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CHAPTER I

INTRODUCT ION

I-1, The Mathematical Programming Problem
This report 1s concerned with properties and solution methods for
inequality-constrained extremization problems, Generally, the problems
can be put as follows:
(1) minimize fo(x) constrained by fi(x) 0,1<1<m,
where the f, (0 {1 {m) are real-valued functions defined on real
n-space,

Problem (1) is referred to in the literature as a mathematical

program, In particular, (1) is a linear program if ail the £, are
linear forms; otherwise it is a nonlinear program, The simplest kind
of nonlinear program of interest is the quadratic program, in which the
minimani, fo , 18 a convex quadratic function and the other ri are
linear forms., When all the functions in (1) are convex, it is called a

convex program, A linear program may be regarded as a special type of

quadratic program; both are examples of convex programs,
Differentiability of the f, 1s not part of the statement of (1),
although it has proved to be a useful assumption in many theoretical
and computational investigations. Among studies in this field, the
special case of convex programming has received the most attention,
probably because the local extrema in such a problem are always global,
In all the problems considered here, the extremand and the constraint

functions will be assumed to possess at least continuous first partial

derivatives; however, not all of them will be convex programs,
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I-2, Results Presented in This Report

The mathematical programming problem is a generalization of the
classical problem:

(2) minimize fo(x) constrained by f,(x) =0, 11 m

i
which is usually handled by the method of Lagrange multipliers, This

is always possible when the mapping f = (fl,... ,fm) satisfies a regular-
ity condition [7, p.198].

The extension of the Lagrange multiplier approach to the mathemati-
cal programming problem was first accomplished by John [28] who estab-
lished necessary and sufficient conditions for a solution, Later, Kuhn
and Tucker [32] presented their basic work giving necessary and suffi-
cient conditions for a nonnegative saddle-point of a differentiable
function and their relation to the mathematical programming problem,
They obtained necessary conditions for a solution to (1) by introducing
a regularity assumption which made it possible to apply the Minkowski-
Farkas Lemma [18, p.5] and thereby produce multipliers like John's but
with a leading multiplier of unity. John's Theorem and the Kuhn-Tucker
Theorem on necessary conditions for a soluticn to (1) are discussed in
Chapter II,

The well-known duality theory of lirear programming was formulated
in 1947 by von Neumann [34] in an unpublished manuscript (see[8, p.125])
and developed by Gule, Kuhn, and Tucker [23], After a gap of several
years, the notion of duality was extended to quadratic programming [12],
(13], and to convex programming [42], [27]. For quadratic programming,

the proof of the duality theorem can be obtained by applying the duality



theorem of linear programming, whereas duality in convex programming

has usually been handled by an application of the Kuhn-Tucker Theorem,
The dual of a quadratic or convex program, as originally presented,
differs from it so conspicuously that the pair of problems appears to
lack the beautiful symmetry of the analogous problems in von Neumann's
formulation for the linear case., In Chapter III, a symmetric formulation
of duality for nonlinear programming ie presented which includes those
above as special cases. Part of this chapter is based cn the author's
paper [6] on "Symmetric dual qQuadratic programs,” The extension of this
idea to the nonlinear case is from a joint work [11] with G. B, Dantzig
and E, Eisenberg,

The study of a dual pair of problems often leads to the considera-
tion of a single system, the composite of the two, In Chapter IV, the
composite problem is viewed as a special case of the general program
(3) minimize 2zW(z) constrained by W(z) >0, z >0
where W 1is a mapping of N-space into itself, Necessary and sufficient
conditions will be given for a solution to (3) wvhen W is a differentiable
mapping with a suitably restricted Jacobian matrix, Several important
properties of the Jacobian matrix of the mapping W in (3) are left in-
variant by an operation known as principal pivoting which is an exchange
of the dependence roles of certain variables, The positivity of the
determinant of a (notsiecessarily symmetric) positive definite matrix
turns out to be a simple consequence of the results on principal pivoting,

Finally, the concept of a positively bounded Jacobian matrix is
presented in Chapter V in response to the need for a sufficient condi-

tion to guarantee the existence of a solution to the problem (3). The
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existence theorem provides at the same time an algorithm in those cases

where the functions and values it demands can be computed and actually
inspires the algorithm of G, B, Dantzig and the author [9] for solving
(3) wvnen W(z) =Mz +q and M 1is a positive semi-definite matrix. A new
minimax theorem follows from the main existence theorem,
I-3, Notations and Terminology
There is a fairly standard vocabulary in mathematical programming
which facilitates discussion; we shall use it freely here, Given the

problem (1), the minimand, f is called the objective function, A vec-

O b4
tor x 1is feasible for (1) if it satisfies the side conditions (or con-

straints) fi(x) €0,'1i¢m The constraint set of the problem is

the set of its feasible vectors. This may be empty, in which case (1)
is infeasible. A feasible vector 1s optimal if it solves the problem,

