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HEAT TRANSFER TO A SPHERE AT THE TRANSITIOM FROM
FREE MOLECULE FLOW

P. Hammerling and B, Kivel

SUMMARY

Baker anc Charwat1 have recently published a semi-quantitative
study of the correction to the drag ol a sphere at the breakdown of the

free molacule flow region. Their expression for the drag coefficient is

(1 +p ;~t'04”17"+l% |
L V, \ °V, ) Qf; e (1)
which shows the dependence on flight velocity, VO, mean emitted particle
velocity, \78, body radius, a, ambiert number density, Py’ and collision
cioss-section, Se
Using similar assumptions to those in the above work but slightly
differe=nt methods, we find the total energy given to a sphere is
- 2 1 5730, _ LZ__)
E = T £y ﬁcm"@ é_@_ \"c L - O;’.—-"‘QE Seo (2)

wher2 p m is the ambient mass density. Qur coefficient, 0.2, is smaller
than the corresponding coefficient in the dreg expression 0.4¢&, found by

Baker and Charwat. The coefiicient (.2 is estimated in a mainner descriled

below. In place of the momentumn recoil term, 0. 44 Ve/Vo, there is tke

facter i - (i'f‘e/vo)2 to account for the energy carried away by the emitted

particies. The correction to the scattering distribution for the velocity of the

1R M L. Baker, Jr. and A.F Charwat, Phys. of Fiuds, _1_ 73 (1958).
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ernittec particles not being negligible compared to the flight speed has not
been made.

Our model starts from the observation that the angular distribu-
tion of emitted particles has simple analytic forms in the extremes of
being very close to and verv far from the sphere. At the surface the density
of ematted particles for diffuse scattering is 2 po\-"o cosﬁ/i’e. The angle @
1s made by the 'ine of fiight and the line connecting the center of the sphere
ard the point of interest. The factor cos 6 occurs because of the decrease
2% § of the projected area normal to the flight direction per unit svrface
area of the sphere The factor 2 arises because of the Lambert's law
scattering Fav from the surface the distribution can be obtained by count-

ng all particles emitted with the same direction. At the distance r this 1s

-~ - - - i
_’_t;;,&_e_é}\r{ (T- 2l cos 7 = S (3)
3. T L " -

in agreement with the expres.ion given in the paper by Baker and Charwat.
Arother difference lies in the approxima :on used to treat the probability
of scattered particles returning to the sphere. Near the sphere we use
5 17 2 ) . ; . .
;_ii_l - (1/23 sin ¢ {afr® per collision, and at larger radial distances,
2

2 cos6 {afr!” 1he former 1s chosen bs tause for o,/r = 1 at ¢ = 0, both
scattered particle: hit the sphere while «t & = n/2 just one cf the scattered
particles hits the sphere However, the result does not seem sensitive to
this difference

, . ; ~ . 5 3 X

We have used the cos t angular distribution with & {a/r)” dependence

out to two radi: from the sphere surface At larger radia: distances
Eq 1{3':1s used With these distributions we are able to es*imate the net

loss of energy by scattering It is convenien' to compare the total energy




brought tc the sphere by scattered particies (qgain} with the energy incident
particles that are hit wculd have given to the sphere (qless)' Since some
of the part’ _les incident are defiected only slightly so that they still hit the
sprhere, it is necessary to point cut that such events are counted twice.
They are included as a total lcss in Yoss and their contribution to the sphere
18 added to qgain' This is used instead of giving the net loss to Yoss and
ro ad; ;stment to ain’ We find that the ratic qgain/qloss 2 0. 85 from
both the near and the distant regions. Because this ratio is the same for
both regions our extrapolation to intermediate distances while crude may be
called semi-quantitative. It is in this way that we estimate the factor 0. 2.
The corresponding coefficients 0.2 and 0. 46 should in principle be
the same. In order to compute the mcmentumn component in the flight
direction and the energy that can be transferred to the sphere by a scattered
particle one uses the incident values of these guantities multiplied by the
same quantity, coaze . Admittedly both models are semi-guantitative.
That of Baker and Charwat does not emphasize the region close to and in
the Iimb of the splhere. Our own extrapolation to intermediate distances
is open to criticism.
If we calculate the number of particles hitting the sphere, we find
2 net gain, whereas there is a net energy loss. This results from the

2 . .
cos 6 term in the erergy return expression, which greatly reduces the

amount of energy return near & = n/Z.
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Urnfortunately, the un<: ~tainty in the coefficient 15 magnified as it results
from the small net betwe: = ioss and gain events. It would be worthwhile,
therefore, to see this probiem solved with more accuracy.

