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ON PANEL FLUTTER IN THE PRESENCE
OF A BOUNDARY LAYERT?

John W. Milu*

University of California, Los Angeles

SUMMARY

3 The energy transfer from the uniform flow outside a boundary
layer to a transverse surface wave at the boundary is calculated on
the hypothesis that the boundary layer may be represented by an
inviscid, approximately parallel shear flow. This energy transfer
is found to consist of two components; the first is similar to that
found previously for supersonic panel flutter in the absence of a
boundary layer and is relatively diminished by the presence of the
boundary layer; the second is intrinsic to the shear fiow and is
present whenever the surface wave speed is smaller than the free
stream speed (whether subsonic or supersonic). Approximate
solutions to the differential equations for the disturbed motion of
the boundary layer are established and compared with more exact
Jpumerical-selutions. ;i‘he application of the results to actual flutter
calculations is discussed and an example of a pressurized cylinder
considered. It is concluded that the presence of a typical boundary
layer may reduce the degree of instability for supersonic flutter of
a long, monocoque shell by an order of magnitude, thereby
providing a possible explanation of discrepancies between earlier
theories (in which boundary layer effects were neglected) and

N

T'I‘ho material in this paper appeared originally as Ramo-
Wooldridge Report GM-TR-299 and was presented at the
3rd Symposium on High-Speed Aerodynamics and Structures,
San Diego, March 25-27, 1958,

cbservation, (

*
Professor of Engineering; also, Consultant, Space Technology
Laboratories, a division of the Ramo-Wooldeidge Corporation.
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i, INTRODUCTION

The dynamac instability (flntter) of an infinite panel exposed to a
supersonic air strearm has been discussed 1n references { and 2, It was
found there that the flutter speed was approximately ay + (vo)mm' where
3y denotes sonic speed and Vo the speed of a tranaverse wave on the free
panel, and that the wavelengths for monocoque structures were sufficiently
small to justify the neglect of panel curvature on the aerodynamic (but not
the structural) forces and to justify the assumption of an infinite panel. The
smallness of the wavelength implies that the effects of a relatively thick
boundary layer may be important, and the following analysis 18 intended to
establish the qualitative nature of boundary layer effects and to provide

approximations to their magnitude,

We adopt as a model for our calculations an inviscid, parallel shear
flow over an infinite, approximately plane panel, Assuming a periodic
surface wave displacement of the panel, we will establish the equations of
motion for this shear flow and the resulting pressure on the boundary 1n
Section 2, after which the eigenvalue problem for the panel will be established
in Section 3. We then will consider, in Section 4, the general nature of the
possible instability and show that, in addition to the essentially supersonic
instability of reference 2, there also appears a new type of instability
associated with energy transfer from the shear flow; this latter mechaniem

is closely related te that which enters the boundary layer stability problem,

The boundary value problem considered in Section 2 leads to a second-
order differential equation that has a regular singularity in the range of
integration if the surface wave speed is less than the air speed at the outer
(free stream) edge of the boundary layer. We consider, in Section 5, the
nature of solutions to this differential equation in the neighborhood of its
singularity, its solution by expansion in powers of the ratio of boundary
layer thickness to wavelength, and its solution by nunerical integration.
The application of these results to actual flutter analyses is discussed 1n
Sections 6 and 7.
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We emphasize that the meodel on which the prezent analysis is based
is highly idealizsed, and exp2rimental confirmation of the results is most
desirable; moreover, even though the predicted conditions for the initiation
of flutter should prove correact, nonlinear effects must be decisive in
determining the severity of such flutter. In the abeence of experimental
confirmation and at least a qualitative understanding of these nonlinear
effects (especially with reference to structural fatigue), our results must
be accepted with considerable reserve and should not be regarded as adequate
for major design decisions. It appears, navertheless, that typical boundary
layers may reduce the negative damping factor--i, e., the degree of
instability--by an order of magnitude (this statement applies only to long,
monocoque cylinders, for which the critical wavelength and boundary layer
thickness are of the same order of magnitude), thereby providing a possible
explanation of previous discrepancies between theovy and observation,
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2. EQUATIONS OF MOTION—BOUNDARY LAYER

We require the equations of motion that govern the disturbed flow produced

in a prescribed boundary layer by the surface wave displacement”

g =0 (x-Vt,y) = exp { -ik [(x-Vt)co. a+y sin a]l' (2.1)

J

of the boundary from its equilibrium position z = z,i X and y, together with z,
are Cartesian coordinates in a reference frame fixed in the panel, t is the
time, V the phase velocity with respect to the x-axis, a the angle of propa-
gation {of the wave normal) with respect to the x-axis, and k the wave

number- - vig. ,

K = %;1, (2.2)
)\1 being the wavelength of the surface wave. The amplitude of the wave,
although for convenience posed as unity in Eq. (2.1), is assumed to be small
compared with all other characteristic lengths- - in particular, both (he wave-
length and the boundary layer thickness, We remark that the assumption with
respect to boundary layer thickness might not be satisfied in many cases of
Practical interest; but, of course, the effect of the boundary layer on panel
flutter almost certainly would be unimportant if the amplitude were of the
same order as or large compared with the boundary layer thickness.

Our model of the boundary layer is an inviscid, non-heat-conducting,
parallel, shear flow that, in the absence of the traveling wave disturbance,
is characterized by the velocity profile U(z), the temperature profile T(z),
and the free stream pressure P) (which is constant through the boundary
layer). The sonic velocity a(z) and density p(z) then are related to the

temperature according to

az(z) G T(z)
> = = (2.3)
a pl{z) '1‘l

—
Cf. Eq. (3.13), Ref, 2, xy and Yy therein being replaced here by x and y.
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by virtue of the constant pressure; the subscript 1 on the fluid variables
denotes the free stream conditions outside the boundary layer. We neglect
the x and y variations of all of these quantities with the implicit assumption
that local values may be used (as in the boundary layer stability problem).

If the boundary layer is laminar the essential approximation in our shear
flow model is that the viscous forces associated with the traveling wave are
negligible compared with the corresponding inertia forces (the neglect of heat
conduction is almost certainly of less importance than the neglect of viscosity).
This approximation is similar to that adopted in the inviscid approach to the
boundary layer stability ptoblem.3 although in the present problem the approxi-
mation remains valid in the neighborhood of the boundary by virtue of the finite
acceleration there, As in the boundary layer problem, the approximation breaks
down in an inner viscous layer (Ref. 3, page 136), where the inertia forces tend

to sero. The result is a singularity in the inviscid equations of motion (see
Sections 4 and 5), which may be said to represent the inner viscous layer in the
limit of zero viscoeity . We infer from the known results for the boundary
layer stability problem that this representation is significant for small but
finite values of the viscosity if the perturbation motion is unstabla.

