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SUMMARY

The frequency spectra and vibration modes of thin-walled cylinders

Subjected to internal pressure are considered. The cylinders are support-

ed in such a manner that the ends remain circular.

The basic mathematical analysis has been given by Reissner. In

the present note the interesting physical features of the vibrationt of thin

cylindrical shells are discussed. Further theoretical investigations are

S-n e, and are applied to the case in which the number of circumferential

wav s is relatively small, thus complementing Reissner's theory which

appliefnly when this number is sufficiently large.

Itis shown that for thin cylinders the inrternal pressdre has a very

significant effect. on the natural vibration characteristics° For these

cylinders, particularly those- having smaller length-to-dLraeter ratios,

the mode associated vith the lowest frequency is in general not the simplest

tmode0 In fact, the frequency spectrum may be so arranged that the fre-

quency decreases with an increase in the number of circurfnerential nodes.

The exact number of circumferential nodes which occur in the mode

associated with the lowest frequency depends on the ratios h/a, L/a, and

.he iaternal pressure, where h is the wall thickness, a is the cylinder
Jih l I

:radius, and L is the axial vave length. When the internal pressure is

small)the number of circumferential nodes at the lowest frequency de-

creases rapidly with increasing internal pressure; and the\fundamenta"

frequency-- the lowest frequency at each internal pressure - increases

rapidly with increasing internal pressure. At higher values of internal

pressure the frequency spectrum tends to be arranged in the regular

manner: the frequency increases. with the increasing number of circum-

ferential nodes; the lowest frequency rises with the internal pressure, but

at a slower rate, '.



The spacing of the successive frequencies of 'the natural vibration

of a cylinder is irregular and oftem very -close. A knowledge of the entire

:spectrurm is therefor~e necessary in ~ojrder to avoid possible resonance in

enginepring- appiic~itions,

'42
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NOTATIONS

a radius of cylinder.

al0 a,& bl, b, etc, coefficients in Ko0 K 0 Ko

A, B, C. maximum amplitude of component vibrations.

" e strain components

Ell", Young's modulus

: 60 /Zr frequencyp cycles per seco

hi thickness of wall

K1 K & 'tc. coefficients in frequency equation.

I, length of cylinder

ran number of axial half-waves

M iM n-rats in shell0 per unit length.

n number of circumferential waves (number of nodes Zn)

DT N Nje & QXh Q stress resultants in shell, force per
unit length

oN , membrane stresses due to interual pressure.

-~

t time.

u. v 0 w :Vo..rit 0, displacement of a point on the mid-surface

xe y = ap C oordinates in aiialh circumferential. and radial directions

12
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- strain in the mid-surface of the shell.
CXo

X j- aZ frequency factor
E

w ma axial wave length factor.
L

4 P Poisson's ratio

density-'of izhell material

stre6ss component's

angular coordinate

rX "x,"41change of curvature of the mid-surface of the shell,

4)circular frequency- Zirf

e
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THE VIBRATION OF THIN CYLINDRICAL SHELLS

UNDER INTERNAL PRESSURE

by

Y. C. FUNG

INTRODUCTION

The physical problem of vibration of thin cylindrical shells is not

without elements of surprise. Thus it has been found that the natural

frequencies are arranged in an order which had little relation to the com-

plexity of the nodal pattern. But such phenomenon has been explained by

Arnold and Warburton (Ref. 1, 1949), whose accurate theoretical analysis

and experimental investigations aemonstrate beyond doubt the adequacy of

Timoshenko's equations (or Love's "first approximation") in describing

the vibration of unpressurized cylinders. On the other hand, the effect of

internal pressure on the free vibration of thin cylinders does not appear to

be generally appreciated. In Ref. 1, it is stated that "the results ( of

analysis of an pessurized cylinders) are also true for a cylinder subjected

to uniform stress; thus internal fluid pressure in a container will not

affect the frequency". The fact is, however, that the internal pressure has

a grave effect on the frequency. For instance, one may easily construct

realistic examples in which an internal pressure that induces a hoop stress o order

0. Z per cent of the ultimate strength of the cylinder causes an increase of

'10 per cent in the lowest frequency over that of an unpressurized cylinder

(we built and tested such a cylinder). The importance of internal pressure
!qn the vibra~io OfPrSurLIM
vessels is quite evident.
A

Of te great variety of ways in which a thin cylindrical shell may

vibrate, only the flexural vibration of the wall of the cylinder will be

considered. Both bending and stretching of the shell are itivolved. The
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cylinders are assumed to be "freely supported" in such a manner that

the ends remain circular, and that no restraint on the axial or tangential

displacement is imposed at the ends.

