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LINiAH PROGHAMIflIJC 

Richard C. Kao* 

The RAID Corporation, Santa Monica, Cali-Tornia 

1.  ilistorical Notes 

Linear progreuming is a relatively recent subject in nathenaticc, having 

clevclü]x?d mostly since li/kf-l^kQ when the Air Force set up Project SCOOP 

(Scientific Coraputation of Optinun Programs) to investigate efficient organi- 

sation of large-scale programming and scheduling activities. Since tnat time 

^he subject has enjoyed a flourishing grovth, both in theory and in applica- 

tions. Most of the early work was done in the Air Force, which has also lent 

generous support to sponsoring various symposia on the subject. 

The earliest work known of the linear programming type was a transporta- 

tion problem posed by Hitchcock in l^^l. In the some year a diet problem was 

considered by Cornfield, which was studied more intensively by Stigler in 19^. 

Parallel to these spotty early efforts. Leontief carried on input-output indus- 

try studies since the early ^Os which later proved to be related to linear 

programming problems. Project SCOOP conprised most of the original contribu- 

tors to the subject, including inter alia George Dantzig, Marshall Wood, Murray 

Geisler, Leon Goldstein, Julian Holley, Walter Jacobs, Alex Arden, and Ball 

Schell. A great forward leap was made when this group Joined forces with two 

other groups: Koopmnns at the Cowles Conmission, who had done much inde- 

pendent work in activity analysis of the shipping industry, and von Neumann and 

Tucker at Princeton with their students (e.g., Gale, Kuhn, Goldman and Gomory). 

One unique feature of linear programming as a subject in applied mathe- 

matics is its rapid growth in applications — to problems in govemnent, 

industry and business -- pari passu with its theoretical development.  7ai3 

♦Any views exnressed in this paper are those of the author. They snould 
not be interpreted as reflecting the views of The HAND Corporation or the of- 
ficial opinion or policy of any of its governmental or private research sponsors. 
Papers are reproduced by The RAND Corporation as a courtesy to members of its 
staff. 
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Blmultaneous evolution of the subject along two  onta Is generally the 

exception rather than the rule in the history of mathematics. 

2. Itie Optimal Diet Problaa 

Linear progranming deals with maximization (or minimization) of a 

linear function of n variables where the variables are subject to a set of 

linear constraints (i.e.^ equations or inequalities). All or sane of these 

variables may further be required to be nonnegative. Let us illustrate the 

problem with a simple example. 

Suppose we have four foods:  corned beef, cabbage, potatoes, and milk, 

and wish to prepare a wholesome diet fron them. To do this we ask ourselves 

first the question: What Is it that's so Important in a diet? The obvlou- 

answer Is its nutritive value. So, let us simplify tne problem by con- 

sidering only three classea of nutrients: protein, carbohydrates and 

vitamins; and the nutrient contents of the four foods are given as follows: 

(2.1) 

Corned Beef Cabbage Potatoes Milk 

7i y? 73 74 

Proteins ^x 6 0 1 3 

Carbohydrates h 2 2 k 1 

Vitamina h 1 3 1 2 

^1 ^2 fl3 "k 

where "6" means that 1 unit of corned beef contains 6 units of proteins, 

and "V that 1 unit of potatoes contains 4 unita of carbohydrates, etc. 

We aaaurae, of course, that all  these units have been properly defined, say 

by the nutritionists.  Let as call (2.1) the nutrition matrix. A diet 
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(or ;aenu) la any continatlon of the four foods, aay in amounta of 

\r-'t V    For any given diet ( 7^ 72/ ly 7A    ), 

(£.2) 6\*0.1z*l'13*3^k 

is the total amount of protein,  and 

(2.3) 27i + 2 72^73 * 1.7^ 

(2.^) 

is the total amount of carbohydrates.    Now ve vish to Impose an additional 

retitriction on our diet that it provides at least   f. units of protein, 

y   units of carbohydrates and  Y^ units of vitamins.    Such a diet will be 

called a feasible diet.   More abstractly, let a., denote the units of 

nutrient N.  (i«l,•••, m) contained in one unit of food F    (j"l,•••,  n). 
* J 

Uten a feasible diet is a set of n numbers satisfying 

V0 
J ■ !»•'•* n 

and 

(2.5) ail7l + ••'  * ain7n 1 « 1,•*•> m 

(2.6) 

As yet no maximization or minimization Is involved, and It is obvious that 

(2.5) may generally be satisfied by making the   V^e large.    We are there- 

fore Interested not in eating any arbitrarily large diet (i.e., large 

7/s) but one which will yield the least cost 

Mi — .  + ß  7 n in 

where /3. (j"l,•••, n) is the given unit price of F,, and consequently (2.6) 
J J 
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is the total price to be paid for the diet ( 71*,,,i 7n)«    A feasible diet 

mixilaizing (2.6) is called an optimal diet.    Our problem is,  in summary^ 

the following:    Among all feasible diets, to find one which is optimal. 

