary condition on f at z a zo. This formation leads to a more
symmetric boundary value problem but is less satisfactory for the approxi-
mate solutions treated herein.
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We will assume that the phase angle of V is small (V approximately real);

then m will be approximately real, and the imaginary parts of the first and

second terms on the right-hand side of Eq. (4.2) must be derived chiefly from

the radical (I - m ) 1/2 and the singularity at m = 0, respectively.

The phase of (I - mi) f t/k for V approximately real is, by

definition, 0 for jmJ < I or t w/2 for * ms > 1, corresponding to our

previous choice of branch cuts for p [see remarks following Eq. (2.15.

Thean, writing

F a f (M 2(m )102 m 1 (4.3)

we infer that the contribution to Im F (it - Im 1P) of the first term in

Eq. (4.2) is Fa, 0, or - Fa for V(Ui - A, U1 - AwLV4UI + A. or

V>Ul + A, respectively, if V lies close to the real axis but not too

close to U1 t A. The integral in Eq. (4.2) will contribute an imaginary

part, say rb, to Fr only if 0<VV< U 1 , in which case ra will vanish at

the point 2 a act It follows that

IMPint4 F a + rFb. e 0V< U1 -A

FTb U1- Ao<V<U-

(4.4)
0 0, U1 4V<U +A

.* -, U1 + A(<V.

We remark that if V does approximate U1 t A, as in Section 6, the

contribution of the first term in Eq. (4.2) to Im F must be modified,

but this does not affect the contribution of the second term, which remains

as 3 b or 0.

The nature of the negative damping represented by Fa is essentially

the same as that predicted in the absence of the boundary layer and discussed

in more detail in reference 2. The presence of the boundary layer reduces

this .omponent by partially isolating the surface wave on the panel from the
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direct action of the high-speed airflow outside the boundary layer (in particular,

the panel is exposed directly only to a subsonic flow, even though the free-stream

flow is supersonic).

We may deduce a simplified expression for Fb by noting from the

differential equation (2.10) that V' (z) -0 (m) and f(s) r. fs) ( + 0 (M) as

Z.-z c accordingly,

-k Im i 2  (4.5a)
0

where K,1 as defined by

K = " i (m 2 - 1) dz, (4.6)

is the integral appearing in the solution for f, (z) discussed in Appendix A.

The sign of Im KI evidently depends on how the singularity is circumvented;

this is an extremely delicate question, but it has been examined thoroughly

by Lin (Ref. 3, ch. 8). and we merely state his result that the path of inte-

gration must be indented over the point z = ca * whence

Fb w ka2  e 2  lf(S Tc d (.7(4.7

where the subscript c implies evaluation at z=z c (see Appendix B for details).

The integral KI occurred in the laminar boundary layer stability problem,6
and Lees and Lin have shown that if the original flow absorbs energy from a

small disturbance in the boundary layer profile

Cf. Eq. (5.4b).

We note that the sign of the wave number usually assumed in boundary layer
studies is opposite that chosen here, which has the effect of interchanging i
and oi; thus, the path of integration elected by Lin actually is indented under
the singular point s = zc.
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d U 0.(4.8)

It does not follow that Eq. (4.6) is a necessary and sufficient condition for

the stability of the boundary layer, but it seems likely [on the basis of

empirical considerations, as well as Eq. (4.8A that it will be satisfied

for both laminar and turbulent boundary layers in those aerodynamic

regimes for which panel flutter presents a serious problem. We may

anticipate, therefore, that Fb will be positive, and we infer from this

consideration that the boundary layer could be destabilizing with respect

to surface waves having wave speeds in the interval 04 V< UI and

amplitudes small compared with both boundary layer thickness and wave-

length; however, the net effect in the interval 0' Ve-U1  A is more likely

to be stabilisiag in consequence of the reduction of F . The destabilliaing

mechanism represented by Fb appears to be closely related to that studied

in the boundary layer stability problem (see reference 3. Section 4.4; also

reference 7).

A rough approximation to the value of a for a turbulent boundary

layer may be deduced from the well-known 1/7 power law--via.,

U11
U1k [_ ( 4.9)

where 6 is the boundary layer thickness. We anticipate that panel flutter

will be most serious when V approximates or is less than U1 - a1 (as in

the absence of a boundary layer: cf. reference 2 and Sections 6 and 7 below).