If the boundary layer is turbulent and we interpret U, T, p, a, and P, as
mean values, the approximations implied by the model are more severe. First,
we neglect the perturbation Reynolds stresses associated with first order *
coupling between the perturbation flow and fluctuations in the original flow.
Secondly, we implicitly neglect cross-correlations between the fiuctuations of
unlike quantities-- o. g.,density and velocity. We suggest that the latter
approximation is not likely to introduce uncertainties greater than those
inherent in presently available profile data for compressible boundary layers;
this conjecture is supported by the observation that these cross-correlations
would not appear in the corresponding incompressible problem and probably
represent only minor compressibility effects compared with the variation of .
mean Mach number (which is incorporated in our model).

We next remark that perturbations having the phase velocity V with
respect to the steady shear flow will appear as steady disturbances to an
observer moving with this same velocity V, with respect to whom the
original flow will have the velocity distribution U(s)-V. This allows us to

rCf. Appendix, Ref. 7.
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use Ward's re.u.lt4 that the perturbation pressure P-Py and the perturbation
velocity components v and w (along y and z, respectively) may be derived

from a potential ¢ according to

P, -P= ¢x' (2.43)
P(U~V)v=¢y, (2.4h)
P(U-V)w= ¢y (2.4c)
where ¢ satisfies
2 2
(1-M )¢xx+4’yy+¢zz' (H)‘My¢y+Mz¢z) =0, (2.5)

with M as the apparent (to an observer moving with the wave at elevation z)

Mach number

M = M(z) = RV (2.6)

We emphasize that ¢ is not a velocity potential in the classical sense and that

the flow is not irrotational.

The linearized boundary condition to be imposed on ¢ at the wall (z= zo)
is, from Eqs. {2.1) and (2.4c).*

*
We note that if M(2z) is introduced in place of z as an independent variable

the boundary condition (2.7) may be regarded as imposed along the streamline
on which M=M_= M(z ) in the absence of the disturbance, after which the
variable z may%e inte?'preted as a paragpetric streamline coordinate, rather
than the linear distance from the wall, |The validity of this interpretation may
be established in two dimensions, say x and z, by introducing the independent
variables x and ¢, where § is a stream function for the compressible flow, in
place of x and z (von Mises transformation) prior to the linearization of the
equations of motion.] This strategem avoids the restriction (that would be
implied if z were interpreted directly as a linear measure) to amplitudes

that are small compared with any distance in the boundary layer over which
appreciable changes in velocity occur; such a restriction would be highly
undesirable because of the large velocity gradient near the wall. We also note
that, while U = 0 at the wall, it might be desirable in some applicatioas to
impose the boundary condition (2.7) at some other streamline--e.g., the edge
of the laminar sublayer; this would be permissible insofar as the distance
between this streamline and the wall were negligible compared with the wave-
length. In effect, we assume that the sublayer moves with the boundary.
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¢, = P(U-V)-DR = ikcosa pU-VPE, 2 =2 (2.7)

This boundary condition (together with the anticipated form of the expression
for the pressure at z = zo) suggests that we assume a solution to Eq. (2.5)
in the form

$lx-Vt,y,z) =i p, alsec af(s) § (x-Vt, y) . (2.8)

Substituting this in Eqs. (2.5) and (2.7) and introducing

U(z) -V (2.9)

m = M(z) cos @ =TT seca '

we obtain
m? & (m'zg.f;) k¥ -mdHs=0 (2.10)
and
5 = -km?(z ) . (2.11)
Z=Z°

The differential equation satisfied by f(z), to wh.ck the perturbation
presc .re is proportional, was obtained by .LighthillS in his studies on shock
wave, boundary layer interaction; it is appreciably simpler than the differ-
ential equation satisfied by w (the latter usually has been used in boundary
layer stability studies3). We also note that if m =0 (U1 = V) at, say, z = z,
in the boundary layer, the differential equation {(2.10) has a regular singularity
there.* The immediate (2) neighborhood of this singularity constitutes the
inner viscous layar, where the inertial forces, being proportional to (U - V)Z.

cannot dorninate the viecous forces; however, the thickness of this layer
approachas zero for large Reynolds numbers (Ref. 3, page 136) if the disturb-
ance is solt-excited, and we therefore neglect it in the following development
(except insofar as it is represented by the singularity at z = zc).

f:l‘hu singularity is only apparent if (U'/T)' vanishes at z =% cf. Eq. (4.7).
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The differential equation satisified by f(g) outside of the boundary layer,

where m assumes the constant value m, . reduces to

2
df _p2 - o, (2.12)
de?
where
2 1/2
- *
B =k(1-mf)”"=k 1. Y-V . (2.13)
a, 8eca
We then have
f(z )~ e-pz , 2 >2), (2.14)

where z = z; denotes the edge of the boundary layer; from this we deduce
the boundary condition

.gf;.usf:o, £ = % (2. 15)

1
The finiteness condition that f be bounded as z—» o requires Ry8=0,
while the radiation condition requires Im £ to have the same sign as V - U if
R1PB = 0. These requirements will be satisfied everywhere in the complex
V-plane if we draw the cuts for B from the branch points V = Ul *al sec a to
+ o and exclude points on their top sides. OCf course, it is not necessary to
satisfy the finiteness and radiation conditions everywhere in the V-plane but
only at those points for which solutions to Eq. (2, 12) are to be considered (thus,
in reference 1, the cuts were drawn into Im V>0 and only points in Im V€0
considered); in the final analysis, we may deform the cuts in any way that
ensures the existence of the solution to the differential equation and the satis-
faction of the boundary conditions. We remark, in this connection, that a
periodic disturbance of the type (2. 1) cannot exist by itself, and in a complete
initial value problem we would be led to consider an integral superposition of

such disturbances over a prescribed path in the V-plane.

/2

ﬁn Section 5,p is redefined as & (1 - mi‘) ! ., where K = k&, and § denotes
boundary layer thickness.
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The pressure on the panel at = = z,, as obtained from Eqs. (2.4) and
(2.8), is given by
2 vy v
P‘ = (p-pl)szz z - pl ‘l kF X u; L(x-Ve, y), (2.16)
o

where we have introduced

Ul v
F X v f(zo) (2.17)
and
A= a, seca. (2.18)

Our boundary value problem now may be posed as: find a solution to
the differential equation (2.10), subject to the boundary conditions (2.11) and
(2.15), and evaluate it at z = Z, .
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3. EQUATIONS OF MOTION - PANEL

We present in this section a brief derivation of the eigenvalue equation

for the panel. A more detailed derivation has been given in reference 2.

