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FOREWORD

Thia document is & machine translation of Russian
text vhich has been processed by the AN/GSQ=16(XW=2)
Machine Translator, owvned and operated by the United
States Air Force. The machine cutput has been fully
post-edited., Ambiguity of meaning, words missing from
the machine's dictionary, and vords out of the context
of meaning have been corrected. The sentecnce word
order hLas been rearranged for readability due- to the
fuct that Russian sentence structure does not follow
the English subject-verb-predicute sentence structure.
The fact of translation does not pguarantee editorial
accurscy, nor does it indicate USAF approval or dis-

approval of the material translated.
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l!'—63-3‘o7.

News of the Academy of Sciences of the
USSR Mathematical Series, No, 10,
(1946).

P.‘.’ 135-1660

ON THE THECRY OF THE EQUATION yg+g§=o
F. I, Frankl’
(Presented by Academician I. M, Vimogradev).

There is given the solution of two boundary value problems for the
equation %% . g.':o in the dosain of the upper half-plane, adjoining
a segment of the ids of absciesas. The solution is outained by method of
& double layer; here there ars removed several limitationr which in
other works were put on the form of the boundary of the domain.

Jatreduction
In the given work there are solved two ‘boundary value problems for the equation
(1)
Yaut =

which we shall call the equation of Darboux and Tricomi, according to the names of
the authors investigating it,

Bolutions are sought in the region lying completely in the half-planes y> 0.
where equation (1) has an elliptic type, It is assumed that the boundary of the
domain passes partially along the x axis. As for the part of the boundary, lying
ineide half-plane y> 0, it is sssumed only that it ie sufficiently smooth and approa-
ches the x axis at a right angle,

There will be considered the following boundary value problems:

1., Dirichlet's problem;




2, The problem in which boundary values of the uninown functions are given on

the part of the boundary, lying within the half-plane y>0; and on the part of
the boundary passing along the x axis there are given normal derivatives.

These problems were considered already by P, Tricomi in work (1), and also in
papers [2] and [2]). However, the solution is given there by fairly complicated
methods either with the use of the alternating method of Schwars, or passage to the
limit, proceeding from the domains, lying together with their boundaries completely
within the half-plane y> 2. In both cases Tricomi uses two-dimensional integral
equations of the Fredholm type,

The second of the considered problems was reduced by S. Gellerstedt (7] to
one-dimensional integral equations of the Fredholm type of & second kind by the
method of a double layer and thus io solved, Here, however, Gellerstedt did make
limiting assumptions about the form of the comtour: it was taken that ends of arc
L(rig. 1) coincide with the arcs of a certain algsbraic curve, called by Tricomi
"a normal curve”,

In the given work by means of corresponding estimaies we remove this restric-
tion for both problems in questiom.

In the Appendix we give particular solutions of the equation (1), refuting
certain erromeous assertions by Triccai, published in his article (2].

s 01z '
1. olution of the tion Jontay=00)

As any two-dimensional linear equation of elliptic type, the equation of Dar-

boux~Tricomi can be reduced to such a form that we shall encounter second deriva-
tives in it only in the form of the laplace operator, and namely, during substitu-
tion of

3 (1)
y=33°

O ot - (2)
Tty =0

equation




takes the form

o | 0% 1 03

As is known, equatione, containing the Laplace operator as a fundamental part,
possess so-called fundamental solutions, i.e,, solutions of the form

Z(x y 2, y)=L(z, y; 2, ¥y) 1nk(z'-—z)'+ (v —y)'+ (4)
+M(z,y; 2" y), ‘

where L and M are functions, regular in the neighborhood of point x = x!', y = y!,
We shall show that equation (3) possesses fundamental solutions Z. and 2

1 2’
ular throughout half-plane y>0, with the exception of point x = x', y = y!, such

reg-

that for every x
Z,(z, 0; 2',y) =0, (5)
:;ZI (z,y; z',y') !y-o=0.

(6)

To construct the fundamental solutions Zl and Z2 we shall first determine the
Riemann function of equation (2), When using characteristic coordinates this equa-
tion takes the following form:

o ot % _ay o (7)
9idn Tu(n—%) \% —5;.) '
2 i L2, X
'h‘" "’z—j‘ (—y) ’ 'q-z.r_:’.(_.yl. . (8)
The Riemann function in these coordinates takes the form:
. .o "o ".""(’)”, A 1 1
uf, v ¥, v)= ("1':_“2,‘1',"(;,:‘5'){/. FQor o 8 °~> , (9)
where
ARy
O e (%)

Hypergeometric function F(1/6, 1/6; 1; ¢) satisfies the differential squation

Tu [3 u (10)
.(1-:)_‘7_4.-;.(1—-,:-:)%—3—6:0.

I
[ — —— — —— o T IR



However the hypergecmetric differential equation

s(i—z)%':-}-[i—(a-}-b-f-i)z]‘Tj—cbu—o (1)
possesses, along with hypergecmetric function
F(a, 5; g; 1),
still second independent solution,
(12)

FabitinmPio,bitintney (G4 54328 Pty 9|,

in accordance with which we obtain & second solution for equation (7)), analogous to

& Riemann functiom:

Y RVY SO, PR e

5 1
(v—€) "(q'—c)‘lcp('e" ;' 1;=). (13)

Let us consider now solutions u and T in an elliptic half-plane. If one were to

introduce designations

=2 )y — g,
B (2 —2)" 4 (v 4 ), } (W)

then parameter ¢ turns out to be oqual to
",
ombs (15)

Then instead of u we shall obtain the function

(z, yv: 2, o ‘(’Y’)} 1 1 »” 9y ’; . (16)
=t e ()= )
and likewise, instead of u, the function
"y 2 y) (’{)37(%, i ::A)n (17)
L PPN
~GH{r@mg+e()).
where G(s) is a function, which is regular wher 0 < s 5 1, [4)
Obviously, any ligear combination
(18)

g=g+eg
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is s fundapental solytion of equaticg (2).