Setting U Ua -a 1 and a assc in Eq. (4.9) thenyields

4)7 (4.10)

We note that F 3 0 in subsonic flow, and instability then would have to be
charged entireol to the shear flow in the boundary layer. It seems likely
that Fr would be too small to render practical aircraft structures unstable,
but it ity afIfod an explanation of the generation of gravity waves on a
liquid surface. 7



GM- TR- Z99
Page 15

which has the values 5 . i0'4 and 8 . 13 for Mt a 1.5 and 2, respectively;

these values are so small that they might place sc in the laminar sublayer.

where the 1/7 power law no longer would be valid, but they may be assumed

to give the correct order of magnitude. Of course, (sc - ao) / 6, as given by

Eq. (4.10), does not remain small for large M,1 but it seems likely that

Tb then would be unimportant compared with Fa-

We add that (sc - so) / 6 probably would approximate (I - I/M1) for a

laminar boundary layer, but a laminar layer almost certainly would be so

thin as to have no effect on panel flutter.
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5. THE BOUNDARY VALUE PROBLEM

We now return to the boundary value problem posed by the differential

equation (2.10) and the associated boundary conditions (2.11) and (2.15).

Introducing the dimensionless variable

- (5.1 a)

and the boundary layer thickness parameter

K k 6 2w (.Ib.-= , 6(5.1 b)

where

6 = z 0 , (5.lt)

in Eqs. (2.10), (2.1I), and (2.15), we obtain

m"- K--(i - m 2 ) f = 0. 0 1, (5.2)

f J o2, (5.3a)

and

f + Af 0, (5.3b)

where the primes imply differentiation with respect to t. the subscripts

0 and I imply evaluation at C = 0 and 1, and p is defined by Eq. (2.13)

if k is replaced by 9 therein.

The differential equation (5.2) has a regular singularity at o =

where m (C) a 0. The exponents of this singularity are 3 and 0, and we

find that the corresponding solutions in its neighborhood are of the form

t C• • . )3. N (C •C)4 +0(. •C CC) 5 (S.4a)4
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and

2 +1 1wi) ( .= • w (;)log - c-ei 24. 1..c)- + o(c- -,c),23 D(5.4b)

where

-m
q c (5.5)

C

The solution wI is everywhere real for real values of -" , while w2

has been normalized to have the imaginary part 0 or (-wiqW/3)w1  as

C <4c or g > c, respectively (since the logarithmic branch point must be

circumvented by indenting over = ). The Wronskian of this pair of

solutions is

W w ww 3m 2 (5.6)

We also find it convenient to introduce a second pair of solutions, f and

fZi that satisfy the boundary conditions.

fto = 1, (5.7a)

f1= 0, (5.7b)

if20 0, (5.7c)

and M2 (5.7d2
20 = oo

where the first and second subscripts identify the solution and the point of

evaluatiozi respectively. The corresponding Wronskian is

WIfI, fZ = 2 (5.8)
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Invoking the boundary conditions (5.7) on linear combinations of w and w.
and making use of the Wronskian (5.6), we obtain

.2
f c [wIt W a)WZO W( (5.9a)

3mno

and

f2 M - '-'---- w20 w 1I,) WIo w2 (1] 15.9b)
3

The required solution, subject to the boundary conditions (5.3), now

may be expressed in terms of either wI and w2 or f and f We find

7 w PI ) 2 C)- (wj + PWZIW ()
f KMo . it + .1) WO (5.10a)

and

f = F fIIl - f • ( 0z1) (5.1Ob)

where

F = K (5.11)
fill + Afli

We require only, the imaginary part of F throughout much of the sub-

sequent analysis. This can be calculated directly from Eq. (5.11), but it

may be advantageous to consider separately the components Fa and Fb,
as defined by Eqs. (4.3) and (4.5b); these depend only on the absolute value

of f and do not require the calculation of phase (which might be rather

small in some applications). Setting C = I in Eq. (5.10b), simplifying the

result with the aid of the Wronskian (5.8) evaluated at 1 = 1, and substi-

tuting in Eq. (4.3), we obtain
2- 2(m.