We assume the existence of an operator L, such that L is the
reaction force per unit area associated with a transverse displacement ( .
L may imply both differential and integral operations with respect to the
space coordinates, but not with respect to the time--i.e., L{ is in
phase with r . The equation governing the panel motion then reads

2
8%¢ .
Lt ”;zj’ = B " Py (3.1)

where P denotes the perturbation pressure of the fluid beneath (inside)
the panel, P, the perturbation pressure outside the panel, and ¢ the
panel mass per unit area. If the compressibility of the internal fluiq is
neglected, p; represents a virtual inertia force, which, for the traveling

wave defined by Eqs. (2.1) and (2.2), is given by
2
p; = pik (V cos a) U, (3.2)

where Py is the fluid density. (This follows directly from the fact that
the effective depth of an incompressible fluid for a surface wave motion

is 1/k; see reference 2 for an alternative derivation.)

The eigenvalue equation corresponding to the traveling wave of
Eq. (2.1) may be derived (see reference 2 for details) by reiating the
operator L to the wave speed V0 that would result in the absence of
the aerodynamic force (but including the virtual inertia force of the internal
fluid); thus, substituting v and P; from Eqs. (2.1) and (3.2) in Eq. (3.1)
with V = Vo therein, we obtain

Py 2
Lr = o'+-—--(kV° cosa) r. (3.3)
k

We emphasize that Vo is an eigenvalue of Eq. (3.3) and is a function of
k and a.
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Substituting p_ from Ex. (2.16), and Ly from Xq. (3.3) in the
complete equation (3.1), with V § V, in { and p;, and dividing through
by the coefficient of ve , we obtain the eigenvalue equation (for V)

U, Vv
viipalr(d, — ). V2, (3.4)
A v,
whers
. N (3.5)
p‘i-rk

is the aerodynamic-mass parameter, and F and A are defined by
Iqs. (2.17) and (2.18).



GM-TR-299
Page 11

4. SOME GENERAL CONSIDERATIONS REGARDING STABILITY

The explicit determination of the stability boundaries for s given panel,
as represented in the specification [or derivation from Eq. (3.38 of Vo
as a functionof k and a and the mass parameter pu, and a given boundary
layer, as represented by the specification of velocity and temperature
profiles, requires the simultaneous solution of the differential equation (2.10),
subject to the boundary conditions (2.11) and (2.15), and the transcendental
equation (3.4).'.l This represents a forrnidable problem, which is especially
complicated if V = U within the boundary layer, giving rise to a singularity
of the differential equation (2.10). In order to clarify the role of this singu-
larity with respect to panel flutter, we develop in this section an implicit
solution to the boundary value problem.

We first rewrite Eq. (3.4) in the form

1/2
2 (u
VeV {toplA Fl-t, X . (4.1)
Vo A Ul.

where the phase of the radical is defined such that V = Vo at =0, It
then follows, neglecting structural damping (Vo real), that the imaginary
part of V will be opposite in sign to the imaginary part of F, so that
instability requires Im F>0.

We obtain an implicit solution for F by multiplying Eq. (2.10) through
by m-%7 (where the overbar denotes the complex conjugate), integrating
24 by parts, imposing
the boundary conditions (2.11) and (2.15) to eliminate £' at the limits, and
solving for T (zo); the end result is

from z =2  to 2=z, integrating the term T (m~

2 2/ 2 1/2
F = T(zo) = |f(z,)] m| ‘\1 -mi)
o
+ 1 f t “f’(z) ikt -md 'f,z] de (4.2)
k| 2
o

i"Alternatively, Eq. (3.4) may be combined with Eq. (2.11) to obtain a homo-
geneous boundary conditionon f at z = z,. This formation leads to a more
symmetric boundary value problem but 1s less satisfactory for the approxi-
mate solutions treated herein.
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We will assume that the phase angle of V is small (V approximately real);

then m will be approximately real, and the imaginary parts of the first and

second terms on the right-hand side of Eq. (4.2) must be derived chiefly from
2,1/ and the singularity at m = 0, respectively.

the radical (1 - m,)

The phase of (1 - mf)”z = B/k for V approximately real is, by
definition, 0 for 'm'l(l or t v/2 for % m, > 1, corresponding to our
previous choice of branch cuts for [ue remarks following Eq. (z.lsj .
Then, writing

F, = [tepff mi2 el - )2 m | > 1w

we infer that the contributionto ImF (2 -Im F) of the first term in
Eq. (4.2) is l“. 0, or -F‘ for V< U‘ - A, Ul - A<V<U‘ + A, or
V>U‘ + A, respectively, if V lies close to the real axis but not too
close to U! + A. The integral in Eq. (4.2) will contribute an imaginary
part, say Fb. to F onlyif 0<V< Ut’ in which case m will vanish at
the point s =3 . It follows that

ImF

!“+!‘ » 0<KVKU, -A

b i
: F,, U, - A<V<U,
{4.4)
= 0, Ul L V< 'J1 + A
= 'Faa U‘ + ALYV,

We remark that if V d‘ou approximate U, ¢ A, as in Section 6, the
contribution of the first term in Eq. (4.2) to Im F must be modified,

but this does not affect the contribution of the second term, which remains
as l‘b or 0.

The nature of the negative damping represented by F, is essentially
the same as that predicted in the absence of the boundary layer and discussed
in more detail in reference 2. The presence of the boundary layer reduces
this component by partially isolating the surface wave on the panel from the
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direct action of the high-speed airflow outside the boundary layer (in particular,
the panel is exposed directly only to a subsonic flow, even though the free-stream
flow is supersonic).

We may deduce a simplified expression for Fb by noting from the
differential equation (2.10) that f'(z) = O(m) and f(z) = f(xc) + O(mz) as

[ 3
et accordingly,
1 ]

¢ 1 i . ;
F k' {m ‘['f',zncz i - m !fi" m-2 ds (4.5a)
b ‘. |

-k 5 lf(.c) I" Im K, , (4.5b)
where l(l. as defined by

} 4
K, = 6 /‘ (m=2 - 1) d, (4.6)
i1 A
[0 ]

is the integral appearing in the solution for f1 (z) discussed in Appendix A.
The sign of Im K‘ evidently depends on how the singularity is circumvented;
this is an extremely delicate question, but it has been examined thoroughly
by Lin (Ref. 3, ch. 8), and we merely siate his result that the path of inte-
gration must be indented over the point z = . * whence

T =
. 2 .2 ol 12 Te) @ [u
F, = -wka  sgsec aflz) —_— e (4.7)
b ¢ | e U'Cg dz \'r) x ’
C

where the subscript ¢ implies evaluation at z = L (see Appendix B for details).

