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SUMMARY

The frequency spectra and vibration modes of thin-walled cylinders
subjected to internal pressure are conéiderede The cylinders are suppert-
ed in such a manner that 1':he ends remaig circular,

The basic mathematical analysis has been given by Reissner., In
the present note the interestlng physical features of the vibration of th;'.n
cylindrical shells are discussed. Further theoretical iavestigations are
made and are applied to the case in which the number of circumferential

wavdg is relatively small, thus complementing Reissner's theory which

aly w};.en this number is sufficiently large,
E; is ;shown that for thin cylinders the internal pressdre has a very
significant effect on the nat‘;u.ral vibration caaracteristics., For these
cylinders, partiéularly those having smaller 1engi:h~i,:o-dig_rnete’1- ratios,
the mode associated with the lowest freqixency is in general not the simplest
mode, In fact, the frequeuncy spectrum may bg‘so arranged that the fre-

quency decreases with an increase in the number of circumierential nodes.

'

The exact numhexr of circuméereutial nodes which occur in the mode
associated with the lowest frequency depends on the ratios hfa, L/a, and

the iaternal pressure, where his the wall thickness, a is the cylinder

4
half- '
radius, and L is the axial vave length, When the internal pressure is

small the number of circumferential nodes at the lowest frequency de-

. . . . . . W ",/'
creases rapidly with increasing internal pressure; and the fandamental

frequency-— the lowest frequency at each internal pressure —- increases
rapidiy with increasing internal pressure, At higher values of intexrnal

pressure the frequency spectrum tends to be arranged in the regular

-

manner: the frequency incxeases. with the increasing number of circum-

ong. . .
ferential nodes;,\the lowest frequency rises with the internal pressare, but

-

at a slower rate, '
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NOTATIONS

a radius of cylinder,
. . ’

2y0 By bl” 'bz ete, coefficients in K;o Kl," Kzo
A, B, Gy maximum amplitude of component vibrations.
e, Ey” e, strain components
B Young's medulus
£ = /2n frequency, cycles per sec,
h thickness of wall
K. . K,;. K, I;i:) ete. coefficients in irequency equation,
L lengtih of cylinder
 #o} nurnber of axial haif-waves
ng M? » My @ Moments in shell, per unit length,
n aumber of circumferential waves {number of nodes = 2n)
Mo NP v Nx({, o Q0 QY stress resultants in shell, force per

unit length.

N , N , membrane stresses due to internal pressure,

T
», 2 My
LA o
e = (1=9Y) Mg
,;,; - Ny
Eh
Ny = (1=y*) My
t time,
Uy, Vo W gpmfzm:éit&} of displacement of a point on the mid-surface
of ghrishell.
X yzaf, & coordinates in akial, circumferesntial, and radial directions
oL h/a
2
_ & .
ﬁ - ——.v'-Z“»—
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, €0 Yxp strain in the mid-surface of the shell,

w a freguency factor

axial wave length factor,

Poisson's ratio

density of shell material

Txyﬁ stress compounents

n ' .
'(xp change of curvature of the mid-surface of the shell.

circular frequency = 21}']C o
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THE VIBRATION OF THIN CYLINDRICAL SHELLS

UNDER INTERNAL PRESSURE

by
Y. C. FUNG

INTRODUCTION
The physical problem of vibration of thin cylindrical shells is not
without elements of surprise., Thus it has been found that the natural
frequencies are arranged in an order which had little relation to the com-
plexity of the nodal patterc. But such phenomenon has been explained by
Arnold and Warburton {(Ref. 1, 1949), whose accurate theoretical analysis
and experimental investigations uemonstirate beyond doubt the adequacy of
Timoshenko's equatious {or Liove's "iirst approximation") in describing
the vibration of unpressurized cylinders, On the other hand, the zffcct of
internal pressure on the free vibration of thin eylinders does not appear to
. ‘ be generally appreciated, In Ref. 1, it is stated thut *'the results { of
analysis of unpressurized cylinders) are also true for a cylinder subjected
to uniform sitress; thus internal fluid pressure in a coniainer wiil not
aifect the frequency". The fact is, however, that the internal pressure has
a grave cffect on the frequency, For instance, cne may easily construct
realistic examples in which zn internal pressure that induces a hoop stress of order
0.2 per cent of the ultimate strength of the cylinder causes an increase of
10 per ceat in the lowest frequency over that of an unpressurized cylinder
“{we built and tested such a cylinder}. The importance of internal pressure
tn e vibration of pressure
,:ressels is quite evident,

