
A V C 0 manufacturing corporajl ion
. 1\

il-

| !, I ,RESEARCH

I tLABORATORY

I HEAT TRANSFER TO A SPHERE AT TOE TRAN'$,I 1ON FROm
FREE MOLECULE FLOW 17 _ .-/'

1KARDCOPY $

P. Hcrmoriing ind B. Kivel -

A DIVISION OF
June 1958

AVCO MANUFACTURING CORPORATION

RESEARCH NOTE 75

I ___



AVCO RESEARCH LAB~ORATORY RESEARCH NOTE 75

0 HEAT TRANSFER TO A SPHERE AT THE TRA!NSlTlON FROM

FREE MOLECULE FLOW

by

P. Hammerling and B. Kivel

June, 1958



This wc k has been done under the auspices of the Ballistic

Missiles Division of the Air Research and Development Command, Con-

tract Number A.F-04(645)18.



HEAT TRANSFER TO A SPHERE AT THE TRANSITION FROM
FREE MOLECULE FLOW

- P. Hammerling and B, Kivel

SUMMARY

Baker ano Charwat have recently published a serni-quantitative

study of the correction to the drag of a sphere at the breakdown of the

free mole-cule flow region, Their expression for the drag coefficient it

c,= L 1~ 0.

which shows the dependence on flight velocity, V , mean emitted particle
0

,ei!ocity, Ve , body radius, a, ambier.,,,. number density, p0 , and collisione

cioss-section, S
eo

Using similar assumptions to those in the above work but slightly

different methods, we find the total energy given to a sphere is

where p0 m is the ambient mass density. Our coefficient, 0.2, is smaller

than the corresponding coefficient in the dreg expression 0. 4., found by

Baker and Charwat. The coefhlient . 2 is estimated in a minner described

below, In place of the momentum recoil term, 0. 44 V e/Vo, there is the

factor i -- (V /Vo )z to account for the energy carried away by the emitted
e 0

particles. The correction to the scattering distribution for the velocity of the

iR M L. Baker, Jr. and A. F Charwat, Phys. of FIi:nds, 1, 73 (1958).



ern't~ec. particles not being negligible comnpa-red to the flight speed has not

been made.

Our model starts from the observation that the angular distribu-

t~on of -rn.tted particles has simple analytic forms in the extremes of

being very close to anc 6 x far from the Sphere. At the surfaice the density

of emitted particles for diffuse scattering Is 2 p 0V 0coeo/V eThe angle 0

is made by the line of Light and the line connecting the center of the sphere

ard the point of interest. The facto- cos 6 occurs because of the decrease

a*- 6 of the projected area normal to the flight direction per unit surface

area of the sphere The factor 2 ar7ises because of the Larnbert's law

scatt ering Fa-- from the surface the dist-ribution can be obtained by count-

,n all particles emitted with the sa.-ne direction. At the distance r this is

V( (3)

in agreement mwith the expres-ti given i.r. the paper by Baker and Charwat.

Another difference lies in the approxima or. used to treat the probability

of scattered particles returning to the sphere. Near the sphere we use

211 1/2)sin b(a/rl per collision. and at larger radial distances,

2 LUS6 (a/r1 I-)e -:ormer is chosen b,- :ause for /r=I at 6 = 0, both

scattered particle:- bit the sphere while -t b = w/2 just one of the scattered

particles hits the sphere However, tha result does not seem sensitive to

tj'15 difference

We have used the cos t, angular dIstr~but~on with a (a/r) 3dependence

out to two rad~l. from the sn-here surface At larger radiaa distance.,

Ea 13" Is used With these di-stribut~ons we are able to esfimate the net

losb of C-erg-v by scattering It is convenmen! to compare the total energy



brought to the sphere by scattered particies (q with the energy ncident
gain

particles that are hit wculd have given to the sphere (qloss). Since some

of the parti les incden.r afe deflected only slightly so that they still hit the

sphere, it is necessary to point out that such events are counted twice.