This is the optimal diet problem which gives rise to the standard minimum 

problem of the linear programnlng type. 

To each standard minimum problem corresponds a second  linear program- 

ming problan, called the dual problem.    Let us first state it formally and 

then try to explain it.    Äat problem is to find numbers   .J.  (1=1,*••> m) 

satisfying 

{2.7) ^1 " 0 i " 1>"tt ra 

and 

(2.8) i^ ♦ ... ♦ I.Vj J 'j J s :L',••' n 

such that 

li mm 

is maximized. The symmetry between (2.h) to (2.6) and (2.7) to (2.9) is 

Immediately apparent, and this duality occupies the centred place in the 

whole subject called linear programoing. 

We now give a heuristic explanation of the dual problem.    Let us 

begin with (2.9).    Since   K  (l"l,«.•, m) are units of nutrients N.'s, 

(2.9) makes sense only if   i,  denotes monetary value per unit of N.  so 

that the simmation In (2.9) may be performed in the cotmon dencminator: 

money.     (2.?) merely states that these unit monetary values must be non- 

negative and (2.8) states that the sum total of unit m^uetary values over 

all nutrients must not exceed the unit selling price   fl   of F .    Hence,   it 
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1s Just the unit cost of N.  and (2.8) says that the sum total of all 

nutrients going Into one unit of F. must not cost more than the selling 

price of F..    Subject to this restriction, ve are to choose that set of 

^.'s maximized (2.9)»    Hxerefore, the dual problem is a meaningful eco- 

nomic problem facing the resource (i.e.; nutrient) owners.    They wish to 

set the highest possible costs on the resources subject to the condition 

that the food manufacturer may still continue to produce.    The fundamental 

theorem of linear programming states that if feasible solutions exist to 

the primal problem and its dual, then necessarily optimal solutions exist 

for both such that the minimum of (2.6) equals the maximum of {2*9)* 

ThiB last condition leaves the food manufacturer with zero profit and is 

sometimes called the equilibrium condition under pure competition.    More- 

over, the connection between linear programming and game theory is also 

suggested. 

3.    Linear Systems and Linear Progracimlng 

Basic to the study of linear prograaning is the theory of linear 

systems (i.e., equations and/or inequalities).    Generally speaking, there 

are two separate problems analogous to those in the study of linear 

equations, that is, linear algebra.    The first deals with the existence 

(or non-existence) of solutions to a system of linear inequalities,  and 

the second deals with the structure of the solution set.    There is a 

beautiful algebraic theory of linear inequalities which tells us when 

solutions will or will not exist.    In this theory we see a natural pair 

of linear systems such that if one has no solution,    the other must have, 

and conversely.    A general rule for finding this pair of linear systems 

is that the variables in one correspond to the constraints in the other. 
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and vice versa.    More specifically,  any nonrestricted variable in one 

system corresponds to a linear equation in the other system, whereas a 

restricted (i.e.,  nonnegative or nonpositive) variable in one system 

corresponds to a linear    inequality in the other system.    This pair of 

linear systems is also related to orthogonal complements in the theory of 

vector spaces. 

The structure of the solution set of a linear system is best studied 

ßeometrically by means of the theory of convex sets.    Here we see that the 

solution set of a hcmogeneous linear system is a convex cone and that of 

a nonhomogeneous linear system a convex polytope.    In either case,  a 

finite set of extreme points or vectors exist such that all other solutions 

are convex linear combinations (i.e., centers of gravity with varying 

weights) of these extreme solutions.    The solution set of the most general 

linear system is the (vector)  sum of a convex cone and a convex polytope. 