The integral K1 occurred in the laminar boundary layer stability problem,
and Lees and Lin~ have shown that if the original flow absorbs energy from a
small disturbance in the boundary layer profile

* ¢f. Eq. (5.4b).

** We note that the sign of the wave number usually assumed in boundary layer
studies is opposite that chosen here, which has the effect of interchanging i
and -i; thus, the path of integration elected by Lin actually is indented under
the singular point g = L
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az \1)

]n-sc

It does not follow that Eq. (4.8) is a necessary and sufficient condition for
the stability of the boundary layer, but it seems likaly [on the basis of
empirical considerations, as well as Eq. (4.3;] that it will be satisfied

for both laminar and turbuleat boundary layer: in those aerodynamic
regimes for which panel flutter presents a serious problem. We may
anticipate, therefore, that !‘b will be positive, and we infer from this
consideration that the boundary layer could be destabilising with respect

to surface waves having wave speeds in the interval 0<V< U, and
amplitudes small compared with both boundary layer thickneas and wave-
length; however, the net effect in the interval 0<V< U‘ ‘- A is more likely
to be stabilising in consequence of the reduction of F,. The destabilizing
mechanism represented by !‘b appears to be closely related to that studied
in the boundary layer stability problem (see reference 3, Section 4.4; also
reference 7).

A rough approximation to the value of = c for a turbulent boundary
layer may be deduced from the well-known 1/7 power law--vis.,

1/
-8
U (s) ,[‘6 OJ , (4.9)

where § is the boundary layer thickness. We anticipate that panel flutter
will be most serious when V approximates or is less than Ul -a, (as in
the absence of a boundary layer: cf. reference 2 and Sections 6 and 7 below).

Setting U = U, - a, and s = s, in Eq. (4.9) then yields

-8 1 7
——————gmmes - S— [ (4.10)

"o note that F_ ¥ 0 in subsonic flow, and instability then would have to be
charged onﬁnl’ to the shear flow in the boundary layer. It seems likely
that ¥, would be too small to render practical aircraft structures unstable,
but it &y afford an explanation of the generation of gravity waves on a
liquid surface.?
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which has the values 5. 10°% and 8. 10"} for M, = 1.5 and 2, respectively;
these values are 30 small that they might place L in the laminar sublayer,
where the 1/7 power law no longer would be valid, but they may be assumaed
to give the correct order of magnitude. Of course, (zc - lo) /65, as given by
Eq. (4.10), does not remain small for large Mi’ but it seems likely that

Fb then would be unimportant compared with Fa‘

We add that (sc - lo) / § probably would approximate (1 - llMl) for a
laminar boundary layer, but a laminar layer almost certainly would be so
thin as to have no effect on panel flutter.
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5. THE BOUNDARY VALUE PROBLEM

We now return to the boundary value probiem posed by the differential
equation (2.10) and the associated boundary conditions (2.11) and (2.15).
Introducing the dimensionless variable

L = ° (5.1a)

and the boundary layer thickness parameter
X=k6 = 2v >, (5.1b)
where
&6 = Z, -z . (b.1¢)

in Eqs. (2.10), (2.11), and (2.15), we obtain

[ ]
m? (m'zf') - %0 -mHs = o, 0ty (5.2)
£' = -xm> (5.3a)
0 0 :
and
‘x' +pf, = 0, (5.3b)

where the primes imply differentiation with respect to , the subscripts
0 and { imply evaluationat { = 0 and i, and B is defined by Eq. (2.13)
if k is replaced by X therein.

The differential equation (5.2) has a regular singularity at { = e
where m(tc) = 0. The exponents of this singularity are 3 and 0, and we
find that the corresponding solutions in its neighborhood are of the form

wi(g) = “'%’3‘3‘3““&4*0‘9"85 (5.4a)
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and
2 e 2 2 ‘
walt) = 3% w (ehog [tg- ge ™ot - £ (- g%+ ore- g )
3 2
(5.4b)
where
-m.
q = e, (5.5)
m'
C

The solution wy is everywhere real for real values of - L. . while w,
has been normalized to have the imaginary part 0 or (- wqu /3)w as

4 <gc or ¢ >C.» respectively (since the logarithmic branch point must be
circumvented by indenting over { = ;c). The Wronskian of this pair of

solutions is

2
_ v v _ _ 3m (1)
W{wr wz} T W Wy s wW,W = -—m—'Jz-d- . (5.6)

We also find it convenient to introducc a sccond pair of solutions, f1 and
fz, that satisfy the boundary conditions.

f!O = 1. (5'73)

f‘m = 0, (5.7b)

[20 = 0, (5.7c)
and

t - 2

fzo - mO. (5-7d)

where the first and second subscripts identify the solution and the point of
evaluation respectively. The corresponding Wronskian is

W{fl. fa} = m2 (). (5.8)
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Invoking the boundary conditions (5.7) on linear combinations of w, and w,
and making use of the Wronskian (5.6), we obtain

' 2
m
£,00) = —5~ |w', w. () -why W, (0 (5.9a)
116 e [10 2 20 "1 ﬁJ
and
1 2
m

The required solution, subject to the boundary conditions (5.3), now
may be expressed in terms of either Wy and w, or f1 and fz‘ We find

(wig + Bwyg) wyg - (Wyy +Pwyy) wyy

and
f = Ff1 () -Kfz(g), (5.10Db)

where
]
f‘?.1 + ﬂf_z_l_

F =g -
f14 + Bfyy

(5.11)

We require only the imaginary part of F throughout much of the sub-
'ieciuent analysis. This can be calculated directly from Eq. (5.11), but it
may be advantageous to consider separately the components I"‘a and Fb,
as defined by Eqs. (4.3) and (4.5b); these depend only on the absolute value
of f and do not require the calculation of phase (which might be rather
small in some applications). Setting { = {1 in Eq. (5.10b), simplifying the
result with the aid of the Wronskian (5.8) evaluated at { = 1, and substi-

tuting in Eq. (4.3), we obtain

K%m? (m?2 - 1) 1/2

F = . m,>1. (5.12)
a ' 2 i
fiq + B1,
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Setting 7 = L. in Eq. (5.10b), expressing the denominator of the result in
terms of f1 with the aid of Eq. (5.9a), and substituting in Eq. (4.5b), we

