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CHAPTEB I 

INTRODUCTION 

1-1.     The Mathematical Progranming Problem 

This report   is concerned with properties and solution methods for 

inecjuality-constrained extremization problems.    Generally,  the problems 

can be put as follows: 

(l)        minimize    f0(x)    constrained by    I'U) ^0, 1 1 i ^ m, 

where the    f  (0 ^ i ^ m)    axe real-valued functions defined on real 

n-space. 

Problem (l) is referred to in the literature as a mathematical 

program.     In particular,  (l) is a linear program If all the    f.    are 

linear forms;  otherwise it is a nonlinear program.    The simplest kind 

of nonlinear program of Interest is the quadratic program.  In which the 

minlmani,    fn ,  is a convex quadratic function and the other    f.    are 

linear forms.    When all the functions in (l) are convex,  it is called a 

convex program.    A linear program may be regarded as a special type of 

quadratic program; both are examples of convex programs. 

Differentiability of the    f.     is not part of the statement of (l), 

although it has proved to be a useful assumption in many theoretical 

and computational investigations.    Among studies in this field, the 

special case of convex programming has received the most attention, 

probably because the local extrema in such a problem are always global. 

In all the problems considered here, the extremand and the constraint 

functions will be assumed to possess at least continuous first partial 

derivatives;  however,  not all of them will be convex programs. 
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1-2.     Results Presented in This Report 

The mathematical programming problem is a generalization of the 

classical problem: 

(2)        minimize    f0(x)    constrained by    f (x) »0, 1 ^ i ^m 

which is usually handled by the method of Lagrange multipliers.    This 

is always possible when the mapping    f ■ (f ,...,f ) satisfies a regular- 

ity condition  [7, p.190]. 

The extension of the Lagrange multiplier approach to the matiiemati- 

cal programming problem was first accomplished by John  [26] who estab- 

lished necessary and sufficient conditions for a solution.     Later, Kuhn 

and Tucker  [52] presented their basic work giving necessary and suffi- 

cient conditions for a nonnegative saddle-point of a differentiable 

function and their relation to the mathematical progranming problem. 

They obtained necessary conditions for a solution to (l) by introducing 

a regularity assumption which made it possible to apply the Minkowski- 

Farkas Lemma  [18,  p. 5] and thereby produce multipliers like John's but 

with a leading multiplier of unity.     John's Theorem and the Kuhn-Tucker 

Theorem on necessary conditions for a solution to (l) are discussed in 

Chapter II. 

The well-known duality theory of linear progranming was formulated 

in 19^+7 by von Neumann [3k]  in an unpublished manuscript  (8ee[ö, p.125]) 

and developed by Gtile, Kuhn, and Tucker  [23].    After a gap of several 

years, the notion of duality was extended to quadratic progranming [12], 

[15], and to convex programming  [^2],   [27].    For quadratic progranming, 

the proof of the duality theorem can be obtained by applying the duality 
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theorem of linear programming, whereas duality in convex progranming 

has usually been handled by an application of the Kuhn-Tucker Theorem. 

The dual of a quadratic or convex program,  as originally presented, 

differs from it so conspicuously that the pair of problems appears to 

lack the beautiful symmetry of the analogous problems in von Neumann's 

formulation for the linear case.     In Chapter III,  a symmetric formulation 

of duality for nonlinear programming 1c presented which includes those 

above as special cases.    Part of this chapter is based en the author's 

paper  [6] on "Symmetric dual quadratic programs. "    The extension of this 

idea to the nonlinear case is from a Joint work [11] with G.  B.  Dantzig 

and E.  Eisenberg. 

The study of a dual pair of problems often leads to the considera- 

tion of a single system,  the composite of the two.     In Chapter IV, the 

composite problem is viewed as a special case of the general program 

(5)        minimize    zW(z)    constrained by   W(z) ^ 0,  z ^ 0 

where    W    is a mapping of N-space into itself.    Necessary and sufficient 

conditions will be given for a solution to (5) when    W   is a differentlabl« 

mapping with a suitably restricted Jacoblan matrix.     Several important 

properties of the Jacobian matrix of the mapping    W    in (5) are left in- 

variant by an operation known as principal pivoting which is an exchange 

of the dependence roles of certain variables.    The positivity of the 

determinant of a (not-necessarily symmetric) positive definite matrix 

turns out to be a simple consequence of the results on principal pivoting. 

Finally,  the concept of a positively bounded Jacobian »natrlx is 

presented in Chapter V in response to the need for a sufficient condi- 

tion to guarantee the existence of a solution to the problem (5).    The 
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existence theorem provides at the same time am algorithm in those cases 

where the functions and values  it demands can be computed and actually 

inspires the algorithm of G.   B.   Dantzig and the author  [9]  for solving 

(5) when    W(z)  = Mz + q   and    M    is a positive semi-definite matrix.    A new 

minlmax theorem follows from the main existence theorem. 

1-5.    Notations and Terminology 

There is a fairly standard vocabulary in mathematical programming 

which facilitates discussion;  we shall use it freely here.     Given the 

problem (l),  the minimand,    fn  ,  is called the objective function.    A vec- 

tor    x    is feasible for (l) if it satisfies the side conditions (or con- 

straints) f, (x) ^. 0> ^ ^ i <. m.     Th« constraint set of the problem is 

the set of its feasible vectors.     This may be empty,  in which case (l) 

is infeasible.  A feasible vector is optimal if it solves the problem. 

All numerical quantities considered here belong to the reals, de- 

noted    R .    Vector? will belong to finite-dimensional real vector spaces, 

n 
R    , and whether they are to be regarded as rows or columns will always 

be clear from the context in which they appear.     Thus, for example, the 

expressions 

M x = (x1,...,xn) 

(5) Ax = b 

n 

(6) xy -    2^  ^i 
1-1 

are easily understood.  In (U), x is a row vector, while in (5) it is 

a column vector.  Equation (6)--in which x is a row and y is a column— 

defines the symbol xy .  In short, no special notational provisions will 

be made for transposing vectors.  We may not treat matrices so informally. 
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The transpose of a matrix    A   will be denoted    A'  . 

Vector inequalities will be used extensively.    Let   x ■ (x.*...»» ) 

and    y »  (yj>'">y  )•     Then 

x ^ y     if   *!**!*    l <. i 1 n 

x > y      If    x1 > y1 ,    1 ^1 ^n'. 

The reverse Inequalities £ and < are defined analogously.    The same symbol, 

0 ,  will be used to denote the zero vector and the ordinary scalar;  no con- 

fusion should result from this.    A vector    x    is called nonnegative or posi- 

tive according as    x^O    or    x > 0 .    A nonnegative vector which Is not 

0    Is called semi-positive.    The nonnegative orthant In   R     Is the set 

R      consisting of all its nonnegative vectors. 

If   f   is a differentiable real-valued function on an open subset of 

IT,  the gradient of    f   will be denoted 

/of of   \ 
V* ■ V x-    # • • • *   ^ /  * 

and if it is twice differentiable, the Hessian of f will be denoted 

In dealing with differentiable functions of two vector arguments, it will 

be necessary to use partial gradients; if F(x,y) is such a function. 

V F - (2-     &- ) 

r,   V (Si. * \ 
V2   ^'•••' ^ ' 

Also,  for twice differentiable functions    F(x,y): 

(n x n) 



7i2F ■ ( 5^*7 ' '        (n ^ "' 

A square matrix M of order r. will be called positive semi-definite 

if 

(?) xMx ^ 0  all x c Rn . 

When equality in (7) holds only if x ■ 0, M is positive definite.  It 

is negative semi-definite (definite) if, and only if, -M is positive 

semi-definite (definite). 

Although it is true that if 

Mm  (1/2)(M+ M«), 
m 

then M is synmetric and 

xMx ■ xMx  all x c R , 

it will not be possible to replace   M   by   M   because    M   will represent 

a nonsynsnetric Jacobian matrix needed elsewhere. 

Finally, a word about the reference system.    The manner in which 

chapters and their sections are numbered should be clear at this point. 

Equations are numbered consecutively within each chapter.    Definitions, 

remarks,  theorems, and the like are treated as equations.    A reference 

to an equation outside a given chapter will be made by prefixing the 

chapter number to the equation number.     This rule will not be followed 

when referring to an equation in the same chapter.     In line with current 

practice,  numbers in square brackets refer to books and papers listed 

at the end of the report. 
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CHAPTER II 

NECESSARY CONDITIONS OF OPTIMALmf 

II-1.    John's Theorem 

The earliest result on the necessary conditions of optlmallty In 

the problem I-(l) seems to be that of John      [26, Theorem 1].  He was 

concerned with the problem 

(1) minimize    f0(x)    constrained by   f(o,x) ^0,    (a,x) c S x X 

where   S   Is a compact metric space and   X   Is a subset of   IT ; the 

partial derivatives of   f     and   f   with respect to each component of 

x   are assumed to be continuous on   X   and   S x X , respectively. 

When   X • Rn   and   S   Is the coopcctt metric space (l,...,m), I-(l) 

can be viewed as a special case of II-(l).    It is convenient to give 

John's proof for the necessary conditions of optlmallty In (l), specializing 

It to the matheaatlcal progrsomlng problem.    It will rest partly on the 

following statement,  which Is due to Gordan [25]. 

(2) Theorem.  lAt   A   be an   m x n   matrix.    Exactly one of the following 

alternatives holds.     Either 

uA ■ 0 

has a semi-positive solution or 

Av < 0 

has a solution. 