K 2m 2 (in 2 1 )1/2
Fa f -- , 1  1 m 1 >. (5.12)! 1l + pft1
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Setting ; in Eq. (5.10b), expressing the denominator of the result in

terms of f with the aid of Eq. (5.9a), and substituting in Eq. (4.3b), we

obtain P

Fb _- K3 mc 4 / 1 + link1I (5.13)b c If + Pf12

The solutions f1 , f2 # and w are developed as power series in 9 in

Appendix A. The first approximations to the quantities required for the

evaluation of F ane, Fb are

f 4  =+062 fI = 2 2~z
f = I + O( , ft K K I + O(K )I (5.14a,b)

3J 1  3m 1
I + 006 w = I + 0(0 (5.I5a,b)I LI It I LI

m m

where K1 is the integral introduced in Eq. (4.6) and evaluated in Appendix B,

and J io defined by Eq. (A15) in Appenuiz: A. Sul-rtituting these approxima-

tions in Eqs. (5.17.) andi (5.13) yieldo

m 2 (m 2 t)0/2
1 1 [I+O(K m>i, (5.1 6 a)

F -i(m -t)1/z + Km K 1  j I

- 0, mti, (5.16b)

and m2+K(_ 2)1 /2 j 2

Fn - 1 + ((- K [I + O(K2) (5.17a)F. D K,= - 2 112+g
m> + (k m I)J

-Kmi4 Imn1K
(1 -in) + o(K 2 . KI' . mn ) (5.17b)m 2- ) 1/2 +1K mZKiI 2 L 1
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The approximation (5. 17b) anticipates (on the basis of the results for- = 0;

see reference 2) that supersonic panel flutter should prove most serious for

values of mI only slightly larger than unity for sufficiently small values

of K.

The approximations to Fa and Fb provided by Eqs. (5. 16) and (5. 17b),

together with the values of K, given by Figs. ia and lb (for a = 0 and an

insulated boundary) are plotted in Figs. 2a through Zc and Figures 3a through 3d,

for M, = 0. 1.1, 1.5. and Z. 0 and K a 0.5, 1.0, and 2.0. Also plotted

(labelled "exact") are some results that were obtained by numerical integration

of the differential equation (5. 2) on a digital computer. The agreement doubtless

could be improved by including terms of higher order in K in the approximate

results for Fa and Fb or, in some cases, merely by using Eq. (5. 17a) in

place of Eq. (5. 17b), but the errors in the approximations (5. 16a) and (5. 17b)

are not likely to exceed those already present in our simplified model of the

boundary layer.

We emphasize that the results (both "exact" and "approximate") for Fb

are not valid for V/U 1 less than about 0. 3 in consequence of the breakdown

of the one-seventh power law assumed in the calculations. An adequate

correction factor for Fb could be achieved by forming the ratio of Im K1

for the actual U(s) and T(s) to that based on the one-seventh power law,

using Eq. (BSc). The results for F do not appear to be very sensitive to

changes ir. the profile.

The procedure was to obtain first the regular solution wI by integrating away
from the singularity, starting the solution by power series expansions neo
C C and then continuing by the RungS-Kutta method over the range (Z . 1).
The swular solution w. then was expressed as

S=(q/3) w 1 log [cM - t je'iw g(F),

the inhomogeneous differential equation for g determined by substitution in
the original differential equation, and the regular function g obtained by the
procedure outlined for wj. In those cases where C was outside of the riskne
of integration, f, was determined directly by integiating out from C = 2 ,14•.
The details and programming were worked out by Dr. Samuel Conte and
Mr. David Bussard; the computer was a Remington-Rand, Univac Scientific
Model I103A.
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-. 50.

+1.0 •..

Figure I&. The real part of m, K1,. as iliven by ECquationg (B 16) - (320)

for ae 0 and an insulated boundary layer; if a A 0 the
resnults are approximately correct if the nonilnal value of

M an the curves is replaced by MI COG a.
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3.0

I.S

1.0

0.5

0 .
00.2 0.4 o.6 0.8 1.0 I.

v/U I

11Igw 1b. The ilmasinaary part of-m42Ki, as given by Zqiation. (B16) -(B10)
$Or a a 0 and an insutated boundary layer; if d it 0 the resulte
are approximately correct if the nominal valtue of M on the
curves is replaced by MI co a.
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To max. at (0.01, L14)i jTo="s. at (0.05, L.14
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Figure Za. Faversus V/U 1 for a! 1.Z.
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1.0

--- Zq~uau. ($.a•) sad (5.17)

0.40.

I I I

a. - - - -.0

1. ~- -

ILI

I I
-I

0 -. a a a

a!

I
0.1 - •.