From the theory of linear systems follows  immediately the fundamental 

theorem of linear progranmlng.    In terms of matrix games,  this is also 

called the ralnimax theorem first proved by John von Neumann in 1928.    The 

entire theory may be extended to nonlinear (say convex or concave) systems, 

which must, however, have some global property.     Such extension may be 

found in connection with Fenchel's work. 
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^«    Computational Methods 

There is o separate body of theories related to the conputational 

aspect of linear programing;,  the first of which was the elegant simplex 

alcorithra by Dantzig.     Let us illustrate it by considering the following 

> 
problem: To find ^ = 0 (j=l, •••, n) minimizing 

(4.1) *l1x*-*ßJn 

(4.2) 

subject to 

^l* ,#' +aln7n= ^1 

ml/1       mn/n  ^n 

In (4.2) we include equations only. If inequalities are involved, we 

merely introduce additional variables to change them into equations. These 

new variables, one for each inequality, will be given zero coefficients 

in (4.1). 

There are two steps to the simplex algorithm: 

1. We must find a first feasible solution, and 

2. Given that a first feasible solution is found, we are to 

find another feasible solution which yields a possibly smaller value for 

(4.1). Step 2 must also tell us when to stop looking for a better solution. 

We discuss Step 2 first and assume a first feasible solution exists. 

Let the first p columns of coefficients on the left side of (4.2) be 

(linearly) independent and the renaining dependent on these. Then a work 

sheet of the following type can be set up. 
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(M) 

col. 1 

a 

1 
n 

o 
i 
o 

col. p  col. (p+1) 

1      r      p 
i  ... a  ••• a 

ü 
1 

Q 
Pfl 

l,pfl 

S 
a 

Is 

r,v*l 

p;p+l ps 

col. n 

n 
a 

x 
In 

rs     rn 

pn 

rieht-hand 
aide 

c 

■ ■   lr 

In this simplex tableau we express a p*l n i  a   and c  as linear ccmbina- 

tione of a , • • •, a .    It is instructive to recall our diet problem,  in which 

the columns represent foods.    Then (^.3) says we can choose p basic foou/J 

a ,•••,  er, then form linear combinations of these to get nutritionally 

equivalent substitutes of the remaining foods.    For example, 

(4.10 Sri T i 
Is ps 

that is,  one unit of food a    is nutritionally equivalent to    \    units of 

a   plus    tL- units of a   T)1US SO on until   t     units of a^.    The last r 2$ ps 

column in (^.3) simply states the required nutrient vector ( f■,,'•'>   ,r^) 

may be exactly satisfied by   ^j.  units of a ,•••,   1    units of ap,  the first 

feasible solution which we assume to exist.     It is interesting to note also 

that once a ,•••, ap are chosen to be the basic foods,  the substitutes 

which can be formed for them are Just themselves,  i.e.,  use a    as substitute 

ID P for a , • • •     ,  a^as substitute for a .    In other words,  for basic foods. 

there is no need to find substitutes,  or the substitutes are identical with 
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the foods themselves, whereas for nonbasic foods, it is possible to find 

substitutes for them using combinations of the basic foods. 

Our first menu therefore consists of »7, units of a ,•••, ^   .. '1 '      '    /p units 

of aP and nothing else,  for which the total price is 

Mi*-* '•pi. 

There may be seme nonbasic foods not yet in the menu which would be cheaper 

than their substitutes in terms of the basic foods. Take, for example, 

a with unit price ß ,     (^.^) states that in order to find some combination 
6 

of a ,• • •, a    to be nutritionally equivalent to a , we must use   T     unioi 

of a ,•••, t     units of ap so that the substitute would cost '      '    ps 

r     /I. ♦ ... +   t      /3=< 
IS   '   1 PS        P 8 

If   rs <   bs,  then we would save money by introducing a    into the menu. 

But each unit of a    introduced into the menu will displace   T.    units of 

a , * * *, t     units of a .    We want to find the largest possible number of 

units    T   of a    which could be introduced into the menu. 's 

It is certainly obvious that each additional unit of a8 introduced 

would enable us to cut down on the amounts of a , • • •,  a   used in the first 
a 

menu.    In fact,  if we use    ^   units of a ,  we reduce the amounts needed 

for a , • • •,  ap to 

7/.        7 - t 7; 
'l        '1 Is' 

V-   ^    -   T    7s /p        »p ps ' 
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These quantities must still remain nonnegative.    This condition will 

certainly be fulfilled If   T.    «0 since   "1. would then not be smaller than is i 

T which Is nonnegative to begin with.    Hence, we need to worry about those 

cases  In which   T     > 0.    Among these, we choose   'I    so large as to reduce one 
X 8 S 

r T to zero, that Is, we delete one of the old foods, say a , fron the menu 
a 

completely and replace It by a .  Our algorithm for finding a cheaper 

feasible diet consists of two steps. 
■ 

1. Introduce any nonbasic food a    Into the menu which is cheaper 

than Its substitute In terras of the basic foods a ,•••,  a . 