All numerical quantities considered Lere belong to the reals, de-
noted R . Vectors will belong to finite-dimensional real vector spaces,
Rn , and whether they are to be regarded as rows or columns will always

be clear from tle context in which they appear, Thus, for example, the

expressions
(%) X = (xl,..,,xn)
(5) Ax = b
n
(6) xy = Z X, ¥y
i=1

are easily understood, In (4), x 1is a row vector, while in (5) it 1is

a column vector, Equation (6)--in which x 1s a row and y is a column--
defines the symbol xy . In short, no special notational provisions will
be made for transposing vectors, We may not treat matrices so informally.

k-




The transpose of a matrix A will be denoted A' ,

)

Vector inequalities will be used extensively., Let x = (xl, ,xn

and y = (yl,---,)’n). Then
x>y 1f xizyi , 1{1¢n
x>y if x >y, , 11 n”
The reverse inequalities ¢ and ¢ are defined analogously. The same symbol,

0 , will be used to denote the zero vector and the ordinary scalar; no con-

fusion should result from this, A vector x 1s called ncnnegative or posi-

tive according a8 x > O or x > 0, A nonnegative vector vhich is not

O 1s called semi-positive, The nonnegative orthant in Rn is the set

Ri consisting of all its nonnegative vectors,
If f is a differentiable real-valued function on an open subset of

.8 , the gradient of f will be denoted
o - S
’

vf-(btl geeey )

and 1f it is twice differentiable, the Hessian of f will be denoted

2
2 f
v're (§s) -
17
In dealing with differentiable functions of two vector arguments, it will

be necessary to use partial gradients; if F(x,y) is such a function,
VFEa(EF oF
PG )

n

oF F
v F=(—,..., ET)’
2 Q'l m

Also, for twice differentiable functions F(x,y):

VllF-(rfra,—(J-), (n x n)




leF.(W)’ (nxm)
FF
F=
Val (W), (mxn)
V%FI(W), (mxm).
A square matrix M of order r. will be called positive semi-definite

if
(1) XM > 0 all xe¢ R .

When equality in (7) holds only if x = 0, M 1s positive derinite, It

18 negative semi-definite (definite) if, and only if, -M 1is positive

semi-definite (definite).
Although it is true that 1f
M (1/2)(M + W),
then ﬁ is symmetric and
Mx = Mx  all x ¢ B,
it will not be possible to replace M by i because M will represent
a nonsymmetric Jacobian matrix needed elsewhere,

Finally, a vord about the reference system. The manner in which
chapters and their sections are numbered should be clear at this point,
Equations are numbered consecutively within each chapter., Definitions,
remarks, theorems, and the like are treated as equaiions, A reference
to an equation outside a given chapter will be made by prefixing the
chapter number to the equation number, This rule will not be followed
when referring to an equation in the same chapter, In line with current
practice, numbers in square brackets refer to books and papers listed

at the end of the report.



CHAPTER II

NECESSARY CONDITIONS OF OPTIMALITY

II-1. John's Theorem

The earliest result on the necessary conditions of optimality in
the problem I-(1) seems to be that of John [28, Theorem 1], Be was
concerned with the problem
(1) minimize fo(x) constrained by f(o,x) <0, (0,x) € 8 xX
vhere S 1is a compact metric space and X 1s a subset of R ; the
partial derivatives of fU and f with respect to each component of
x are assumed to be continuous on X and 8 x X , respectively,

When X = R° and S 1is the compcst metric space (1,...,m}, I-(1)
can be viewed as a special case of II-(1). It is convenient tc give
John's proof for the necessary conditions of optimality in (1), specializing
it to the mathenatical programming problem, It will rest pertly on the
folloving statement, which is due to Gordan (25].

(2) Theorem, Lt A be an m x n matrix., Exactly one of the following
alternatives holds, Either
uA = 0
has a semi-positive solution or
Av ¢ O
has a solution,

Gordan's Theorem, which may more conveniently be found in (8, p.136)
and (21, p.48), pre-dates, by about twenty-five years, the more widely
known Minkowski-Farkas Lemma (18, p.3].