Of the great variety of ways in which a thin cylindrical shell may

vibrate, only the fiexural vibratioa of the wall of the cylinder wili be

considered. Both bending and stretching of the shell are iuvolved, The
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cylinders are assumed to be 'freely supported" in such a manner that
the ends remain circular, and that no restraint on the axial or tangential
displacement is imposed at the ends.

The large apparent effect of the internal pressure on the lowest
natural frequency can be explained by the same fact as noted by Arnold
and Warburton in the case of unpressurized cylinders: that for cylinders
with very thin walls the mode of the lowest frequency is in general not
the simplest one. For a given axial wave length, the exact number of
circumferential nodes that occur in the mode of the lowest frequency
depends on tlie bending stiffness of the cylinder wall and the intérnal
pressure. This number is rather sensitive to the internal pressure whén
the cylinder {5 very thin and when the pressure is small. Thus a relative-~
ly small change in internal pressure may cause considerable change in..
the mode shape at the lowest frequency. When the intérnal pressuré is
large, the fundamental frequency varies approximately as the square root
of the pressure. Since at very large internal pressure a thin cylinder
derives its stiffness mostly from the hoop tension, the last rnentioned re-
sult seems natural in comparison with the corresponding cases of vibration
of a stretched siring or a stretched membrane. |

There is a basic difference in the frequency spectrum of a cylinder
as compared to those of some other more familiar exa.mplesiu‘a(f“sl strings,
membranes, beams, and piates, the diiference in the spacing of successive
frequencies, Fcr the transverse vibration of a siring the successive fre-
quencies are spaced like successive integers n. For the transverse
vibration of a simply supportec beam the frequencies are spaced like itz.
(n an integer), For a rectangular membrance the transverse vibration

frequencies are

| -
2 {m, n integers)
\ﬁ‘ln ’V ] -v—n_. .*. lz.' P ° - a’{
V a2 b> (a, b dimensions of membrane)

For a simply supported rectangular plate, they are

; we 4 _,’\'1-
van Y W e int

s~ e
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" Beams, membranes, and plates-of other boundary .conditions and shapes
‘have less regular spacing than t’hosé mentioned above, but the general
character is similar. .In constrast to this, an examination of the frequency
spectra of a cylinder will show that the successive frequencies rarely
follow any simple ruie. They do not follow an arithmatic progression as
in strings or membzanes, or as r{2 as in beams-or plates. Often several
successive frequencies are very closely grouped together,

The last point has an imporiant bearing on the engineering
applicationsof the theory, Whereas knowledge about the iowest frequencies
is often sufficient in ordinary problems, for cylinder it is quite possible

that a more compiete knowledge about the entire frequency spectrum is

essential in order that rescnance :can bé avoided,




¢ HISTORY OF THE PEOBLEM

{a) Unpressurized Cylinders.