A 'The large apparent effect of the internal pressure on the lowest

natural frequency can be explained by the same fact as noted by Arnold

and Warburton in the case of unpressurized cylinders: that for cylinders

with very thin walls the mode of the lowest frequency is in general not

the simplest one. For a given axial wave length, the exact number of

circumferential nodes that occur in the mode of the lowest frequency
'It depends on the bending stiffness of the cylinder wall and the internal

pressure. This number is rather sensitive to the internal pressure when

the cylinder is very thin and when the pressure is small. Thus a relative-

ly small change in internal pressure may cause considerable change in>

the mode shape at the lowest frequency. When the internal pressure is

large, the fundamental frequency varies approximately as the square root

of the pressure. Since at very large internal pressure a thin cylinder

derives its stiffness mostly from the hoop tension, the last mentioned re-

sult seems natural in comparison with the corresponding cases of vibration,

of a stretched string or, a stretched membrane.

There is a basic difference in the frequency spectrum of a. cylinder

as compared to those o. some other more familiar examples as strings,

membranes, beams, and plates. the difference in the spacing of successive

frequencies. Fcr the transverse vibration-of a string the successive fre-

J1 quencies are spaced like successive integers n. For the transverse

A vibration of a simply supported beam the frequencies are spaced like ft'

(n an integer). For a rectangular meribrance the transverse vibration

frequencies are

(in, n integers)
rA + (a, b dimensions of membrane)

i For a simply supported rectangular plate, they are

r t (m, n, integers)
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Beams, membranes, and plates-of other boundary conditions and shapes

-have less regular spacing than those mentioned above, but the general

character is similar. In constrast to this, an examination of the frequency

spectra of a cylinder will dhow thatthe successive frequencies rarely

follow any simple ruie. They do not follow an arithmatic progression as

in str.ings or membranes, or as n as in beams or plateso Often several

successive frequencies are very closely grouped together.

The last point has an important bearing on the engineeriag

applicationsof the theory. Wher eas,-knowledge about the lowest frequencies

is often sufficient in ordinary problems0 -for cylinder it is quite ,.ossible

that a more complete knowledge about the entire freqi.ency spectrum is

essential in order that resonance -can be avoided.

9:



HISTor.Y, OF THV P'9)kl I&

(a) tUneressurizec]Cylinders

PxrevioUs inve,4tigatiops, on the virtc 6 ti-wle ~j.inders

seern to, be limited mobstly to the unpressuried, :ae The free vibrations

of thin cylinders. i1n-the -case o6f tiegligible betding. suiffnst-Thas been con-

sidered by 4('Ayl.eigh (Rof. Z, 1'894)~. Th6 soluti-6i~ ia etl simnple.

Incli-sioh of the bendin& stiffness bf the ,walls of the she'Afs rhake 6ie

problem much more -domplicated0 . y~g ~l9) ei an' ~expression

for the frequencies of thin cylinders in -which the iiotiqziof alckqrss-

sections was, identical. This corlresponds -to tho fwadamental, axialfforn

for a free-eaded ciinder, The 8generel equadons of-Flexcurii1 vibr'a-

,tion of the %walls of cylinders w ve later invest:igated, by Love ( ;ef 3 1941).

but no frequency equatioits for any specific .6nd 4,orditions were, xivera

F-lagge (Ref. 4,5 1934) fi rsIt guwe the- ftreqdenty eqtjkion *01 a cjriiindir witli

freely supported etids, but exteq. ive_ numerkicalrsults were fis ~ihed

by Arnold and Warburton, (Ref.lF 1,l949i 1953X F ur freel.y satported, endS~

Arnold' and VWarbartond derived E~equcnqy equations based on strain refi.tiotis

due to Timoshen1Q(Ref. 5., 1940) 4nd Vwer able t6 verify the ekperiihent4t

results .ith conqiderabie accqracy0% The fact that for shcort cylinderis wvith

very thin walls the natur~al frequenay uiay, ;atually deicrease as the num~ber

of circumiferential1 nodes increa.set was sh6V12 theoretically to be, due to the:

proportion of -sttain ener.ay contxibu ted reopetively by bending Aad kstretch-,

ing; the latter was sometiAmes pr-edorminant for the sixnpler qoda l patternhw,

In their 1953 paper, th6- effect of various erfd conditions was, discussed.

exhaustively both from the theorcetical and experiimxentai -points of view.