They are included as a total loss in qloss and their contribution to the sphere

is added to qgain* This is used instead of giving the net loss to qo ss and

no ad.stment to qgain We find that the ratio q gai/qloss 0. 8 from

both the near and the distant regions. Because this ratio is the same for

both regions our extrapolation to intermediate distances while crude may be

called semi-quantitative. It is in this way that we estimate the factor 0. 2.

The corresponding coefficients 0. 2 and 0. 46 should in principle be

the same. In order to compute the mcmentum component in the flight

direction and the energy that can be transferred to the sphere by a scattered

particle one uses the incident values of these quantities multiplied by the

same quantity, cos A . Admittedly both models are semi-quantitative.

That of Baker and Charwat does not emphasize the region close to and in

the limb of the sphere. Our own extrapolation to intermediate distances

is open to criticism.

If we calculate the number of particles hitting the sphere, we find

-a et gain, whereas there is a net energy loss. This results from the
2

cos 6 term in the energy return expression, which greatly reduces the

amount of energy return near 6 = 42/.
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Unfortunately, the un;_, -tainty in the coefficient is magnified as it results

from the small net betwew- loss and gain events, It would be worthwhile,

therefore, to see this probien solved with more accuracy.

It is interesting to note the important role of surface temperature

in these results Yor lower surface temperature the emitted particles

move away more slowly. By continuity their density is increased. Also,

their mean-free path is decreased- This makes scattering events occur

closer to the surface and leads to greater breakdown of free molecule flow.

At 100 miles altitude a 20 cm radius spherical satellite with

velocity 26, 000 ft./sec. and with surface temperature 300°K experiences

-% reduction in the total heat received. It should be noted that this is

a net effect and that for a 1% reduction in heat transfer about 6% of the

particles incident to the sphere are actually scattered by collisions. The

loss is considerably less, since many of the deflected particles still hit

the sphere and many that would not have hit are deflected into the sphere.

We are grateful to R. F. Probstein of Brown University,

A Kantrowitz, and N Kemp of AVCO Research Laboratory for sugges-

lions and discussions-

Or the ensuing pages we give the details of our treatment which have

led us to the above conclusions
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A Model for a Rartfied Gas Flow About a Sphere

P Hammerling

LNTRODUCTION AND ASSMPT IONS

In free molecule flow th. effects of interm-,olecular collisions can

be ignored compared with collisions v1ith a wall or an obstacle. This

implies that the mean-free path in the gas -s much greater than a charac-

teristic length of the bocy. We shall consider the high speed flow of a

rarified gas about a sphere In such a flow the reflected molecules are

moving relatively slowly and form a region near the body whose density

is greater than the free stream density. In the usual treatments of free

molecule flow problems, one assumes that the reflected particles do not

change the distribution function of the incident gas. However, the presence

of the denser layer near the body introduces the possibility of collisions

with the incident stream which can alter the expected momentum and

energy transfer. As a first step one might look for the consequences of

specifying that the incident and reflected particles make only one collision

with on6 another. This restricted problem has been solved for the case of

a flat plate by Heineman and by Lune and Lubonski

The case of a sphere presents difficulties for two reasons: (1) The

attenuation of the reflected particles due to collisions introduces a compli-

cated exponential factor in the integ.ations, (2) The geometry involved

also makes for difficult integrations. In order to gain some understand-

irg of this problem without first having to do all the work, we have

attempted to simplify it even further. The guiding spirit of the calcula-

tion is for it to be simple and yet include the physics of the problem. We

1 64 Heineman. Conmun. Apl Math, 1. 259 (1948)

M Lunc and J Lubonskz. Arch~wun Mechanki Stoswanej, 4, 597 (195i1



:-e split things into two regions. the near and far zones. Far away from

t-e sphere the geometrical difficulties can be overcome; close to the sphere

the geometry must be considered more carefully, but the attenuation can

be igzucb ed. Since the results in these two regions should go continuously

ir.o ,le another, we have made an estimate of the in between region which

is proLaAy good to within 20%.

lB£:ixnd the calculations are certain assumptions which we now list:

(a) Collisions are elastic and are visualized as between rigid

spheres, the scattering being isotropic in the center of mass system of

the two particles.