V/ul
Figure 2b. Fa versus V/U- for M- l o
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.... em t - I
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Figure 2c. F. versus V/U 1 for M, = 2.0.
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0. 12 - t-5 I I" --- Z~~,I.6 i.
- Equations (S. 16) and (S. 1?)
--*.e=Ct

Tb
0.04O

0 0.1 0.2 0.3 0.4 0,S 0.6 0.7 0.8 0.9 1.0

v/U' f

SFigure 3b. Fbversus v/u1 for M!= i.z.
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0.26 - _ _ _ _ _ _ _ _

-- Zquations (5.16) &ad (5.17b)

-n-- •exact

0.24 ------

0.16 0.

•Xb 1.0
0.12 T

0.0.0

0.04-

0
0 . r- n. 0.3 0r.u .5 0 r. 6 . a .

v/U I

Figure 3c. F b versus V/U, for M, = 1.5.
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0.70 -

-- quations (5.16)
and (S.17)

exact
0.60

I
I

I
0.50,

rb

0.30 - - -. -

1~.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V/U 1

Figure 3d. Fb versus V/U 1 for M, = 2.0.
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6. APPROXIMATE STABILITY ANALYSIS

We consider in this section the approximate calculation of the negative

damping ratio (in the notation of reference 2)

6 = - Im V/R I V (6.1)

on the assumption that the second term in the braces of Eq. (4.1) is sufficiently

small compared with unity to permit the approximation

V =V l 1.. (0~F~~3 ) (6.2)

Eq. (6.2) may be regarded as the first approximation based on a power series

expansion in the parameter i. and it will be valid for i 4< 1 insofar as F

remains bounded. Now R I see Eq. (3.5)] almost certainly would be small

in practical applications, while IF I can be large only if both IV - (U 1 * A). - U1

and K << 1; the latter contingency is examined in the following section, but we

remark here that it is apt to be important only when K is of the same order of
1/3

magnitude as IL,

Substituting Eq. (6.2) in Eq. (6.1) and evaluating Im F from Eq. (4.4)

yields

6 = E (j (Fa +Fb) 0<Vo< U1 -A (6.3)

in the region of principal interest. The maximum value of 6 with respectO

to V0 almost certainly will occur in this region if (V o)min < UI - A, but

Fa = 0 if U1 - A <V 0 <U 1 ; if Vo > U1 panel flutter of the type considered

here is not possible.

Perhaps the most expedient approach to the determination of the maximum

value of 6 with respect to variations of I\ and a is to adopt the approxima-0

tions of Eqs. (5.16) and (5.17b) for Fa and Fb, determine the corresponding

value of (6 o)max . and then estimate the approximate corrections to F and Fb

from the results of Fig. 2. Substituting Eqs. (5.16) and (5.17b) in Eq. (6.3)

yields
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0 [ m + lKm 1 2mZ 1. (6.4a)

- - Kmrn Im K, + [$m .RI 1

We recall that [Eq. (2.9)]

MI =U ) Cos a=M (I1V°0 ) c 0 ,, (6.5)

while K1 depends on V o/U1, MV and cos cL; as suggested in Appendix B,
the error in assuming that K1 depends only on MCO cos a, rather than M1
and cos ca separately, usually will be small (the essential approximation is
the replacement of MI by MI cos a in the temperature profile).

We consider as a more specific example a pressurized cylindrical shell
for which the internal pressure is sufficiently high to render negligible the
effects of bending on Vof which then is given by [ Ref. 2, Eq. (5.5) with
D=O and NY = 2NX PiR j

VoE Fc +pi2@ + tan2 a)] (6.6)

We introduce as the independent variables

x = Vo/U, y : cosa a (6 .7a, b)

and, as a measure of the wavelength,

z = Z1 /kR, Z1 = hi/p•a (6.8a, b)

Substituting (6.7a, b) and (6.8a, b) in (6.6), we obtain

;Z_ (1+..1ZY (6.9)
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where

X = ~IR/2W U (6.10)

denotes the minrmum value of x (x = xM at a = 0 and k =-oo). The boundary

layer thickness and aerodynamic mass parameters [ the latter given by

Eq. (3.5) with P 0 therein 1 then may be expressed as

V = k 6 z (6/zM ) z" (6.11)

and

1 =pI/6-k = (plR/ozl)z . (6.12)