We shall now 'lhav that constant ¢ can be selected in such a manner that
q(x, 0; x', y') or, accordingly, :-5‘:’_0 turns into sero,

Indeed, on *he basis of equation (16)

) 1 A - ir _2_ (19)
z,0: 2, y') = { VY ,_2_v'r(3)
9002 y) = ()T P(ty= (2 Fe
3
and on the basis of (17) .
1
B R v 2 y .
9(z, 0; =, y') = ({)Jc“). (20)
We shall show that G(1) has a finite value and we shall calculate it,
Let
FePF (.. b; ¢; ')o
then, when s = O,
aF _aF oF
On the other hand,
L] ]
a;‘*‘.‘93+2;,;> @+b—c)=0. ,
22)
Applying now operator £_+£+2;E to the expression
—a— (23)
F(a, b;c;z) = }j{?_!‘;()c_m:_:_;_p(a, bjat-b—ct1;1—2)+
+I£I{I(.—¢(;'[f;;;”F(c—a,c—b;c—a;-b+1; 1—z) (1 —g)e-e-t,
we obtain, vhen a = b =1/6, c =1, s =1
()
2 (5
. r(3) (., ~()
C()=—-2—+ 1+ 5 ’
eV r(2)
whers v=—T M) =lim(f+d4.+l-1nn)=0577...
(25)



Euler's constant.

Thus, fundamental solution

=g 'q-9+2<1+%)q (26)

actually turns into sero when y = 0,

Let us note further that

|
)

) (28)

.‘7';(:.(‘;5"-‘/ "( >(’.> s (( )

e 0 yy= (3 )()"’ )

)T (a r ._l r (s
k= (r+.ﬂ.+ o r‘,%%”:::_}n—zr——.((_;_a) [7+r—((%i))J (29)
Consequently, fundamental solution

c.-9+2[7+‘ L((?))Jq (30)

has derivative :—;’- s oqual to sero at the x axis,

2, \/ blems to the Case of Zero ta on

@ of isggs.

Let us consider in plane (x, y) the region u, located in the half-plane y 20
and limited:

1) by the segment of the x axds, 0 x 51,

.
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2) arc L, located in half-plane y>O0, with limited curvature and without angles
at the ends, approaching the x axie perpendicularly (Fig. 1).
In this region we investigats two boundary value probleas:
A, On arc L
se=/(s). ) :
where s is the length of the arc, measured from one of the ends in planes (x, y).
The segment of the x axis
g=1(1)
' (2)
Boundary values f(s) and *(z) are assumed to be continuous and possess bounded
first derivatives; there is assumed a finite number of points of discontinmity,
but under the condition that the solution for z near these 'point.o should remain
limited. The function f(s) should have also second derivatives, limited by or
seoking <« at the ends of arc thus y O<e<t).
B. on arc L
z=/(s), (3)
On the segment of the x axis

-H
:3_)':'(:). (l‘)

Function f(s) satisfies the conditions of problem A; function v(r) is assumed

continous, differentiable and satisfying the relation
(5)

. 2
v(z)=0(1)z (1 —z)".
In the neighborhood of & point in the segment of the x axis (0 x 1) the so-
lution should remain limited.
To execute the uniqueness theorem it is necessary in this problem to add one
more requirement:
Let us consider the integral

(elrySa, (6)

€

7



where c, is a part of the circumference cf xz + )2 -e? or, accordingly, (l-x)2 +
2 2

Y = ¢, lying in domain D, dn 1s the differential of the normal line to this cir-
cumference, and the length of arc s is measured in plane (x, y). Then we should

have
tim § 122 y¥domo, (7
We shall now prove that is is possible to limit ourselves to the case, where
7 (x)=0 and, accordingly, » (x)=o0.
Let us turn to consideration of the problems.
1. DProblen A, We shall select two numbers a and b, such that domain D com-
Pletely lies in the sone
a<z<bh, (8)
We shall arbitrarily extend function t{z) to the whole segment a<z< ) but
in such & manner that function *(z) remains plecewise contimmous with bounded
derivatives, |

We shall now expand <« (z) into a Pourier series:

“(5)= N aysinnn 227, (9)

then we can obtain a solution of equation (2) Section 1, determined in the whole
half-plane y>O and taking on the segment of the x axis values of namely

o LI ] (10)
)%Za,.linnr:::)\ [n.,x ?hyx_ ,
nel (b—l);
where )(:) is the solution of equation
V@) +ELGE) =0, (11)

given by Tricami (1) and determined by the integral
T ' (12)
(R = Rl ) r =
® S ¢ cos (F+"—V¢‘ Ep) d;.

v

Then the sclution of the initially posed problem can be presented in the forn

&



3(z,y) =z’ (2, y) 427 (2, ) (13)
where 3"(x, y) has the ssgment of the x axis (0, 1] sero boundary values at all

points of continuity of function (2 « For poiits of discontinuity of function
1(z) 1t is possible to prove that in their neighborhood s'(x, y) remains bounded,
and thue function s"(x, y) will possess the same property, whence, in turn, it may
be concluded, that the bounded values of the functions s"(x, y) at points of dis-
continuity also are equal to sero., This follows from the fact that the uniqueness
theorem for Dirichlet's problem can be proven on the assumption of such discontin-
uities, The proof is completely analogous to the proof of theorem #1 of the work
of Tricomi [1].
Thus, we shall prove that function s'(x, y) in the neighborhood of interval
(0, 1) of the x axis remains bounded, Where <(z) is a continous function, this
follows fram the uniform convergence of series (9) (6], 1f one were to consider that
() is a positive decreasing function (7] and apply the Mardy characteristic of
uniform convergence (6], In the presence of points of discontinuity it is sufficient
to consider the case where (z) = —] when 1<z <o, <(z) =1l when0<z<1i etc,,
and to investigate the benavior of function 5'(x, y) close to the origin of coordi-

nates. In this case series (9) takes the form:

Ty =G (B dng pingne Y (5a)

Let us consider the sum

(1)
sinrz sin Anx sin 5rz $in (2n 4 1) nr
Tyt S+ Foot ¥t
X
snn2(n-L1)rz
sinre

(cosmz4cos3rz4-. ..+ cos (2n 4 1) rz)dz = \

)
Ssm2(n+i)wz(“n"—u)d S““"“” =

=§.in2(n+1)=z,(.l,+.,—%> ii
[]




Both integrals in the right part of equation (1) obviously are bounded independently
of n,

From this and frcm the decrease of function A(E) it follows, according to the
Abel inequaiity [6] that the sum

— L3 Y LIS T L 1)
HMEL ) (e 3y) 4 nln:.z x(«?s» y)_*._‘ . +aln(21:‘u:xt)nzl[r_,—(2n+1)3. . (15

alee is bounded, whence follows the proven one.