Prévious investigations on the vibration of thin- walled ¢ylinders ?

seem to be limited mostly to the unpressurized gase. ‘I':hc free vibrations

of thin cylinders in the case &f negligible beuding suiffuss¢.has been coun-
sidered by Rayleigh (Q@L 2, 1‘894}9 The solutioy is J;c?:‘x-,tivély simple. . n
Inclision of the berding stiffness of the walls of the shells makes the S

problem much more c¢omplicated. Rayleigh {1894} desived an expression
for the frequencies of thin cylinders in -which the diotion of all cross~
sections was idedtical, This cox‘resyonds to the fuadamental axial form.
for a freevended cvlinder, The géneral equations of flexural vibra- o
tioun of the walls of cylinders weyre later investigated by Liove {Ref. 3, 1927), R
but no frequency equations for any specifiec end tonditidas were given. ' ‘
Filgge {(Ref. 4, 1934} first guve the frequency équation for a eylindér with . \ L
freely supported ernds: but exteasive numéiical resulis were fipst “publiiéhe& | .
by Arnold aud Warburton {Ref. 1, 1949, 1953). Fur ireely supported endq, | |
Arnold-and Warburtod derived freguency equaimns based on stravi“:e{otmns , 1
due to TitnoshenkofRef. 5, 1940} and were able to verify the experirhental - :
results with considerabie accuracy. The fact that for shert cylinders with
very thin walls the natural frequeney iy getually deerease as the numibet ‘
of cireumiferential nodes increases was shown theoretically to be due to the
proportion of strain energy contributed vesppétively by beading and éu*ret‘é\izw
ing; the latier was sometimes predominant for the simpler uedal patterns, . .
In their 1953 paper, the effect of various end conditions was discussed
exhaustively both frzom: the theoretical and experimental »poim‘.; of view,
Tables for frequencies asd modes of frze vibration of unpressiriz~
ed cylinders of infinite length weve published also by Barcn .and: Bieich
{Ref. 6, 1954), who computed first the frequencies of ihe modes of a /
sclected wave length using the membrane theory; &ad then estimated the
corrections due to bending stiffness of the walls on the basis of Rayleigh!s - -
principle, ‘ b ] :

{b) Pressurized Cylinders

e -7 .
R T R R AP

The vibration of pressurized cylinder has been discussed by Stern

{Ref, 7, 1954} under the hypotheses that (1} tke skin vibrales normal to¢he .

R
R N A
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static position and that {2} the stresses in the vibration node are

effectively equal tothe stresses generated by the internal pressure.
Later, Serbin {Reéf. 8, 1955} solvid the problem for the lowest frequencies
for "nearly-inextensional' vibration niodes by Rayleigh's method,
Receuntly, Reissner (Ref. 9) showed that a great simplification in the
in the analysis of shell vibrations can be achieved if the tangential inertia
forces can be néglécted. It is.then.necessary to consider only one compon-
-ent. of disp).acemenﬁ -+ the transverse, -ox radial, compounent, The resulting
equations arc precisely ,Marg;mrre's equations for slightly curved plates('a
generalization .of Von Karmén's equations for flat plgtg‘as). Reissner shows
that the siraplified equations -~ called ''shallow shell" theory ~- will give an
ageuraté description of the transverse vibration of cylinders provided that
the aumber of circumferential waves, n, is sufficiently large. In Ref. 10,
Reissner gives the following irequency expression for transverse vibratioas

of small amplitudes

'z-_ o ar/ 4" - 13 - -

;[,(3‘_)3_ +'('E)23‘2— (2 (1=y%)°
Ll [ B BN

(1)

where 0 is the density, h is the wall thickness, ) is the circular frequency,
E. i6 the Young's modulus, ¥ is the Poisson’s ratio, a isthe radius, L is the
axial half-wave length, Nx is the axial stress resultani per unit length, and

N ds the ¢ircumferential stress resultant per unit length, This expression

~

_gorrésponds to.a deflection form

W= £ sinwt s&%wsl’%.. {2)

The first term on the right hand side of Eq, (1) gives the influence of
stretching of the shell, the second term, of bending; and the last two terms,

of iuternal pressure,

|
|
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CALCULATIONS FOR SM4.ILL NUMBER OF CIRCUMFERENTIAL
WALAVES

Reissner's theory applies to vibration modes with sufficiently large
number of circumferential waves. [n order to complete the theoretical
investigation it is only necessary tu investigate the case in which the number
of circumferential waves, n, is relatively small. The mathematical
analysis is given in Appendix A, “The coordinate system is shown in Fig. 1.
The axial, circumnferential, and radial displacemments are assumed to be of

the form:

