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PREFACE

This paper was prepared from an hour talk given to the secondary
nethemetics teachers of Pasadena City Schocls on January ¢, 1962. The talk
was part of the Mathematics Symposiums for 1$61-1962 planned ty W. G. Norris,

Mathematics Supervisor of the Pasadena School Systen.



LINEAR PROGRAMMING

Richard C. Kao*

The RAID Corporation, Santa ionica, Celifornia

1. Ilistorical Notes

Lincer progremming is a relatively recent subject in mathenatics, having
developed mostly since 1047-1G43 when the Air Force set up Project SCOOP
(Scientific Computation of Optimun Programs) to investigate efficient organi-
setion of large~scale programming and scheduling ectivities. Since that time
the subject has enjoyed a flourishing growth, both in theory and in applica-
tions. Most of the early work was done in the Air Force, whica has also lent

senerous support to sponsoring various symposia on the subject.

Tne earliect work known of the linear programing type was a transporia-
tion problem posed by Hitchcock in 194L1. 1In the same year a diet problem was
considered by Cornfield, which was studied more intensively by Stigler in 1049,
Parellel to these spotty early efforts, Leontief carried on input-output indus-
iry studies since the early '30s which leter proved to be related to linear
orograming probiems. Project SCOOP camprised most of the original contriovu-
tors to the subject, including inter alia George Dantzig, Marshall Wood, Murray
Geisler, leon Goldstein, Julian Holley, Walter Jacobs, Alex Ardcen, end Mail
Schell. A great forward lecap was made when this group joined forces with two
other groups: Koopmens at the Cowles Cormission, who haed done rucn inde-
rendent work in activity analysis of the shipping industry, and von Neumarn and
Tucker at Princeton with their students (e.g., Gale, XKuhn, Goldman end Gomory).

One unique feature of linear programming as & subject in epplicd mathe-
matics 1s its repid growtn in applications -- to problems in governiaent,

industry and tusiness -- pari passu with its theoretical develomaent. This

*Any views exvressed in this paper are those of the author. They saould
not be interpreted as reflecting the views of' The RAND Corporation or the of-
ficial opinion or policy of any of its govermmental or private researci sponsors.
Papers are reproduced by The RAND Corporation as a courtesy to membters of its

staf'f.
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simultaneous evolution of the subject along two . onts is generally the

exception rather than the rule in the history of mathematics.

2. The Oﬂimal Diet Problem

Linear programming deals with maximization (or minimization) of a
linear function of n variables where the variables are subject to a set of
linear constraints (i.e., equations or inequalities). All or some of these
variasbles may further be required to be nonnegative. Let us illustrate the
problem with a simple example.

Suppose we have four foods: corned beef, cabbage, potatoes, and milk,
and wish to prepare a wholesame diet fram them. To do this we ask ourselves
first the question: What is it that's so important in a diet? The obviou-
ansver is its nutritive value. So, let us simplify tae problem by con-
sidering only three classes of nutrients: protein, carbohydrates and

vitamins; and the nutrient contents of the four foods are given as follows:

Corned Beef Cabbege Potatoes Milk
T1 72 73 Tu
Proteins § 6 0 1
1 3 g 1
Carbohydrates {, 2 2 4 1 72
Vitamins § 3 1 3 1 2 1'3

where "6" means that 1 unit of corned beef contains 6 units of proteins,
and "4" that 1 unit of potatoes contains L units of carbohydrates, etc.
We assume, of course, that all these units have been properly defined, say

by the nutritionists. Let us call (2.1) the nutrition matrix. A diet



(2.4)

(2.5)

(2.6)

(or menu) 1s any comtination of the four foods, sgy in amounts of

711"': 71&' For any given diet ( 71) 72; 73: 7u )s

6']1-90. ’724-1.734-3.4’!‘

is the total amount of protein, and

271+ 272+ h"3+ l“,h

is the total amount of carbohydrates. Now we wish to impose an additional
restriction on our diet that it provides at least fl units of protein,

72 units of carbohydrates and ’0'3 units of vitamins. Such s diet will be

called a feasible diet. lore abstractly, let a,, denote the units of

1)
nutrient N, (1=1,--+, m) contained in one unit of food FJ (J=1,-++, n).