Gordan's Theorem, which may more conveniently be found In [6, p.136] 

and [21, p.^), pre-dates, by about twenty-five years, the more widely 

known Minkowskl-Parkas Lerama [l3, p. 5l. 

The proposition we want Is 
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(5) Theorem (John). Let x solve the problem 

(i+)   minimize f0(x) constrained by fAx) £0, 1 ^ i ^ m. 

Then there exists a semi-positive vector (u ,IL,...,U ) such that 

(5) u^x) - 0, 1 1 i 1m 

and the function 
m 

(6) *(x) « 2, Vi(x) 

i-0 

has a critical point at x , i.e., 

m 

(7) V $(x) =  ^ u1^
,
i(
x) ■ 0 • 

i=0 

Proof.     Define the sets 

(Ö) /v|-    {l,...,m) 

and 

(9) 2- (1 |i €/*4,  f^x) -0)  . 

If Z is empty, let u. » 1 and u. = 0 for all i € /W, Indeed, x 

belong to the interior of the constraint set, and the vanishing of the 

gradient, Vf0 , at the unconstrained local minimum implies (7).  If Z.  is 

nonempty, it will suffice to show that there is no solution v to the 

system 

(10) Vf0(x)v<0 

Vfi(x)v< 0 ,   i € Z. 

For if the system has no solution, then defining u « 0 for all indices 

i €/Vl-Z , there exists, by Gordan's Theorem, a semi-positive vector 

(u ,IL ,... ,um) satisfying (7).  This vectcr will satisfy (5) by the 

definitions made above.  

1 The sets M and Z will be used again. 
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Now, on the contrary, suppose (10) had a solution v . Let S(x,€) 
A. 

denote the closed ball with center x and radius € > 0 . There exists 

an € > 0 and a B > 0 such that for »vll x € S(x,€) 

7f0(x)v + 6 <. 0 

Vf1(x)v +610,     i € Z • 

For some positive r , 

^(x) + r io,     i € A/l- Z • 

Choose a > 0 satisfying 

n 

a( pv rz <£ 

canaxd Vfi(x)v 11  i £  M  ,    x € S^x,e)) < r . 

The compactness of S(x,e) and the continuity of the partial derivatives 

of the f. imply the existence of the above maximum. For some Ö. , 

0 < 9i < 1 , 

f0(x ♦ av) - f0(x) ♦ a7f0(x + e0av)v 
A *. 

Hence 

fi(x + av) = f.Cx) + aVf^x + ö10fv)v ,  i c M • 

f0(x + av) 1 f0(x) - oß < f0(x) 

^(x + Orv) 1 ^(x) - a6< 0 , 1 € Z 

^(x + av) i -r + aj v^Cx + e1av)v | < o , i € M - Z • 

These last inequalities contradict the optimality of x in (k),  and so 

(10) can have no solution. As noted earlier, this implies (?). 

(11) Remark, if u is positive, it may be assumed to equal 1.  If the vectors 
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^f1(x),  i e   J7  , are positively independent [21, p.  62], i.e., linearly 

independent over the nonnegative orthant,  it is clear from the theorem 

that    u      cannot equal    0 . 

It will be useful to record the conclusion of the theorem vhen    x 

is required to be nonnegative. 

(12)    Corollary.     Let    x    be an optimal solution of the program 

(l))      minimize    f0(x)    constrained by    x > 0,     f.U) ^0,  1 ^ i ^ ra. 
/\    /\ /\ 

Ther there exists a semi-positive vector  (u-,u  ...    u  ) such that r 0    1m 
A\ /\ 

(HO u^^x)  =0, 1 C i im 

m 

(15) /    ^Vf^x) > 0 

1-0 

m 

uivfi(x)]jxJ = 0' 1 <. J <. n. 
i=0 

n   m 
If f:P -♦ R  is a differentiable mapping with component functions 

fn ,...,f , let J. be its m x n Jacobian matrix: 
1'  ' m '      f   

(17) ^ = '^ ' ' 

The following consequence of John's Theorem guarantees the exist- 

ence of multipliers in (lU) - (l6) with u ■ 1 . 

(lÖ) Corollary. Let x be an optimal solution of (ij).  Suppose there 
A. 

axe p columns of J^x) , say J,,...^ , such that the system of in- 

equalities 

(19) u(5rU))>0,    u^0 
Jk 

has only the trivial solution    u = 0 .     Then there exists a semi-positive 
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vector    (u  ,u  ,...,u   )    Gfttiöfyii-^   (U)  -   (l6),  and sucli that    u    = 1. 
0    i m u 

/^ 
Proof.     Apart from the stipulation that    u    = I,  such a vector exists 

h-j the previous corollary.     If    u    = 0,  then the vector    (u      . . ,u  )    is 

semi-positive.     This  and  (l^) imply that  (19) has a nontrlvial  solution, 

contrary to our assumption      Hence    u    > 0  ,  and taerefore may be taken to 

equal 1. 

11-2.     Tne Kuhn-TucKer Theorem 

The Kuhn-Tucker Theorem, like John's Theorem,  is concerned with 

necessary conditions of optimality in the mathematical programming 

proolern.     It includes,  however,  an extra hypothesis which has the effect 

of assuring the existence of irultipliers with    u    = 1  . 

The existence of the multipliers in Jchn's Theorem,  above,   followed, 

via Gcrdan's Theorem,   fror  the  fact that  a system :.f linear inequolitie?, 

(lO),  had no solution.     Suppoee vie had teen able to show that  the less 

restrictive system 

(20) ^f   (x)v  < C 

Vf^'x;-/ ^ 0,        i e Z 

also has no solution. Bv the Minkcwski-Farka.' Lemma,   there would exist 

a vector     (u. ,...,u   ) 1'       '  n si.-n :i;at 

m 

vr^Cx) +    ; u vr fx) = 0 

i--.l 

and,  by definition. 

uif1(x) = c,        i e   M 

Thus, fl,u ,. .. ,u ) would be semi-positive and would correspond to the 

vector of multipliers in John's Theorem.  The difficulty lies in the 
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fact that it Is not always possible to show that (20) has no solution. 

The example [32, p.U8ii] illustrates this. Let f0(x) ■ -x., ^(x) = 

(x^ - 1)^ + x ,  f2(x) ■ -)c, and f,(x) ■ -x .  It turns out that x » 

(l,0) is the unique optimal solution to problem (6), but v ■ (l,0) 

satisfies (20) where we note that ,Z » (1,5). 

Some regularity condition must be imposed if we wish to assert that 
/s 

(20) has no solution when x is optimal. 

(21) Definition.  Let x be a boundary point of the constraint set 

Cf = (x |x€R
n, f(x) C 03 

where f :Rn - if .  In this case, the set Z ■ U I * * M »M*) ■ 0) 

is nonempty.  The (Kuhn-Tucker) constraint qualification is satisfied 

at x if for every vector v satisfying the system of homogeneous 

linear inequalities 

(22) Vf±{*h£0,      i € Z 

there exists a continuously differentiable arc a:[0,1] -» C  such that 

a(0) = x, and O^O) ■ Xv for some > > 0.  (See [52, p. W5].) 

It is easily shown, along the lines of [12, p. 156], that the con- 

straint qualification is always satisfied at the boundary points of C 

when f is composed of linear forms. Arrow and Hurwicz [1, p. 2] make 

the interesting observation that the constraint qualification (21) is a 

property of f rather than of Cf . They show that two distinct mappings 

can induce the same constraint set and yet differ with respect to satis- 

faction of the constraint qualification. 
A. 

(25) Theorem (Kuhn and Tucker). Let x be an optimal solution of (6). 

If x belongs to the boundary of C- , assume that the constraint qual- 

ification is satisfied at x ; then there exists a nonnegative vector 
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ra 

u = (u ,...,u ) such that 

{2k) Vf0(x) + 2J
UiVfl(x) ' 0 

and 

(25) u^U) =0,  1 € M • 

Proof.  If x Is an interior point of Cf , we may let u ■ 0 , as 

in the proof of (5).  If x is a boundary point of C_ , the optlmality 

of x and the constraint qualification imply that (20) has no solution. 

For otherwise we may take Q (and >) as in (21) and.  deduce that 

^-(f
0(a(o))) - 7f0(Q(o))a'(o) - Vf0(x)Xv < 0 . 

Since    a   maps the unit interval into    C ,  this inequality implies that 

there exist points    x    of    C      such that    f0(x) < fn(x)    which contradicts 

the optlmality of    x .    Therefore  (20) has no solution,  the Minkowski- 

Farkas Lemma may be applied, and the required vector exists. 

The equations  {2k) and (25) are usually called the Kuhn-Tucker 

conditions for (6).  When (6) is a convex program,   (2U) and (25) for 

some    u > 0    are sufficient conditions for optlmality, regardless of any 

constraint qualification.     (See  [32, P.U65].) 

In some cases,  the Kuhn-Tucker constraint qualification may be 

difficult to verify.     But satisfaction of this regularity condition Is 

merely a means to an end,  namely,  the Kuhn-Tucker conditions.     We shall 

say that a differentiate mapping    f :ir -• fr    is Lagrange regular    at    x 

if for some nonnegative   u ,   {2k) and (25) are the necessary conditions 

of optlmality in the program (6).    This term has been used by Arrow, 

Hurwiv-z, and Uzawa  [2, p.löl] in their study of the interrelationships 
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between some of the various constraint qualifications which have 

been proposed as substitutes for that of Kuhn and Tucker. 