Tables for frequencies and modes of f.ree vibrat'ibit of -unpisriz--

ed cylinders of iunfinite lerigth were published also by -Barori and:. 81eeich,

(Ref. 6. 1954)8 who computed firs t theifrequedaie6 of the inodes of, a

selected wave length using the -memirbrana theoryg and then estimated thle

corrections due- to bending stiffness of the walls oa the basis of R4yleighl's

principle,

(b) PesrLd Cylinder5

The vibration of pre.5surized cylinder ha.- been distrassed, by Stetri

Ref. 7~, 1954) under the hypotheses that (1) the alzin vibrates tiorma. to the



static position and that ()the stresses in the vibration mrode -are

effectively equal to,'the ,jtre sse s ,gene rated by the internial pressu,,re0

Later,. SerbinfRdf. 8, 1-955) solv,6d the problem for the lowest f requencies

'for lnearly -int ensional"l vibration miodes -by R ayleigh' s method.

Recetitly-, Re6is,4ner (ARef. 9), *hojeA. that a great simplification in the

in the analysis of shell vibratibns can be achieved if th~e tangential inertia

forces cah b5e nhrlected., It ia .thien neciessary to consider only one compon-

etnt- bf displac-eme!nt -- the transver se, -or z adial.. component. The re sulti ng

eqiiAti~ri'sarc preeisely-Margwerre's equations for 'slightly curvezd plates(a

generalization of Vijn.X- rm.nls equations for flat platILs). Reissner shows

Ihat the, -- irplifiied eqdations -calle6d "Ishallow, shell" theory - will give an