Then a feasible diet is a set of n numbers satisfying

7JZO Jl:l,ooc,n

>
L N ] = r = * e 0
a,M * R T 1 i=1,°, m

As yet no maximization or minimization is involved, and it is obvious that
(2.5) may generally be satisfied by making the 7J's large. We are there-
fore interested not in eating any arbitrarily large diet (i.e., large

"]J's) but one which will yield the least cost

p171 e ? pn?n

where PJ (3=1,--+, n) 18 the given unit price of F,, and consequently (2.6)

J)
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(2.9)

ol

is the total price to be paid for the diet ( Ty 7n)’ A feasible diet
minimizing (2.6) is called an optimal diet. Our problem is, in sumary,
the tollowing: Among 8ll feasible diets, to find one which is optimal.
This is the optimal diet problem which gives rise to the standard minimum
problem of the linear programming type.

To each standard minimum problem corresponds a second linear progream-
ming problem, called the dual problem. Let us first state it formally and
then try to explain it. That problem is to find numbers Si (1=1,*++, m)

satisfying

5 20 i’l,""m
and

a 5F =10, n

la“+ooo+ gm m‘) J

such that

L3N N ] r
gl rl+ * ‘m m

18 maximized. The symmetry between (2.4) to (2.6) and (2.7) to (2.9) is
immediately apparent, and this duality occupies the central place in the
wvhole subject called linear programming.

We now give a heuristic explanation of the dual problem. Let us
begin with (2.9). Since ri (1=1,+++, m) are units of nutrients Ny 's,
(2.9) makes sense only if 51 denotes monetary value per unit of Ni 80
that the sumation in (2.9) may be performed in the cormon dencminsator:
money. (2.7) merely states that these urit monetary values must be non-
negative and (2.8) states that the sum total of unit moanetary values over

all nutrients must not exceed the unit selling price ﬁJ of FJ. Hence, Si



s Just the unit cost of N, and (2.8) says that the sum total of all
nutrients going into one unit of FJ must not cost more than the selling

price of F Subject to this restriction, we are to choose that set of

5°
fi'a maximized (2.9). Therefore, the dual problem is a meaningful eco-
nomic problem facing the resource (i.e., nutrient) owners. They wish to
set the highest possible costs on the resources subject to the condition
that the food manufacturer may still continue to produce. The fundasmental
theorem of linear programming states that if feasible solutions exist to
the primal problem and its dual, then necessarily optimal solutions exist
for both such that the minimum of (2.6) equals the maximum of (2.9).

This last condition leaves the food manufacturer with zero profit and is
sometimes called the equilibrium condition under pure competition. More-

over, the connection between linear programming and geme theory is also

suggested.

3+ Linear Systems and Linear Programming

Basic to the study ol linear programming is the theory of linear
systems (i.e., equations and/or inequalities). Generally speaking, there
are two separate problems analogous to those in the study of linear
equations, that is, linear algebra. The first deals with the existence
(or non-existence) of solutions to a system of linear inequalities, and
the second deals with the structure of the solution set. There is a
beautiful algebraic theory of linear inequalities which tells us when
solutions will or will not exist. In this theory we see a natural pair
of lirear systems such that if one has no solution, the other must have,
and convergely. A general rule for finding this pair of linear systems

is that the variables in one correspond to the constraints in the other,



and vice versa. More specifically, any nonrestricted variable in one
system corresponds to a linear equation in the other system, whereas a
restricted (i.e., nonnegative or nonpositive) variable in one system
corresponds to a linear inequality in the other system. This pair of
linear systems is also related to orthogonal camplements in the theory of
vector sraces.

The structure of the solution set of a linear system is best studied
geametrically by means of the theory of convex sets. Here we see that the
solution set of a hamogeneous linear system is & convex cone and that of
e nonhamogeneous linear system a convex polytope. In either case, a
finite set of extreme points or vectors exist such that all other solutions
are convex linear cambinations (i.e., centers of gravity with varying
veights) of these extreme solutions. The solution set of the most general
linear system is the (vector) sum of a convex cone and a convex polytope.