Noting also that

M2 M2 (I- X) 2y (6,13)

and, on the basis of the aforementioned assumption for KI

ml2 K1  ml K (Vo/UI, M1 Cos o) =m2 K (x, M 1 /2) , (6.14)

Eq. (6.4b) may be transformed to

-- '1. ... ..
60 I 1) - /r 1 2-- lx)zy2-1 +zl(l/R)z Im 2KX(X, Mlyl/ 2)

(6.15)

We require the maximum value of 50, as given by Eq. (6.15) in con-
junction with Sq. (6.9), with respect to independent variations of x and y

over the Intervals

x x and 2 - y 4_ 1 . (6.14ab)
m+ x
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Tke required calculations would be difficult to carry out analytically, but they

are quite simple on a kigh-speed computer.

If the boundary layer Is relatively thin (Ke-< 1) we find that (60)Max is

likely to occur for values of x and y such that m1 exceeds unity by only

a small amount and the two terms in the braces of Eq. (6.15) are approxi-

inately equal in magnitude. The imaginary part of Kl--and, therefore, the

negative damping effect of profile curvature--then is likely to prove rather

unimportant. although its real part plays an essential role in preventing the

infinity that would be indicated by Eq. (6.15) at m, = I if K--+ 0 (in which

case the analysis of the following section would be required). The approxi-

rnations of Eqs. (5.16) and (5.17b) evidently are entirely adequate for this

case.

If the boundary layer is relatively thick (say K ) I or Z) and Xm is not

too small, it appears that (6 o)max is likely to occur at m 1 = 1 and a = 0.

The instability in this case would be associated entirely with profile curvature,

and it therefore would be important to improve the approximation to Fb.
relative to that of Eq. (5.17b). and to investigate the effects of possible

departures from the one-seventh power law.

Calculations bised on the results of this section have been carried out

for pressurized, monocoque shells filled with either gas or liquid and

compared with calculations based on the results of reference 2o It appears

that the degree of instability for supersonic flutter may be reduced by an

order of magnitude (roughly a factor of 5- t0) in consequence of boundary
layers for which kW- 1/2.

The effect of the boundary layer then may be compared with that of small
damping in limiting the response of a simple oscillator at resonance.
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7. STABILITY ANALYSIS-VERY THIN BOUNDARY LAYER

The analysis of the preceding section breaks down in the neighborhood

of m, a I if K is of the same order as p 1/3 (of course, if K is

sufficiently small compared with p the effects of the boundary layer on

panel flutter will be negligible, but turbulent boundary layers are not apt to

be this thin at supersonic speeds). The assumption that both K and Imi - 11

are small allows us to approximate F by lsee Eqs. (5.11) and (A 8a)-(A 9b);

also cf. Eqs. (5.16) and (5.17a), with which this approximation is consistenf]

2I I + o()1 (7.1)

mr) + KmIK

Substituting r from (7.1) in (3.4) and eliminating mI through (2.9) and

(2.16), we obtain, after some algebraic manipulation,

V 2'- V L 0 / ui-V

where the dependence of K1 on both U/A and V/UI has been explicitly

denoted.

We net introduce the dimensionless variables v and 4, representing

the departures of V and V0 from UI - A, according to (cf. reference 2)

V - (U -A) [++(1/2h/)VP/a)2/3(Ma I)'5/3J, -3w/Z<arg v - w12 (7.3a)

and

Vo a (U1 - A) It + (3/2)e (p1/2)2 / 3 (MCL - 5)-5/3]. (7.3b)

wLhre the F rmissible range of arg v is deduced from the restrictions on

V and A ErZq.(.13). is real (structural damping being neglected), and
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M denotes the (free stream) Mach number relative to an observer moving

with the wave front- -viz.,

M UI/A U cos a/am . (7.4)

We also find it convenient to introduce the boundary layer parameters l

and q according to

3 M 1__ 1/3

( ) [(M K (Ma, I - Mt) (7.Sa)

and

3 1/29 (.7. 5b)

We will use the parameter 0 initially, but we find q more convenient

in the end results. Substituting Eqs. (7.3a,b) and (7.5a) in Eq. (7.2) and

neglecting higher powers of . then yields

(v- 3g)(vi/2+30)+2 = 0. (7.6)

We observe that the importance of the boundary layer in this approximation

is determined by the size of 310 1relative to v 1/2 ; in particular, K<< I
is not a sufficient condition for the neglect of the boundary layer.