If, finally, we continue function t(z) outeide of segment (0,1) so that -(z)
et points x = 0 and x = 1 remains continuous, then derivatives of the boundary values
of s(x, y) on arc L will be bounded ([1] Ch, II, Sect. 6).

Thus, it is proven that in the case of problem A it is poseible to limit cne-
self to the case t(z)=0.

2, Problem B, For investigation of this problem let us consider the following
solution of equation (2) Sect. 1, used already by Tricomi ([1], Ch, Vv, Sect, 2):
(16)

"y ety 2o (oo ) o ]

Distributing the singularities of these solutions along a segment of the axds

of abecisas, 0_<z< 1, wo shall obtain a solution of the following form:
1

o= §w(z. vib) o () di. (17)

The boundary value of ¥ when y = 0 is

! 1
0 0= Szt T et - 22) ) (18)
[}

Boundary value of ’1 when y-»0 is

o)

/0



Q,(z,0)=l,i${—§o(z) y's{[(zl—i)'*‘ ';‘Y']-%"/ (9)

— %1173 [("ieg—_t).'*'%y' ]-%} d-

__% ¥ § [0 (3) — o ()] {[ (I—E)"*":'y’ ]-%_
/]

R (G SR R T

If at point i=z satisfies the Iipschits condition,

I ®) =3 (2)/<A(z) t--2! whem E—z<e(z), (20)
z4e(x) : 4 -1
then y' [o 3} —e ()] [(:—!)"*' Y ] Yt <
x-9(t) : “a(x) ., . (21)
A g ) e
< (7)) ( ) 5 .S(,)[(!—C)""%_\"]I

Consequently, the second camponent of the right side equation (19) seeks sero when

y—0.
The 1limit of the first component will be

i ?

_,:': ¢z} lim _\"S[ (r—t) :; )":]-E(IE.

y-u ¢

For its determination we shall introduce a new integration variable

ET (22)
3‘!
Then
¢y (7, 0)= _—( ) °(2) S(1+t')’lo ( )o() §(i+t')'l- (@)
Introducing the new variable
= ()
we shall obtain - ! “ .(—;—)r(;)
5 O+ 2 5,-/.“ PR - (Z_) (25)

4



$7(z, 0) = —Bo (z), (26)
where . 2
e (2 2G)T () -
ar (?)

Consequently, solution of equaticn (2) Sect 1

. (27)
‘?("Y)=—%Sw(z.y;e)v(a)dt
gives for the upmt’y-O, 6<z<1
by (2, 0) wm v (7). (27)

We shall now designate by fl(l) the boundary values of function Y(z,y) om
8rc L, We shall prove that mear the ends of arc L function £1(s) and its derivative
£'1(s) remain bounded (the length of arc is messured here in the plane (x, y)).

In fact,
W, (28)
where
f'-(z“i)'+y'-
Pmlz (=) —t)r gy, } (280)
vhence
Ty o e Il Wl el ) N T T RPN
P T R g e (29)
=01~ p-th (=0 1)). -
Since for ends of arc L
=0 (1),
1mzm0 1)y, } (258)
thon
E=(®—2)+2=0(1)p+0(1) y* =0 (1)p. (29v)

/2



Differentiating formula (29) along curve L, we obtain

=0 p=ti (=0 (1)), (30)

Consequently,
(31)

fh=§w @yt ma=o),
=0 e -0 dmo ) (=0t (inyl+1), (31a)
=0t fut—uipFaoom (#aom,
(31b)
Thues,

;;"-:0(1)' . | (32a)

d'/| 1 .
&y =0(1) yriny,
(32v)

We calculate, finally, values for ¢{(z,y) and its first derivatives near pointsa

(0, 0) and (0, 1).

1

Near point (0, 0)  ¢=0(f)z(1_z § (et ol e
1 i (33)
=0 z(t—z) [# {p-idit (prat]=0Mzt—nn =0,
¢ 0
where Reztq
(33a)
b{; ! 3 ] v ! - 1 1o
and =01 S B (=) 97 di=0(1) [§:’j+z; § ;{"»T'] .,‘L(R’_)_
]
(34)
In exactly the same way s Of
a " . (34a)

/3



Analogous calculations take place near point (0, 1),

On the basis of formulas (33) and (34) we obtain

(-8 yarmoqnnt,

(35)
s0 that yequirement (7) is satisfied.

Thus, solution of , satisfies all conditioms of problem B, Conesquently, and
=2 satisfies the same conditions, if 3 satisfies thea,

Thus, there is provean the possibility of limitation of the case *(z)=0.

3. Reduction of Boundary Value Problems to One~dimensicaal Predholm Equationg
of a Second Type.

On the basis of the results of the preceding paragraph we assume in the future

that in problems 4 and B functions (%) and v(z) accordingly are equal a sero.
By analogy with solution of a Dirichlet problem for a Laplace equation we ghall

form om the basis of fundamental solutions 9y and q2 dipoles, i.6., we shall take
derivatives for the normal to curve L of these fwnctions

:1.' , :_"- , changing here
the coordimate by the singular point. (The normal is paseed in plane (x, y)).

Inammch as judgments in cases A and B do not in the least differ, henceforth
instead of q) amd q; we shall write §,
The potential of the double layer, i.e., the layer of dipoles with mament * ()
will be . .
=4 S»(s'),‘n-’,u. (1)

If differential dn' has the direction of the internal normal, then the boundary
value of s on the inside of arc L will be

. )
o (5) + 5 Sp(s')ﬁd:'.

(2)
Consequently, function ©(5) is determined from the integral equation
‘ -
() + 5 3»(:’),—,‘,-,". e’ = (s), (3)

/Y




which is an integral equation of Predholm type of a second type.
In Sect. 4 we shall show that nucleus :ﬁ, satisfies the estimate

20 (1)In (). (&)

Consequently, to this nucleus the theory of Predholm is applicable, It still
remains to prove that the nuaber ;,. is not the characteristic mmber of integral
equation (3).