The property assumed In the corollary (lö) made the mapping Lagrange 

regular at the point x . All the programs we consider In this paper have 

either linear constraints or else constraints whose Jacobian matrix at 

the optimal soJ.utlon has the property (19); In either case, Lagrange 

regularity Is at hand. 

We note, In passing, that the necessary conditions of optlmallty 

In (k)  reduce to the Kuhn-Tucker conditions when the multiplier u0 is 

positive. For a related study, in which the positlvlty of the multiplier 

associated with the objective function is crucial, see [k,  p.227). 

Finally, let us point out why the Kuhn-Tucker conditions are pre- 

ferable to those of John. The  answer lies in the Equivalence Iheorem 

(52, j>.kß6].    When (13) Is a convex program for which the constraint 

qualification (21) Is satisfied, x Is an optimal solution If, and only 

If, there exists a nonnegative vector u such that (x, u) provides a 

nonnegative saddle-point for the Lagranglan function 

♦(x,u) - f0(x) + ^u^Cx) . 

1-1 
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CHAPTER III 

SYWETRIC DUAL PROGRAMS 

III-l. Duality in Linear Programming 

In order to put our subject In perspective, we recall briefly the 

symmetric duality theory of linear programming. Hils Involves a pair 

of problems such as 

(1) minimize ex constrained by Ax + b^O^x^O 

and 

(2) maximize -by constrained by -A'y + c ^ 0, y ^ 0 

where A Is an m x n matrix, b Is an m-vector, and c Is an n-vector; 

all three are constants, whereas x and y represent vector variables. 

The symmetry of this pair stems from the fact that negation and 

transposition are Involutory operations,  (l) is called the primal problem 

and (2), the dual problem. This terminology, due to von Neumann, is some- 

what arbitrary but Is traditional and will be used here. 

Letting P and Q denote the constraint sets of (l) and (2), respec- 

tively, the major theorems on duality in linear programming are: 

(3) Weak Duality Theorem,  sup -oy ^ inf ex 

D        P 
(k)    IXiality Theorem.  If either program in the dual pair has an optimal 

solution, then so does the other, and when this is so, 

max -by ■ min ex . 

D        P 

1 The reader already familiar with duality In linear programming will 

detect that (l) and (2) are an equivalent, but unorthodox, statement of 

the dual pair.  The motivation for this will become clear later. 
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(j)    Complementary Slackness Theorem,     x € K ^ä    y e _3    are optimal 

solutions of the primal and dual problems,  respectively,   ii,  and only if, 

(6) y1(Ajc + b)1 « 0,      1 ^ i ^m 

(() x^-A'y + c)J  = 0,    1 £ j £ n . 

(0)    Existence Theorem.     Ii' p   and   Q   are nonempty,   then both problems 

Jriave optimal  solutions. 

(9) Unboundedness Theorem.   If exactly one of   P    and   L)    is nonempty, 

either sup    -by = + »    or inf    ex = - oe    according as  P   or   Q  is empty, 

III-2.     Symmetric  IXial Nonlinear Pi-ogreuns 

Since 1959,  the notion of duality has been extended to quadratic 

programming by Dennis     [12]  and Dorn   [15]  and to convex programming  by 

Wolfe   [42],   Huard  [27],  Mangasarian   [35],  and others.     In each case, 

the dual pair of programs lacks symmetry. 

The object of this section is  to present a treatment of symmetric 

dual programs   [11] which will  cover  (l) and (2) and for which analogues 

of at least   (j),   (k),  and  {;)  can  be proved.     In the case of quadratic 

programming,   all five of the corresponding theorems are  true.     In the 

general nonlinear case,   (9)  is  false. 

Suppose    K:R xK   -» R    is a continuously differentiable function and 

2 
consider  the programs   : 

(10) minimize    F(x,y)  = K(x,y)  - yV2K(x,y) 

constrained by r K(x,y) ^ 0 

(x,y) > 0 

2    In  (lO)  only    x    (in  (il)  only    y   )  need be nonnegative. 
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(11) maximize    G(x,y) - K(x,y) - XV K{xty) 

constrained by      V K(x,y) ^ 0 

(x,y) ^ 0 

designated primal and dual,  respectively.    Neither one is necessarily a 

convex program.    Under some additional hypotheses, they eure a dual pair, 

and for suitable choices of    K, the dual pairs previously mentioned are 

special cases. 

As in III-l, we denote the constraint sets of these problems by P 

and 0   • 

Let    X c R     and   Y c K     be nonempty convex sets.    A function 

K:XxY -» R   will be called convex-concave [36]  if    K(  ,y)    is a convex 

function on    X    for each   y € Y    and   K(x,   )    is a concave function on 

Y    for each    x e X. 

(12) Weak Duality Theorem.    Let    Yli^xlF   -► R   be a dlfferentiable convex- 

concave function.    Then 

(13) sup G(x,y) C inf F(x,y) 
D P 

Proof.    Let   0   denote the empty set.    We adopt the convention that 

{Ik)    sup G(x,y) = -«   if D   = ^ ,   inf   F(x,y) = +»   if P    - 0. 

It therefore suffices to assume that both r   and [J    are nonempty.    Let 

(x,y) € P    and   (x,y) e (j .    Since   K   is a dlfferentiable convex-concave 

function, we have [29, p.   i+05] 
*m 0m     mm mi mi     m» 

(15) K(x,y)  - K(x,y) ^ (x - x^KCx^) 

(16) K(x,y) - K(x,y) ^ (y - y)v2K(x,y). 

Subtracting (16) from (15) and rearranging terms, we get 
«W  A» *m      ** mm 

(17) F(x,y) - G(x,y) ^ ^(x^) - y72K(x,y) ^ 0. 
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(1Ö)    Remark.    The obvious significance of the weak duality theorem Is 

that when   K    is differentiable and convex-concave,    (x,yy e P    and 

(x,y) e D    would be optimal solutions if   F(x,y)    and   G(5,y)   were 

equal.    We note from (1?) that    if this were the case, the following 

would hold: 

yi(V2K(x,y))i = 0,      1 ^ 1 ^m 

x (v^C^y))   =0,      1 ^ J ^n. 

(19)    IXiallty Theorem.     Let    Krlftcfr -» R   be a twice continuously dlfferen- 

tiable function.    If    (x,y)    Is an optical solution of the primal problem, 

(10), and   V22K(x,y)    Is negative definite, then    (x,y) cD    and   F(x,y) = 

G(x,y).    If   K   is convex-concave,    (x,y)    solves the dual problem,   (11). 

Proof.    The constraints of the primal problem are lagrange regular 

at  (x,y)    because the hypotheses of II-(16) are satisfied.    There exists 

an   m-vector   v ^> 0    such that   V72K(x,y) = 0    and 

V1F(x,y)  +V12K(x,y)v   ^ 0 

x(71F(x,y)  +V12K(x,y)v] - 0 

72F(x,y) + V22K(x,y)v   ^ 0 

J[V2F(x,y) +V22K(x,y)v] = 0. 

When F is replaced by Its definition, these reduce to 

(20) VjK^y) + V-^K^JUv - y) ^ 0 

(21) xtfjK&y) + ^^(x,?)^ - y) « 0 

If the scalar product of two nonnegative vectors is zero, then each 

of the sumnands in the expression is zero. 
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(22) V^K^yKv -y)^0 

(23) ^K^)^ - y) - 0 

It follows from v ^ 0, (22), and (2?) that 

(v - yX^K^yXv - y) ^ o. 

This Inequality and the negative definlteness of ^po^tay) i*Ply 

v = y. From (20)cmd (21), we now get 

(24) ^Kfoy) ^ 0 

(25) ^(x,?) - 0. 

Since v » y and V7 K(x,y) » 0, 

(26) y72K(x,y) . 0. 

Consequently,    (x,y) c D    and   F(x,y) ■ G(x,y) » K(x,y).    When    K   is 

convex-concave,    (x,y)    solves the dual problem by the weak duality theorem. 

(2?).    Remark.    A similar result obtains when    (x,y) solves the dual prob- 

lem and V..K(xfy)    is positive definite.    In both theorems, the comple- 

mentary slackness conditions are visible in equations such as {23) and 

(26). 

For suitable choices of   K, the symnetrlc programs (10) and (11) 

reflect the form of certain known dual pairs of the prograaming problems. 

For instance if 

(28) K(x,y) = ex - by - yAx 

the symmetric dual linear programs (1 ) and (2)    result from the operations 

indicated by (10) and (11), respectively.    For this definition of    K,  the 

hypotheses of the weak duality theorem cure satisfied.    On the other hand, 

the definlteness assumption of our duality theorem (19) cannot be satisfied 
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v-y euch a function. However, the contribution of the linearity of K 

In earh of ite variablen is sufficient to allow weaker hypotheses for 

the duality theorem. 

Llkevise, the primal convex program 

29) minimize fo^x^ 

constrained hy    tAx) £0,       1 ^ i ^ m 

x ^ 0 

has the  iual, according to Wolfe  [k2]f 

m n m 

(50)     maximize    f0(x)    f  ^  V^^)    '  L^J&Q^    + X^^i^^ 
i--l J=l 

m 

1=1 

constrained by V^QU)    +  / yWÄ*) ^ 0 

lal 

y ^ o. 