The proposition we want is




~

(3) Theorem (John). Let x solve the problem
(4) minimize fo(x) constrained by fi(x) 0,1 1i(m,
A A la)
Then there exists a semi-positive vector (uo,ul,...,um) such that
~ A
(5) u f (x) =0,1<1¢m

and the function
m

(6) o) = ) 4t,(x)
i=0
A
has a critical point at x , 1i,e.,

m

(7) v o(;) = Z Givri(;) =0.
i=0
Proof, Define the setsl
(8) fl= (1,...,m)
and
(9) L-(ilieM £ (x) = 0) .

A

If Z is empty, let uo =) and u1 =0 for all 1 eM Indeed, x must
belong to the interior of the constraint set, and the vanishing of the

gradient, 9f at the unconstrained local minimum implies (7). If Z is

o )
nonempty, it will suffice to show that there is no solution v to the

system

(10) VI (x)v<o
v (xveo, tel.

For if the system has no solution, then defining u, = O for all indices

i eM-Z , there exists, by Gordan's Theorem, a semi-positive vector
(uo,ul,...,um) satisfying (7). This vectcr will satisfy (5) by the

definitions made above,
1 The sets M and Z will be used again.
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o) A
Now, on the contrary, suppose (10) had a solution v ., Let S(x,e)
A

denote the closed ball with center x and radius € > 0. There exists

o)

an € >0 anda & > 0 such that for all x € S(x,e)

Vfo(x)v +5¢0
Ve, (x)v +65<0, 1e 2 .

For some positive Y1 ,

fi(;)nrgo, teM- 7.

Choose a > 0 satisfying

n
a( 233)1/2 < €
Jal

omax(]| Vfi(x)vll i€ M , x€ Sixe)lcr.

The compactness of S(x,€) and the continuity of the partial derivatives

of the fi imply the existence of the above maximum, For some 01 ,
0 < 91 <l

fo(; + a:) = fo(:c) + ano(; + eoa:/);

£ (x +av) = £ (x) + a9 (x +0,av)v , te M
Hence

£.(x + ov) < £4(x) - 06 < £, (x)

fi(;-o-o*:)gfi(;)-ab(O, 1¢ Z

A ~ ~ A A
fi(x+av)§_-r+ai Vfi(x+91CW)V| <o, 1eM- Z.
A
These last inequalities contradict the optimality of x 1in (h), and so
(10) can have no solution, As noted earlier, this implies (7).

(11) Remark. if u_ is positive, it may be assumed to equal 1. If the vectors

0
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Vfi(x), 1 € / , are positively independent (21, p. 62], i,e., linearly

independent over the nonnegative orthant, it is clear from the theorem

A

that uo cannot equal O ,

It will be useful to record the conclusion of the theorem when x

is required to be nonnegative,

A

(12) Corollary. Let x be an optimal solution of the program

(15) minimize fo(x) constrained by x > 0, fi(x) 0,1 1igm

A ~ "~
Then there exists a semi-positive vector (uo,ul,...,um) such that
(14) uifi(x) = 0, 1{i1¢m
m
15) ) 49,0 20
1=0
m
(16) [?uini(x)]JxJ =0, 14 9<
i=0

n m
If f:R - R 1s a differentiable mapping with component functions

fl,...,f , let J_, be its m x n Jacobian matrix:
m £

of
(17) Jo = (57 )

The following consequence of John's Theorem guarantees the exist-

A

ence of multipliers in (14) - (16) with uy =1 .

(18) Corollary. Let x be an optimal solution of (13). Suppose there
are p columns of Jf(x) , say Jl""’Jp' such that the system of in-
equalities

o, A
(19) u(g; (x)) >0, u0
k

has only the trivial solution u = 0 , Then there exists a semi-positive
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~ e ”~

.cctor (U’,J ,,..,;m) setlsfying (li) - (lo), and such that a4, = 1.
Proo{. Apart from tiic stipulalion that U = 1, such a vector exists
~ /s )
by the previcus corollary. If u, =0, ther the vetor (ul,...,um) 1s

semi-positive, This and (15) imply that '19) has a nontrivial solution,

~

contrary to our assumption  Hence uo > 0 , and tnerefore may be taken to
equal 1.
17-2. Tne Kuhn-Tucker Theorem
The Kuhn-Tucker Theorem, like John's Theorem, is concerred with
necessary conditions of optimality in the mathematical programming

problem, It includes, liowever, an extra hypcthesis which has the ettect

~

of assuring the existence of multipliers with u, = L.