adcairat6 descripitiont of the transvrer.e vibration of cylinders provided that

the humber of ciricutmferential1 wavej6, r, Is stifficietly large. Tn Ref. 10,

Reitsner givyes the folloWing frequency expression for tranj %erse vibrations

of small &mplitude:.

~~~ ~El~ji~){f (Y~~

.wheire is the density, -h -is the_ valil thickness,, CO is the circular f requency,

EF is ,the Young's ,modulus, V is the. Poissoi r tio, a is the radius, L is the

Axial half -wav6 lengthf, N~ is ihe axial stress resuiltant per unit length, and

4i6, the dircarnferential stress resultant per unit length, This expression-

- ortrespds to A deflection formn

L (2)

7h~e first term on-the right hand side of Eq. (J) gives the influence ofJI

stretching of the- -shell. the second term, of bending; and -the las~t two terms,

of inttornal 13ressureo



C-ALCULATIONS'FOR SMALL NUMBER OF CIRCUMFERENTIAL

WAVES

Reissner's theory applies to vibration modes with sufficiently large

number of circumferential waves. In order to complete the theoretical

investigation it is only necessary t.- investigate the case in which the number

of circumferential waves. n, is relatively small. The mathemnatical

analysis is given in Appendix A. 7Th e coordinate system is shown in Fig. I.

The axial, circumferential. and radial displacements are assumed to be of

the form:

.A A Cos COS Aqi Cos.Wt

ru
-= Sv' (3)

where n is th-! number of axial half-waves, Lis the length of the cylinder.

and A, B. C are constants. Following Arnold and Warburton, the end

conditions corresponding to the above are called "freely supported". Dis-

placements given by (3) satisfy the differential equations of motion. It is

clear that whereas w and v vanish at all times at the ends, u does not0

corresponding to the case in which no axial constraint is imposed. Further-

more, the radial movement w vanishes at 2Y% equally spaced lines along the

circumference, but these lines are not lines of absolute rest, because the

tangential motion -r does not vanish identically there. For convenience,

however, li.ies on which w is stationary will be called nodal lines, even

though tangential imotion exists. A pair of integers m, n then specifies a

particular nodal pattern as shown in Fig. 2.

The frequency equation so obtained are of the form

+- o (4)

where & is a parameter proportional to frequency squared, and the K's

are functions of the axial and circumferential wave number. internal

pressure, and physical dimensions of the cylinder. Under various addition-

ai simplifying assumptions the frequency equation (4) can be simplified.

rhe simplification introduced by Reissner and Stern are discussed in

Appendix B. Eq. (4), of course, applies to all values of n and n, not only

when they are small.
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In order to observe the manner in which the frequency varies

with the cylinder dimensions or nodal pattern, calculation for specific

cases was undertakend. Four non-dimensional parameters introduced in

Ref. 1 are used*, namely

2.2
VK frequency X ____

mean circumference 2ira. i._M rr4
axial wave-length L/ L

(5)

= number of circumferential waves (number of nodes = Zn).

0 thickness
mean radius

the
The effect of intertal pressure is expressed b/non-dimensional para-

meters

- (6)

EA

where N are the membrane stresses caused by the internal pressure

For example, in a boiler,

We shall now give a few examples:

E-..amlle I For VO=0.3, 1~, CXX( 1750, ) 0.

Then the roots A are

0o1z Y'.! O o85 a. o S7 oaoo01o7

o,qq4 i. q3 3.611 6Oz

* a'- differs from A of Ref. I by a factor (I-y-&. Both A and will be
used in the present report.
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A

For Y=0o3, ?= i, = 0 = 1. = 0, then the roots are

IA =q-

o,/8 o,oo7o 004.0,3

,1qqt4 I,q3 3.6tl,

se 10-89/7,.?3

These are unpressurized cylinders,

Example k fVO3~\=1 1750, ~1~12I~

then the roots A are

6. / Z if O.o8 oz oo 7 0,00407
O, Y4 /.9-3 3, 612 6.0o2

-3 - I
:Example 3 Same constants as above, except T. A 10 Ax

The roots A are

.Izz O, o313 O, o31o o,o5S

3.6f- 4.o

..7q /o,0 t7, .

Example 4 Same data as before.,except --- 100, so that 0= 4

The roots A are, for 2. 1,, 10- 4

l,/ZI o.02R6 o,4oo-'5 j ,oo,°5 "

0. Z?4- 2/, q30 02do

q.3 3, (2
s-. 7 ] i,9''39/7,,73

/o/- e /7 Ve
(3L 4 - = = s-x o-  e

, ' 3 .6 +-z



We ntce that i~I implies a bending vibration. The end sections

have considerable longitudinal motion. The calculation, however, is
valid only 5f there is no concentrated masses to be moved at the ends.

The very large stretching energy involved in this mode explains the very

high frequency, In practical applications ther2 are usually heavy masses

at the ends of the cylinder and the frequency must be computed accordingly.

Similar remark-, apply to other cases in which m is small. However,

if the masses supported at the ends were rigidly connected, their effect on

frequency f or 'h ), 2 should be small. In other words, Yi I really is a case

of different catagory than the cases ~~2

Comparing the results of the preceeding examples, we see that the

variation of A with is small for synoll r. The smallest root A