U6ing (10) uni (11),  this pair of programs can be obtained from the 

differentiate corv^x-con^ave function 

(51) 

ra 

K(x,y) =   f0(x)    +    )  y^x) 

1=1 

Again, the derivatdon of the dual pair (29), (30) in this manner is 

formal.  The proof that if x is an optimal solution of (29), then 

there exist« a y euch th^at (x,y) is an optimal solution of (JO) and 

such that the extremal values of the objective functions are equal can 

be obtained from the Kuhn-Tucker Theorem, in which the constraint quali- 

fication must be asfiumed.  Strong aesumptions, like those of (19)» are 
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made by Huard [27] and Mangasarian [33]  in the converse proof of the 

k 
duality theorem. 

III-3.     Synmet-ric Dual Quadratic Programs 

Let    A, b,    and    c    have the meanings assigned In III-l;   let    D 

and    E    be symmetric,  positive semi-definite matrices of orders    n    and 

m,  respectively.    The function   K   defined by 

(J2) K(x,y)  =  |-xDx + ex - ^yEy  - by  - yAx 

induces symmetric dual quadra^ic programs   [6]   in  (1^) and (11).     Vfhen 

D    and    E    are both zero matrices,  the function    K    in  (32) becomes  identi- 

cal to that defined in  (26),  and the related problems reduce to symmetric 

dual linear programs.     When    D    or    E    is a  zeru matrix,   one gets  Dorn's 

dual quadratic programs   [2 3]-    See Dorn's paper  [1U] for an earlier 

effort toward symmetrizing quadratic programming. 

The function defined in (32)  is convex-concave  [lo,  p.   51]    Q-nd has 

continuous partial derivatives of all orders.     Therefore the weak duality 

theorem holds for this    K.     However,   n     K(x,y) = D   and  7    K(x,y) =  -E; 

these matrices are positive and negative semi-definite,  respectively,  and 

therefore the duality  theorem (19) does not apply to this    K.     Neverthe- 

less,  a duality theorem can be established and several other interesting 

generalizations of the duality theory of linear programming can be made. 

This will be done  in the present section. 

1+ 
It is Incorrectly assumrd in [33] that local strict convexity for a 

twice continuously differentiable function implies the positive definite- 

ness of its Hessian matrix in that neignborhood. This is false, though 

its converse is true [29,  p. 40b]. 
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Explicitly, the dual programs axe 

(33) minimize   F(x,y) ■ ^xDx + ^yEy + ex 

constrained by Ax+Ey+b^O 

(x,y)   ^0 

and 

(5U) maximize G(x,y) = -^xllx - JyEy - by 

constrained by      Dx-A'y+c^O 

(x,y) ^ 0. 

The duality theorem for this pair runs as follows: 

(55)    Duality Theorem.     If    (x,y)    solves the primal problem,   (53),  then 

there exists a vector    v    such that    (x,v)    solves the dual problem,   (3M, 

Ey = Ev, and F(x,y) = G(x,v).    Conversely,   if    (x,y)    solves the dual 

problem, then there exists a vector    u    such that    (u,y)    solves the primal 

problem.    Doc - Du, and   F(u, y) = G(x,y).     Moreover, the pairs    (x,v)    and 

(u,y)    solve both problems. 

Proof.    By the symmetry of the problems,  the converse need not be 

proved.    The Kuhn-Tucker conditions  (after some simplification and elimina- 

tion of redundant information) read:    There exists an   m-vector    v    such 

that 

(36) 

(37) 

(30) 

(39) 

(^D 

Dx - A'v + c ^ 0 

Ely - £v ;> 0 

x(Dx - A'v + c) = 0 

A ,    ^ A 
y{Ey - Ev) = 0 

v(Ax + E$ + b) =  0 

v ^ 0. 
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From (56) and (Ul), we know that    (x^v)    is a feasible pair for the dual 

problem.    To show    F(x,y) ■ G(x,v),  it suffices to show    F(x,y) ^ G(x,v). 

By (58) and (^0),  this amounts to showing 

(US) vEy ;> ^vEv + ^yEy. 

In virtue    of (39)»  this is equivalent to showing 

(1+5) yEy ^ vEv 

which, however,  is true since (59)»  (57),   (^l), and the symmetry of    E 

imply 

yEy = yEv = vEy ^ vEv. 

Since E is a symmetric, positive semi-definite matrix, the reverse of 

{U2) is always tme,  hence    (y - v)E(y - v) = 0, and this,  in turn,  implies 

-. , A A A    Ä 
[19, p. 10Ö] Ey = Ev.    This last fact shows that    (x,v)    does indeed solve 

both problems. 
A    A A A 

We note that with    (x,v)    as above,    Ey = Ev, and the complementary 

slackness conditions appear in (5Ö) and (kO). 

(hk) Remark. This duality theorem was first proved by showing that if 

(x,y) solves the primal problem, then there is a certain linear program 

of which it is also an optimal solution.    The duality theorem of linear 

A 
programming was then invoked and the required vector v was obtained. 

See [6] and [15]. 

The duality theorem (55) shows that if either problem, (55) or (5^), 

can be solved, then r  and U     (their respective constraint se'-s) are 

nonempty, and moreover K H U ie nonempty. The converse of this is 

of considerable practical significance. The proof, given below, will de- 

pend on a result due to Frank and Wolfe [19, p. 108], but modified here 
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for the situation at hand. 

(U5)    Theorem.     Let    f(x) = px + xCx    be bounded below on a polyhedral 

convex set r\      in    R .    Then    f    assumes its infiraum on K   . 

Proof.     (Since polyhedral convex sets are closed,  the result is of 

particular interest when K    is unbounded. )    There is no loss of generality 

in assuming that    C    is a symmetric matrix.    The demonstration is by in- 

duction on the dimension of K   ;  there is nothing to prove if R   is of 

dimension zero.     Suppose that the dimension of K    is    k + 1.     It is pos- 

sible to write 

R   =(s + rt|8€S,t€T   ,r€R+) 

where  O    is a bounded polyhedral convex set and 7"  is the intersection 

of a certain polyhedral convex cone with the unit sphere  [2k, p.   kk]. 

Note that for all triples    (r,t,r) eR   xTxR,r+rteR    and 

(lf6) f(r + rt) = f(r) + r(p + 2rC)t + r tct. 

Since    f    is bounded below on R   ,   ^ follows from (46) that    tCt ^ 0 

for all    t e T . 

If    tCt > 0    for all   t * T  ,  then    tCt > a > 0    for some    a (T 

is compact);  and (p + 2sC)t > ß    for some    ß   which may be assumed to 

be negative.     For any    r=s+YterA   ,we have 

(i+7) f(r) = f(s) + r(p + 2sc)t + r2tct > f(s) + rß + r2a. 

The minimum of the quadratic function on the right-hand side of (47) is 

taken on when r = -ß/2a. The infimum of f over K is therefore at- 

tained on the compact subset {s+rt|seS ,t€ T»O^T^ -3/2Q). 

Suppose tCt = 0 for some t £ T.    Since f is bounded below on R , 

(p + 2rC )t ^ 0 for all t € T • If for all r € R , r + rt € R for 
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all real    r   (positive or negative),   then    (p + 2rC)t = 0.     In this 

case    f(r + irt)  = f(r)    for all    r e   N     , and the range of    f    is 

unaffected by projecting   n      into the k-dimensicnal  subspace orthogonal 

to    t .     The  inductive hypothesis will  then apply and yield the result. 

If there exists    (r,r) €   R      ^R    such that    r +    rt ^   P       , 

consider the sets 

R1 = {r |r €   R      ,   (p 4 2rC)t = 0) 

R2 = (r | r € R       ,   (P + 2rC)t > 0)  . 

By an earlier comment, R   »     Ri    U   R o •     ^ the argument Just given, 

the infimum of    f    on   R      is attained there.     For    re    R p , define 

rr - inf{r | r + rt €  R    }  . 

For each    re     R2,    0^rr>-«    .     Thus, 

b    = r + r t r 

belongs to the boundary of    fT    .     Now,  for each    re    r\ p» 

f(br) = f(r)  ♦ rr(p + 2rC)t <.f(r)   , 

which means that the minimum of    f    on    R -    may be sought on the bound- 

ary of   ht   .     ^ut on each of the k-dimensional bounding hyperplanes of 

f-^      ,    f    attains its infimiur.     This completes the proof. 

(1+Ö)    Existence Theorem.     If both   R   and  D   are nonempty,   then the 

primal and dual  quadratic programs   (35) and (5U) have optimal solutions. 

Proof.     By the weak duality theorem,  the primal objective function 

(wnich is quadratic) is bounded below over  P    .     Since   R   is a polyhedral 

convex set,   the theorem (45) applies.     The remainder of the assertion is 

a consequence of the duality theorem. 

To complete this list of extensions of the five theorems in III-l, 
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we mention the 

(1+9)    Unboundedness Theorem.      Ii" exactly one of   M   and   L*)   is nonempty, 

either  sup G(x,y)  = + OD    or    inf F(x,y)  = - »   ,     according as  r     or   L^ 

is empty. 

Proof.  This is a consequence of a more general result on programs 

with linear constraints.  See [42, Theorem 5]. 