(b Partices which hit the surface are emitted in a random

direction with a probability proportional to the cosine of the angle between

t.e normal to the surface and the direction of emission. This is known

as diffuse reflection One can regard the emitted particles as an effusive

stream coming from an equilibrium gas inside the sphere.

(ci The accomodation coefficient a = L -E,- is taken as

urn-tv Ei = incident ene'gy flux, E r = reflected energy flux, F = reflected

energy flux correspond-ing to the body temperature.

(d) The therm -iJ velocities of both the emitted particles and the

gas proper are small compared with the flow velocity.

RESULTS

A Far 7,o'e

Cc'- ider tMe sphere in the coordinate system shown. The A axis

is 1.r t . - direction of moi-,n oJ the sphere With respect to a fixed

dir,..tior - in the X X plare a point on the sphere will have a polar angle



a. An observer at some distance from the sphere will see the reflected

particles as coming in a parallel beam from that part of the sphere visible

to him. In what follows we shall have to integrate over the surface of

the sphere seen in this way. if one uses spherical polar coordinates about

Z the surface integrals will be of the form

(T
-. i-~(4)

where ctn 0 = tane cos
max

x /

The total outward flux in a given direction 9) coming from that

Fart of the sphere that is visible can now be found. This number is equal

to the number coming in at a given point multiplied by the probability of

emission into the & direction and integrated over the visible surface.

-7-



N

/ / The origin of cos fl in equation (5) may

~... be seen in Fig- (2). Consider the sphere

/ and a concentric shell. The velocity

6 vector of the particle emitted in the

/i direction a makes an angle p with re-

spect to the normal to the shell. In

computing fluxes we need cos A as in

equation (5), since we are interested

in particles crossing normal to the

surface- Using the law of sines we have cos P = (1 - (R/r) .in z)1/2

For large r. cos P = 1 which is the case under discussion. The far zone

results should be good from a few sphere radii on out.

Since we require the emitted particles to go in the diiection

the emission law is cos a/T. In our coordinate system

't 6 Os ( (6)

The outward flux is then

V0 4
Tzi J a '"(7)

wbere cti, e max = tan 9 cos $ and cos Q is given by (6). This turns out

to be

771 
(8)
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The total outward flux is found by integrating E(q) over all 6 and

$ Since some particles are emitted in directions I 7 ; this results

in

-

(9)

The emitted particle density at a distance r, Nb(r) is obtained by

noting that flux L) ( b L r " JJ

hence flux/solid angle LA ) r , {r- so that

r... (10)

Due to the possibility of collision, a par"cle leaving the surface

will only have a certain chance of surviving unhit to a distance r; this

probability is given by:

GI1)r- (11

b b

FPI when r

With these preliminary ideas in mind

let us return to a physical consideration

of the problem at hand. The incident

particles may collide with the reflected

particles in such a way as to send one

of them into the sphere. The proba-

bility for such an event must be calcu-

lated. On the other hand, some of the

incident particles that could have hit

-9-



the sphere will not be able to do so because of collisions. The amount of
energy per particle that can be carried to the sphere remains to be

calculated also.

Consider the cross-section at the left.

I____________ We shall consider all collisions within
the cylinder as losses, whereas we

shall integrate over the whole half
space to compute gains. The losses

are computed from beyond a certain

radius. Closer to the sphere we must
use the near zone approximation to be discussed below,

Before we compute the energy flux we
first carry out the calculation mentioned

0 above. In order that a particle collid-

ing at a point (r, 6i) hit the sphere,

// its final velocity vector must be in the
1 it cone shown. Of the incoming stream

only those which instantaneously lie

in the continued cone will be effective.
The ratio of the projected area of the base of this cone to the total
possible impact area is the required probability.

FrAs cos,!A 
(1A)

The factor 2 arises from inverse collisions-

-10-



To obtain the energy carried per particle refer to the geometry of

lip

v,
V2

E r- -E Cos, Z v2

(13)

One caz now compute the energy flux in the far zone. Call q energy flux.