The existence cf the multlipliers in Jchn's Treorem, above, followed,
via Gordan's Tnecrem, from Lne fact tnat a system =f linear inequalities,
(10), had no sclution. Suppose we had bteen abie to chow that the less

restrictive system

(20) L xYb gz C
Ve Jxjv ¢ 9, ie Z

also has no colutiorn, By the Minkcwski-Farkas Lemma, there wculd exist

7 ~

. / ,
& vector  {up,...,u.

and, by definiticn,

uif‘ (X) = C, i ¢ M

~ ~

Thus, (l,al,...,am) would te cemi-positive and would ccrrespond tc the

vector of multipliers in Johu's Theorem, The difficulty lies in the
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fact that it is not always possible to show that (20) has no solution,

The example [32, p.u48L4] illustrates this, Let fo(x) = -X, fl(x) -
(x1 - l)3 * X, f2(x) = -x, and fj(x) = -x,. It turns out that ; =
(1,0) 1is the unique optimal solution to problem (6), but ; = (1,0)
satisties (20) where we note that Vi o (1,3).

Some regularity condition must be imposed if we wish to assert that
(20) has no solution when ; is optimal,
(21) Definition, Let x be a boundary point of the constraint set

C. = (x| xe R", £(x) < 0)

where f:R" - K" . In this case, the set Z = (1|1 ¢ M ,fi(i) = 0]}

is nonempty. The (Kuhn-Tucker) constraint qualification is satisfied

at x 1If for every vector v satisfying the system of homogeneous

linear inequalities
(22) ve (x)vgo, 1e”Z

there exists a continuously differentiable arc a:[o,1] - Cf such that

a(0) = x, and a'(0) = Av for some A > O, (See [32, p.u83].)
It is easily shown, along the lines of [12, p.1%6], that the con-

straint qualification is always satisfied at the boundary pnints of Cf

when f 1s composed of linear forms, Arrow and Hurwicz [l, pP.2] make
the interesting observation that the constraint qualification (21) is a

property of f rather than of C They show that two distinct mappings

f .
can induce the same constraint set and yet differ with respect to satis-

faction of the constraint qualification.

(23) Theorem (Kuhn and Tucker). Let x be an optimal solution of (6).

A

If x Dbelongs to the boundary of C assume that the constraint qual-

f 1
A

ification is satisfied at x ; then there exists a nonnegative vector

-12-




u = (ul,...,um) such that
m

(24) Vfo(x) + Zu1Vfi(x) = 0
i=l

and

(25) ufi(x) =0, 1e M.

Proof. If x 1is an interior point of C we may let u =0 , as

f 14
A
in the prcof of (3). If x 1is a boundary point of Cs »
A

of x and the constraint qualification imply that (20) has no solution.

the optimality

For otherwise we may take a (and A) as in (21) and deduce that

a—;—<fo(a(o))) = Uf,(a(0))a'(0) = Vfo(?c)lv <O0.

Since a maps the unit interval into C_, this inequality implies that

f’
A
there exist points x of C, such that fo(x) < fo(x) which contradicts
A
the optimality of x ., Therefore (20) has no solution, the Minkowski-

Farkas Lemma may be applied, and the required vector exists,

The equations (24) and (25) are usually called the Kuhn-Tucker

conditions for (6). When (6) is a convex program, (24) and (25) for
some G > 0 are sufficient conditions for optimality, regardless of any
constraint qualification., (See [32, p.485].)

In some cases, the Kuhn-Tucker constraint qualification may be
difficult to verify. But satisfaction of this regularity condition is

merely a means to an end, namely, the Kuhn-Tucker conditions, We shall

A
say that a differentiable mapping £:R' - F° is Lagrange regular at x

A o
if for some nonnegative u , (24) and (25) are the necessary conditions
of optimality in the program (6). This term has been used by Arrow,

Hurwicz, and Uzawa [2, p.181] in their study of the interrelationships

-13-




between some of the variocus constraint qualifications which have

been proposed as substitutes for that of Kuhn and Tucker,

The property assumed in the corollary (18) made the mapping Lagrange
regular at the point ; . All the programs we consider in this paper have
either linear constraints or else constraints whose Jacobian matrix at
the optimal solution has the property (19); in either case, Lagrange
regularity is at hand,

We note, in passing, that the necessary conditions of cptimality
in (4) reduce to the Kuhn-Tucker conditions when the multiplier ;0 is
positive, For a related study, in which the positivity of the multiplier
associated with the objective function is crucial, see (L4, p,227].