This proposition is equivalently one that uniform integral equation

() + 7 Sé(s'),f,—ids’=0 (5)
has no nentrivial eolution,

We shall prove by reductio ad absvuydum, Let (s) be such a nontrivial solu-
tion, As shall be shown in Sect. 4, euch a solution would satisfy the ewtimates

B (5)=0(1), (s)—o—“) (=0 (6)

yis!

whence it should be that the corresponding solution of the uniform boundary value

problem
A =0 on L z=0 on segment .0 0<r< 1 )
or { (7)
— - d2 {
satisfies the valuations
- (8)
_ " ' m t, 9 o .
F=OMUINRI ), Fao() B, O,
wherc R is the distance of the given point from one of the ends of arc L.
But in this case we would have
lim S 9 inds =0 (9)

-0

and in this circumstance the uniqueness of the solutions of problems A and B is
proven (1), Ch. II, Sect. 7). Consequently, we would have

1=0 (10)

/5
e



and then on curve L

d3
n=0. 1)

Lot us consider now potential T, formed according to formula (1), outside
curve L., By foree of the continuity of normal derivatives this potential would
satisfy the boundary conditions

- R ;,2 a, 1 NnR—c;
"’o(n‘f-) 7 Jy (R']‘) }

di &
=0 on .d =0 on y=0;

=0 ()i 2, Z,', °(7n)

Sl

mhR—pm,.J

Furthermore, near the ends of arc L conditions (8) and, consequently, (9)
would be satisfied,
But under these conditions partial integretion givu

o=§§3 i) erar= (2)F {F it @)

S5 () oo 50 (2 2 s

where the double integrals extend along an infinite domain outside arc L(x>0. It
follows from this that outside arc L we have = =0.

Discontinuity of function ¥ along arc L is equal, however, to 2-:(s). Thus

;(S)éo, ()
9. o, d,

Thus, the inhomogeneous integral equation (3) has a unique solution.

As will be proven in Sect 4, it satisfies estimates (6), and the corresponding
potential (1) satisfies estimates (8), so that there is satisfied also condition (9) ’
1f only f(s) satisfies estimates (6).

Thus 1t is proven that boundary value problems A and B are really solved with
the help of integral equation (3).

There remains still to prove the estimates used,

a



4o Proof of ®

For proof of the estimates mentioned in Sect. ] there are required, first of
all, certain estimates of the fundamental solution 4 and its derivatives for n',
s', n and s where both points, determining these fundamental functione lie on con-
tour L.

Let us remember that fundamental solution <f can be written in the form

5 (1)
c= (W3
q-( h) (F (e)inc + 11 (c)],
s ‘ 1 1
where o=t F(a)=F(-6-, F;1;c>. =kl +G,
a2 3
G=DF (al b, ¢, -")Il-b--:—;c-l, D‘=&;+a'b+2'aé.
First of all we estimate the function
- 9. Oy M . oy ¥
Q150" s 'ands’ @ an‘osr !
for which, in turn, it is required to estimate the following magnitudes:
F(), G(s)y F', G, F, G F",G";
1 T '
ds g dte . 3% 9 (2 3 S (w9 (TN
on'' 5:' Fn'Gs ' In 950 3s r.> ' on’ ?') ' dn’ds (p.) !
o AW
on’dst (T) ’
dinc -dle d'lne 3 lnec ?lInc
T9n’ ' a5 'dnigs ' ot 'antast”
To estimate functions F, G and their derivatives let us note that
F@)=AF,+(1—c)-°-'BF,, (2)

where F=F(a, b ci0) hypergeocmestric functions P2 F3 have as their argument l-—o ,
and coefficients A and B depend on a, b and ¢c. Accordingly we obtain

C(cy=D(AF,)+ (1 —¢c)-e-vD(DBF)). (2)

Then for the values a =bw 1/6, ¢ =1

/7



F(a)=AF, 4 (41— o) ':'BF,. _
c(a)=D(AF,)+(i-a)g‘o(up,),'
F (o)=c1?,,+(1_o)‘;EF..
G'(a)=D(CF.)+(17-o)-T:-D (EF ,
F'(a)=1F,+(i—-c)“}l(F,.
c'(o)=D(1F,)+(1_o)";'D(KF,),
F @)= LF,+(1—q) -'LMF,), '

G () =D(LF)+(1—0a) " ; DMF,). )

(3

But inasmuch as
(4)

4
p— :}' ,

then from equations (3) follow the eatimates
FO=0(1)=C ), (5)
F'(0)=0 [ -'W] =G’ (o),
Fr(e)=0 [—7-7‘] =G'(9),

F" (o) =0 [ ,I:%]-:G"‘(o).

How derivatives of ¢ are estimated, we shall show by the example

P,

. 9—12 O(M Otn) (")
[.d 8
G =g e = = S [ Ty 4 ]=

=0 (!U ) 0 ( H )
Estimating similarly the remaining deriwmatives of s, Wo obtain

=0(5). =0 () mar =o()) (6)

0(-,")' 0:0,|;n Kn) J
Purther 0 20h
(5 )"—'Tﬂ "“"F(z =) gty “‘J)d J=o[(F )Y

Estimating similarly the remaining derivatives of (i;)', we obtain

w()=oF] 4(5)'- r"w]'o, ()=o[2] |
2 1t ‘i
On:’;a (:) Bo["_:Tg] ’ 0:0;-' [%’;’] {_-!:'Iu]

(1

/¢



For derivative of we obtain

Tmt=mo), 2t co) =0 (1), )
dlne 2

St
dtlne 2 2
Fr e P +('I_-F;_’)—‘- +0(1). J

(8)

Having estimates (5), (6), (7), (8) it is possible, finally, to obtain esti-
mates for Q and its derivatives, namely:

Lm0 () [ t]+], |
a . _i_
b fimow () g o).
3 3 N ﬂ“'l+ﬂ+ﬂ(“)rFU(—7 -5,
P Tl
+20 2”) F()<—__
P QY g
[a.(’y) F()+( Y E 2] () -
"2(21) r()[(‘ oy (‘Fs}‘]

o =S (5)? [\‘",!“]