III-4.  An Equivalence Theorem 

Once more, let K:R xR -► R be an arbitrary differentiable convex- 
+    + 

n    m 
concave  function.    A point     (x,yj€ R xR      is called a nonnegative saddle- 

point of    K    if 

K(x,y) ^ K(x,y) ^ K(x,y) 

for all     (x,y) e R xF   .     Kuhn and Tucker  [32]  gave necessary and sufficient 

conditions for a nonegative saddle-point of such a function: 

(50) V1K(x,y)^0,    xy^Cx^)  = 0   ,       x>0 

(51) V2K(x,y)^0,    yV2K(x,y)  = 0   ,       y>0. 

Letting H  and (J    be the  constraint sets of the programs  (10) and 

(ll),  respectively,  we get the following 

(52) Equivalence Theorem.     The point    (x,y) €  P O    U        satisfies  the 

equation    F(x,y) ■ G(x,y)    if,and only if,  it is a nonegative saddle-point, 

of    K . 

Proof.     For the necessity,   refer to the remark  (lö).     The sufficien- 

cy part  is immediate. 
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CHAFKR IV 

COMPOSITE PRüGR/J-lS 

IV-1.     Optimality Criteria 

In each of the duality theorems established above,  there existed a 

point curm.ion to the intersection of the primal and dual constraint sets 

which gave equal values to their objective functions.     It is natural to 

form a program whose optimal solutiuns  (if any) are  such points.    This 

is dL.ne by means of the composite grogrem: 

(1) minimize    H(x,y) 

constrained by 

x^K^y)  - y^2K(x,y) 

V1K(x,y) ^ 0 

.72K(x,y) ^ 0 

(x,y) ^ 0. 

It consists of minimizing the difference between the primal and dual 

objective  functions over the  intersection of the primal and dual con- 

straint sets. 

When    K    is defined by III-(52),  the composite program for quadratic 

programming is 

(2) minimize    xDx + yEy + ex + by 

constrained by    Dx-A'y+c^O 

Ax +    Ey + b ^ 0 

(x,y) 2 0- 

We  shall need (2)  for future  reference. 

By defining    z =  (x,y)    and   W(z) =   (uK(x,y) ,-^7 K(x,y)),  it is 

clear tliat  (l) has the  form 
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(3) minimize zW z ) 

constrained by W(z) ~ 0 

z ~ o. 

Wi h N = n + m, W can be regarded as a mapping of R: into RN . When 

K is convex-concave and twice con in ous y differ ntia~ le, he m~pping 

W = (V1K,~2K) is continuously differentiable and its Jacob an matrix, 

\7
12

K(x,y) 

Sw(z ) = ' 

can be shown to Qe positive semi-definite f or a~ (x,y) £ RnxFfl • 
+ + 

In this section, ve s udy optimality cri•eria for programs of the 

form (3) vbere W:RN ~ 'fll is an a::-bi re. 
+ 

map. 

In (3), the objective tunc i on zW (z) 

ontinuoub y differen iab e 

s obviOYS~Y no~egative over 

the cons raint set, providei i is nonemp y . Ht'n"e aey feas bl e vector 

vhich makes the objective func on va~ieh must b~ optima Tr.is mu ~h i s 

true regardless of any assumptions on W. The necessi t~, of tl':e vaniehi 1g 

of the objective function at an o i mal so ion i e ~c s s ~anc of the 

nex result . 

( ) Theorem. 
,.. 

~· z be an op .. ima. sol t on o (3) whe:-e W is a con-

tin ously differen+iab e p w th a positive semi - finite acob an ma ix 
,.. 

at z. 
,.. 
z . 

(5) 

Then 

ppose furthermore ha the cons a s are La range regular a• 

"' "' zW(z ) = 0 . 

Proof. For convenience , 1 t M = JW('z ) . By the assumption of 
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Lagrange regularity, her e exists a ve tor 

W('Z) + M'('Z - n ) ~ 0 

'Z[W ('Z ) + M'('Z - n)] = 0 

U:w ('Z) = 0 . 

s ch that 

These facts, the feasibility of 'Z, and the positive semi - ef n teness 

of M' allow us to constr ct the followings ring of i ne ali 1 s: 

(6) o ~ 'Zw (~) =- 'Zl-1' (n - ~~ )~ ' ( - 'Z ~ o. 

But (6) implies (5). 

Thu& 1 under the assumptions of ( 1 the e uetion (5) s the cri•erion 

f or optimality in (3). 

Another version of t he same theorem invol es the ass~•ion ~~t he 

Jacobian mat rix JW('Z ) has positive principal minors, i.e. 1 that tr.e 

square submatrices of ,rw(<! ) along its main diagonal ha •e positive deter

minants. 

(7) Theorem. Le 'Z be an optimal solution of (3) where W i a con

tinuously differentiable map whose Jacobian matrix has positive pri.cipal 

minors at ~. Then its constreints a!"e Lagranae regular at ~~ ar:d t .. e 

ob j ective function vanishes there . 

Proof. To see that the constraints are Lagrange regular at 'Z , we 

use t he hypothesis that JW (~ ) has positive prin~!pal minors. In general , 

if M is a square matrix with positiv principal minors, t he sys em of 

homogeneous linear ine~ elities 

uM ~ o, ~ 0 

has only the trivial solution [22, Th orem 1] . The Lagrange regul~rity 
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now lollows by a straightforward application of II-(l8) in which 

f = -W, x = z, and p = N. 

For the second assertion, we again let M = Ju(z), and let m 

denote its i-th column. The Kuhn-Tucker conditions componentwise are 

W (z) + ra^z - u) ^ 0 

Hence for each    i, 

That is, 

0 ^ z^Az) =  -zm (z - u) ^ (tl    - zi)m (z - u), 

(z1  - ü  ^(z  - ü) ^ 0 ! ^ i 1 N- 

But since   M    (and therefore   M')    has positive principal minors, 

2 - u = 0   by [22, Theorem 2].    The result now follows. 

(8)    Remark.    It is known (see for example   [57])  that positive definite 

matrices have positive determinants and consequently have positive prin- 

cipal minors.   (We offer an alternate proof of this as a by-product of 

some results in section IV-3.)    Of course,  the converse of this proposi- 

tion is false;   symmetry is  required as an extra hypothesis. 

IV-2.    Quadratic Programs 

This section is  devoted to an existence theorem for problem  (5) 

when it is essentially a quadratic program.     The composite problem for 

quadratic programming was  stated as  (2).     If we set 
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M    = 

-A' 
q =  (c,b)  ,      and   z »  (x,y) 

problem (2) becomes 

(9) minimize 2(Mz + q) 

constrained by Mz + q ^ 0 

z ^ 0. 

This is an example of (3) where W(z) = Mz + q and J-AZ) = M. 

We study the general problem (9) under the assumption that either 

M is positive semi-definite or M has positive principal minors. With 

linear constraints, Lagrange regularity is present, and the optimality 

criteria, (1+) and (7), are in full force: z solves (9) if, and only if, 

1(M£ + q) = 0. 

(10) Theorem. If M has positive principal minors, problem (9) has an 

optimal solution. 

Proof. By [22, Corollary 2], there exists a vector satisfying the 

inequalities Mz > 0, z > 0. A suitably large positive scalar multiple 

of any such z will be feasible for (9). Since z(Mz + q) ^0 for all 

z in the nonempty polyhedral convex constraint set of (9), It has an 

optimal solution by III-(45). 

(11) Remr.rk. If (9) has a nonempty constraint set, it has an optimal 

solution, regardless of act   M is qualified. But in general, the optimal 

solution need not make the objective function vanish. 

We emphasize that when (9) represents the composition (2) of dual 

quadratic (or in the extreme case, linear) programs, an optimal solution 

of (9) solves both the primal and the dual problems  Conversely, if an 
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optimal solution to either the primal or the dual problem exi sts , t hen 

a solution to (9) exists. In this sense , they are equivalent . However, 

the composite problem has certain features which lend themselves to a 

constructive solution technique, i.e., an algor ithm, which wi ll be 

presented in Chapter V. 

IV-3. Principal Pivoting 

In problems such as (3 ), a vector z is so ght which satisfi es the 

conditions 

(12) w('Z ) ~ o 

(13) 

(14) 'Zw (~ ) - o. 

We now let w denote an -vector and f orm the system of equations 

(15 ) 1 ~ i ~ N. 

The problem can be viewed as one of finding a pair of nonnegative, 

orthogonal vectors, 0 and z, satisfying the system (15). 

Let us assume that W is defined on all of RN. The N variables 

wi in (15) are dependent, an~ the other N variables zj are indepen ent . 

In the language of linear programming, the wi ar basic vari abl es an~ 

the are nonbasic variables. (See [ ) . ) This terminology wi ll be 

used here. A basic solution ~o (15 ) is one i n whi ch the nonbasic varia l es 

all equal zero. 

For the remainder of this paper, we denote the set of integer s 

{1, •• . , N} by N . For i, j € N , we shall define Wi j = 

notation is suggested by the analogy wi th the special case W( z) = Mz + q. 



If M= (m^), then U^ * m^. 

In the next chapter, we shall wish to reverse the dependence roles 

of certain pairs of variables in the system (15). The idea will be to 

select a certain equation, say k, in (15) and "solve it" for one of its 

nonbasic variables z  as a function of w  and the remaining N - 1 
J * 

nonbasic variables. When this is done, we shall substitute for z  in 
J 

the remaining N - 1 equations and obtain a new system. The aim of this 

section is to mmke these notions more precise and to describe the relation 

between the Jacobian matrix of the original mapping and that of the 

derived mapping. 