Finally, let us point out why the Kuhn-Tucker conditions are pre-
ferable to those of John. The answer lies in the Equivalence Theorem
(32, p.486]). When (13) is a convex program for which the constraint
qualification (21) is satisfied, ; is an optimal solution if, and only

A AN
if, there exists a nonnegative vector u such that (x, u) provides a

nonnegative saddle-point for the Lagrangian function

o(x,u) = £,(x) + iuifi(x) .
1ml
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CHAPTER III

SYMMETRIC DUAL PROGRAMS

III-1, Duality in Linear Programming
In order to put our subject in perspective, we recall briefly the
symmetric duality theory of linear programming, This involves a pair

of problems such asl

(1) minimize cx constrained by Ax + b2 0, x > O
and
(2) maximize -by constrained by -A'y + ¢ >0, y >0

where A is an m x n matrix, b 1s an m-vector, and c¢ 1is an n-vector;
all three are constants, whereas x and y represent vector variables,
The symmetry of this pair stems from the fact that negation and

transposition are involutory operations, (1) is called the primal problem

and (2), the dual problem. This terminology, due to von Neumann, is some-

wvhat arbitrary but is traditional and will be used here,
Letting PP and [D denote the constraint sets of (1) and (2), respec-
tively, the major theorems on duality in linear programming are:

(3) Weak Duality Theorem., sup -by < inf cx

D

(4) Duality Theorem, If either program in the dual pair has an optimal

solution, then so does the other, and when this is so,

max -by = min cx .

D P

1 The reader already familiar with duality in linear programming will
detect that (1) and (2) are an equivalent, but unorthodox, statement of

the dual pair, The motivation for this will become clear later,

-15-




(,) Complementary Slackness Theorem, X € FD and y € Y are optimal

solutions of the primal and dual problems, respectively, 1if, and only 1if,

(6) yy(Ax + ), =0, 1<i¢m
() xJ(-A'; + c)J =0, 1< Jjg<n.

(0) Existence Theorem, If F:> and [) are nonempty, then both problems

have optimal solutions,

(9) Unboundedness Theorem, If exactly one of F) and [) 1s norempty,

either sup -by = +® or inf cx = - o according as FD or [) is empty.
I1I-2, Symmetric Dual Nonlinear Programs

Since 1959, the notion of duality has been extended to quadratic
programming by Dennis [12] and Dorn (13] and to convex programming by
Wolfe [42], Huard (27], Mangasarian [33], and others, In each case,
the dual pair of programs lacks symmetry.

The object of this section is to present a treatment of symmetric
dual programs [11] which will cover (1) and (2) and for which analogues
of at least (), (4), and (,) can be proved, In the case of quadratic
programming, all five of the corresponding theorems are true, In the
general nonlinear case, (9) 1s false,

n
Suppose K:R+XRT -+ R 1s a continuously differentiable function and

conside. the programs

(10) minimize F(x,y) = K(x,y) - y'72K(x,y)
constrained by “QK(X,F) <O
(x,y) >0

2 In (10) only x (in (11) only y ) need be nonnegative,
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(11) maximize G(x,y) = K(x,y) - leK(x,y)
constrained by VlK(x,y) >0
(x,¥) 20

designated primal and dual, respectively. Neither one is necessarily a
convex program. Under some additional hypotheses, they are a dual pair,
and for suitable choices of K, the dual pairs previocusly mentioned are
special cases.

As in III-1, we denote the constraint sets of these problems by P
and D .

let X e R" and Y c F be nonempty convex sets. A function

K:XxY - R will be called convex-concave (%3] if K( ,y) 1s a convex

function on X for each y ¢ Y and K(x, ) 1is a concave function on

Y for each x ¢ X.

(12) Weak Duality Theorem. Let K:Rixﬂ;: -+ R be a differentiable convex-

concave function. Then

(13) sup G(x,y) < inf F(x,y)
D P

Proof. Let @ dencte “he empty set. We adopt the convention that
(14) sup G(x,y) = -w itD = @, inf F(x,y) = 4+ 1f P . d.
It therefore suffices to assume that both P and D are nonempty. Let
(x,y) € P and (;,;') € D . Since K 1is a differentiable convex-concave
function, we have [29, p. 405)
(15) K(x,3) - K(x,¥) 2 (x = X)7K(x,7)
(16) K(x,y) - K(x,5) < (7 - ) K(x,¥).
Subtracting (16) from (15) and rearranging terms, we get

(17) F(x,y) - G(x,y) > ¥ K(x,¥) - 3K(x,¥) 2 0.

g




(18) Remark. The obvious significance of the weak duality theorem is
that when K 1is differentiable and convex-concave, (;c,;) € p and
(;,;') € D would be optimal solutions if F(x,y) and G(%X,}) were
equal. We note from (17) 1'.11&.‘!:3 if this were the case, the following
would hold:

¥, O K(x,¥)), =0, 1<1gm
x,(7)K(%,3)), =0, 1< Jgn.