WA ,
A s —= cos nip coswt

A

<
L

= B 3w Iﬁ%’f S N Cos wt {3)

w=C sin ——'—V‘—WL cos nf cotwt

where m is the number of axial hali-waves, Lis the length of the cylinder,
and A, B, C are constants. Following Arnold and Warburton, the end
conditions correspondiang to the above are called "'freely supported'. Dis-
placements given by (3) satisfy the differantial equatiofxs of motion, It is
clear that wherezs w and v vanish 2t all times at the ends, u does not, -
corresponding to the case in which no axial constraint is imposed. Further-
more, the radial movement w vanishes at 2n equally spaced lines along the
circumference, but these lines are not lines.oi absolute res”*, because the
tangential motion ¥ does not vanish identically there. For convenience,
howcver, liires on which w is stationary will be called nodal lines, even
though tangential motion exists. A pair of integers m, n then specifies a
particular nodal pattern as shown in Fig., 2.

The frequency equation so obtained are of the form
2 / ’
L - Kyoa*+ K/a- K =0 (4)

where A is a parameter proportional to frequency squared, and the K's

are functions of the axial and circumferential wave number, internal
pressure, and physical dimensions of the cylinder. Under various addition-
ai simplifying assumptions the frequency equation (4) can be gimplified.

The simplificaticn introduced by Reissner and Stern are discussed in
Appendix B, Egq. {4), of course, applies to all values of m and n, not only

when they are smalil,




Ecample 1 For v=0,3, A=1, % =1750, %,
Theun the roots A. ore
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In order to observe the manner in which the frequency variés

with the cylinder dimensions or nodal pattern, calculation for specific

cases was undertaken. Four non-dimensional parameters introduced in

Ref. 1 are used*, namely

\/;'( == frequency XJ 4'7’2—“'2.10‘

E
A = mean circumfierence _ 2TA — MTAa
axial wave-length Tl /o = L
{5)
M = number of circumferential waves (numbex of nodes = 2n).
oA = thickness 4
" mean radius = L

o

the
The effect of internal pressure is expressed b /non-dimensional para-

meters

K

-

{6)

Zl

n
>~

where N, , N, are the membrane siresses caused by the internal pressure
b s For example, in 2 boiler,

ﬁr“"’v, N;z}’“'/"

We shall now give a few examples:

Tn=i | Mm= < w= 3 l nws= 4
o, {zY 0.0285 0, 00857 0.00407
0,994 /.93 3.6/ 6,02
2,582 579 10,88 17:93

* n differs from A of Rei. 1 by a tactor (1-)",‘. Both A and ¢ will be
uged in the preseat report.
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For V=0.3, A=1, %: 100, ﬁ? = W, = 0, then the roots are

n=| l "= 2 ' w=3 J m =4
0'/24 ("0'286 0000870 0‘004_?3
0,994 /93 3611 b, 622
2 582 577 /0.8 /7.93

These are unpressurized cylinders,

Example 2 If »=0.3, A =1, a'/“ = 1750, (3: ‘1‘1'2 ¢ 17150 )2'

then the roots A are

D

-4 -
?=lo Ny

}

N j—
‘93\

wz| "2 n=73 n=4
6,24 0.0285 0:00857 0. 00407
0. 994 1093 3.6/2 6.02
2.582 579 /0.8 8 /7.93
-3 —
Zxample 3 Same counstants as above, except F;'? = §XIo e = Mg /7— s
The roots A are
n=|l =2 w=3 n=¢
o.(22 0.03/3 ¢.03/0 0,0585
/608 /.96 2,64 6.05
2.581 579 ]0.98 17.72
1074
Example 4. Same data as before except -%—: 100, so that f3 = 7,
The roots A are, for ‘Y"fq, = 2.??, = 10"4
M= me 2 n=3 M =Y
0,124 0.0256 0,009/S d.00605
0.99%¢ /.93 3, 612 §.022
2.5%2 579
(/«)LA’/« ;‘1'? = 2;;( = 5'X/0-3J we have
n =] A ne 2 I "h= ¢
Crvi2 & 0.,03/4 0.0315
0.999 /.96 3.64-2
2.584 5.7 /0.88
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We note that = 1 implies a bending vibration, The end sections
have considerable longitudinal motion. The calculation, however, is
valid only i f there is no concentrated masses to be moved at the ends.