We recall, first, an obvious, but useful, fact about functions of 

one real variable.  If f:R-» R is a continuously dlfferentlable function 

with derivative f' satisfying f,(x)^6>0(f,(x)^-6<0) for some 

6 and all x € R. then f la a strictly increasing (decreasing) map of 

R onto R. 

Now suppose that for fixed k,J € N ,  there exists 5 > C such that 

W..U) ^ 6 or W (z) ^ -6 for all z € R1 . Then the k-th component 

N - 
function W  maps R  onto R. In particular, for each w € P and 

each (K-l)-tuple (z ,...,z  ,z ,...,z  )  € R   there exists a unique 

z € P such that 

wk3 v;k(Zl,...,IN). 

,N Kence there exists a well-defined function W,  on R  such that 
k 

(i6) zj = V2i'---'zj-r Wi'-'V 

If, and only If, 

wk" VV'-'Vi Wr'-'V • 
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Since we pi  . to denote bas:U and nonbasic variables genericaUy by 

w and z, respectively, we alter the notation of the entire set of 2N 

variables as follows: 

^ = V   ^j = wk,  ^i = wi (w/v - (k))»   ^i = z
i i1 ^ N ' m}- 

With the new notation,   (16) becomes 

d7^ \ - ffk(*) - 0. 

After we define 

(18) ^(2) = wi(5r---^J.r V^'Vl'-'-'V'  
i € ^ " (k'' 

a new, equivalent, system emerges: 

(19) »i - ^(2) = 0, 1 € /V. 

The system (19) is said to be obtained from (15) by a simple pivot 

(k,j). The mapping W is continuously dlfferentiable. 

(20) Definition. A principal pivot in (15) consists of a finite se- 

quence {(k,j)} of simple pivots such that both projections of ((k,j)) 

into /\j  equal ^S , for some SCf\} .     If $   =   (k), we shall speak of (k,K) 

as a principal pivot on k. We shall write 

(21) W = P(W;{(k,j))) 

if the system ür - W(z) = 0 is induced by the principal pivot ((k,j)} 

in the system w - W(z) = 0. For a principal pivot on k we use the 

simpler notation W = P(W;k). 

If W = P(W;(k,j)), the Jacobian matrix J~    is given by the formulas 
If 

(see [7, p. 118]) 
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(22) 

0     = w   /w 

ffki = Wki/WkJ 
i,i € Ni - lj,k) 

0ii= wii" ^iAi^k^- 

Now let (J = P(W;k). We shall need a relationship between the princi- 

pal minors of J- and those of Jy, for which we introduce another notation. 

If M Is an arbitrary matrix of order N andZc^, we denote by (M)^ the 

principal submatrix of M formed by deleting row and column i from M for 

each i e /. The empty matrix, (M)r , will be admitted, and its determinant 

will be defined to be 1.  Of course, M = (ML. 

(23) Theorem.  If W = P(W;k), then 

{2k) | (Vj (
VT A(k) | /Wkk for all I C A/ 

where vertical bars denote determinant and the connective A denotes the 

symmetric difference. 

Proof.  The statement is obvious when N » 1. Assume N > 1 and {2k) 

holds for all smaller positive integers.  It will suffice to prove {2k)  in 

the cases I = $    and I  = (k). Now 

^wV 

w 
11 

.. w 
l,k-l 1^+1 

• • •  W 
IN 

w      w 
k-1,1    k-l,k-l Wk-l,k+l ••* Wk-1,N 

-W 
kl 

kk 

^+1,1 

-W -W wktk-l  1    ktk->-l 
Wkk   Wkk 

-W k^N 

kk kk 

Wk+l,k-l 
0 Wk+l,k+l •" Wk+1,N 

W 
Nl   '•'  N,k-1 

^W^k] l^kk* 

0 w 
N,k+1 

• • • w NN 

ror a more comprehensive treatment of this and related problem«, see 

Tucker's paper [kO], 



This is proof of the first part.    For the second we have 

(Vu)| 

11 

kl 

kk 

W 

W 
Nl 

l,k-l 

] W 
k-1,1 k-l,k-l 

W 

w 
k^k-l 

kk 

k+1,1 '••    k+l,k-l 

• • •   w N,k-1 

0 

1 

o 

Wl,k+1       ••'     IN 

Vl,k+1 "• Wk-1,N 

w w 
k,k-hl      ... _kN 

kk 
W 

kk 

. a. k+l,k+l k+l,N 

}N,k+l      •'• *NN        | 

rn        ••• Wl,k-1       Wlk Wl,k+1 

U U U V 
k-1,1 k-l,k-l     k-l,k     k-l,k+l 

u w 
kl        ...    ktk-l 

kk kk 

kjk+l 

kk 

Wk+l,l "• Wk+l,k-l   Wk+l,k   Wk+i,k+l 

w www 
Nl '"     N,k-1 Nk wN,k+l 

IN 

.  W 
k-l,N 

V 
.     kN 

W 
kk 

.  W 
k+l,N i 

NN ! 

| ^wV I ^kk- 

These equations are based on the vell-knovn effects that elementary rev 

operations have on determinants.     (See,   for example,   [5,  PP-   501-502].) 

As a direct consequence of  (24), we have 

(25)    Corollary.     If    (J = P(W;k)    and    J      has positive principal minors, 

then so does    J„. 
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This is one of the several invariants under (simple) principal 

pivoting.  Another, which we state without its simple proof, will appear 

in a forthcoming paper by Tucker and Wolfe [^1]. 

(26) Theorem.  Let W(z) = Mz + q.  Suppose a principal pivot in the 

system w - (Mz + q) = 0 yields the system w - (Mz+ q) = 0.  Then M 

is positive definite (semi-definite) if, and only if, M is positive 

definite (semi-definite). 

Using this invariance theorem, we can prove an assertion made above. 

(27) Theorem. The determinant of a positive definite matrix M is posi- 

tive. 

Proof. Every principal submatrix of a positive definite matrix is 

positive definite, and its main diagonal consists of positive elements. 

We use Induction on the order of M.  If M is of order 1, there is 

nothing to prove.  If M is of order N > 1, a principal pivot on the 

index 1 yields a matrix M which is also positive definite. By the 

inductive hypothesis, | (M),^ | > 0, and by (24), | M | - m^ 1$),^ | > 0, 

which completes the proof. 

The class of matrices with positive principal minors includes all 

positive definite matrices, whether or not they are symmetric. 
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CHAPTER V 

NONLINEAR PROGRAMS WITH POSITBELY BOUNDED JAC03IANS 

V-l.    The Main Theorem 

According to IV-(10), the program 

(1) minimize    z(M2 + q) 

constrained by    Mz + q ^ 0 

z ^ 0 

has an optimal solution If    M    has positive principal minors.     (This has 

also been established constructively, that is, by an algorithm [9]-)    It 

is natural to ask whether the same kind of theorem can be proved about 

the program 

(2) minimize    zW(z) 

constrained by    W(z) ^ 0 

z ^ 0 

N   N 
where It is assumed that W:R -♦ R  is a continuously dlfferentiable 

mapping and has a Jacobian matrix ^„(z) with positive principal minors 

for all z c R . It cannot. 

In fact, such hypotheses do not even assure the existence of feasible 

vectors. This cam be seen in the one-dimensional problem with W(z) « -e 

If we postul«te feasibility, there is still no hope.  Recall that our 

optlmallty criterion says that a feasible vector z in (2) is optimal 

If, and only If, zW(z) - 0. Now let 

W1(z1,22) - -e'
zl + z2 

WgUpÄg) - z2. 

Then the Jacobian matrix Is 
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,-h  I 
Jwu>   -Co l)' 

and it has positive principal minors for all    z £ FT.    The prograjL is 

clearly feasible.    If   'z =  (z ,zp)    solves it,  then 

A     - -Z, A     . /v2 - 
Zyi-*    1 + z2) + z2 = 0. 

Therefore    z. » 0; but the only finite value of    z      for which    -z e    1 

can vanish is    0.    The vector    (z  ,z  ) =  (0,0;    is not feasible,  since 

it violates the constraint   W.fz^z  ) ^ 0. 

The search for a condition on the mapping   W   vhlch would guarantee 

the existence of a solution to (2) has led to the following notion. 

N   N 
(3) Definition. A continuously dlfferentiable mapping W:R -• R  has 

a positively bounded Jacoblan matrix Ju(z) If there exists a number 

such that 0 < 6 < 1 and such that for all z c tt every principal 

minor of Jy(z) lies between 6 and 6" . 

In (2), if the mapping W has a positively bounded Jacoblan matrix, 

the optimal!ty criterion is the same since the Jacoblan has positive 

principal minors. Furthermore, if W(z) ■ Mz + q, its Jacoblan matrix 

is identically M and is positively bounded if, and only if, M has 

positive principal minors. Thus, the class of mappings with this rather 

strong property is nonempty. By considering what the condition means 

for real-valued functions of one real variable, we note that multivariate 

mappings can be constructed which also have this property. 

We can now state an invariance theorem which will later play am 

important role. 