— \

Hifamw ()7 ’<°+( )T SR IGORCME

s-—c' s+

(9)

2,

’ Ll N ~ .
() FaaR () PO ) ] )

In the future there will be required other estimates of the first derivatives

for ' of the coeffieients in( - —. ' ) s.anding in formulas (9) and also of

s Ly

first and second derivatives for s' of coeffieients in {(_’_’T)'_(T«::')’] in the same

formilas, All these estinates we take under the conditiom that

/9
| — —— e e e



1 )8 10
TY<y <zy- (10)

Then, using the above-mentioned methods, we obtain

(1)
or _0W) 29 0u)  9R_o0m s o
@ = T @ Ty Ay R NTY y
s _0() T _o() o o0 v o
- e r.!?:_yr ' ds v a4 ™ v

For the coefficients P, Q, R, S, T, U we obtain the following estimates;

oo ()P emom(£)T, mes(eyh ] P
S=0 (1) (;")? r= 2l (L )T. v=o(¥) . J

Using condition (10) we can retuce equations (12) to the form

P=0(1), Q=0(1), R'--o%), SaO(i); T=0_‘('.”,.U=0(1). (12a)

Now on the basis of estimates (9), (11), (12) and (12a) we shall derive a
_series of estimetes for integrals of the form

=]

S»(s) 7 g,

First of all we shall prove the following theorems:

'

S ) od od function; then functi
© -
B, (5) = § o (s7)ds (13)
o8 lo ' :
Iy () =y (8) | < Als,— 5,0 (0<e<1). (1)
Proof. "t

|28, —s,1=2, 5, <3,

Then, by (9.2) and (9.4)

.,p‘(s)—u,(;) (0<1)§ 'nl,sl-l"—":_—_'”d N
) o
] L l.+7
+0(1) g( S Q )l, T Aoy S nis —s.|1ds' 4
. o - v " 1 01-»‘-
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(15)
ny ' Wt : ds’
+OU)&IMH=4JMV<OW§;m[r=§7;+
et
31. G [T '
+-:— S Is'—s:"'ds’«}-s"'g '—‘;’—:’:—‘]-{—0(1) S [ |1n (s,+-2-——s>l+
£ %'— ’ 0" 1 ‘
-fhh(s—sf+%)l]ds+0(ﬂ(g—sy'40(ﬂ gs 3 ds4
-;0(1) (s —5)" <0 (1) (5= s +0 (1) (s, —5.) <0 (1) (s, - 8)
which was required,
THEOREM II. Let, *1(*) setisfy Hilder's condition, Then fupction
6 . . (16)
mm=§£hwwf
is differsntiable, where in the derivative satisfies the estimate
m =5 (a7)
We shall prove first that the derivative exists and is equal to
7 (18)

G
. 9 N
u, ()= &bnfg{ #,(s) ds’.

(The integral in formuln (18) is understood as the principal value in the sense of
Cauchy).
Por this purpose let us consider the integral
O g (17a)
mmm=(§+§)ﬁmwwu
oA

whose derivative is equal to

=M -
(§+§)mu3§%4r+m@—mh¢»—m— (18a)
0 LX)

— by (s+h) ga- (s, 11+ B).

2/
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Pamotion ;2% has the form

% ‘ ,
= 2L 0 () (injs—r - 1), (19)

Therefore
By (2 42) q‘n..‘(s. S 8 (=T, o (5, 8 =)
=B+ [n (5 s 42) 470, (5, 1 2)) +-
Fgnilon 5= [u, (s=8) —u, (s4-7)] =
=O0() (it +1]+0(1)2- 10,

(20)

whence when /i—> 0 there results convergence of integral (18a) to integral (18) and
besides it is uniform in the neighborhood of point s = @,

We nc s further that
G (8, 8 £ h)m k() Inh+0 (1) A{]InA[41], (<1)

. . (22)
B (8 —7 yne (s, s—h)—p, (s+h)q.. (s, 84 h)=
=i, (1= k) [gn (s, $—h)—qn (8, 8+ B)] 4+ g [0, (#—h)—p,(s4+1)] =
=O0(1)h[[Inh|4+1]+0(1)Inh . ks,

Consequently, the sum of the secord and third terms in axpression (18) seeks
sero when /—0 and besides it is even uniform in neighborhood of point s = 3,
Thus, formula (18) is proven,

We shall now prove estimate (17). According to equations (9.4), (11) and (12)

(23)

o)
i

e ? [ -] ,
Hn=24 §,;?[jm,~':|+1]+0(1) §,»1’7,+

Hy (’I,ds»_{_

&—1x

ot |»

+({+ e 2 109

N‘-V‘htl'.‘

H";‘!/\Q

[ ]
+Qin ) § v, () as -%f,'% +OMiny I+ 1] 40N 1Iny) +1) +

2 .
+0(1)y‘+0—;'—’-y-=—0—“—)-

yln
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THEOREM III. If & continuous, bounded function ,(s) possesses a derivative,

satisfying estimate (17), then the derivative of function

e . (24)
Bo(8) = S 5‘::5- B, (s7)ds’

satisfies Holder's condition:
IP:("I)_!.: (s))i < ;fi; (s,--5)%, (vi<y 0<e< 1). (25)
For proof we shall apply partial integration.
dnd r"(”)*(’(f‘)( l+‘)'

Then p:(:)-:-(%-—\) 2 o‘ u, (v') ds’ g [ :')_'Q(- U sy (26)

+0(s,9) S**"’ s’ -;.89,’__, (s) ds' + SV(: ) u, (5) ds” e

Let

= (S S) dn’ 01 By (s7)ds" + S Bt .\:,_”,?‘(‘..““ vy (Vs —

~Q (5, 8) [, (b)) In(b—8) —p, () In (s — @)} = Q (s, <)

[ e I

ug (sl 8" oo

. b »
+S?,:':,)ds'+SV(s. sV, (s)ds” (e <s<b). (27)

Henceforth we shall assume that

a=%, b=, i=s—s <l (28)
Let us note that when 7 <% < '32:
Q=00 (g, 54 () =2, (29)
N v
20 Qun § [Qrnls s =90+ (29)
[2X8))]