The very large stretching e¢nergy involved in this mode explaius the very
high frequency. In praetical applications therz are usually heavy masses
at the ends of the cylinder and the frequency must be computed accordingly.

Similar remarks apply to other cases in which w1 is small. However,
if the masses supported at the ends were rigidly connected, their eifect on
frequency for M2 2 should be small. In other words,n= 1 really is a case
of different catagory than the cases m 3 2.,

Comparing the results of the preceeding examples, we sea that the
variation of A with ’-1;1;,, s My is small for smalin., The smallest root A
begin to vary significantly with ”sz » My when %73, butthe two larger
roots do not vary much with 'W,‘, .

The non-dependance of the larger roots on the internal pressure is

imply explamed :y&rat these roots correspond to essentially tangential
motxo*xs‘;" {‘?{{:2 hoop stress bac litile stiffening efiect for tangential rnotions','

It is further noted that the two larger roots are considerably in
excesa of the smallest roots in a very wide range of 33'? . Hence unless
one is interested in a frequency range which includes frequencies 20 or 30
times larger than the minimumn. frequency, one need n'oj\;g consider the pre-

.

dominantly tangential vibration modes.

o

Figs. 3 & 4 show the frequeuncy as a fuaction of A and n for very
thin-walled unpressurized cylinder (these curves ﬂomplements those of
Ref. 1), Curves in Fnggs 4a are drawn for = 1/1?“0 and ‘?ﬁ: “fé'%?:
< = 3/1750, ¥=0,3 'he influence of « on these t.urve., is small at
such small value of & , as can be seern by a comparison of Figures 3a and
3b, For small values of A\ , however, the frequency is strongly irfluenced
by %0 . The details of the variations of frequency with )\ when )\ is small
are shown in enlarged scales in Figs. 4a and 4b.

¥igs. 3a and :a also give a graphical comparison of Reissmr's
soluiion with the more laboricus exact solution. The numerical accuracy

tiHe
of Reissuer's solntion deterioraee.. as u decreases, Dut
A

it is seen that Reissner's equation gives a fairly a<-urite representation
for all values of n.
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Since in Reissner!s approximation certain inertia forces are
neglected, it is expected that the derived frequency will be higher thaun the

exact value, This is ceadily seen to be the case.
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THE MODE ASSOCIATED WITH THE LOWEST
FREQUENCY

It is of interest to observe some simple deductions with regard
to the lowest frcquensy and mode,

First let Eq, {1) be rewriften in the non-dimensional form

* 2
A d * A L\2 5 P 3 hgrnd 2
Wom—t— e (WP A AT R, w {7)
(n*+ A%) 12.(1-¥%)
where o = hfa For giveu values ¢f X . o « W, awd A, , the frequency factc

¥ reaches a mininmum when

o 2 A ** Loy o~ ‘]
— 2N g e s -+ . — . )\h - n = (t)
o [ (w54 A%’ T ) ¥ e (@)

If ’;‘_p = 0, this gives

; YA
= \[le(vvi) _..c:::.‘?; - A*

i .>»<~<AJ§;'; , thew

]
aL T \,2,?. L

9}

)’/+ (10)

) and

N
’,}{ . = s—

min ‘/—;;"':';;‘;) ) £11)

Of course, n must be an integer aud the above minimum ialus may not

nesessarily be reached.
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. YH(3 (12)
Mz — ﬁ A _ /\L
— 1/3
'))(F

When the internal pressure does not vanish the variation of the
number of circumferential wavesat the lowest frequency is best illustrated
by an example. Fig. 5 shows a special case in which the axial wave

8. and

length parameter A = 1, the bending stiffness parameter /5 = 10
Ny = anx, It is seen that n, the circumferential wave number corresponding
to the lowest frequency, varies with the internal pressure parameter '7%, :

at first very rapidly, thea slowly, as shownr in the following table and Fig. 6.