begin to vary significantly witrlh 'Ate when )q , but the two larger

roots do not vary much with

The non-dependance of the larger roots on the in-ternal pressure is

simply explained by that these roots correspond to essentially tangential
and 6CI

motions, -the hoop stress has little stiffening effect for tangential motions,,

It is further noted that the two larger roots are considerably in

exccesa of the smlallest roots in a very wide range of 31T.Hence unless

one is interested in a frequency range which includes frequencies 20 or 30

times larger than the minimumr frequency, one need n~ot consider the pre-

dominantly tangential vibration modes,

Figs. 3 - 4 show the frequency as a function of 2.and n for very
thin-walled unpressurized cylinder (these curves complements those of
Ref. 1). Curves ian Figs 4 a are drawn for c< 1/17r0adFg.4-o

3/1750. Y = 0, 3. i1he influence of o on these curves is small at
suen small value of c .as can be seen by a Comparison of Figures 3a and
31). For small values of A~ i however, the frequency is strongly influenced
by V% The details of the variations of frequency witha ?v when is small
are shown in enlarged scales in Figs. aan b

Figs. 3a and ,a also givc a graphical comparison of Reissrer's

solution with the more laborious exact solution. The numnerical accuracy

of Reissner's solution detleriorates as n decreases, But t

4t is seen that Reissner's equat,on gives a fairly a,:+ representation

for. ad( vqlues of I.



Since in Reissner's approximation certain inertia forces are

neglectedp it is expected that the derived frequency will be higher than the

exact value. This is ceadily seen to be the case.

4i

oI



T14E MODE ASSOCIATED WITH THE LOWEST

FREQUENGY

It is of interest to observe somhe simple deductions with regard

to the lowest frcquency and mode.

First let Eq. (1) be rewr-'ten in the non-dimensional form

where c( h/a.For given values cf X . and , he frequency fact(

z< reaches a minimum when

- ~ 2 [ 2 *L -A. (8)

if Y = 0, this gives

ILI2.A/ (9)

", -,,--.(._91+)/ (io)

and

Of course, a must be an integer ard t.e above minimum ialuc may not

necessarily be reached,
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Sf/X. then

When the internal pressure does not vanish the variation of the

number of circumferential wavesat the lowest frequency is best illustrated

by an example. Fig. 5 shows a special case in whieh the axial wave

length parameter X. = 1, the bending stiffness parameter =10'8 , and

7p 3A. It is seen that n, the circumferential wave number corresponding

to the lowest frequency, varies with the internal pressure parameter 'Mr

at first very rapidly, then slowly, as shown in the following table and Fig. 6.

"/ " v X /05

No. of circumferential Range of Internal Pressure
waves at lowest freq., Parameter "n- xi t1

10 0 -0 1

9 0, 01-0.38

8 0, 38-0.97

0.97-2.5

6 2.5 -7.0

5 7.0-22

4 22-94

3 94 -610

2 610 -7000

1 > 7000

The above table is based on Eq., (1). The range of for 4 , 3 is
j~fife- (.

probably rinaccurate.

To give some physical feeling about this example, it may be said

that A:.I corresponds *to a cylinder whose length/radius ratio is 3 or

integral multiples of 3, and that P = 108 corresponds to a radius/thick-

ness ratio of order 3000. If E 10 7 then l0- when the internal

pr -ssure is only 0.03 psi.

1I
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It is clear that the larger the number of circumferential waves,he
n, the faster is the rate of increase of frequency ( with internal pressure,^

The rapid increase in the lowest frequency when W .is small is caused
by the fact that ii is fairly large at the lowest frequency if the cylinder is

short and if the wall is very thin.

THE FREQUENCY SPECTRUM

Since each pair of integers (ni, n) determines a vibration mode, the
frequency spectrum of a cylinder is obtained by computing K for all values

of (m, n). Now each selection of m determines a X. . Hence for a given m,
the frequencies corresponding to all n are obtained by the intersections of
the curves(such as those in Fig: I with vertical lines representing specific

values of - From Fig, 5 it is clear that the spacing of the spectrum is
rather irregular. On many occasions two modes have the same frequency.

If the exact frequency determinant as given in the Appendix were
used. there will be three frequencies corresponding to each flexural de-

flection pattern (w). One of these frequencies is predominantly flexural,

and is approximated by Reissner's formula. The other two are associated
with significant tangential motions (a v)D and have higher frequencies.

These are of course lost in Reissner's approximation.

CONCLUSIONS

In the above, those physical features of cylinder vibration that are

important in engineering applications are discussed. It seems that the

classical shell theory is sufficient to explain the features of a vibrating

cylinder under internal pressure. Reissner's simplified treatment is

adequate in giving the lowest frequencies and modes for very thin cylinders.

The complete frequency equation is given in the appendix of this article.
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APPENDIX A