It is interesting to note the important role of surface temperature
in these results For lower surface temperature the ernitted particles
move away more slowly. By continuity their density is increased. Aiso,
their mean-free path 1s decreased. This makes scattering events occur
closer to the surface and leads to greater breakdown of free molecule {low.

At 100 miles altitude a 20 cm radius spherical satellite with
velocity 26, 000 ft. /sec. and with surface temperature 300°K experiences
~ % recduction in the total heat received. It should be noted that this is
a net effect and that for a 1% reduction in heat transfer about 6% of the
particlies incident to the sphere are actually scattered by collisions. The
loss 18 considerably less, since many of the deflected particles still hit
the sphere and many that would not have hit are deflected into the sphere.

We are grateful to R. F. Probstein of Brown University,

A Kantrow:itz, and N. Kemp of AVCO Research Laboratory for sugges-
*ions and discussions.
Or. the ensuing pages we give the details of our treatment which have

ted us to the above conclus:ions




A Model for a Rarified Gas Flow About a Sphere

- P. Hammerling

INTRODUCTION AND ASSOMPTIONS

In free molecule flow ta, effects of interiuolecular collisions can
be ignored compared with collisions with a wall or an obstacle. This
implies that the mean-free path in the gas ‘s much greater than a charac-
teristic length of the boay. We shall consider the high speed flow of a
rarified gas about a sphere In such a flow the reflected molecules are
moving relatively slowly and form a region near the body whose density
is greater than the free stream density. In the usual treatments of free
molecule flow problems one assumes that the reflected particles do not
change the distribution function of the incident gas. However, the presence
of the denser layer near the body introduces the possibility of collisions
with the incident stream which can alter the expected momentum and
energy transfer. As a first step one might look for the consequences of
specifying that the incident and reflected particles make only one collision
with on€é another. This restricted problem has been solved for the case of
a flat plate by 1~leineman1 and by Lunc¢ and Lubonskiz.

The case of a sphere presents difficulties for two reasons: (1) The
attenuation of the reflected particles due to collisions introduces a compli-
cated exponerntial factor in the integ.ations, {2) The geometry involved
also makes for difficult integrations. In order to gain some understand-
irg of this probiem without first naving to do all the work, we have
attempted to simplify it even further. The guiding spirit of the calcula-

tion is for it to be simple and yet include the physics of the problem. We

IM Heineman, Commun. Apl. Math, 1, 259 (1948)

—

‘ZM Lunc and J Lubonsk:, Archiwum Mechanki Stoswanej, 4. 597 {1954}
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F:-e split things into two regions, the near and far zones. Far away from
t~e sphere the geometrical difficulties can be overcome; close to the sphere
the geometry must be considered more carefully, but the attenuation can
be igre.ed. Since the results in these two regions should go continuously
irto e another, we have made an estimate of the in between region which
is protably good to within 20%.

B=lind the calculations are certain assumptions which we row list:

{a} Collisions are elastic and are visualized as between rigid
spLeres, the scattering being isotropic in the center of mass system of
tke two particles,

{b} Particies which hit the surface are emitted in a random
direction with a pronability proportional to the cosine of the angle between
the normal to the surface and the direction of emission. This is known
as diffuse reflection. ©One can regard the emitted particles as an effusiv
stream coming from an equilibrium gas inside the sphere.

{c} The accomodatiun coefficient a = %.:Er__ is taken as

o
=
(=93 ~i

urity E, = incident energy flux, E, = reflected energy flux, Eb = reflected
erergy flux correspond:ng to the body temperature.
{d} The therm:! velocities of both the emitted particles and the

gis proper are small compared with the flow velocity.