ImK (5.13)

obtain 2
t
w.,, + Bw
F = -K3m'4 (l 11 MI '

. N
® ¢ (_9!"11”“11*

2
The solutions fl’ f,, and w, are developed as power series in K in

Appendix A. The first approximations to the quantities required for the
evaluation of Fa an<d Fb are

_
£, = 1 +0(x%), £, = K"-mfx1 'L1 +0(n2)].. (5.14a,b)
w 3y Iy + 0 (Kd) ' Smf [l + O(K%) (5.15a,b)
11:;‘.2’L “’11“‘"72' UK 103,
C C

where K1 is the integral introduced in Eq. (4.6) and evaluated in Appendix B,
aind J 1 ic defined by Eg. (Al5) in Appen.iiiz A. Sulctituting these approxima-
tions in Egs. (5.12) andi (5.13) yields

2 2 . yl12

F, = ;n‘ :7; _ — [1 +0(KY, m,>1, (5.16a)

- imZ - 012 4 km? xli ]
-0, m<1, (5.16b)

and 2
- K‘mf"'l((i —mf)l/z Jl II I K [1.',0('(2)' (5.17a)
. = . v , 5. a
o | (- mf)ifzi-KleKl‘ 1 J
. ,

-Kkm, ImK :

- - x;z 12 : ’ t+0(K%, Kt -mi ) (5.17b)
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The approximation (5. 17b) anticipates (on the basis of the results forgf = 0;
ses refurence 2) that supersonic panel flutter should prove most serious for
values of m, only slightly larger than unity for sufficiently small values
of K,

The approximations to F a and Fb provided by Eqs. (5.16) and (5.17b),
together with the values of K, given by Figs. ia and 1b (for a = 0 and an
insulated boundary) are plotted in Figs. 2a through 2c and Figures 3a through 34,
for M, = 0.1, 1.2, 1.5, and 2,0 and K = 0,5, 1.0, and 2.0. Also plotted
(labelled “exact") are some results that were obtained by numerical integration
of the differential equation (5. 2) on a digital computer.* The agreement doubtless
could be improved by including terms of higher order in K in the approximate
results for F‘ and Fb or, in some cases, merely by using Eq. (5.17a) in
place of Eq. (5. {7b), but the errors in the approximations (5. 162) and (5. 17b)
are not likely to exceed those already present in our simplified model of the
boundary layer.

We emphasize that the results (both "exact” and "approximate") for Fb
are not valid for V/U! less than about 0. 3 in consequence of the breakdown
of the one-seventh power law assumed in the calculations. An adequate
correction factor for Fb could be achieved by forming the ratio of Im K,
for the actual U(z) and T (z) to that based on the one-seventh power law,
using Eq. (B8c). The resuits for F a do not appear to be very sensitive to
changes ir the profile.

‘;ho procedure was to obtain first the regular sclution wy by integrating away
from the singularity, starting the solution by power series expansions near,
= {. and then continuing by the Rungé-Kutta method over the range (2~1%, 1),
The -fnguhr solution w, then was expressed as

wy, = (q‘(z/3) w,log [(; - ;c)c‘i':} +8(5)

the inhomogeneous differential equation for g determined by substitution in
the original differential equation, and the regular function g obtained by the
procedure outlined for wy. In those cases where {_ was outside of the raﬂge
of integration, f; was determined directly by integfating out from { = 2"°%,
The details and programming were worked out by Dr, Samuel Conte and

Mr. David Bussard; the computer was a Remington~-Rand, Univac Scientific
Model 1103A,
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M‘ s 0.1
+1,.8]
“‘ s 1.2
+1.0 ]
M‘ s 1.9
+0.5 -4
“‘ ] 1.0
0
n:lﬂt‘ /
-0.5
-1.0 //
-1.%
-2.0 [
!
2.5 = 0.2 0.4 0.6 0.8 1.0 T.2

v/,

Figure ia. The real part of mel. as given by Equations (B16) - (B20)
for a = 0 and an insulated boundary layer; if a # 0 the
results are approximately correct if the nominal value of
M, on the curves is replaced by M, cos a.
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hkl 1.8

1.0

0.5

0.2 0.4 0.6 0.8 1.0 1.2
v/u,

Figure ib. The imaginary part ol-mlzl(‘. as given by Equations (B16) - (B20)
for a« » 0 and an insulated boundary layer; if « ¢ 0 the resuits
are approximately correct if the nominal value of u‘ on the
curves is replaced by M, cos a.
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Figure 2b. F_ versus V/U‘ for M, = 1.5,
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6. APPROXIMATE STABILITY ANALYSIS

We consider In this section the approximate calculation of the negative

damping ratio (in the notation of reference 2)

50 =-Im V/RLV (6.1)

on the assumption that the second term in the braces of Eq. (4.1) is sufficiently

small compared with unity to permit the approximation
2 U v 1
_ f 1., [A 1 o}l

Eq. (6.2) may be regarded as the first approximation based on a power series
expansion in the parameter {4, and it will be valid for #* << 1 insofar as F
remains bounded. Now p [see Eq. (3.5)] almost certainly would be small

in practical applications, while |F l can be large only if both l V- (U, +A)- i’ U,
and K <<1; the latter contingency is examined in the following section, but we
remark here that it Is apt to be important only when K is of the same order of

magnitude as p,1/3.

Substituting Eq. (6.2) in Eq. (6.1) and evaluating Im F from Eq. (4.4)
yields

\2
5 _ = .;..; (v‘i_) (F +F,), 0KV CU, -A (6.3)

in the region of principal interest. The maximum value of 60 with respect
to Vo almost certainly will occur in this region if (vo)min < Ul - A, but

Fa =0 if Ul - AL V°<Ul; if V°> Ul panel flutter of the type considered

here is not possible.