From the theory of linear systems follows immediately the fundamental
theorem of linear programming. In terms of matrix gemes, this is also
called the minimax theorem first proved by John von Neumann in 1928. The
entire theory may be extended to nonlinear (say convex or concave) systems,
vhich must, however, have same global property. Such extension may be

found in connection with Fenchel's work.
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L. Computational Methods

There is a separatc body of theories related to the computational
cspeet of lineer prograrming, the first of which was the elegent simplex
algorithm by Dantzig. Let us illustrate it by considering the following

problem: To find ?J 2.0 (3=1,+++, n) minimizing
pl7l+ Ll pnvn

subject to

ay Mt re =7,
%ﬂ71+"'+%m7n=:vh

In (4.2) we include equations only. If inequalities are involved, wve
merely introduce additional variables to change them into equations. Thesec
nev variables, onec for eacha inequality, will be given zero coefficients
in (4.1).
There are two steps to the simplex algorithm:
l. We must find a first feasible solution, and
2. Given that a first feasible solution is found, we are to
{ind another feasible solution which yields a possibly smaller value for
(4.1). Step 2 must also tell us when to stop looking for a vetter solution.
We discuss Step 2 first and assume a first Teasible solution exists.
Let the first p columns of coefficients on the left side of (4.2) be

(linearly) independent and the remaining dependent on these. Then a work

sheet of the following type can be set up.



right-hand
col. 1 cos col. p col. (p+tl) e col. n side
al L) ar e 0 e ap ap+l s 00 88 s 00 an c
o o 0 t e 0 @@ 't .
ot - - ° 1,p+l 1s 1n ?1
(4.3) : , ; : j d 1 . (4.5)
r Ll Ll
M “ e ¢ t e o p t P
? é r,p+l rs rn ?'
'p ) 0 : § . .
t e t t s . .
p+l

In this simplex tableau we express a~ ~,¢-:, a" and ¢ as linear combina-

tione of al,---, o, It 1s instructive to recall our diet problem, in which

the columns represent foods. Then (4.3) says we can choose p basic fou.:

4.6,
al,---, ap, then form linear combinations of these to get nutritionally (4.6

equivalent substitutes of the remaining foods. For example,

3 BI T ]«' L T ) t p
(2& l&) a 188 - + psa

that is, one unit of food a® is nutritionally equivalent to units of

T
1s

al plus 1é$ units of 32 plus so on until tps units of af. The last

column in (L4.3) simply states the required nutrient vector ('Vi,'°', r;)

may be exactly satisfied by ‘71 units of al)°-°, 7p units of ap, the first

feasible solution which we assume to exist. It is interesting to note also

that once al,---, aP are chosen to be the basic foods, the substitutes

(4.7)
which can be formed for them are just themselves, i.e., use al as substitute

for al,“o ; aP as substitute for af. In other words, for basic foods,

there is no need to find substitutes, or the substitutes are identical with
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the foods themselves, whereas for nonbasic foods, it is possible to find
substitutes for them using cambinations of the basic foods.
1

Our first menu therefore consists of M, units of a7, 7p units

of af and nothing else, for which the total price is
pl‘?l+ooo+ﬁp7p

There may be sane nonbasic foods not yet in the menu which would be cheaper
than their substitutes in tems of the basic foods. Take, for example,

& with unit price ﬁs. (4.4) states that in order to find some cambination
of al,---, a to be nutritionally equivalent to as, we must use 1&5 unics
of al,~--, tps units of aP so that the substitute would cost

’t' L3N 4 =
1s pl < ¥ tps pp {s

B4 /’s < gs, then we would save money by introducing a8 into the menu.
But each unit of a° introduced into the menu will displace Tﬁs units of
al,~--, t%s units of aP. We want to find the largest possible number of
units 78 of a° which could be introduced into the menu.

It is certainly obvious that each additional unit of a® introduced
would enable us to cut down on the amounts of al,---, e’ used in the first

menu. In fact, if we use 75 units of as, we reduce the amounts needed

for al,--o, ef to



(L.8)

(k.9)

(4.10)

«]0-

These quantities must still remain nonnegative. This condition will
certainly be fulfilled if T S 0 since 71/ would then not be smaller than
‘7 { wvhich is nonnegative to begin with. Hence, we need to worry about those
cases in which Tu > 0. Among these, we choose ‘78 80 large as to reduce one
']1 to zero, that is, we delete one of the old foods, say ar, fram the menu
completely and replace it by a®. Our algorithm for finding a cheaper
feasible diet consists of two steps.