RESﬁULTS
A Far loue

Ccrsider the sphere in the coordinate system shown. The & axis
1s 1r !~ direction of moii.n of the sphere  With respect to a fixed

dire~.tior. & 1in the X & plare a point on the sphere will have 2 polar angle




a. An observer at some distance from the sphere will see the reflected
particles as coming in a parallel beam from that part of the sphere visible
to him. In what follows we shall have to integrate over the surface of

the sphere seen in this way. If one uses spherical polar coordinates about

Z the surface integrals will be of the form
_,72' 1/;- /-n Max

2 j( [(98) s ¥ 4440 +2 J P09 8) smdd Fd o ")

$=C V= d=3: e g

/

<]

where ctn 8 = tan cos
n® © cos §

The total outward flux in a given direction ® coming from that
part of the sphere that is visible can now be found. This number is equal
to the number coming in at a given point multiplied by the probability of
emission into the @ direction and integrated over the visible surface.

AF(9,§,¢\: = NUC—CSS;}: o5 ok C‘_ﬂﬁ

T (5)

i ]
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—_— :
N i
/ yd The origin of cos B in equation {5) may
a,y/’\
’\7/ yd ﬂ/t}b be seen in Fig. {2). Consider the sphere
/7 N = and a concentric chell. The velocity
> — vector of the particle emitted in the
/I direction a makes an angle B with re-
- spect to the normal to the shell. In

computing fluxes we need cos B as in
equation (5), since we are interested
in particles cressing normal to the
: . : 2 .. 2 .1f2

surface. Using the iaw of sines we have cos g = (1 - (R/r)" 8in” a)

For large r, cos B =1 which is the case under discussion. The far zone

results should be good from a few sphere radii on out.

Since we require the emitted particles to go in the ditection &

the emission law 15 cos a/m. In our coordinate system

{:OSOC, faued Sl“}C'J.S?S/fi@ ,_1_ cos ‘9'&05@ (6)
Tke outward flux is then
~ TR 7, 3 dﬂﬂx
},___. R 2— - \ ,f' s 7
I (':"J) = NMWR (—t;_\“ { [smﬁaosf}ccsx (Jﬁ‘fi’l + Stn‘9£0$ﬁ605ad9‘i¢}
\ 77- / ;:"‘} J (7)
HEEZ [}

& /9

where ctr 8 =tan @ cos f and cos a is given by (6). This turns out

to be
F(&)=Numg~2, T ¢ o)
3 ~
I(B)'—' (:7‘3) oS G -f—S‘:f@ (8)




)

The total cutward flux is found by integrating E(@) over all @ and
¢ since some particles are emitted in directions F7 Z;IL_‘" ; this results
in
FE — Numr®
' (9)

The emitted particle density at a distance r, Nb(r) is obtained by

noting that flux = Nb () Uy r* dA ’

hence flux/solid angle = F(B8) = Ny U, = s0 that
u 3} 1 -
N;(") - NM'T!R *.‘LI—L-Q;.)‘ (10)
U 37T r

)
Due to the possibility of collision, a pai’’cle leaving the surface

will only have a certain chance of surviving unhit to a distance r; this

probability is given by:
(in

— ) ')
=€ * , where Lb is the mean-free path. Lb = ‘Jb ]

P=1 when  ~[2
With these preliminary ideas in mind
let us return to a physical consideration
?‘/ of the problem at hand. The incident

i ’3& particles may collide with the reflected

particles in such 2 way as to send one
of them into the sphere. The proba-

bility for such an event must be calcu-
lated. On the other hand, some of the

incident particles that could have hit

T — e e S et s

e -




: the sphere will not be able to do 80 because of collisions. The amcunt of

energy per particle that can be carried to the sphere remains to be

calculated also.

use the near zone approximation to

/

Consider the cross-section at the left.
We shall consider all collisions within
the cylinder as losses, whereas we
shall integrate over the whole half
Space to compute gains. The losses
are computed from beyond a certain
radius. Closer o the sphere we must
be discussed below.