F (=) Qur (53 5+ (=5 010 =210,

l! )
Q.5 - Qe ) I _ 3 Q. -Qlss) oo 0(}) s —5 | = (29p)
8~ .l 39—« yi B § )
l ()(l) w
y“ﬂ" [ N

and when ]:‘_3‘:>_';
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al; s P r ' ) (
s 7 _0om o 30)
s on’ " = g g5t on’ ds = ;. N S ("T 3 ) t=tds +
"y ' N “ .
c(_.":.'_'i:“_l‘_‘",’ =01 f_‘a—’."
[EREE MY A 880t
4] ’
o ¢ _dr O |l o P
yl‘" o LR y:I'; (s—05,2 Z/:’ Y ¢

Purther, we have

Qs )in (% _5) *pqy
S, 8 =N ety
" )n<s ,.,/A.l»O(A/y\:’}
. . ‘hy 'x_' 3'|.<l
S B (8 )In" s~ _lc:'s'==< \ L \ )1.;(;'/\:“-,'_,::-:“,_:'
:IJ .:’ s “
‘ day
04l " ”n -4 2 -| Lot
+ S »i(*')ln'f’—si,: dS'=0(1)( S + S )y' Yoo e
o= ” g8 .
gt 1 ; r::l 1
+0() { v ¥ nps =5, 1as +0(1) & ¥ Tinis —s, ds =
] [
_"O?”T)ivss—‘tx;" (32)
e " .
Q’::)____1__'Q _ 'i_‘=
e S ._\ us ds Q‘S(l*l'ﬁ (33)
o ho4 l2, “u
AL
LN In
Fi . n-1 ¢ [ ”
SV(:, ) () 0 = ( S + g )(S‘%ds)ds'+
fl' -7- 0ey "
(FER ] .
+ Vi ) ds =
3n "
l,:l 2 [_ ' . ]d
=0 (1) -+ 7‘:"5"‘".:"°'+ $'— 5, 1% | ds’ -
( } HSH) - )
- .
N (34)

The remulting equations (27-34) give, thus:

B =) =0 (B2, (35)

1

THEOREM IV, 2 (5). satisfies conditions (1 then function

e .
by ()= | 20 (57) s’ (36)



[] & 80CO ostimpte

011

o (37)

¥y

uo ()=
Por proof lst us note that . (i) can be expressed by -, sy msars of formula
(27). Inasmuch as :7(s) satisfies Holder's conditior, forsula (27) ailows formal
differentiation; here, in fact, there is obtained a second derivative "' which
is proved similar to the proof of differentiability of ¢ »). In formuia (27) let
us assume that “=_'“‘.- ’/=::,=". (38)
considering these limits to be constant, on changing during differentiation.

We shall consider that when '$'—=s!>

_d'_'./_=_cu1_)___’ L O o
G e T e s T T (39)
Vet s
when ' —s| < 7
9 Qs.80—Qls.sy O
o1 P =g (40)
2 3y
a;[Q(S,S) In <?’—s)]=932[ 11):/{-:-1],) (11)
a
‘J—’-[()(s. ) 1In (s- ;)] ﬂr’-fﬂ[ﬂny'-i—i], J>
J
{:— .3_' e
~ P ! 2
BP.(")'!’ =§m”)-a.(n ) o s o1 0
= Y Ty = o s, e
: * Y ] v? (Lz)
¢ 2
9Qusy 0O
e T (3)
oM oy 1
A T (L4)
3 \ ’—v "o . e . N
SV e =200 nye ey T T T
kL 3
- pals) ,, -P.’s'u- el , pp—
.S ‘,_’ds ‘S R ds == 0 (1) 4~ (45)
> =

Hence
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(46)

)(1)

l()—'

q. o, d,
Thus, from Theorems I--IV it follows that any solution of the homogeneous

equation
G -
k() + ,&} () 2 ds w0 (1)

must satiefy estimates
> (5) = l/'lom S e (R (L8)
(3= gt

We pass, finally, to proof of estimates for functions
5, & o
';y'

where
¢ (49)

Let
q.-. -an"l+ anﬂ (50)
where , i)
inim 20 [ () 0 e 2 [ (Y0 ] o

;=2'+z.v

Accordingly .
(52)

©
- i .-, .
Sq.., (s') ds’, z.—.isq,,,p(s)ds. (52a)

v

where

1
=,

Detailed calculation shows that ¢ai= 0(1)1+|"ln, 3
(53)



omauzinh) (54)

- A —

l

(’)S““M ds'=0(1)(1+/InR;) ( §+§>d7_,,
v 3.'_

"2
-

01)

+5 \Infs —slids'=0() (1+ [InR ).

u:-q_/sxl

If ' 1is the angle at which segment (e, s') of arc L 1s seen and ;, 1is the

angle at which the mirror image of the segment is seen then

0 1
7 - TN e i T o e . N (55)
ne2) (5) reiee 2 (G ruien-o0),
Thus,
=0 (1 +{Inn1})). (56)
For estimate ;:' 3;1' let us note that
a o - - -
qrx'tlco'x’]n'l=9n'xn+qn'xl2‘r ] (57)
- (7 - -~ '
qﬂ'sl=L;:’j']n'l=7n‘yll+9n'w: f
where
=_'71_ (2 -
qan ( ] ]Inc ‘,,,“[</\3//"] )’ (57‘)
.",aci 2'\ spay O
d etaN Y/ l(')_—dl'
.'n"/":"—('—’— rl,?:.'\‘z AR ° kel "
¢ ot (".(/L\.;I/ ! -JI!)JTglJJr/(\]I(/\;‘ "
ST A et !
’]““ «."_\‘//'<"(. !
Detailed caloulation shows that
q..,mr——”’uT LIS (58)
(4 (
Gyt = P!y)_( »;r,lnp).J

If we were to introduce now the designations
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o (59)
Gnretin (3°)ds’,

- 1
L Y 7

Zypg am

S S

1 - -
7\ @npern (s')ds,

then we obtain

;,‘||=0(1)(1+;1nn‘)(§+SG>3£_;'+ (60)
o u” "

o .
+-R(,” In|s"—s:ds" =0 (1) _’_?;l:" R!