Rewriting Eq. (7.6) in the form

(vI/2+0)3 _ 3AB(v1/2+ 0)+ (A3+ B3) = 0, (7.7)

where

B =QI -34e+ 0e3 [(1'3e+ 3)2'(0 + ), (7.8)

we have

VA + AE + B 3 =-i , (7.9)
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where'the three roots of the cubic equation (7.7) correspond to the three cube

roots (4 ) of -1 (7 is the complex conjugate of 4). This result is valid for

complex values of both ( and 9, but the explicit determination of the

imaginary part of v, on which the damping ratio depends (assuming g& to

be approximately real), is possible only if both t and 0 are assumed to

be real; on this last assumption we find

Im = - (6-/Z) IA - B- JA.+ B -20 (7.10,)

(1 - 30 + 3) + 0 3 )a

= 0. (7.1Ob)

If 9 is not real Inm v must be determined numerically from Eq. (7.9).

The maximum value of -In v with respect to the spectral parameter

is determined in Appendix C. We designate the ratio of this m.ximum to

its value in the absence at the boundary layer (31/2/Z1/3 at 0 = 0 and

a 0) as h(TI), which is given by Eqs. (C7) and (C8) and is plotted in Fig. 4;

M , the value of & at which this maximum occurs, is plotted in Fig. 5. The

maximum (with respect to • ) negative damping ratio then is given by [Cf.

Eq. (4.13), reference 2]

60 = ( -ImV/RIV)I,, ( 13 2 l/4) IA 2 /3(Ma - 015/3 h(q ).

We emphasize that the results for j 4 0 may not be directly significant, since

KI and i will be positive real if the singularity at a z sc is excluded, while

if it is included KI and 11 must be complex; however, these results may

be useful in determining a first approximation to 60 for complex -q.

We find, by numerical comparison, that the approximations = - 2

and h a (2 1/3/3r) are adequate for vi>l [Eqs. (C01) and (Cii). Substituting

these approximations in Eqs. (7.3b) and(7.i1) and eliminating qi via Eq. (7.5)

yields

2
6 0 = /4AK 1I(MQ - 1) .11(12
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The real and imaginary parts of KI, as evaluated in Appendix B, are

plotted in Fig. 6 for V/U 1  I - Mi (cf. Fig. 1). As suggested above,

the error in replacing M1 by M1 coo a for a 0 0 is not likely to be large.
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3
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°3 -1 +1 +3 +5
,1

Figure 4a. h(q1), the ratio of the mauimum negative damping ratio with
boundary layer to that without, an given by Equations (7. 1i),
(C7), and (CS).



GM- TR- 299
Page 39

1.0

1.4,

Io.

h 1.0

0.-

0.6

0.4

0.4

Fige -0. Expae +d0.6 p o.f

Figure 4b. Expanded plot of hillq) for q•<
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Figure 5a. m the value of 4 for maximum negative damping ratio,

an given by Equation (C8).
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Figure 5b. Expanded plot of Irn ?o I' 1.
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Figure 6. The real and imaginary parts of K1 for the special case

a = 0 (V = U1 - a 1 ) and an~insulated wall with y = 1.4.
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APPENDIX A

SOLUTION OF DIFFERENTIAL EQUATION

We require solutions to Eqs. (5. 7) and (5. 8)--vis.,

mr d (M -W .) - I'l(l-rri) f= 0, 0. k1 (Al)

flO = 1, fl 1O = 0 , (A~a)

2f20= 0, £i' = Me. (A2b)

where the second subscript indicates the value of C.

A solutioa that is useful for small or moderate values of K may be
obtained by introducing the expansions

2 o KZn (n)l

h(C.,, ) = M f , i = 1,2 (A3)
n=0 1

in Eq. (AI). which then yields

d -2 df(n) -2
= - = (m- 1) f (l) (A4)d (, d4 )

We may satisfy the boundary conditions of Eq. (A2) with the zerolth
approximations

fl (0)= I (A5a)

and

f2(0)1 M ,d,. (A5b)

do

- ---4-
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The succeeding terms (nb 1) in Eq. (A3) then must satisfy the homogeneous

boundary conditions

f (n) (0) = fO n)(0) = 0. (A6)
1 I

Integrating Eq. (A4) subject to these conditions, we obtain the recursion

formula

In) 2 -2 (n-)
ii m d0 (m - 1) fi dt, n~l. (A7)

