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PREFACE AND  SUMMARY 

In earlier papers we have  shown  that many problems  in orbit 

determination,   system  identification, vector cardiology,  and  so on 

can be considered   to  be nonlinear multi-point boundary-value prob- 

lems.    Quasilinearization offers an effective computational method 

of  solution.     When  the number of conditions on the  solution exceeds 

the number of degrees of  freedom, we have made extensive use of  the 

method of  least  squares. 

In  this note we  show  that  the problem of minimizing  the maximum 

deviation can be  solved  using  the  quasilinearization  format and 

employing  linear programming at each  stage of  the calculation.     In 

the  case where   the observational  errors  are  all of approximately   the 

same magnitude,  or are  all  of  the  same  relative magnitudes,   this 

procedure  seems  to  have  substantial  advantages over  the method of 

least  squares. 



I.  INTRODUCTION 

In a  series of papers we have  shown  Chat  Che method of quasi- 

linearization provides  an effective computational   tool   for  the  solu- 

tion of a wide class of nonlinear   two-point and multi-point boundary- 

(1-4) 
value problems. Various applications  to  the  solution of Euler 

equations, orbit determination, partial  differential   equa- 

tions, vectorcardiology        and   system  identification have been 

made.     As  a  rule, when  the number of  conditions which   the  solution 

of  a  system  of differential  equations must  satisfy  exceeds   the number 

of available  constants,  we have  employed  Che method of   least  squares. 

In  Chis Memorandum we  shall   show how we can use   insCead   Che minimax 

criterion  in conjunction with  standard  linear progranming codes, 

and   thereby  derive certain advantages. 

II.     FOmULATION 

Consider an  N-dimensional  vector x(t)  which  is a  solution of 

Che nonlinear  sysCem of differencial   equations 

x -  f(x)   . (1) 

Suppose that we wish to determine a solution for which 

(^ , x(t.)) - B^   i - 1,2,...,M 2- N . (2) 

For example, through observations of a process we might know the 

values of certain components of x at various times.  Due to experi- 

mental errors in the observations we would not expect that any solu- 

tion of Eq. (1) would satisfy all of the conditions in Eq. (2).  A 



Standard approach is then to seek a solution which minimizes a 

weighted sum of squares of deviations S, 

M 

S - ^ wjC^ , Uitj)  -  P.)2 . (3) 

i«l 

As  is  shown  in   the   references,   this can be very effective. 

Alternatively,   let us consider determining a  solution of Eq,   (1) 

for which  the maximum of  the difference of  the absolute values between 

(or ,  x(t  ))  and r.   is as  small  as possible. 

III.     SKETCH OF METHOD 

Let  V be an  initial  approximation  to  the  initial  vector  and  let 

i(t),  determined numerically by   the  equations 

z  -  f(z)   , z(0)   -  Y  , (4) 

be  an  initial   approximation  to   the optimal   function x(t)  on 

0 £ t  & t .     To  obtain  the next approximation we  linearize  in  the 

usual way 

Cr -  f(z)  ♦ J(z)(w-z)   , (5) 

where J(z) is the Jacobian matrix whose i   row and J  column, J, .» 

it 

j^ - öyözj . (6) 

We regard z(t) and J(z(t)) as computationally known.  Equation (5) if 

a linear system in the unknown vector w(t).  Its solution is represent- 

able in the fonn 



N 

w(t) - p(t) + ^ c. h^t) , 

i-1 

(7) 

where the particular solution p(t) is obtained numerically on 

0 £ t £ t^ as the solution of the initial value problem 

p - f(z) ♦ J(z)(p-z) ,  p(0) - 0 , (8) 

and   the homogeneous vector h  (t)   is   the  solution of  the  equations 

h.   - J(z)h.   , h^O)  - 61   , (9) 

where the vector ö. has all components zero except the i  , which is 

unity.  We determine the constants c., which represent the initial val- 

ues of w, w(0), by the condition that they should minimize the maximum 

of the absolute value of the difference between (Qr.,w(t.)) and 0 , 

Mathematically we wish to determine the unknowns c,, e.. and e so that 

we minimize c, where we have the 3M linear inequalities. 

(v'V + I cj hj<«i>) - sil s c i * 

€i ^ C , (10) 

i • ly2(>«* ,n • 

The quantities p(t ) and h (t ) are known computationally, and r, is 

an observed value.  This is a linear programning problem    for which 

2 
standard codes for effecting the numerical solution for M £ 10 are 

available.  Once c,,c.,....c„ are determined, the vector w(t) is 
1 *     N 



produced  through use of Eq.   (7)   for 0  •   t  N  t  .     Then   the  procedure 

is   repeated   to  obtain   the next  approximation. 

IV.     EXAMPLES--IDENTIFICATION OF A NONLINEAR SYSTEM 

Suppose   that a  system is undergoing a process described by  the 

Van  der Pol   equation     * 

x ♦ \(x -l)x  + x - 0  . (11) 

We observe  experimentally   that 

x(4.0)   >• -   1.21184 (12) 

x(4.1)  fe -   1. 12551 

x(4.2)  ^ -   1.04186 

(13) 

(14) 

We wish  to determine  the  unknown  system parameter >   and   the unknown 

initial velocity,  x(4).     We  replace   the Eq.   (11)  with  the  system 

x ■  u 

\(x  -l)u  -  x 

(15) 

(16) 

X  - 0  . (17) 

As initial approximations suppose that we use 

x(4.0) ä - 1.2 

u(4.0) * 0.7 

X(0) ä 1.0 . 

(18) 

(19) 

(20) 



Then  about 30 sec  of calculation on an  191  7090,   using the above 

method,   produced   the values  below. 

Table  1 

NUMERICAL RESULTS 

Iteration x(4.0) u(4.0) \ 

0 

1 

2 

-1.20000 

-1.21184 

-1.21184 

.70000 

.68767 

.68739 

1.00000 

2.06717 

1.99828 

True Values -1.21184 .68740 2.00000 

V.     DISCUSSION 

Many  other numerical  experiments have been conducted,  a majority 

with more complex  systems   than   in  the  example discussed above. 

Generally  speaking,  we have   found  that  the method  of   least  squares 

is preferable if  the observational  errors are Gaussian.     If,  however, 

the  errors are all  of about   the  same magnitude or all of about   the 

same per cent deviation,   then  the tninimax procedure   leads  to  superior 

estimates.     In many   instances,   though,  where we  should expect  the 

method of   least squares   to  be better, we have   found   the minimax 

estimators  to be  superior.     Much  remains   to be done   to understand 

the   relative advantages and  disadvantages  of   these  approaches. 
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