T T

and analogously

Ty =0 (1) 1‘,:;‘1'{1"% (61)

We shall introduce later instead of coordinates x and Yy coordinate s and n
(rig. 1).

7
7/
Fig. 1. rig. 2,

Then (Pig. 2)

a 08 d un cos 2 Z_L_ii},].‘A .9 (62)

g:= 01 0oz on o an’ di us'

i1-n
ds
9 _d ¢ en cerd 0 ad]
= o ry+u;1 U;/_‘_n‘_f.’ os 7 on! (63)

and, consequeatly,
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én.,|:"" Z;’[aul?"}'colsqn ‘i l

de

- «3 FUN
1n«,,x~=—_‘-"“qu.|7 un$q,.,-,.,-_., I

)
where Qn,l -2 [< ) » ()Jrlnc

denr = 2 [(0) Py ]2ne. |

Accordingly we introduce the desisnations

@
Seto = - R nn““ s')ds’, l

—:,,,3=-1‘§q,,|u(s) Jl

We consider now that

dln o~ n ,
T TS e ToMn )
Jdine s—s ,
o TR, |
H
R NELAY 1_0m
== a 3
o [CY P ] -0,
t
0. TN \1 0“/ L) KLY
a0 £ en 8 g <<y
z - dJ q° u!nc —
Zpiz= — , r , .
then ‘ 5 [ ) ()]0 sy ds
1)
. ‘
-- -—~\ o AL hEIATR
'<§‘~§‘/m‘[\l/ I (z) — e (s)de
. .
TS('.,[CT\”]r\;”ln b () s =
< s .,_!:l
de’ oA - ,
mOMANT o E T T e
¢ .I
0 - SRR
+“A’l— \'(‘ s

(64)

(¢5)

(66)

(67)

(68)

(69)

(70)



2.n=—-gdi[(11) F(e )]&:J(s)ds

ROOPEI (OO EE

i d

7"% [< ) (")]n'i:u_::-*‘ (") ds* —

Ty,

—

G el L

‘where

'S OF s, }
st <8 g <<,
or

{l
Let us note that i, -n' is an increasing function of |s'—s:, a0 that

(2" - 8)2 y?
i =0},

nt4 (s’ — )
and
_ Gd' ed
=, =0 1 —‘ . 1 \ »" .O(”V’ i '_.,0“) "I’—O{”
12 ( ) § P:_+ 0( )os 9‘3 R ity n+.R' :}’Ei?‘- _"—-'
Since

Syam——— I, —8ind g,

Zpip = '—};,3 22+ 0832, }
J

that from .quations (70) and (73) it follows that
le?“"“’)
s }

And, finally, formmlas (60), (61) and (75) will give

S0

1
n? 2%'\3 ' .
—— — o (=1
o on [( . ) F (")],._,..m%,r, w(s')ds,

(n)

(71a)

(72)

(73)

(74)

(75)



iz, 1+ "In 0
Sreo (0 ] (76)

2, FREY T
'.'”_‘0(1)—1;(:‘/?.;,“ J

In order to estimate derivatives of 9. and —(‘j we shall express them by

Ju !

means of formulas (62) apd (63) by ' and ”".

un
We shall first estimate %:,"
' . . ‘
dr/:"'\:‘ . ‘|dn?__u ’ ys'+ (77)
vn <§ >>o;.t\u,/ o) | =m0

] lne} w(s’) ds',

\IQ
—
/—\
v
'“1

[ .'1\31 "y dy' _?
v V() rened-

P

E M & 3]

where % and % are values of -, corresponding to .'-;&Ml"s‘? .

The first and third integrals of the right side of squation (77) are estimated

as Q(R‘L. For the second we obtain the expression
e
: ) T
-1-5;”,,[(",j):"mo)]u(e')d?'Jr
4\ o [ O ;/f«c>} () g |, oconne 37 F :

S ror O, e

;
We have (Fig. 3) ki _ing

(79)
B
J

rg. 3.
3/



Comsequently, the first term of the right side of equation (78) is estimatea as
Q{Q. The same goes for the second term, Purther (Fig. L)

o i (80)
o =.lmq:'
dn |greconat cosy!
ds' ., sing’cos s . (81)
dn ?'=’cos.',—_((1 [;ﬁ(r&,?"l'o“)]d;’.
¥
Fig, 4. -
Consequently, ;
v
a
78( ) Fe)p(s') dy’ :0(1) Q}'{i_)n,_ (82)
0
E'
2 s "
— {2z y - ) i
+S.“"{v: [ F@ ]}, Tl e
7 =1 (s’ — syt
." !1
\ . ( 1)
o _’ K4 z
+ ()> L] Sd [( )F(a)u (S)]n'("—-: -~ ds T,%]Sds,
Z 1) v . .
2
But
1
gt 20’ '
z*-[(?{‘ ’F(a)}=9;%i?1:{. :y_o;(;{_nheu feved (83)
so that P v 2y’ ; CpN T .o o - .
"XS (7) Fa)al(s)de'= = by et Y
' (84)
o 0 -

g0 () (IR 1)

RS
R"J’""‘ y+

Yy RIS
0(1)
y's

(1)

+ 5 YT 0(1)!/ ==y

g2



Thus, from equations (77) and (84) it follows that

2 o (85)
dn g ¢

Az, .
Let us turn to the estimate of . °

- (86)
(DAL P
. o3
i("f) Fe)a(s)de’ -9‘1’+<“) FERE T __:‘5‘
o) relFnes
1
- '
+48 [() r@R o] &
9
We have
(87)
dt .-con«l—(1— )5
o m.r(“ ')rc'fi'w (88)
i”‘”v k')r‘\l ? (1» d‘>coq -l s’
- [n_c_(:‘_- (1)] ds’, (88a)
Pmem 00 (89)
Consequently,
_'E: oM oy oy (90)
s n R y'.':n's"lf—r

Q f() FE (0] [0 ds d oo -

oy, om__ v _ 0
o iy K /i

From equations (62, (63), (85) and (90) we obtain ncawr the sought for estimates

of the derivatives:
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(91)

(92)

Thus, are derived all estimates by which in the preceding paragraph it was
proven that i (s)=0.
Purther, on the basis of Theorems I—IV, it is easy to show that ostimates,
derived initially for . and %, take place aleo for * and
i= g S fo s () 4",
from which it follows that s(x, y) belongs to the class of those solutions, for
which the uniqueness theorem is proven,
appendix
On Certain Particular Solutions of the Equation
P

Ve shall give examples of soluticms of the equation yZiiTio0 which re-

fute three erronecus theorems contained in the article by Tricomi [2)
The firet of these theorems ([2), Seet 2) states:
Dhe_selytion of equstion %H:_;‘:“OWWM-
b £ 8 L) .
Tricomi calls a point "effectively singular,” if it camnot be turned into a
regular one, changing the %alue of the funoction enly of this pdnt.. Here Tricomi
& priori limite himself to comsideratice of half-plane y > 0; it is in this sense

that the isolation of a eingular point, is wunderstood,
The theorem is refuted by the exanple of the funstion

= (53).