V Jo

We require, in the end [cf. Eq. (2. 24)], the values of f1 il, f., and

f2 only at ý = I. Following Lees and Lin b 8 (but with slightly revised

notations), we may express these in a series of definite integrals according to

K K,2n (Aga)

fl= ml 2 . / 2n+2 ~+1,(A~b)
n=0

2 Zn
I2 1 n=0 2n(A9a)

z• OD2n

f21 KM HZn+l (A9b)
n=0

K 0 1,

K 1 1 - 2- )d00

2O 10 -

K2 = m0 md• (m"2-l11d•,

K 3 = 1 (m2- 1) d; I m2 d; (M0 2- 1) dC,, (A10)
O J LýO
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p1
0 2,

H2  10 (m~z-1)d Jdmd . . . (All)

The numerical evaluation of these integrals for a laminar boundary layer has
8

been discussed in some detail by Lees. Appendix B contains a discussion of

the evaluation of K, (the most important of these integrals) for a turbulent

boundary layer.

The analytic solution wI, as introduced in Section 5, also may be expanded

according to Eq. (A3). integrating Eq. (A4) subject to the boundary conditions

we obtain

w (0) 3 m 2dC, (Al3a)

c •rtc

W = m d; dt. (Al 3b)

We require w (l) and w•(l)( which may be placed in the forms

3 2 O

3 m mey~~ J (A 14a)
W i 4 1 0

C

W I z EK 2n+l (AlI4b)
in 0

C
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j 3 1,

I1 t

j m d; M )d m2d AS

c C
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to APPENDIX B

EVALUATION OF K1

We consider the integral

,6

K1 = 6-'(0 2 --1) ds, rn(s) U(s) - V" (BI)
a (z) sec a

Introducing the dimensionless notation

=--, = () a (a)
6U c U

where r(4) is the relative temperature distribution, expressed as a function

of the relative velocity, K, becomes

1K I -+ M2 sec aI(2 Q (B3)

where
c):O Td .(B•.a)

de , (B4b)

10 9 c)z

and we have assumed U U = 1 ) at z :5 ( ).

Integrating Eq. (B4b) once by parfq, along a path indented over the

singularity at 4 = r'c, and then separating out the singular portion (I ),
we obtain

(0-'() 1 (00 +"'cS I -+c_

)U
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where

is ( C, d4 (B6)

"- ( 4 . 4C)

and the subscript c implies evaluation at the singular point =c

Integrating I. over the singular point yields directly

I )c n ,T(.i . (B7)

Substituting this result in Eq. (BI) yields for the imaginary part of K1

lI -K = - WM- sec C (4) 1 (B8a)

-2 z I I (

Woeter conidetahpriureape the turbulecnti velocity) eprtr profile9

= -M sc(- (B9b)

U,, To dz.• (3]

r(2) - b• + c a = (, ) d b (I-a-c, (BIO)

for which
(= 7 6 a sec 7b = 8

(4 a-( +cg a = T 7b 2 + ) 8c , b ).- (BIi)
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We note that Eq. (B9) is not accurate right down to - 0, where it gives
0'0) a 0. but the error in equating the first term in Eq. (35) to zero for

large free stream Reynolds numbers (say greater than 10 6) in negligible.

Substituting Eqs. (59) through (Bit) in Eq. (BS) and carrying out the

integrations yields

I a 7[ai 5 (cc) + b' 6 ()- + c- 17 (] - (1 -(BZ)

where

" ÷•cn i (B13)SU( 9t) a n + 1)L c +__°i Wl

Substituting Eq. (312) in Eq. (M3) and a. b, and c from Eq. (BI0) then yields

K 1+ 7M-2 sec 2 ci(c) a0- ) 'i]

The quantity actually required in the stability calculations is

mAK = (U ) K1 = M2 coon 2 (1 - )K 1 2BIS)

which we write in the form

with

A(e4) a 701 - 4 d)' [11 ( c) - 16 ( 4d] (BI 7)
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B : 7(1. () [( . ,g'1(f -)1 (B18)
C(•,c)

C d 7 (1 - 4d [14c 17e]-(B19)

The real and imaginary parts of A, B. and C are plotted in Figs. 7a, b, c,

respectively. The real and imaginary parts of mt Xk are plotted in

Figs. Ia, b for a = 0, MI = 0.1, 1.2, 1.5, and 2.0, and an insulated

boundary--i. e., one for which

To I ••t tM aT - I ( 'M (B20)