(19) Duality Theorem. Let K:R:l xR‘i <+ R be a twice continuously differen-

tiable function. If (?(,3') is an optircal solution of the primal problem,
(10), and vzex(’;c,?) 1s negative definite, then (%,¥) ¢ and F(x,¥) =
G(?c,;). If K 1is convex-concave, (?t,'}\') solves the dual problem, (11).

Proof. The constraints of the primal problem are lagrange regular
at (?c,;') because the hypotheses of II-(18) are satisfied. There exists

~ A A A
an m-vector v > O such that vsz(x,y) =0 and
A A AN A AN
VlF(x,Y) +V12K(x,y)v >0

0

A A A A AN
x[0,F(x,¥) + 9 ,K(x,y)v]
A AN A A A

VF(x,¥) + 9, K(x,y)v 20

o.

When F 1is replaced by its definition, these reduce to

(20) VK%, ¥) + 9 K&IE -F) 20
(21) X, K(%,¥) + % K& -F) =0

> If the scalar product of two nonnegative vectors is zero, then each

of the summands in the expression is zero.
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(22) VK&, )V - ¥) 20
(23) %0, KE&,E - §) = 0
It follows from Vv 9 , an 3
follows f 0, (22), and (23) that
(v - YK - F) 2 0.
This inequality and the negative definiteness of v22!((3\:,3') imply
¥ =Y. From (20)and (21), we now get
(24) v,K(%,¥) 2 0
(25) W, K(x,¥) = 0.
A A A A A
Since v =y and vvel((x,y) = 0,
(26) w K(x)y) = O,
2
Consequently, (X,¥) € D and F(X,¥) = G(X,¥) = K(X,¥). When K is
convex-concave, (?t,?) solves the dual problem by the weak duality theorem.

(27). Remark. A similar result obtains when (?t,?!) solves the dual prob-

lem and VuK(;';) is positive definite. In both theorems, the comple-

mentary slackness conditions are visible in equations such as (25) and

(26).

For suitable choices of K, the symmetric programs (10) and (11)
reflect the form of certain known dual pairs of the programming problems.
For instance if

(28) K(x,y) = cx - by - yAx

the symmetric dual linear programs (1 )and (2) result from the operations
indicated by (10) and (11), respectively. For this definition of K, the
hypotheses of the weak duality theorem are satisfied. On the other hand,
the definiteness assumption of our duality theorem (19) cannot be satisfied
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Yy cuch a function. However, 4he contribution of the linearity of K

in each of its variarles is sufficient to allow weaker hypotheses for
the duality theorem,

iikewice, the primal convex program

i29) ninimize fo(x)
constrained bty f (x) {0, 1¢igm

x20

has %he 2ual, accoriing tc Wolfe [L2],

m n m
, _ ) ] )
(%)) maximize f\)(x, + ylfi(x) xJ[vfo(x) + Zy1vfi(x)]J
i=1 J=1 i=1
m
constrained by vfo(x) + Zyini(x) >0
i=1
Yy >0.

being (10) and (11), this pair of programs can be obtained from thre
differsptiat le corvax-con-ave function

m

(31) K(x,7) = fo(x) + Zyifi(x).
i=1

Agair, t-e derivation of %re dual pair (29), (30) in this manner is
formal. The proof that if % is an optimal solution of (29), then
trere exists & y such trat (%,¥) 1is an optimal solution of (30) and
such that the extremal values of the objective functions are equal can
ba obtained from %te Kuhn-Tucker Theorem, in which the constraint quali-

fication must be assumed. Strong assumptions, like those of (19), are
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made by Huard [27] and Mangusarian [33] in the converse proof of the

duality theorem.u

I1I-5. Symmetric Dual Quadratic Programs
Let A, b, and ¢ have ‘he meanings assigned in III-1; let D
and E be symmetric, positive semi-definite matrices of orders n and

m, respectively. The function K defined ty

K(x,y) = %xDx + cx - 3yEy - by - yAx

,\
®
e

induces symmetric dual quadratic programs (6] in (lu) and (11). When
D and E are both zero matrices, the function K in (32) becomes identi-
cal to that defined in (26), and the related problems reduce to symmetric
dual linear programs. When D or E 1is a zeru matrix, one gets Dorn's
dual quadratic programs [13]. 3See Dorn's paper [1l4] for an earlier
effort toward symmetrizing quadratic programming.