N Q __ _1 
(14)

We first calculate the expected 1ous from the cylindri al region. In using
N(r) -we must take I (0) = I (0) -w. - We use E r  E since we regard
collisions as carrying away all the energy.

LA T

1_ e. 
(15--) 

b

L ) b

The energy gain is obtained from equations (10) through (14).

-4Db 3 7r C -
o (16)

(17)

-11-



There is then a slight energy loss from the far zone. The radial integral

will be needed later, it is

L tl

B. Near Zone

In the zone close to the sphere, the effects cl the geometry cannot

be glossed over. The results for the far zone indicate a net loss; a

comparable reduction in heat transfer is found to take place in the near

zone.. We shall present a first attempt to estimate what occurs in the

near zone. The shaded portion in

the figure is the region in which there

can be an energy loss due to collision

with particles coming from the surface.

However, particles which otherwise

would not hit the sphere have some

chance if they are in the unshaded

r egion. A particle impinging at the

stagnation point transfers all of its energy, whereas for 0 = 7/2, the

maximum energy transfer is about half the availabte energy. The energy

given to the sphere will be taken to have the approximate distribution:

Er ( j-
(19)

The density of reflected particles near the surface is largely due

to their low velocity and to the cosine distribution. A density function

-12-



which sh3uld approximate physical conditions and is exact on the surface

3

The value cos a occurs because we are using the flux weighted component

of the velocity, the probability-of a parti-cle leaving aI' thi dirn ction "i is

cos a; its contribution to the flux is reduced by cos a and finally the

component of the velocity is ub X cos a.

. To compute the expected gain we in-tegrate over the volume between

the sphere and a concentric shell.

0 t r (21)
0

(, gx

The loss is found by integrating over the volume indicated by the

shading in the figure.

U A c~iJ r

fosl a&r ;Tr 74

, <(23)

-(24)
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The ratio of loss to gain is then

(25)

so that one also has the possibility of a decrease in heat transfer in the

region close to the surface.

We now bring our results together to estimate the effect of the

region in between our two extremes.

Near Zone; gain g '1 0 L41 CK ( 4RI'c (i61(26)

LA
(27)

The Jahnke-Emde tables list values of the exponential integral

needed in Eq4 (27). For small values of the argument this function can

be calculated from;

L t-x) -Y j-L- (x- )

-Y = 0. 572-zL
The net of loss and gain for the near and far zones is:

q near- c . -

(28)
far -- ~b Lr

-14-



The net from the entire space is found by adding the above andMRS evaluating the result at r 3R. The net energy given to the sphere is
then

L~tE 1 (29)

Taking into account the approximations that have been made, we
feel that the factor (0, 2) is known to better than - 50%.

A correction to free molecule results may be expected in the
regime where

(30)

In terms of Reynolds number Eq, (30) is

(31)

One obtains Eq. (31) from simple gas kinetic arguments

Let- a sound speed = (YRr 
-

a 
M =Machu

P, r 7RR

V . 1 T_ T = Free stream temperature

"b Ai a y t Tb: Body temperature

.9 vtm-= "kinematic"a viscosity

-'5-



C Numerical Example

In order to have a feel for these quantities, consider the case of a

satellite at an altitude of 100 miles.

Some pertinent numbers are

Z6 39O~rF i t ,

at 100 miles Iz. -D

thus N 6 6 10 'R MO/tC.,Ics --

C ̂ 4 oL

The air molecules are regarded as rigid spheres of diameter 3. 7ZA so
that - z

-atl

IE

N 2-

If the body has a temperature of 3nOK, then

Under these conditions we have the following results based on

Eq. (z6)

Slos-s

-- 0 =. o 9,

The above are for a region extending one radius from the sphere.