7 S X10°
No. of circumferential Range of Internal Pressure
waves at lowest ireq, Parameter mp x 05
10 0 —0.1
a 0.1—0.38
8 6.38—0, 97
T 0.%7—2.5
6 2.5—-17.0
5 7.0—-22
4 22 — 94
3 94 — 610
2 610 —7000
1 > 7000

Tnlcfzm_aé)ove table is based on Eq, {1), The range of —; for Mgy is
probably R jnaccurate,

To give some physiczal feeling about this example, it may be said
that A:! corresponds "to a cylinder whose leagth/radius ratio is 3 or
integral multiples of 3, and that [3 = 10_8 corresponds to a radius/thick-
ness ratio of order 3000, X E = 107, then ’71;,,= 10‘5 when the internal

pr -ssure is only 0.03 psi,
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It is clear that the larger the number of circumf&rential waves,
n, the faster is the rate of increase of frequency withAinternal pressure,
The rapid increase in the lowest frequency when ?i'(p is small is caused
by the fact that o is fairly large at the lowest frequency if the cylinder is

short and if the wall is very thin,

THE FREQUENCY SPECTRUM

Since each pair of integers {m, n) determines a vibration mode, the
frequency spectrum of 2 cylinder is obtained by computing 3 for all values
of {m,n). Now each selection of m determines 2 A. ., Hence for a given m,
the frequencies correspoading to all u are obtained by the intersections of
the curves(such as those in Fig. § witk vertical lines representing specific
values of 7, » From Fig, 5 it is clear that the spacing of the spectrum is
rather irregular. On many occasions two modes have the same frequency.

If the exact frequency determinaat as given in the Appendix were
used, there will be three frequencies corresponding to each flexural de-
flection pattern {w). One of these frequencies is predominautly flexural,
and is approximated by Reissner's formula. The other two are associated

with siguificant tangential motions {u, v), and have higher frequencies,

These are of course lost in Reissner's approximation.

CONCLUSIONS

In the above, those physical features of cylinder vibration that are
important in engineerirg applications are discussed, It seems that the
classical shell thecry is sufficient to explain the features of a vibrating
cylinder under internal pressure. Reissner's simplified treatment is
adequate in giving the lowest frequencies and modes for very thin cylinders.

The complete frequercy equation is given in the appendix of this article,
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APPENDIX A
DERIVATION OF FREQUENCY EQUATION FOR THIN
CYLINDERS WITH FREELY SUPPORTED ENLS

The basic assumptions of Liove's first approximation will be used.
See Love, Ref. 3, Chapter 24; Timoshenko, Ref., 5, Chapter 11, and
Naghdi and Berry, Ref. 11. To account for the effect of internal pressure,
the interaction of the membrane stresses and the change of curvatures
must be included in the equations of eguilibrium. The basic equations cau
be obtained by a trivial generalization of the equations given in Timoshenko's
book. Since the results did not seem to have been recordad in the literature,
some details will be given below.