*This function was given by Tricomi ( (2], Sect. 1) in connection with ancther

problem,
4




where

T (:)vimii—,—, (=22 - aicumn/i),

1
Josin' 3
“

Really, for this function

z=0 when y =0, x> 0O and

_r(5)r(s)
(%)

and at all remaining points of half-plane > > 0 the value of s lies between the two

“‘ _\'=01 I<O'

indicated values,
Derivatives of d% are finite and are continucus along the whole x axis with
the exception of the origin of coordinates. Indeed,
o .. 'ul L

a0 S
Error can be corrected, if to the prerequisites of the theorem there is added
the requirement that in the mentioned isclated singular poimt function s(x, 0) re-
mains continuous, Then the proof of Tricoml will remain in forece,
Regarding the two remaining theorems, then apparently, even with more precise
definition of the prerequisites they remain erroneocus.
The second theorem of ([2], Sect, 2) states:

o1

Vi +»—r0 (v >0,
Let there be given a solution s of equation :

_regular
in the neighborhood of the origin of coordinates, which differs at this point (i,e,,

with any approximation to this point sesks either * = ™ or ¥ — ), Then

:::,+ap ! (p—/z ——-—\ )

where a is a constant and s is a function, regular at the origin of coordinates, if

function 077 (9 14 tntegretible in the neighborhood of poiat x = 0.
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This preposition is refuted by example of the function
Pl b ()]

This solution differs at the origin of coordinates, but camnot be presented in

Ze=p

1

the form :=: ::,"7 . On the x axis (z0) . it remains regular, since

Function (z), as 1t is easy to ses, is integrated in the neighborhood of
poi.nt x =0,
The third theorem ([2], Sect 4) states:

The pecegsary and syfficient condition of the existemce of a soluticn of the
otz B 0’2__ X ’ e s .
Gauchy problem for equatioas of .= "  in the regloms !> 7 7T-- e

he icity of tion

! 1
A R CA T A N

—‘(1—21',)_7] v(r)dz

y=0, ey
o0 _segmeqt . where
; 1
el
()l 0, 2 (0, v r_(_)

In reality this condition is necessary, but not sufficient, as it is easy to
establish by the example of the fundamental solution brought by ws for

R .
=GO )

I consider it necessary to make certain corrections and supplements to my pre-
ceding works,

In_the work “"On the Ceyohy problem”, No. & (1944), 195—-224,

Formula (10) on page 197 should be replaced by the following

vhen y' = 1/2, x* = Q,

*The example is taken from a series of solutions of equation i T IF
of main memoirs of Tricomi ([1), Ch. III, Sect &), :

Je



v (v f/y)n. (10)

In (120) on page 218, and also in (120a—120f) on page 219 cne should replace fac-
tor (*=7) s with ("—!)'s and decrease the expanents of the degree of the
difference “.—'. by 1/3,

In_the work "Toward a theory of lLaval nosiles” No. 9 (1945), 387 —&4'2.

e

In (15) and (16) on page 416 one should replecs component :} i by 3. Im
accordance with this in (19) on page 416, (5), (5a), (8), (8a) on page 417 the fac-
tor )/J stands not in the nwmerator but in the denominator. 1In (3) on page 416
one should change the signs of the first terms of the right sides. Punction ’ ;)
(84ct, 6, (14)) can be axpressed b‘y the Bessal functions (see [8)):

atr

L ()= —— -131\", ( > %
J
As S, V, Falkovich showed me (see aleo in book [9), page 58), the hypergeo-

metric function F(1/3, —1/3; 1/2; t) is algebraic:
r <»l~, -—1 : ‘—, t> =cos :’;—:\rc~in[/: =
C Y T T s Ty 0
in connection with this conclusions of paragraphs 3 and & can be considerably sim-
plified,

Submitted
4L October 1945,
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F. Frankl. On the Theory of the Equation

Sumary (English-Language]

In this paper we solve two boundary problems for the equation which we call
Larboux~-Tricomi's equation after the authors who dealt with it,

A (1)

The soluticns are sought on a dorain lying within the semi-plane ¥y >0, where
the equation (1) 1s elliptique. The boundary of the domain is supposed to coincide
with x-axis somewhere. As to the part of the boundary that lies within the semi-
plane v > 0,1t {s supposed to be sufficiently smooth and to approach the x-axis nor-
mally.

The following boundary problems are here considered:

l. Dirichlet's problem,

2. The problem in which the values of the unknown function are given on the
part of boundary lying within thc semi-plane y >0, while the normal derivatives are
given on the part of the boundary which coincides with the x-axis,

These problems were already considered by F. Tricomi in [1), as well as in the
papers [2]and [3], with the use of considerably complicated methods: the author
either used Schwarz's alternating method or jassed to the limit having proceeded
from the domains lying, together with their boundaries, within the semi-plane y >0,

In both cases Tricomi used two-dimensional integral equations of Fredholm's type.
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The second problem was solved by S. Gellerstedt (7] by reducing it to one-
dimensicnal Fredholm equations of the second kind. Gellerstedt, however, assumed
that the ends of the curve L (see Fig. 1) coincided with arcs of a certain alge-
braic curve which Tricomi called "normal curve." In this paper we remove this re-
striction by means of some suitable estimates in both problems in quecztion,

In Appendix we give three particular iolutions of the equation (1) which refute

some false assertions by Tricomi in [2] .
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