Before we compute the energy flux we

first carry out the calculation mentioned

above. In order that a particle collid-
ing at a point {r, @) hit the sphere,

its final velocity vecior must be in the
cone shown. Of the incoming stream
only those which instantaneousiy lie

in the continued cone will be effective,

The ratio of the projected area of the base of this cone to the total

possible impact area is the required probability,

Prs -2 _ _AcosS
97> 47 b? ,'

?—-:J‘L:TEL

“-_:._
2 r=

»

Pr' = ;t':é,';%}“—'—grl

The factor 2 arises from inverse collisions.

-10-
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- To obtain the energy carried per particle refer to the geometry of

tke eﬁcaaxteri

For equal masses 3 =

?o|@.s

P”@} \

bt 4 . Lir- o)

2 2
h » V
\‘ The '—5— - QMF53_§.= ﬁnﬂ‘

One can now compute the energy flux in the far zone, Call q = energy flux.
i, ‘ - 3
a% = NQL{N& PE. £r

S (14)
NQ ’

We first calculate the expected loss from the cylindrizal region. In using
Nb(iﬁ) we-must take I {g) = I (0) = 7. . We use Er = E since we regard

collisions as carrying away all the energy.

] <
C%fggs NuTR&E u ? ”

{15}
Lﬁka&t o R
= m— X, = Y
L o b m -
The energy gain is obtained from equations (10) through (1 4).
T/a
%Bam Nu TR‘J.E “t.a_f; ‘ I If:?) Cosd s Fd5
o (16}
? 1 = 3 L4
7 =T ) LB cosP s, I 9 = .54
foss : (17)

-11-
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There is then a slight energy loss from the far zone. The radial integral

will be needed later, it is

I- ’\‘K'.b E,—s - ré
! = =y 3 i e . ;-‘ ]
"b = __ _l_zs_
L Mb
B. Near Zone

In the zone close to the sphere, the effects c. the geometry cannot
be glossed over. The results for the far zone indicate a net loss; a
comparable reduction in heat transfer is found to take place in the near
zone. . We shall présent a first attemnpt to estimate what occurs in the
near zone. The shaded portion in
the figure is the region in which there
& can be an energy loss due to collision

_Li 'l with particles coming from the surface.

However, particles which otherwise

would not hit the sphere have some

chance if they are in the unshaded
region. A particle impinging at the
stagnation point transfers all of its energy, whereas for € = /2, the
maximum energy transfer is about half the availabie energy. The energy
given to the sphere will be taken to have the approximate distribution:
Er=E i( | = ﬂ&)(ﬁ/r>:'

r* {19)

The density of reflected particles near the surface is largely due

to their low velocity and to the cosine distribution. A density function

-12-
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which should approximate physical conditions and is exact on the surface

f“ P\i:jt&s { )( ;wmaﬁ_) lNﬁCosﬁ‘(ﬁfrJ{zm

. The value cos3a occurs because we are using the flux weighted component

of the velocity; the probability 6f a particle leaving at the dir&ction a is
cos a; its contribution to the flux is reduced by cos a and finally the
component of the velocity is uy X cos a.

. To compute the expected gain we integrate over the volume between

the sphere and a concentric shell.

T
%% = jE,g(NQu)i’ ar J i:_t{?iﬁi}CosﬁsMﬂrLJﬁ'-&f
i - Ll (21}
=g Y KB R 5/,
Ygan= G w L U-ET ] 7
22
%= Nuyre* e “

The loss is found by integrating over the volume indicated by the

shading in the figure.

Sin ﬁ}r T Rescd-

s & 13-
.f% o = & _/Sm&(osa"d}f +2?‘f§m9cwg'fi§_d9

S "R/ z ¢ (23)

(24)

=}3-




The ratio of loss to gain is then

|

b/5 (25)

so that one also has the possibility of a decrease in heat transfer in the
region close to the surface.
We now bring our results together to estimate the effect of the

region in between our two extremes.

Near Zone: Qain = 19 t_‘&h o, % [‘ - ._g-.)z]

(26)

c g U o
Y0ss %a Mb [1 __L_E?E).‘lj

. = Y 2 ~ =0
Far Zone: oss = T <3 e [£ 4 Ei(-5)

The Jahnke- Emde tables list vaiues of the exponential integral
needed in Eq. {27). For small values of the argument this function can

be calculated from:
- ) o
Belx) =y hex = (x—7)
Y = 0.57279

The net of loss and gain for the near and far zones is:

Qpear -

i
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(29

Taking into account the approximations that have been made, we
feel that the factor {0.2) is known to better than I 50%.