DERIVATION OF 'FRE~QUENCY EQICATION FOR THIN

CYLINDERS WITH FREELY SUPPORTED ENDS

The basic assumptions of Love's first approximation will be used.,

See Love, Ref. 3, Chapter 24; Timoshenko,, Ref. 5, Chapter 11, and

Nagyhdi and Berryo Ref6 11. To account ior the effect of internal pressure,

the interaction of the membrane stresses and the change of curvatures

miust be included in the equations of equilibrium, The basic equations cau

be obtained by a trivial generalization of: the equations given in Timoshenko's

book. Since the results did not seem tc have been recorded in the literature,

some details wvill be giver, below.

Let the curvilinear coordinate system be chosen as shown in Fig. 1;

the x-axis is directed al1ong the generator of the cylinder, y 4is
measured clockwise in the circumferential direction. and the 2 -axis is

directed inward along the positive normal to the middle surface of the shell,

Let uA v, -%v be the components of the displacement of a point on the mnid-

surface of the shell in the x, y. z directions respectively,I. The stress resultants and couples are defined by

-' . f4 h (A. 1

The equations of motion are obtained by a'~ding inertia force terms

-py. - P - (0 multiplied by the radius a, to the

left hand side of Eqs, (252), p. 438, of Ref. 5. The resulting equations

are non-linear. For the vibration problem, it is justifiable to linearize

by considering motions of infinitesimal amplitude. Let ~~A

etc. be the atress resultants and couples in the cylinder induced by the

internal pressure. For simplicity, we shall assume that

(A, 2)

In other words, the effect of any possible bending caused by the end

conditions will be neglected in the vibration problem. Let u, v. w. N~ X



N , M , etc. be the vibratory displacements and vibratory stress ,,eso#t-

ants and couples :i. -e the variationt from the Uniform stress statui induced .

by the internal pressure. u, v, w, NO N etc. are assumed toI, ,0

infinitesimal amplitude. Neglecti.g small quantitiies of the second, or

higher order, we obtain the equations of motion'

, + '-
axo a-

S -+ A,

-% f,,N2L.0"--o

and "-

M

Eliminating the shearit g forces Q and -ubstituting the s$res-

strain relations, we obtain the basic equations*:

+" N99?2 , ,- I

ff

-eenia stan esnr'lprxm~o 2o-it 'nnge~igete. '~ --0

,- es

I)V ~ V

)*Stern's equation, Ref. 7, consists of urglectine, --.11 other termis ta Bqs (A 5
except the terms in the square brac!Vt. t in the last equation of (A 5); the
quantity being replaced by w/-. inidet thie samption of -,ero r-ircumv.;
ferential strain, Reissrier 's approximation corisists in neglecting the tertis

Pvot and eliminating u. v by rmeans of a streps function4.



4 ,

where V denotes the operator

This set of equations admit solutions in the form

v B A;(1/ (A1° 6)

IA7= C -M ITTdjK.A-, cvW t

where A. BC, are corstants, and rn0 n are integers, Substituting (A., 6)

into (A. 5), and wiriting

- ____" __/ _ _ - ( - )' -

= (~ (-~~/Ek ' ~

(AA M

P I/,,10,S= h1)/,r&7 "

we obtain the following three equations:

A 2 - + + rl=

2-2

+ -+ -41 + -..)c o.

+[I 0A44~2 -~' )-~4 1 A2 14, 7 t~ 1J ~ C=



For a nontrivial solution the determinant of the coefficients of A, BC in.

Eq.. (Ao 8) must vanish, leading to the frequency equation:

a3- Kb'at K 0A - ol 0A)'

, 6)
where, reverting to the notations 4 '

R0.' Ko , +q 0  + -a 3 -tAtc-A )c q ^

NVhen the internal pressure vanishes, the coefficients K, KI /

reduce to Ko, K,,Kiwdch are given by A.-nold and Warburton*, (Ref. 1).

The expressions are:

*When F X o Eq. (A. 8) differ from Ref. I in the last term in the
second equation instead of #A Cn C Ref. I reads (Z-I) IS AC. The
effect on numerical results due to this difference is negligible.
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APPENDIX B

Simplification of the Frequency Equation

Under varioui additional assumptions the frequency equation can

be simplified.

Reissner (10) introduced the assumption that in "predominantly

flexural" vibrations of the cylinder the tangential inertia force san be

ne 9cted, Under this assumption the last terms in'the first two equations

of (A. 3) and the two A terms in the first two equations of (A. 8) are re-

moved. The frequency equation then becomes a linear equation

K0

Where K1 is somewhat different from K, This equation, however, is

not identical with Reissner's equation (1) or (7)° In order to obtain the

latter, it is necessary to consider sufficiently large values of n. so that

. the shell panel between the nodal lines can be approximated by a slightly

1 "curved plate.

In the unpressurized case, Arnold and 'Warburton (1) give a

simplified linear expression for the frequency parameter & that is valid

for sufficiently small values of n.

Stern's (7) approkimation consists in neglecting all terms in Eq.

(A. 5) except those involving w within the square bracket in the last

equation, The frequency equation is therefore

The justification of this approximation is not apparent. Comparison with

Eq. 7 shows that, numerically, it is a fair approximation for small values

of X and moderate values of n, provided that is small.
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