1. Introduce any nonbasic food a® into the menu which is cheaper

than its substitute in terms of the basic foods al,-”, aP.

; = s e t
ﬂ < 8 tl ~l + + /3

2. Delete a basic food a’ (1 Sy p) from the menu by intro-

ducing 73 units of a® where

Tr 72
'75 2 —~—— = min /T
Trs 4 Ty

T
19>O

These ’Is units of a8 will reduce the amounts used of al,---, ap fram
/ / /
Tyt 7p to ']l,--o, 7p as defined by (4.7). ( 7. = 0, of course, by
choice of 7s.)
After these two steps we will hare a nev feasible solution. It is

easy to calculate the total price for the new menu:

/ /
pl7l+--e+ ﬂp7p+ ﬂs?s

(4.1



S.1=

/
This is less than or equal to (4.5) since Jr = O and so

+

{317]/. .+ ﬂp'); + Ps s = Pl (73 = Tls?s) T BEERER /3p ( 7p -tps 75)

ﬁl7l + see 4 ﬂp']p- (ﬂltls + vee 4 /3ptps) 75 + /3578
T /3p7p - (%5 - Bs) s

b, 11) + ps?s
= P1la

+

The last term in (4.11) shows that the price of the new menu is the dif-
ference between the price of the o0ld menu and the amount of possible saving
by introducing '75 units of as. We repeat the process until no nonvasic
food can be found which will be cheaper than their substitutes.

The foregoing discussion gives the essence of the simplex algor: -am
and its extensions. We conclude this section with a brief remark on how tc
find a first feasible solution. To do that, we consider the following
auxiliary linear prograrming problem: To find 73 20 (J=1,+++, n))“i iaNG

(1=1,+++, n) minimizing

4.12) ‘Dl+ s e 4+ ‘Dm
subject to
T+ e tnIn 4 W) = 7
+e13) 39171 4+ cor 4+ Qhwm I~ + Wy = ¥,
Q) N+ oee + dimnIn + PR S Ve

\
wvhere we may assume without loss of gencrality 'U; = 0 (1=1,--, 1.).

If this minimizotion probles yields zero rJor (4.12), then a2ll sluc
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(4.13) vanish and the corresponding 7;, ---,")n will fom the first
feasible solution to our original system, i.e. (L.2). If some slack
remains, then (4.2) has no feasible solution. The problem of finding a
first feasible solution to (4.2) has now been changed to one of finding a
first feasible solution to (4.13). But a first feasible solution to

(4.13) can be found by inspection, namely by setting

There are many variations as well as cxtensions of the simplex
algorithm, and also other algorithms which are available for camputing
large-scale linear programing problems. For most general-purpose
electronic computers, computer programs now exist for such use. We
meation only a few as follows: Burroughs Datatron, Ferranti Limited
(English) Pegasus, IBM 650, 701, 704, 705, 709, 1620, 7070, 7090.

Sperry Rand Univac 1, 1103, J103A.

5. Applications and Related Subjects

We shall mention only briefly some fields of application of linear
programing. As it was noted in Section 1, the subject arose originally
from practical problems in transportation, dietetics and military planning.
A rather comprehensive survey of linear programming applications may be

found in the Bibliography on Linear Programming and Related Techniqucs

by Vera Riley and S. I. Gass (Johns Hopkins Press, 1958).
The following outline includes only some sclected applications Ior

1llustration purposes:
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1. Agricultural applications:
&. Fam managenent
t. Feed-mixing
c. Crop rotation

2. Industrial applications:
8. Chemical industry
b. Coal industry
c. Iron end steel industry
d. Peper industry
e. Petroleun industry

3. Commercial applications:
a. Airline routing
0. Comunication networks
c. Rallway freight
d. Securities selection
¢. Inventory control

4, Military applications:
a. Weapon sclection
b. Procrem planning

c. Personnel assigment

Not only has the range of application of linear programming croadened
in recent years, the subject nhas been found related to many other branches
of' mathematics. Of these, we list a few:

1. Game theory

2. Network flow or circuit theory

3. Graph theory



6.

L. ‘Tumber theory

5. Mathematical statistics
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