- A correction to frae molecule results may be expected in the

regime where

AR
U, L a2 (30)

In terms of Reynolds number Eq. {30} is

[T \7*
RE(;}Z) 71 (31)

Oneé obtains Eq. {31) from simple gas kinetic arguments

: — 3 i/
Let a = sound speed = (‘Y gT?i - &= ( ¥ §T) 2
-F—"G&; Vo= é LC

M = Mach #
R .L rRE 7\
m— - i
L :z}—’ ; 2!‘&‘7 Rd y
: Voo I = Free stream temperature
i/ 8 \k g ®
CATY) R
s D M 3 ; ‘Iz_ T, = Body temperature
Uy M(r?‘) 3_—'2-)
I
] . v = Ykinematic® viscosity

-~15.




C. Numerical Example

In order to have a feel for these quani‘i%ies, consider the case of a
satellite at an altitude of 100 miles,

Some pertinent numbers are

" -8 7
f’/ﬁ = 3906 %0 i’XFE';}/;i}%zzg] v }’\72 160 Km

W= 24000 FHfse = 75 x ff}?‘:”'/sec

at 100 miles o

P/& = i,z,'i b 4 3{;

q .
thus N = 6.6 x1p 2R molecoles

e = fpL,

The air molecules are regarded as rigid spheres of diameter 3. 72A , so

that ~i5
Q=435x10 " cm-

; N _
— = N@- T2 xis gcmg’;

-F;?K R=20 M. } <= LY% x;a‘s = :.{%- =- Oy

-2

;Q‘ig

If the body has a temperature of 300°K, then

.,;,,;) = 4 bxiv emjf,,

U{}’:’l

Under these conditions we have the following resuits based on

Eq. {26}
- Y iy e i ; - 2
CZQ = f“{%fff‘ig‘;ifqz’??za - 42 watk

—1—"' = O0.0/95
L 2

The above are for a region extending one radius from the sphere.
The ratic of loss 9, from: the region greater than one radius away {rom the

sphere is:

z

&=

1§§$/q0 = . 007
-1




mﬂ!"l'"“"lld‘

At 100 miles a 20 em sphere with surface temperature 303%K experiences
& i-to 2% reduction in total heat recsived because of collisions of the
incident gas wity rebounding molecujes. About 4% of the incident particles
are scattered by collisions. However, the loss is considerably less,
since many of the deflected particles still hit the sphere ang many that
would not have hit are deflected into the sphere.

From Equation {30) we have

-h -8 T

e r——.

a 3 (22)

where for

"o £ h ¢ 160 K,
52, a4q £p

b-
& = 2-3&7 x;&:-g

h % /lée kp,
b= 143254 £+.
A= 3.9y x;{s
We conclude that for a 100 cmn satellite traveling at 26, 000 ft/sec
and Paving a surface temperature 38{}GK, free molecule flow theory gives

2 Te: sonable result for the total energy imparted to the sphere as long as

the a’itude is greater than 115 7 1 miles.

-17-




ADDENDUM

The density of particles as a function of distance away from the
sphere r along the direction of flight {8 = 0} is given by the expression
-
c
cos ﬁ/’,
y u 2 : . &
‘n (3‘ 5’: 6) = n’—{i— ;Lg { Cos S'CC‘SD( S!fh& d?

b
G

This quantity is plotted in the accompanying figure, For comparison we
also plot 4R/r and 4/3 + R/r. The former is our fit for the near zone.
The latter is asymptotically correct for the far zone; however, we have
only taken the leading term which is 4/3. Our fit is indicated in the
figure as a bold line and can be seen to be slightiy larger in the near
zone and smaller in the far zone than the correct density which is

given by the dashed line. It is felt, however, that the explanation

should give a reasonably close answer to the problem.

-18.




o FITS FOR DENS‘TY OF EMITTED PARTICLES AT
8=0,n,(p,8:=0).