The latter results also may be used, with only a small error, for a 0 0 if

the nominal value of M, on the curves is replaced by Mi cos a.
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Figure 7a. A (4). a a given by Equation (B317).
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Figure 7b. B (t), as given by Equation (Big).
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Figure 7c. C (Q), as given by Equation (B19).
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APPENDIX C

MAXIMUM VALUE OF Im v

We wdsh to maximize the quantity

- Im = a /2)I A - B A + B - 2 0 (Cl)

with respect to 4, A and B being given by

A (I-3B+03 L(1 3 - 3 (+03)2Q +0 23]} 1C2)

Differentiating Eq. (CI) with respect to C and equating the result to

sero. we obtain

D + B)9 + A](A + B - 2o) m-.(3[( ~+i(~-O)=. (C3)

It in evident that the majdmil,. value of -Im Y corresponds to the vanishing

of the first factor in Eq. (C3); dividing this through by A B e and combining

the resulting equation with the values of A B and A3 + B 3, obtained from

Eq. (C1). we have

A"1 +.B"1 +01 0, (C4a)

AB- (C+0 ) * 0, (C4b)

and 3 3 3
A +3 -2(1- 3•0+ ) = 0. (C4c)

Eliminating A and B from Eqs. (C4a, b, c) yields the cubic equation

--90 4+203 a 0 (C5)
mm

for the required value of J. sfay Cm 'The corresponding value of -lrn v

may be placed in the form

( M V) M a 31/2. Z 1 1 3 h() , 31120 (,6)

wheze h, normallued to have the value unity at q a 0, is given by

h a 3-Z /3 1 - + q [ n') +I ... 2)]1/ , (C7)
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and Ti is introduced in place of 0 because of the manner in which it enters

Eq (•CS) has only one real root, opposite in sign to 0, if q I 31 9 1 J< .
while if IJ> I there are three real roots; solving for these roots yields

3-" 12 " 1 +1( - n61/Z] + [1 - (1- 6n16/l1/J 1} (Csa)

=- I"1 1n I-0 iII1>1 (Cgb)
- J11J + kzzw/3J Cb

where

cos M = Hi"3 ((9)

If 111 I> I that value of • yielding the maximum value of h is to be chosen.

The limiting values of 4 for large ij I are,

Cm =qI - 3"3/2,-1 1 " 3 3/2" (CIO)

The corresponding, asymptotic forms of h are

h--- 213/1• S. (CI I la)

""4/3. 3"1/4 111/2 > -1 >1. (CIlb)

We note that these approximations actually are quite adequate for In 1 1.



GM-TR-299

Page 56

REFERENCES

1. Miles, J. W., On the Aerodynamic Instability of Thin Panels,
J. Aeronautical Sciences, Vol. 23. pp. 7 7 1 - 7 9 0 , August 1956;
also Report AM 5-4A, The Ramo-Wooldridge Corporation,
20 May v1Q.

2, Miles, J. W., Supersonic Flutter nf a Cylindrical Shell,
J. Aezonautical Sciences, Vol. 24, pp. 107-118, February 1957;
also Report GM-TR-32. The RAmo-Wooldridge Corporation,
25 May 1956.

3. Lin, C. C., The ,The off-of Hydrodynamic Stability, Cambridge
University Press, 1955.

4. Ward, G. N., Linearised Theory of Steady High Speed Flow,
Cambridge University Press, 1955, pp. 224-227.

5. LAlhthill, M. J., Reflection at a Laminar Boundary Layer of

a Weak Steady Disturbance to a Supersonic Stream, Neglecting

Viscosity and Heat Conduction, Quart. 3. Mechanics and Applied

Mathematics, Vol. 3, pp. 303-325, 1950.

6. Lees, L. , and Lin, C. C., Investigation of the Stability of the
Laminar Boundary Layer in a Compressible Fluid, NACA TN 1115,
September 1946, p. 67.

7. Miles, J. W., On the Generation of Surface Waves by Shear Flows,
J. Fluid Mechanics, Vol. 3, pp. 185-204, November, 1957.

a. Lees, L.. The Stability of the Laminar Boundary Layer in a
Compressible Fluid, NACA TN 1360, July 1947.

9. Van Driest, E. R., Turbulent Boundary Lafer in Compressible

Fluids, J. Aeronautical Sciences, Vol. 18, pp. 145-160, March1951.