Perhaps the most expedient approach to the determination of the maximum
value of 60 with respect to variations of N and a is to adopt the approxima-
tions of Eqs. (5.,16) and (5.,17b) for Fa and Fb'
value of (So)max‘ and then estimate the approximate corrections to Fa and Fb
from the results of Fig, 2. Substituting Eqs. (5.16) and (5.17b) in Eq. (6.3)
yields

determine the corresponding
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2

1 A 2 1 ] 6.4

=Eg¢(v—) m, Im vi 3 (6.4a)
Jl—ml +Kml Kl [

/ 2

-1 - I KJ

=%p. -1 [ ™ Km’ gy > m > 1, (6.41)
-Nm -l-KleImK]+le sz]

We recall that [Eq. (2.9)]

U-v, Vc::
m, = -—;l— cos a = Ml -Ul— cos a, (6.5)

while K, depends on Vo/Ul' M,, and cos a; as suggested in Appendix B,
the error in assuming that K, depends only on Ml cos a, rather than Ml
and coe o separately, usually will be small (the essential approximation is
the replacement of Ml by M1 cos a in the temperature profile).

We consider as a more specific example a pressurized cylindrical shell
for which the internal pressure is sufficiently high to render negligible the
effects of bending on Vo, which then is given by [Ref. 2, Eq. (5.5) with
D=0and N, =2Nx=p.lRJ

2 7
2 _1 COos a 1 2
Vo = = [Eh ( = ) +piR (2- + tan u):l . (6.6)

We introduce as the independent variables

x = Vo/UI’ y = co:sZ a {6.7a, b)

and, as a measure of the wavelength,

z = zllkR, z) = JZEh/piR . (6.8a,b)

Substituting (6.7a,b) and (6.8a, b) in (6.6), we obtain

2
1 x 2
z = -— 1 | —— ...-.2' 6.9
/y[ (xm)J Yy ( )
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where
= J;;R/Zc Ulz (6.10)

denotes the min!murn value of x (x = x at a= 0 and k = 00). The boundary
layer thickness and aerodynamic mass parameters [ the latter given by
Eq. (3.5) with P, = 0 therein ]then may be expressed as

K= ké=z (6/R) 2"} (6.11)
and
N =p1/0'k = (pllt/czl)z . (6.12)
Noting also that
mia MZ(1-x?y (6.13)
and, on the basis of the aforementioned assumption for Kl ,
m{ K =m® K (V_/U;, M, cos a)=m[ K, (x, M,y /%), (6.14)
Eq. (6.4b) may be transformed to
SN “’) S0 S : -]f
2 \oz, \ x B J Ea- -2y -l+zl(5/R)z m K, (x, M, UZJ
(6.15)
We require the maximum value of 50, as given by Eq. (6.15) in con-
junction with Eq. (6.9), with respect to independent variations of x and y
over the intervals
x,#x &1 and —2____gycl. (6.14a, b)

1 +(x/xm)
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ThLe required calculations would be difficult to carry cut analytically, but they
are qaite simple on a high-speed computer.

If the boundary layer is relatively thin (K<<1) we find that (Go)max is
likely to occur for values of x and y such that m, exceeds unity by only
a small amount and the two terms in the braces of Fq. {6.15) are approxi-
mately equal in magnitude, The imaginary part of Kl--md, therefore, the
negative damping effect of profile curvature-~then is likely to prove rather
unimportant, although its real part plays an essential role in preventing the
infinity that would be indicated by Eq. (6.15) at m, = 1 if K— 0" (in which
case the analysis of the following section would be required), The approxi-
mations of Eqs. {5.16) and (5.17b) evidently are entirely adequate for this

case,

If the boundary layer is relatively thick (say K >1 or 2) and X is not
too small, it appears that (6o)max is likely to occur at m,; = 1 and a =0,
The instability in this case would be associated entirely with profile curvature,
and it therefore would be important to improve the approximation to Fb.
relative to that of Eq. (5.17b), and to investigate the effects of possible

departures from the one-seventh power law,

Calculations based on the resuits of this section have been carried out
for pressurized, monocoque shells filled with either gas or liquid and
compared with calculations based on the results of reference 2. It appears
that the degree of instability for supersonic flutter may be reduced by an
order of magnitude (roughly a factor of 5-10) in consequence of houndary
layers for which K> 1/2,

*
The effect of the boundary layer then may be compared with that of small
damping in limiting the response of a simple oscillator at resonance.
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7. STABILITY ANALYSIS—=VERY THIN BOUNDARY LAYER

The analysis of the preceding section breaks down in the neighborhood
of m = 1 if K is of the same order as “113 (of course, if K is
sufficiently small compared with p the effects of the boundary layer on
panel flutter will be negligible, but turbulent boundary layers are not apt to
be this thin at supersonic speeds). The assumption that both K and lmi - 1'
are amall allows us to approximate F by [ue Eqs. (5.11) and (A 8a)-(A9D);
also cf. Eqs. (5.16) and (5.17a), with which this approximation is conaiotenﬂ

2
my 2
F = = zm > [l + O(K' ﬂ. (7.1)

Substituting F from (7.1) in (3.4) and eliminating m, through (2.9) and
(2.18), we obtain, after some algebraic manipulation,

2 2
fo, - v v 1-\

Kl- +p

1/2
2 2
v -Vo

it

u, -v
1 - +K

=00
Al A A

v
AU A
(7. 2)
where the dependence of K, on both U/A and V/U, has been explicitly
dencted.

We next introduce the dimensionless variables v and §, representing
the departures of V and Vv, from u, - A, according to (cf. reference 2)

V= (Ul ~A) [1 +(l/2)v(p./3)2/3(l(u- 1)'5,3:, , -3w/2<argv <€ w/2 (7.3a)
and

v, = (U -4 [1 + (31206 @2/ ? (- n'5’3]- (7.3b)

wkere the permissible range of arg v is deduced from the restrictions on
V and B8 |Eq.(2.13)|, £ is real (structural damping being neglected), and
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Ma denotes the (free stream) Mach number relative to an observer moving
with the wave front--viz.,

Ma = U1/A = U‘ cos o/acn . (7.4)

We also find it convenient to introduce the boundary layer parameters ©
and N according to

A -1\ 1/3
o =(K) z(“ K (M, t-M1) (7.5a)
3 ®
and
n = 3l/2g, (7.5b)

We will use the parameter 6 initially, but we find n more convenient
in the end results. Substituting Eqs. (7.3a,b) and (7.5a) in Eq. (7.2) and

neglecting higher powers of p then yields

1/2

(v - 3€) (v +30)+2 = 0. (7.6)

We observe that the importance of the boundary layer in this approximation
/2 ; in particular, K<< 1
is not a sufficient condition for the neglect of the boundary layer.

is determined by the size of 3'0 Irelative to v

Rewriting Eq. (7.6) in the form

J1/2 /2

( r0y _saB(v’2i0y)+ a4+ B = 0, (7.7

where
1/3

1/2
g={(x-3ee+e3)t[u-3ge+e3)3-(g+ez)ﬂ } . (1.8)

we have

v“2+ 8 = Ae + Be , € = -1, (7.9)
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where the three roots of the cubic equation (7.7) correspond to the three cube
roots (¢)of -1 {€ is the complex conjugate of ¢). This result is valid for
complex valuees of both ¢ and 0, but the explicit determination of the
imaginary part of v, on which the damping ratio depends (assuming p to
be approximately real), is possible only if both £ and O are assumed to

be real; on this last assumption we find

Imyv - (372) 'A-B' . |A+B-ze | (7.10a)

(1-3t0 +03) 2(8 +07)%

0. (7.10b)

If 9 is not real Im v must be determined numerically from Eq. (7.9).