(U) Theorem. If W:R -» R  has a positively bounded Jacoblan matrix 

and W = P(W;k), then W also has a positively bounded Jacoblan matrix. 
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Proof.  There exists a real number 6 such that 0 < 6 < 1 and 

for all z e RN and all I ^N, 

& il(Vz))i ' ^ 6'1- 

It follows from IV-(2U) that 

62ll(JwU))I I <L  &"2 

for all z e R  and JcA/, hence W has a positively bounded Jacobian 

matrix. 

The desirability of a positive lower bound for the partial deriva- 

tives W  (k € /V ) was suggested by the examples above. This property 

need not be preserved in the absence of an upper bound property. For 

example, if 

Z +2 

W1(z1,z2) = e 
1 2 + i1 

Vzrz2^B zi + z2 ' 

we may choose any 6 between 0 and 1 as a lower bound for the princi- 

pal minors of J-^z).  (Their actual lower bound is 1.) But they have 
z +z 

no upper bound. If W - P(W;l), we find that W  = l/(e 1 2 ■»■ 1) 

which is positive but not bounded below by any positive real number. 

Thus, the positive lower bound property is not invariant under principal 

pivoting unless there is also an upper bound property. This example 

helps to motivate the definition (j). 

(5) Definition. A solution (y,z)    of the system 

(6) wi - W (z) = 0      i € /V 

Is nondegenerate if at most N of its 2N components are zero.  Otherwise 
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it is degenerate. 

(7) Remark. There are perturbation techniques in mathematical programming 

for ensuring nondegeneracy.  One of them involves the replacement of the 

real variables by lexicographically ordered vectors.   (See [10] and 

[8, Chapter 10]. )  It will henceforth be assumed that all solutions to 

(6) are nondegenerate.  Nondegeneracy implies (a) that in no basic solu- 

tion of (6) can there be a basic variable with value zero, and (b) that 

for each value of z , V». (0,... ,0,z ,0,...,0) ■ 0 for at most one i € As/. 

Recall that to solve (2), we need a nonnegative solution (w,z) of 

the system (6) such that zw = 0. The nonnegatlvity of (w,z) corresponds 

to the feasibility of z. 

(8) Definition. The number of negative coordinates In a solution of (6) 

is called its infeasibility index. 

A basic solution to (6) with an infeasibility index of zero solves 

problem (2). It is such a solution we shall show to exist. This will 

be accomplished by an iterative procedure which does not employ nonnegative 

solutions to (6) until the last step. (Therein lies part of Its novelty. ) 

But with a scheme of this kind, the "improvement" in successive Iterations 

must be measured by something other that the change In the value of the 

objective function, zW(z). We do this by obtaining a (finite) sequence 

of solutions to (6) such that the corresponding infeasibility Indices 

form a monotonically decreasing sequence. The main result, then, is the 

following existence theorem. 

(9) Theorem. Let W:R* -• R  be a continuously differentlable mapping 

with a positively bounded Jacobian matrix. Then there exists a vector 

In (1), e.g., q is replaced by (q,I), each component of w,z by a 

vector. 
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z ^ 0    such that    W(z)  ^ 0    and   1w(z) = 0. 

Proof.     It will be  convenient to make  the notation reflect the 

iterative nature of the method.    Therefore we replace the original 

system (6) by 

w^ - w°(z0) = 0 i € N 

Every system we encounter in this proof will be derived from its pre- 

decessor by a simple principal pivot.  In general, the system after the 

v-th iteration will be denoted 

w^ - w^(zv) =0      ieN 

where 

WV = P(WV'1;kv)        V = 1,2,.... 

At any stage, if (WV(0),0) ^ 0, we have the desii :d result. If this 

(basic) solution is not nonnegative, it has a positive infeasibility 

index. It suffices to show that it can be lowered by at least one through 

a .finite number of principal pivots, for the infeasibility index of the 

initial solution (W0(0),0; is at most N. 

Assume W (0) has a negative component, say r.  Since J V  is 

positively bounded (recall the invariance theorem, {k)),  there exists a 

positive number 6 such that W (z ) ^ 6.  Hence W (0,.. .,0,Z ,0,... ,0y 

v v 
» 0 for seme positive value Z  of the variable z . Consider the set r r 

v v        v of values of    z      such that    0 < z    < Z      and 
r -^   r -^   r 

V^(0,...,0,z^,C,...,0) - 0    if    w^(o)^o. 

This bounded set is  closed and hence compact.     Let its maximum element 
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V V V 
be denoted C • We shall call C  the critical value of z      for this T "»r r 

iteration. By tl" ^ nondegeneracy assumption, it is positive and uniquely 

V / V 
determines an index s such that W (0,.,.,0,^ ,0,...,0) = 0,  Let 

WV+1 = P(WV;6).  If s = r, that is (* *  ZV,  then (W
VT1

(0),0J  has a 

lower infeasibility index than (WV{0),0).  If s ^ r, then the in- 

feasibility index of the solution (w''+ (0,... ,0,^,0,... ,0), 

(0,...,ü,£ ,0,...,0)) does not exceed that of the previous solution. 

v+1 v \ 
We now consider the compact set of z    (alias z)    such that *- r r 

Cr <. zr+1 ^ Zr+1 8atisfyine 

w^+1(o,...,o,z^+1,o,...,o) ^0 if W^(0,...,0,^,0,...,0) > 0. 

V+1 Let C    be its maximum element. Then, by our assumption of nondegeneracy, 

V-fl    v 
it follows that P   > C •  Nc:v ve repeat these steps. 

At every iteration, there ia a basic set of variables. Since the 

critical values increase strictly, the repetition of a basis would Imply 

v 
a contradiction in the critical value of z^    for that iteration. There- 

th 
fore, after finitely many principal pivots, the r   basic variable reaches 

the value 0; at this Juncture, a principal pivot on the index r levers 

the Infeasibility index, and we say that a major cycle has ended. As we 

remarked earlier, at most N major cycles are required to obtain a nonnega- 

tlve basic solution with infeasibility index zero. 

V-2.  An Algorithm for Quadratic Prograianing 

The existence theorem (9) provides an effectiv«» algorithm for solving 

problem (2) when the required values are readily computed. This is par- 

ticularly true when W is of the form W(z) = Mz + q and M has positive 

principal minors. 

In this section, we present an algorithm for solving the quadratic 



} 

program (l) under the assumption that    M    is positive semi-definite. 

The alsorithn, adapted fron  [9],  is analogous to the method of existence 

theorem Just proved.     It will involve principal pivoting and share the 

characteristic that never does a feasible solution appear unless  it   is 

optimal. 

We know,  IV-(ll),  that if  (i) is feasible,  it has an optimal solution. 

But it is clear that (1) need not be feasible  if    M    is merely positive 

a^mi-definite;  our algorithm must be able to handle this contingency. 

We therefore ' .»gin our discussion with a useful observation. 

(10)    Remark.    If the matrix 

(11) Vm21        0 

is positive semi-definite,  then 

(12) ^ + ^l ^ 0* 

This is true because 

2 2 
(15) miixi + ^mi2 + "^I'V^ ^ ^    ail  ^Xrx2^ € ** • 

Howtver, (13) can hold only if (12) holds. 

This remark helps us to prove 

{lh)    Ldrau Let (v,z) - (w,z) be a solution of the system Iv - 

(Mz + q) = 0 where M is a positive semi-definite matrix of order N. 

If for samt    r 

t<0,    w < 0, m  =0, and m. >0 all LeN Ä '  r     rr ir ^ ' 

then the system has no nonnegative solution. 

Pi oof. Since rn  = C and rn  > 0, for all i cN, it follows 
rr ir ^ ' ' 

from the remurk above that ra  < 0 for all i G /V   Now 
ri x 
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:J 

=   I  ^ri^i Wr    =   L  mriZi + ^ < 0 

i=l 

N 

implies that    a   <  0 since )    ra    z.  ^ 0.     But the equation 

1=1 

:; 

Vr -   L mriZi = ^ 
1=1 

can have no nonnegative solution;  tnereforc the entire system has no 

nonnegative solution 

The reason for assuming    z ^ 0   will become clear in the  sequel. 

Looking ahead J:o the algorithm, we perceive that if the conditions  of 

the Lemma ^ .  no critical value of the nonbasic variable    z       can 
r 

be found. As matters stand, the converse of this proposition Is not 

true. What may happen is that the entries of the r-th column of M 

possess si^ns which agree with those of the corresponding basic variables. 

These entries, being the partial derivatives of the basic variables w 

with respect to z , make it impossible to ascertain a critical value 

for z . Under such circumstances, z  could be increased without limit, 
r '  r 

However, some solvable programs have this property. As a very simple 

example, let 

/ 0  1 \ 
(15) M = (^ 1j    and q = (-1,-2). 

The vector z = (0,2) is optimal in the program (1) formed with M and q. 

To circumvent this difficulty, we introauce an artificial lower 

bound f^r negative basic variables. Let ß be any number such that 
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(16) -oo < f3 < min ( qi I i E N ) . 

If the minimum on the right-hand side is nonnegative, then the z ro 

vector is optimaJ. and there is nothing more to be done. The other possi-

bility implies that f3 is negative. Throughout the algorithm, f3 will 

be used as a lCNer bound f or all basic variables whose va~.ues are nega-

tive. The lower bound for all nonnegative basic variables is still zero . 

At this point, we must revise our notion of nondegeneracy. 

(17) Definition. A solution (v,z) of the system Iw - (Mz + q) = o is 

nondegenerate if at most N of its 2N compon~nts have the value 0 or 

f3. otherwise it is degenerate. 