3.0

2.0

‘ 4/p

\

\
\
A\N

>
4/3+1/p

4/3—/

1.0 2.0

3.0
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ADDENDUM 11

In this section we find an expression for the energy return to the
sphere which is exact on the surfaca., This mcdifies our work in the
near zone but leaves the far zone results unchanged. The new result
indicates a lower coefficient than given in Egq (29}, 0.12 instead of
0.18.

A collision on the surface can send in both particles which transfers
all the available energy or just one particle which carries most of the
energy. The former occurs if the final velocity vectors of both particles
are directed toward the sphere. This criteria is expressed i1 terms of

the tangent plane to the sphere.

Consider a sphere with a tangent

>\ NI plane at point P and a coordinate
‘gm / system at that point parallel to the
Pt
-l -
2z P old one. Measuring angles from the

- Z -Z axis at this point we see that for
two particles to hit the sphere that
the velocity vector of one of them
must lie between zero and Gm

The limiting angle, Gm, is in general a function of ¢} and & .
The relationship between these quantities can be found by using the fact
that the normal to the tangent plane is perpendicular tc every line in it.

With respect to the coordinate system at the center of the sphere,

the inward directed normal has direction cosines (-sin¢, , 0, cos @).

-20-




In the same coordinate system a line in the plane will have direction
cosines (sin @ cos¢ , sin 6 sin¢ , cos 8). Since these lines are

perpendicular, we have

-sin® sin 6 cos @ + cos @ cos 8 =0

ctn @
cos

(1)

tan § =

One can now compute the number of particles and energy returned
to the sphere. In the following we make use of the fact that for a collision
such that the velocity vector of one of the particles lies within 0 and Bm,
two particles hit the sphere, whereas for the region between Bm and
n/2, only one particle goes into the surface.

The number of particles returning to the surface is

. ¥ =

/ ST [ o e b d
N, = & 2 2 [cosFsinFad + lfcos&s,aé‘—clv’* ¢
' i Jo 0 pa

- (2)
N /2, 2
= 7\“':;;] Cos }Mdp'
¢

where
771 T/a L7A
i =< -
fcos .S‘Mclf = / cos’d dff - ff-:m‘ ol 2
0 [ g cosp 0 _EET;,%

2
a = ¢ s:f@
Adding and subtracting a?' in the numerator, we have

Tfa /a2,
(.2 - 3 d#
! - I
j Los l}m J# = 2 ( ) ) ai-S‘mlf

e

The integral on the right hand side is listed in Groebner and

Hofreiter 1nte£raltafei, # 331.56 a. Our result is then -

<21-




N_ = 1 + cos® (3)

The appropriate energy return function is found from an equation

similar to Eq. (2}

Tz . & Tz
S e (7 (s -
Er = T E J'c CGS{/{’.S'/}}J/G' ‘f“/s,ﬂa'j*ccg.ﬁ §H’1\/¢JVC— C/¢

\/5 L
Vo

(4)

2 /2
‘/Cosfvaﬁ (Jy‘ = f costp d7
0 o (X = Sty )2
e 1 K
_ T 2 £ 2 d &
= - 2{a-| - _
4 ( )\f ot - Sm"gf + (a l) (a_"—‘Sm“/}’“

G
o

The first integral is the one we have already used; the second integral

is proportional to the derivative of the first. It can then be verified that

/2

14 de ~
Cos /A -Z
= —] |- CoS 8 - S1A_HLoSH
A (c@—smz;a-’)a’ - = (5)
and that the energy return is
R
= — + ) 4L ¢ - o
E, &L’ CCs @ + L ces @ sim 9:) (6)

1f we use this function instead of Eq. {19) in the body of this report,

then the ret energy loss in the near zone would be i

u R . f
%‘:ne-f = CL&T —L— 10 [l*(R/r)j (7)

-22- .




! The outer region result is unchanged. The total net evaluated
- atr/R =3, is
%
. U R

~ total net energy loss = — —{0.12 8
gy T oo (8)
r It is felt that the 'true' coefficient lies sornewhere between this

result and (0. 2) from Eq. (29).

-23.
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