The maximum value of -Imv with respect to the spectral parameter §
is determined in Appendix C. We designate the ratio of this muximum to
its value in the absence at the boundary layer (3”2I2”3 at 9 = 0 and
§¢ =0)as hin), which is given by Eqs. (C7) and (C8) and is plotted in Fig. 4;
Em, the value of § at which this maximum occurs, is plotted in Fig. 5. The
maximum (with respect to § ) negative damping ratio then is given by |cf.
Eq. (4.13), reference Z]

1/2 -5/

3 h(n).

1?3 - )
(7.11)

60 = ( -Im VIRIV)gsgm = (3
We emphasise that the results for n < 0 may not be directly significant, since
K, and n will be positive real if the singularity at = =z _ is excluded, while
if it is included K‘ and N must be complex; however, these results may

be useful in determining a first approximation to 6 o for complex n.

We find, by numerical comparison, that the approximations ﬁm = - nz

and h = (2“313‘01) are adequate for n>1 [qu. (C10) and (Cll)] . Substituting
these approximations in Eqs. (7.3b) and(7.11) and eliminating n via Eq. (7.5)
yields

\ 2
ao = qu/-MK1 (Ma -1)", A1 (7.12)
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= ! 2
Vo[t =g, * Wi A -TKEPTA L mot (7.13)

The real and imaginary parts of K‘ » a8 evaluated in Appendix B, are
plotted in Fig. 6 for V/U1 =1 - M;i (cf. Fig. 1). As suggested above,

the error in replacing M‘ by M‘ cos a for a # 0 is not likely to be large.
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Figure 4a. h(v), the ratio of the maximum negative damping ratio with
boundary layer to that without, as given by Equations (7.11),
(C7), and (C8).
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Figure 4b., Expanded plot of h(n) for In'(l
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Figure 5a. §m. the value of ¢ for maximum negative damping ratio,
as given by Equation (C8).
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Figure 5b. Expanded plot of €y for 'q I< 1.
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Figure 6. The real and imaginary parts of K1 for the special case
a = 0(V = U‘ -a,) and an insulated wall with y = 1.4.
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APPENDIX A

SOLUTION OF DIFFERENTIAL EQUATION

We require solutions to Eqs. (5. 7) and (5, 8)--vis.,

m’ (m'z %fr) - Ca-mhy =0, ogtel, (A

= T
flO = 1, flO = 0, (A2a)

f20

t
o, fZO

!
3

(A2b)

where the second subscript indicates the value of {.

A solution that is useful for small or moderate values of K may be
obtained by introducing the expansions

[0 4]
fi(C;Kz) -z Kz“fi‘“’(;), i = 1,2 (A3)
n=s

in Eq. (Al), which then yields

(n)
d 2 4

— O
dat dg

= (m 2. gD, (A4)

We may satisfy the boundary conditions of Eq. (A2) with the zero'th
approximations

1 = 1 (A5a)

and

fz(o) - modg. (A5b)



GM-TR-299
Page 44

The succeeding terms (n21) in Eq. (A3) then must satisfy the homogeneous

boundary conditions

£ (0) = fi(“)'w) = o0, (A6)

Integrating Eq. (A4) subject to these conditions, we obtain the recursion
formula
e % :
g™ - mfar | i Vg, n2l. (A7)

i | J
v0 0

We require, in the end [cf. Eq. (2. 24)_] the values of f, fl' f,» and
]

i'z onlyat [ = 1. Following Lees and Lin ° (but with slightly revised

notations), we may express these in a series of definite integrale according to

_ 2n
f1, = -oK K, : (ABa)
— 2 s 2n+2 (A8b)
iy = myp BT G
2 @ 2n
' .
1 7™ B N Han (A9a)
a
1 = B K Han (ASb)
K = 1,
o]
1
I
K1 = | (m "-1)dg
0
l b
_ 2 -2
K, = j m“dg (m~€-1) dy,
0 0
rl {‘C ~L
_ -2 | 2 -2
K, = | (m“.ndg | m°d (m~“-1ag, . . ., (A10)

? JO 0 0
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Ho s 1,

rl
Hl Sj mzd;,

0

',

H, = (m~2-1) dg méag, . . . . (All)

0 0

The numerical evaluation of these integrals for a laminar boundary layer has
been discussed in some detail by Lees. 8 Appendix B contains a discussion of
the evaluation of Kl (the most important of these integrals) for a turbulent
boundary layer. '

The analytic solution w,, as introduced in Section 5, also may be expanded
according to Eq. (A3). Integrating Eq. (A4) subject to the boundary conditions

w, F(&- Cc)s. §— L. (A12)
we obtain
i3
“’1(0) = ---32- ' mag, (Al3a)
m' :
c u’lc
f(. (4
wl(“) = | madg (m'z-l)wl(“‘”d;. (A13b)
J‘C ;C

\ 3 2 °°Kzn
wll = —-—z— ml z Jzn. (A14a)
mé 0
3 @ 2n
w5t (2): K Tontl (Al4D)
m
[ o

Iifed{
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(Al5)
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APPENDIX B
EVALUATION OF K
We consider the integral

5 Uls) - V
K, = 51 (m'z -1)de, m(s) = —_—. (B1)

0 a{z) sec a

Introducing the dimensionless notation

z U v 2( )

R T R T o R NI (B2)

where tv(§) is the relative temperature distribution, expressed as a function
of the relative velocity, K‘ becomes

2

K, = -1+M; sec? aI(E ), (B3)

1

where

|
(g ) =[ — 18 (B4a)
o ltg-¢g.)

1
=/ r(¢) g'(e)dg (B4b)
0 (- g

and we have assumed U =U1 (6=1) at z =86 ({ =1).