The function defined in (32) isconvex-concave [lu, p. 51] and has
continuous partial cderivatives of all orders. Theretore the weak duality

theorem holds for this K. However, V7llK(x,y) = D and rvgzx(x’y) = -E;

these matrices are pcsitive and negative semi-definite, respectively, and

therefore the duality theorem (19) does not apply to this K. Neverthe-
less, a duality thecrem can be established and several other interesting
generalizations of the duality theory of lirnear programming can be made.

This will be done in the present section.

—— e ————— S eme _———— e ——

It is incorrectly assumcd in [33) that local strict convexity for a
twice continuously differentiable function implies the positive definite-
ness cf its Hessian matrix in that neighborhood. This is false, though

its converse is true (29, p. <00},
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Explicitly, the dual programs are

(33) minimize F(x,y) = $xDx + ¥yEy + cx
constrained by Ax + Ey +b >0
(x,y) 20
and
(34) maximize G(x,y) = -3xDx - %yEy - by
constrained by Dx - A'ly +4¢ >0
(x,y) > O.

The duality theorem for this pair runs as follows:

(35) Duality Theorem. If (2,?) solves the primal problem, (33), then

there exists a vector Vv such that (Q,G) solves the dual problem, (3L),
A ~ A AN A A A A
Ey = Ev, and F(x,y) = G(x,v). Conversely, if (X,y) solves the dual
problem, then there exists a vector 2 such that (ﬁ,?) solves the primal
A I} "~ A A A A A

problem, Dx - Du, and F(u, y) = G(x,y). Moreover, the pairs (x,v) and
A A
(u,y) solve both problems.

Proof. By the symmetry of the problems, the converse need not be
proved. The Kuhn-Tucker conditions (after some simplification and elimira-

tion of redundant information) read: There exists an m-vector ¥ such

that
(36) Dx - A'V +¢c >0
(57) K - K >0
(38) X(Dx - AV +¢c) =0
(39) YE - ) =0
(40) V(A + Ey +b) = 0
(b1) v >o.




From (3) and (41), we know that (?(,C) is a feasible pair for the dual
problem. To show F(%,¥) = G(x,V), it suffices to show F(X,y) < G(x,9).

By (38) and (40), this amounts to showing

(42) VEy > 3VEV + 4VES.

In virtue of (39), this is equivalent to showing

(43) VEY > VEV

which, however, is true since (39), (37), (u4l), and the symmetry of E

imply

A

AN la) A A A A
YEy = yEv = VEy > VEv.
Since E 1is a symmetric, positive semi-definite matrix, the reverse of
la) A ~ A
(k) is always true, hence (y - Vv)E(y - v) = O, and this, in turn, implies
(19, p. 108] E;' = Ev. This last fact shows that (;,C) does indeed solve

both problems.

We note that with (?c,?r) as above, Egr = E'w;, and the complementary

slackness conditions appear in (38) and (40).

(44) Remark. This duality theorem was first proved by showing that if
(3\(,3}) solves the primal problem, then there is a certain linear program
of which it is also an optimal solution. The duality theorem of linear
programming was then invoked and the required vector ¥ was obtained.
See (6] and [13].

The duality theorem (35) shcws that if either problem, (33) or (34),
can be solved, thenp and D (their respective constraint seis) are
nonempty, and moreover P N D is nonempty. The converse of this is
of considerable practical significance. The proof, given below, will de-

pend on a result due to Frank and Wolfe [19, p. 108], but modified here
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for the situation at hand.

(45) Theorem. Let f(x) = px + xCx be bounded below on a polyhedral
convex setR in Rn. Then f assumes its infimum on R .

Proof. (Since polyhedral convex sets are closed, the result is of
particular interest when R is unbounded.) There is no loss of generality
in assuming that C 1is a symmetric matrix. The demonstration is by in-
duction on the dimension of R ; there is nothing to prove if R is of
dimension zero. Suppose that the dimension of R is k + 1. It is pos-

sible to write
R -=ts+vt|seS,teT » T €R)

where S is a bounded polyhedral convex set and T is the intersection
of a certain polyhedral convex cone with the unit sphere (24, p. Li4].