The ratio of loss q from the region greater than one radius away from the

sphere is:

I io s/- 007
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At 100 miles a 20 cm sphere with surface temperature 30.30 K experiences
a j-t0 2% reduction in total heat received becaust of collisions of the
incident gas with rebounding molecules. About 4% of the incident narticles
are scattered by cllisions; However, the loss is considerably less.
since many of the deflected particles still hit the sphere and many that
would not have hit are deflected into the sphere.

From Equation (30) we have

I. -/0 TL 3

where for

Ito Lc.

We conclude that for a 100 cm satellite traveling at 26,000 ft/sec
and raving a surface temperature 300°K, free molecule flow theory givesa rei sonable result for the total energy imparted to the sphere as long as
the V? "itude is greater than 15 10 miles.

-17-



ADDENDUM

The density of particles as a function of distance away from the

sphere r along the direction of flight (0 = 0) is given by the expression

LA 12-C~a
V= (nrc .-- ; ~ -C SC. - Y 5 4

'Jo

This quantity is plotted in the accompanying figure, For comparison we

also plot 4R/r and 4/3 + R/r. The former is our fit for the near zone.

The latter is asymptotically correct for the far zone; however, we have

onl-y taken the leading term which is 4/3. Our fit is indicated in the

figure as a bold line and can be seen to be slightly larger in the near

zone and smaller in the far zone than the correct density which is

given by the dashed line. It is felt, however, that the explanation

should give a reasonably close answer to the problem.
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ADDENDUM 11

In this section we find an expression for the energy return to the

sphere which is exact on the surfacq. This modifies our work in the

near zone but leaves the far zone results unchanged. The new result

indicates a lower coefficient than given in Eq (29), 0. 12 instead of

0.18.

A collision on the surface can send in both particles which transfers

all the available energy or just one particle which carries most of the

energy, The former occurs if the final velocity vectors of both particles

are directed toward the sphere. This criteria is expressed ii terms of

the tangent plane to the sphere.

Consider a sphere with a tangent

N blplane at point P and a coordinate

system at that point parallel to the
!P

2 old one. Measuring angles from the

Z -Z axis at this point we see that for

two particles to hit the sphere that

the velocity vector of one of them

must lie between zero and 0

The limiting angle, 0 m, is in general a function of and .

The relationship between these quantities can be found by using the fact

that the normal to the tangent plane is perpendicular to every line in it.

With respect to the coordinate system at the center of the sphere,

the inward directed normal has direction cosines (-sin3, 0, cos )

-20-



In the same coordinate system a line in the plane will have direction

cosines (sin 0 cos , sin 0 sin , COB 0). Since these lines are

perpendicular, we have

-sin a sin 0 cos 0 + cos CT cos 0 - 0

tan 0 = ctn e 
(1)

One can now compute the number of particles and energy returned

to the sphere. In the following we make use of the fact that for a collision

such that the velocity vector of one of the particles lies within 0 and e0

two particles hit the sphere, whereas for the region between 0m and

w/2, only one particle goes into the surface.

The number of particles returning to the surface is

f4l

2, C°$s

where

'A,

Adding and subtracting a 2 in the numerator, we have

I Cos -'ji --

The integral on the right hand side is listed in Groebner and

Hofreiter integraltafel, # 331.56 a. Our result is then

-2l1-



N r I + cos9 (3)

The appropriate energy return function is found from an equation

similar to Eq. (2)

[ (4)

/ 14

The integral is evaluated in the same manner as the one in Eq. (2).

Jcos V,

T-
--- ?

- (,., ' ,"/ -- (ck-,) e'"-"" "l=

The first integral is the one we have already used; the second integral

is proportional to the derivative of the first. It can then be verified that

j,7 = - I - CO'S - C5

and that the energy return is

If we use this function instead of Eq. (19) in the body of this report,

ther. the net energy loss in the near zone would be

=7,.i R L [o I,- - (X / ---. ,7

S~- (- (7)
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The outer region result is unchanged. The total net evaluated

at rfR 3 is

total net energy loss zl R (0. 12) (8)

It is felt that the "true" coeffirdent lies sotnewhere between this

result and (0. 2) from Eq. (29).
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