This new definition extends the earlier one (5). We shall assume 

that all solutionsto the system Iw - (Mz + q) = 0 are nondegenerate. 

This will imply that if {w,z) is a solution and z e (O,f3)N, t hen for 

all i E N I ;i ~ (0,13). If f or i EN - (r), zi E (O,f3) I then for all 

values of zr, wi (z1 , ... ,zr-l'zr,zr+l' ... ,zN)dO,f3} for at most one i eN. 
The notation will be analogous t o that of {9). We replace the 

0 0 0 0 
original system by Iw - (M z + q ) = 0 . In general, either the syste~ 

IwV+l - (MV+lzV+l + qV+~) = 0 will be obtained fram Iwv - (Mvzv + qv = 0 

by a principal p vot operation, or else it will be the identical system. 

The steps of the algorithm are listed below; a more detai ' ed dis cus -

sion follows. 

Step 0) Set 
-o -0 0 

v = o, define (w ,z ) = (q ,o) and define f3 as a y 

number satisfying {16 ) 

Step 1) (
-'V -'\1 If w ,z ) ~ o, stop. The solution is optimal. 

Step 2) Determine r e N such that vv < 0 or ;v = f3 . 
r r 
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Jtep 5)       Let    Q      be the largest value of    z^ ^ z      satisfying 

the  following Conditions: 

Step 4) 

Step 5) 

Step 6) 

(i) 2^ 0    if    ^ = ß; 

(ii) WV(z-,...,IV   1,z
V,2V  ,,...,ly,) < 0     if    ^ < 0; 

r    1'       '  r-1    r'   r+x'      '  N    •* r 

(iii) Wi(z1,...,zr_1,zr,2r+1,...,zN) ^ 0    if    w.  ^ 0; 

/.    v ,,V/-V -V V-V \\Q4^~-v^o (iv) W1(z1,...,zr_1,zr,zr+1,...,zN) ^ß    if    v1 < 0, 

If    C, = +00,  stop.     No feasible solution exists. 

-^+1 -\+l      -v 
1, for all    1 € W - (r), If   C   = 0» let   z =0,  z:   ' = z ^r                       r '     1 

and let   w       =W(z ) ■ W      (z      ).    Return to step 1 

with    v    replaced by v •♦■ 1. 

Let    s    be the unique index determined by the conditions 

(ii),   (iii), and (iv) in step 3. 

Step 7)      If m      =0, perform the principal pivot    {(r,8>,(8,r)); 

put   ^+1 . iV, w^1 = CV, I V+1 = ^    for all    i €  N -  (r,ß) r r s's ^r'i i .»' 

and then v^+1 = W^1^*1) for all i € N - Cr,8). Return 

to step 3 with v replaced by v + 1 and r replaced by e. 

V ""V+l 
If m  > 0, perform a principal pivot on s.  Let z       ■ 

rr s 
Step 8) 

.v,-v TIv/-v -V        -V  -V -Vv .     -^V+l       „V+IZ-V+IN W  (z......z    ,,L  ,z    ......z.J    and   w.      « W.     (2      ). s^ i'      ' r-l'^r' r+1'       '  N 1 i     v 

Step 9)      If    s = r, return to step 1 vith   v    replaced by    v + 1. 

Step 10)    If    s / r, return to step 5 with   v    replaced by    v + 1. 

This completes the statement of the algorithm.    Now for a few ex- 

planatory remarks.    We point out first that the procedure is designed to 

rule out any increase  in the infeasibility index from one iteration to the 

next.    Every return to step 1 is accompanied by a decrease  in the infeasi- 

bility index of at least one.     The only possible values of the nonbasic 
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variables at a return to step l are 0 and 13 • Consequently, 

-v -v (w , z ) ~ 0 (in step 1) implies -v z = 0 and hence the orthogonality 

of the pair. 

In step 2, such an r exists if step 1 does not cause termination. 

Not both ~ and ~ are negative. This is a property of the initial 

solution and it is preserved throughout the process. 

Step 3 is clear. 

The assertion in step 4 follows fran (14) and explains its hypothesis, 

z ~ o. 

The condition of step 5 implies that -;:; • 13. No pivoting is require<! 
r 

in this case. We simply increase the value of the r-th nonbasic var iable 

and adJust the values of the basic variables accordingly. Then we incr ase 

v to v + l. 

Step 6 makes sense because the conditions (ii), (iii), and (iv ) 

determine some s; it is unique by nondegeneracy. 

v If m = 0, then r ~ s in steJ. ·: , for the definition of s and ss 

the nondegeneracy ssumption imply that r.;,V /'Oz v is not zero. 
s r Under these 

circumstances, we cannot make a principal pivot on s (as we would have 

done in (9)). We have (;rv/ "'zv = mv < 0 s r sr (either (iii) or (iv ) deternines 

s). Hence, by ( 10~ - m~s ) 0 . The p1·incipal pivot ({r,s),{s,r)} ca be 

achieved. Recall that 

V+l v V+l v V+l v all i € N (r,a) w = z , w = zr' wi = wi -r s s 

V+l v V+l v V+l v all i N (r,s} . z =W z = wr' zi = zi € -r s' s 

The values they acquire in th~ new solution are given as follows: 

-~-



-v+l wv(-v -v ,.'It -v -v) 
z = zl~···~z l I~ lz l~···~zN r s r- r r+ 

-\l+l v -v -v v -v -v) 
z • W (z11 •.. 1z 1 1 C ,z 1~···~zN s r r- r r+ 

~+l • ~ tor all 1 E N - (r,s) 

~+l • w~•1cZV•1 ) tor all i e N. 
After the principal pivot ((r,s),(s,r)), tbe •tr1x MV+l baa 

among 1 ts entries 

V+l m rr 

V+l m rs 

V+l m sr 

·::l 

= 

• 

• 

• 

~0 

l -v )0 
m rs 

l 
v (0 

•ar 

o . 

The instruction, in step 7, to return to atep 3, with v replaced 

by v + l and r replaced by a, ausaesta an at~ to increase 

V+l ( v) z alias w s r traa its negative value. It vas this variable 

V+l which we originally wanted to increase tolrard zero. Jotice that m • 0, 
Sl 

so that wV+l (alias zv) will not be attected by the torthc:cmng increaae. a r 

The principal pivot indicated in atep 8 is possible becauae •v ) 0. ss 

It the alternative corresponding to step 9 11 the case .. tbe M&ni.ng 

ot the previous step is that the negative variable w~ baa risen to o, 

as we wished. In other words, a vas deterllined by ( 11). In the new 

solution, we shall have ZV+l • 0 and ;"+1 ) 0. 
r r 
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From step 10, we re-enter step 5 and Increase the    r-th nonbasic 

variable further.    An important point is that after the principal pivot 

on    s  , ve get 

v -m 
v+1         sr v rt m        » ■  > 0 . sr v   ^ m ss 

v+i 
Hence the    s-th   basic variable will increase as    z is increased.   r 

We are now ready to argue the finiteness of the process. As ve 

have already stated, every return to step 1 entails a reduction in the 

infeasibility index. Since it never increases during the process, only 

finitely many returns to stepl can occur. (These correspond to major 

cycles in (9).) Only finitely many returns to step 3 can occur between 

returns to step 1. If step 2 Is entered at iteration v , a particular 
v 

index r is determined, and step 3 asks that z   be Increased. In 
V 

each iteration preceding a return to step 1, the variables w  and 
v r 

z       each Increase monatonically, and their sum Increases in a strict 
r V0    V0 
sense. The N - 1 nonbasic variables distinct from z  (or w  , r r 
whichever happens to be nonbasic) all have value    0    or    ß .    These 

facts preclude the possibility of infinitely many Iterations before a 

return to step 1.    Consequently the process is finite. 

V-5.    An Application of the Main Theorem 

The existence of theorem (9)  is applicable to the noonegative saddle- 

point problem (see III-4). 

(10)    Theorem.    Let   K:RxPr -* R   be a twice continuously different lab le 

function and suppose that    ("ZK,-V.K)    has a positively bounded Jacobian 
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matrix.     Then   K    has a nonnegative saddle-point     (x,y). 

Proof.    We use the  interpretation of  (2) as  the  canposite program 

IV-(l).     By  (9)i  there exists a point    (x,y)    such that: 

(19) VjKCx^) ^ 0,    ^(x^) =  0,     x ^ 0, 

A    A» A A    A A 

(20) 72K(x,y) ^ 0,    y72K(x,y) = 0,    y ^ 0. 

Since    K    is twice continuously differentiable,    ^7-,^    am    -Vp-K    are 

synanetric;  they both have positive principal minors.     Hence both are 

positive definite.    This  implies that    K    is strictly convex-concave 

[29,  p.U06].    The proof is complete since (19) and (20) are the necessary 

and sufficient conditions for a nonnegative saddle-point of a differentiable 

convex-concave function. 

We mention,  in closing,  that fur this point 

A     A, 

max mln K(x,y) » mln max K(x,y) = K(x,y) 
y^O x^O x^0 y^0 

Therefore (16) may be construed as a mlnlaax theorem.    Many such theorems 

may be found in the literature [17],  [38],   [59]«    Although many Involve 

convex-concave (but otherwise more general) functions    K, compactness 

appears to be an essential Ingredient In the hypotheses.    It Is felt 

that the nonconpactness of    R     and   Ir   Justifies the restrictive hy- 

potheses of (l8). 
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