That Is,  If 

(4.8) /3   <   58 .    t    /^i * ... +   T      P v      ' s Is pa     P 

r        <     < 2. Delete a basic food a    (1 ■ r = p) from the menu by intro- 

ducing   78 units of a    where 

7r 7i 
(4.9) 7i- T- ■   rain   T 

t4  > o Is 

These ^s units of a will reduce the amounts used of a ,•••, a** from 

V"*' 7p t0 ^l'"*' 7p RS define<i by (^T).  ( 7r " 
0* of course, by 

choice of ^s.) 

After these two steps we will hare a new feasible solution. It is 

easy to calculate the total price for the new menu: 

(U.IO) Mi + ... ♦ Ki'** M 
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'fliis is leso than or equal to (^.5) since    /r = 0 and so 

^7^ + ... +/i y + />678 - Z3! (7i - ^1878) ♦ ••• ♦ ^P ( 7P -TPG 7S) 

4.11) +   PSIB =    ^l^i + ... *  ^p7p - ( ^la + ... + ^ptpt)   7s ♦  /^s^s 

, /'ill. ... . ^p7p- (fs- /^s) 7 

The last term in (4.11) shows that the price of the new menu is the dif- 

ference between the price of the old menu and the amount of possible saving 

by introducing 7s ^i^s of a . We repeat the process until no nonbasic 

food can be found which will be cheaper than their substitutes. 

The foregoing discussion gives the essence of the simplex algor^hn 

and its extensions. We conclude this section with a brief remark on how to 

find a first feasible solution. To do that, we consider the following 

auxiliary linear progranming problem: To find 7^ = 0 (J3!****» n)^ 1*0 

(i=l, ••», m) minimizing 

«•^ + ... +  m 

subject to 

an*?i + ••• +'jn. 7"- +«^i      ■ "I 

?-»»•// + ... + A-%^7•,•       + ^*^ = ^ 

whore we may assume without loss of generality • = 0 (1=1,« •«, r.). 

If this minimization problarn jioldc zero Tor (4.12), then all slac:. 
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(^.13) vanish and the correaponding *Ji , ••-;^w. will fora the first 

feasible solution to our original system, i.e. (4.2). If some slack 

remains, then (4.2) has no feasible solution. The problem of finding a 

first feasible solution to (4.2) has now been changed to one of finding a 

first feasible solution to (4,13). But a first feasible solution to 

(4.13) can be found by inspection, namely by setting 

f|1. ... . ^.0 , ^= ^ ,••', <= rm. 

There are many variations as well as extensions of the simplex 

algorithm, and also other algorithms which are available for ccmputing 

large-scale linear programming problems. For most general-purpose 

electronic computers, computer programs now exist for such use. We 

raCiition only a few as follows: Burroughs Datatron, Ferranti Limited 

(English) Pegasus, IBM 650, 701, 704, 705, 709, 1620, 7070, 7090. 

Sperry Rand Univac 1, 1103, U03A. 

5. Applications and Related Subjects 

We shall mention only briefly some fields of application of linear 

programming. As it was noted in Section 1, the subject arose originally 

from practical problems in transportation, dietetics and military planning. 

A rather comprehensive survey of linear programmine applications may be 

found in the Bibliography on Linear Programing and Related Techniques 

by Vera Riley and S. I. Gass (Johns Hopkins Press, 195Ö). 

The following outline includes only some selected applications for 

illustration purposes: 
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1. Acricultural applications: 

a. Farm management 

b. Feed-mixini: 

c. Crop rotation 

2. Industrial applications: 

a. Chemical industry 

b. Coal industry 

c. Iron and steel industry 

d. Paper industry 

e. Petroleum industry 

3. Commercial applications: 

a. Airline routing 

b. Communication networks 

c. Railway freight 

d. Securities selection 

e. Inventory control 

4. Military applications: 

a. Weapon selection 

b. Procrar. planning 

c. Personnel assicrment 

Not only has the range of application of linear programming crosdened 

in recent years, the subject has been found related to many other branches 

of mathematics. Of these, we list a few: 

1. Game theory 

2. Network flow or circuit theory 

3. Graph theory 
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k,    bomber theory 

l},    Mathenatlcal statistics 
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