Integrating Eq. (B4b) once by parts, along a path indented over the
singularity at { = (c. and then separating out the singular portion (Is)’
we obtain

(B5)

‘ ! Tyt
U - 1 - ‘7;) '(Tc) d
R A T IR AT YT R S A I l o4t
0 (E-ﬁc)
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where

Tyt de
I = (7‘) — ) (B6)
oo [ o

and the subscript ¢ implies evaluation at the singular point § = ec'
Integrating l’ over the singular point yields directly

ot [l - gc s
1, = (+8)) mk -wif o (B?)

C

Substituting this result in Eq. (B1) yields for the imaginary part of Kl

ImK, = - 1rM;'a sec®a (7('):: (B8a)

2
1 U

-wM;Z seczuﬁ' 1|14 [ I (B8b)
u' (zc) dz |U'(x) 25

wb acseca-—r—— _ | —mi

42 2 | TlE)| 4 [:U'(:)] _ (B8c)
u' ()| dz2 LT (z)

=%
[+

We consider, as a particular example, the turbulent velocity profile

t = &7 (B9)

together with the quadratic (in velocity) temperature proﬁle9

2 To - 1) 2
1"(§) =aﬁ'b€+c§, a = =, c::-L—. Ml,bai-a-c. (BIO)
T 2
|

for which

(vg)) = 7(6a g+ 7b e+ 8cg) (B11)



GM-TR-299
Page 49

We note that £q. (B9) is not accurate right down to { = 0, where it gives
t'(0) = 0, but the error in equating the first term in Eq. {B5) to sero for
large free stream Reynolds numbers (say greater than 106) is negligible.
Substituting Eqs. (B9) through (Bi1i) in Eq. (B5) and carrying out the
integrations yields

I = 7[“5"'(:’ +bI6(€c) + cz.,(ec) -1 - £c)“] , (B12)

n-1 e:n n 1- &
ln(ec) = (n+ 1) mz=o o +€C ln(-———%—-—-) - wi . (313)

Substituting Eq. (B12) in Eq. (B3) and a, b, and ¢ from Eq. (B10) then yields

where

K, = -1+ 7M;2 sec? 0{[16(5‘:) -t - ﬁc)-l_]

+ G—“‘) 15080 - 1; (8]

+H Mf [16(ec) - 1.,(ec)]} . (B14)

The quantity actually required in the stability calculations is

2 U, - VmZ 2 2 2
mlxi = -—-:—-——- Kl = Ml cos a° ‘t - EC) K1 » (BIS)

which we write in the form

T vy -1
mf K, = -mf+(7r£) A(ﬁc)+5(€c) +(—;—) Mf C(Gc) (B16)
1

with

ALk = i - e 15060 - 3008))] (B17)
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n(ié) 704 - ec; [(1 - §c) xé(ﬁc) - 1] {B18)

2
CU) = 70 - 0% [108) - (6] . (B19)
The real and imaginary parts of A, B, and C are plotted in Figs. 72, b, c,
respectively. The real and imaginary parts of mei are plotted in
Figs. 1a, b for a =0, M1 =0.1, 1.2, 1.5, and 2.0, and an insulated
boundary--i.e., one for which

T
2 =g (Xt} ME (B20)
T, 2

The latter results also may be used, with only a small error, for a # 0 if
the nominal value of M‘ or the curves is replaced by M1 cos a.
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+0.5 - I 7‘r 1 .|

/ -ImA
+0.4

+R12

+°. 3

+0.2

+0.4

-0.1

%

0 0.2 0.4 0.6 0.8 1.0
¢ = V/U‘

Figure 7a. A (§), as given by Equation (B17),
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+2.0

msf” N
+1.6

+.2

+0.86

+0.4

-0.4

-0.85 0.2 0.4 0.6 0.8 1.0

G'V/U,

Figure 7b. B (§), as given by Equation (B18),
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+°.‘ﬂ 1
4‘0. SF
+R21C

+0.2 /

+0.1

-ImC

S

‘"o 0.2 0.4 0.6 0.8 1.0
€= V/U‘

Figure 7c, C ()., as given by Equation (B19).



GM-TR-299

Page 54
APPENDIX C
MAXIMUM VALUE OF Im v
We wish to maximise the quantity
i
-Imv-(-JS-IZ)|A-B '|A+B-29' (Cl)

with respect to §, A and B being given by

1723
A -{ (1-3¢0+67) a[u- 3¢0 +e3)"~(e+ez)3] . (C2)

Differentiating Eq. (Cl) with respect to § and equating the result to
sero, we obtain

[:(A+n)o +A13](A+n-ze) 2 0. (C3)

It is svident that the maximvrm value of -Im v corresponds to the vanishing
of the first factor in Eq. (C3); dividing this through by A B® and combining
the resulting equation with the values of AB and A3 + 33. obtained from
Eq. (C1), we have

Altemlie! 2o, (C4a)
AB-(t+02) = 0, (C4b)

and 3 .3 3
AlsB’.201-3t6+0%) = 0. (Cic)

Eliminating A and B from Eqs. (C4a, b, c) yields the cubic equation

'e3-9o‘;+ze3 = 0 (C5)

for the required value of §, say tm . The corresponding value of -Im v
may be placed in the form

1/2

(dm vy, = 372 2 hm,  n o= 3%, (Cé)

where h, normalised to have the value unity at n = 0, is given by

o 1/2
h = 3:2 ”’nz'le-tnz l-[ce-n‘uu-;- nz):, » (€T

PR R ot D



GM-TR-299
Page 55

and n is introduced in place of 8 because of the manner in which it enters

€ (v.i.).

Eq. (CS) has only one real root, opposite in signto 8, if | q g - l 31/3 !<i
while if | 'll > 1 there are three real roots; solving for these roots yields

) 1/3 1/3
€, = -3 ”zq [l-ﬂl n )IIZ] + [1 - )”2] v Inle| (C8a)

J

i
5 2%/3 ,
T =1 |n|cos +{ 0 > C8b
wrine (F ) ml>] ccan
where

cos ¢ = "q‘-a, (09)

) ¢ Ifl |> 1 that value of § yielding the maximum value of h is to be chosen,

The limiting values of § for large | n l are’

g, =an | - 37324, gL 97320 (C10)

The corresponding, asymptotic forms of h are
h~21/3/3,“ n>>1 (Clla)
~ 243 gl |12 -n >>1, (Cl1b)

We note that these approximations actually are quite adequate for |11 |> | 8
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