Liet the curvilinear coordinate system be chosen as shown in Fig, 1;
the x-axis is directed along the generator of the cylinder, 7 =a§ is
measured clockwise in the circumferential direction, and the z-axis is
directed inward along the positive normal to the middle surface of the shell.
Let u, v, w be the components of the displacement of 2 point on the mid-
surface of the sheil ian the x, y, = directions respectively,

The stress resultants and couples are defined by

hfy W

N);=j % dz 5 sz O;ZJZ) C\):‘:/ 7,‘)'(2 aa (A.,))
~hfy Ji. by,

The equations of motion are ootained by a”ding inertia force terms

—pE Vi, _oh v /att, ~ .2 W/oth | multiplied by the radius a, to the
ieft hand side of Eqs. {252), p. 438, of Ref. 5. The resulting equations
are non-linear. ¥or the vibration problem, it is justifiable to linearize

by considering motions of infinitesimal amplitude, Let j ;/; .‘;‘l. /{'{'
. / 2, e

ete. be the stress resultants and couples in the cylinder induced by the

internal pressure, For simplicity, we shall assume that

Ny = const., i/}; = const.
(A.2)

——
~— o

NX?O“&"= 6259:" Mz -"/’V/l?-':/‘/lea:o
In other words, the effect of any possible bending caused by the end

conditions will be neglected in the vibration problem. Letu, v, w, Nx’
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? : M < ete, be the vibratory displacements and vibratory siress resuits (
ants and couples i.e. the variations from the uniform stress statui induced
by the internal pressare, u, v, w, N NP." etc. are assumed tob. Of
infinitesimal amplitude, Neglecting small quantitilies of the second.or

higher order, we obtain the equations of motion-

JA{.‘L QN%___ - Xi 31\1' ‘ - -
ox T adg £ 373¢ ) Ph L5 at'- © |
bl = A 5y {a.3)
v, M _Q XL L plit =p
= +“‘?? _ZK". + Mo 550 £33
A&y W N, T AW N, 7 2y 53w Yw
r 3% 4'5552 + 2k Sh L (5 ) S
‘ and
;}_:Mx ?/Vfg“ C" _
3 do | X T .
a’ (f .(A(%)
- .a../‘i’i lﬁjﬁﬁ. -— 6‘7 -0
¥ X A9 @ p

Eliminating the shearii 3 forces pr Q? » and substituting the strsss-
straia relations, we obtain the basic equations¥: .

P pa ¥y O yow MGk L3
R 20 of 20 Jxdp o X E/*'- I3 DX Pt" P Btl

{JA,.. 5)

k- 2 ~ 2 . - .‘x
IRSJNS 200 WA Sl VRV A 15" ]
| (200 \ dxH0P 03‘5?’3)‘ ’7'41[( 5y za?j* Ns a); FA At “o
| : A
i Z R - }3\; ;3
S W w . oh a4  hipazy Y
,‘——— - - ——— - A
w o "« VW= o (TE 5 c‘,?
& . S
4 ali-v) o= LY N .Ei‘f. %&%)__ ph %J =
E—l\. x Bx 00' a. ‘f t\.ﬁ??" ’

*Stern's equatmn, Ref, 7, consists of ncglecting =i other terms in ,ﬁ.qs, &'ILt 5?
except the terms in the gquare brachat in the last equation of fA £): the
quantity ¢ Y, ab? being replaced by w/. inder the assumption of zerc circums
ferential strain, Reissner's approximation counsists in neglecting the terms

3 u./aél 0 a*\r/)tz' and eliminating u, v by means of a stress function,
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where v denctes the operator
by 2
> 8" _ \*
( e A.’P?">

This set of equations admit solutions in the form

N = A W 71X
Coc "‘"w'ncpc,«n y¢
v =

B AMMMTAL) 4in mp cos ot

w = C m('mn;/,..)mw e wt

{A.6)

where A, B,C, are coustants, 2nd m, n are integers. Substituting {A,6)

into {(A. 5), and wuriting

e (i-")ara

A = = (l-)’l)n
E

e = ﬁf’(';”l)/Ek = (1-9Y) .;-P

e = Ny (99/ER = (1- ¥

?\ = %ﬂ'&/[_

hz’/l:,a"

we obtain the following three equations:

>
"

z

(-F- 20 ra)As (Bam-ann)B+(-»aA+ A ) =0

+ (mt pr+pN)C =0,
- yAA + 5%+F[f2-v)AL'n+%3J+ %v'nEB

. 4 . -
+Lr_l__.f',()\4+ 2)\2“&11- s )-— "Ax /\1“ ’)1?, ‘n,z «l-AJ :‘__

-
-

aleailde b o
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Tor a nontrivial solution the determinant of the coefficients of A;;, B,C in .

Eqs. (A.8) must vaaish, leading tc the frequency eguation:

3 ’ ! ;_ Q.
A- K{Az T K,A - k., =0 {A,Q)
V. 6) _ _
where, reverting to the notations 4% , My,
KI - K ‘;{ e —~ e Lok 3 ~ 2
° o T h Tyt AWk +a3MeN, + YU o+ Qs
= ¥ " Py 2 ve ¢ =2
Ki Kt b Mo+t byx + 4ZAT iy M, + A Ny {A.10)
!z s -~
Kl-m Kg, + %1 '71¢ + 7.)“2'ﬁ);
. ¢ e / K / K /
When the internal pressure vanishes, the coefficients K, , Ky, Ke
reduce to Ko, K, Kwkich are given by A -nold and Warburton*, {Ref. 1).
1.7} The expressions are:
&, 8)

*When 8, = ¥y = 0, Eq. {A.8) differ from Ref. 1 in the last term in the
second ¢quation instead of gA*nC  , Ref. 1 reads {2-% YANNE . The
effect on numerical results due to this difference ia negligible,

A
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! PN
.’ : K, = F('-v)z\ 1+ ) A + _i_(,_ V)'/B/_()hn‘)“'_ 2(4__92)/\4%2 _
LTS SR e Y M +n‘*J
K,= L-s) (Rt ) e L (3-v=29) A 4 Lo-nn’

‘ 2 4 . .\X
*F[ﬂa—v)(ﬁ#)% 2 (1IN = (2NN = T34 2

Ky = 1+ Lm0 nd) 4 p [ (ed)T+ 200900 4 u"j

2

- -v_& -¥) 2 - -v¥) .
a, = L—‘n‘('n."-)\‘);- e+ v____(lz\’ /\4 - 223 )/\“hL - PAn
il
}'()\ +m )('v« A+ X ” w4 “)-r Y X [(z v)/\ ~ (A “‘J}v.j‘ {

.,.’
- {(.-mx’w’—'l’ R LI D

a, = [ .n+1—-2-n+v)\_:(

a = M(N+

2

= A e (1)
b‘ = "—’—:;n*-r 2/\xnl-M1 + YA - Fna'()\":v 1@)

<

- & - 2 S
b, = __5____)\* + s -2 ,\1"-.. )\2 + F A2 (AT 2 D]
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APPENDIX B

Simplification of the Frequency Equation

Under variou# additional assumptions the frequency equation caun
be simplified.

Reissner (10) introduced the assumption that in "predominantly
flexural" vibrations of the eylinder the tangential inertia force aan be
neg%cted, Under this assumption the last terms in the first two equations
of (A.3) and the two A terms in the first two equations of {A.8) are re-

moved, The frequency equation then becomes a linear equatiou

K:/A — K =0
¥,
Where K, is somewhat different from K,lo Tl}is equafion, however, is

not identical with Reissner's equation {1) or (7). In order to obtain the

. latter, it is necessary to consider sufficiently large values of n, so that

the shell panel between the nodal lines can be approximated by a slightly
curved plate,

In the uupressurized case, Arnold and Warburton (1) give a
simplified linear expression for the frequency parameter A that is valid
for sufficieatly small values of n.

Stera's (7) approx¥imation consists in neglecting all terms in Eq.
{A.5) except those invelving w within the square bracket in the last
equation. The fregquency equation is therefore

2
A= AWy + w o
The justification of this approximation is not apparent. Comparison with

Eq, 7 shows that, numerically, it is a fair approximation for small values

of \ and moderate values of n, provided that (% is small,
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