Note that for all triples (r,t,y) € R X TxR+, r+71rte R and
(L46) f(r + yt) = f(r) + v(p + 2rC)t + retCt.

Since f 1is bounded below on R , 1t follows from (46) that tCt > O
forall te .

If tCt >0 forall te | , then tCt>a> O for some a (T
is compact); and (p + 2sC)t > B for some B which may be assumed to

be negative. For any r =5 + 7t € R , we have

(L7) f(r) = f(s) + v(p + 2sC)t + rgtCt > f(s) + B + Yea.

The minimum of the quadratic function on the right-hand side of (47) is

taken on when y = -8/2a. The infimum of f over R is therefore at-

tained on the compact subset (s + 7t |s € S Ot e T, 0< r< -B/2qa).
Suppose tCt = O for some t ¢ T Since f 1s bounded below on R ,

(p+2rC)t > 0 for all teT. If for all reR,r+rEeR for
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all real Y (positive or negative), then (p + 2rC)-t? = O, In this

case f(r + yt) = f(r) for all r € R , and the range of f is

unaffected by projecting R into the k-dimensicnal subspace orthogonal

to t . The inductive hypothesis will then apply and yield the result.
If there exists (r,r) € R xR such that r + 7yt ¢ R ,

consider the sets

Ql=[rlre R , (p +2rC)t = 0)
Q2={rlreR , (p+2rC)t >0).

By an earlier comment, R = Ql @) Q X By the argument just given,

the infimum of f on Q 1 is attained there, For r € R 0 define

Tr=inf[‘r|r+rteR}. |
For each r € RQ’ OZTr>-co . Thus,
b =T 4yt

belongs to the boundary of R . Now, for each r € R o)

f(br) = f(r) + Yr(p +2rC)t < £(r) ,
which means that the minimum of f on R2 may be sought on the bound-
ary of Q . But on each of the k-dimensional bounding hyperplanes of
Q , f attains its infimur, This completes the proof,

(48) Existence Theorem. If both p and D are nonempty, then the

primal and dual quadratic programs (3%3) and (34) have optimal solutions,
Proof. By the weak duality theorem, the primal objective function

(which is qusadratic) is bounded below over p . Since P is a polyhedral

convex set, the theorem (45) applies. The remainder of the assertion is

a consequence of the duality theorem,

To complete this list of extensions of the five theorems in III-1,
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we mention the

(49) Unboundedness Theorem, I." exactly one of FD and [) is nonempty,

elither sup G(x,y) = +eo® or inf F(x,y) = -e , according as p or D
is empty.
Proof. This is a consequence of a more general result on programs
with linear constraints, See [42, Theorem 3].
III-4. An Equivalence Theorem

Once more, let K:RixRT-* R be an arbitrary differentiable convex-

A

n
concave function. A point (x,y)e R+XRT is called a nonnegative saddle-

point of K (if
K(x,y) < K(x,y) ¢ K(x,y)
for all (x,y) € foRT . Kuhn and Tucker [32] gave necessary and sufficient

conditions for a nonegative saddle-point of such a function:

(50) v, K(x,y) 20, xv,K(x,y) =0, x>0
(51) VU K(x,¥) <0, yuK(x,y) =0, y0.

Letting F) and [) be the constraint sets of the programs (10) and

(11), respectively, we get the following

A A

(52) Equivalence Theorem. The point (x,y) € FD 0 [) satisfies the

equation F(x,y) = G(x,y) if,and only if, it is & nonegative saddle-point

of K.
Proof., For the necessity, refer to the remark (18). The sufficien-

cy part is immediate,

-26-




CHAPTLR IV

COMPOSITE PROGRAMO

IV-1. Optimality Criteria
In each of the duality theorems established above, there existed a
poirt comon to the intersection of the primal and dual constraint sets
whici gave equal values to their objective functions. It is natural to

form a program whose optimal solutions (if any) are such points. This

15 dune by means of the composite progrem:

(1) minimize H(x,y) = xViK(x,y) - yﬂéK(x,y)
constrained by VlK(x,y) >0
-WéK(x,y) >0
(x,y) > O.
It consists of minimizing the difference between the primal and dual
cbjective functions over the intersection of the primal and dual con-
straint sets.

When K 1is defined by III-(32), the composite program for quadratic

prograrming 1is

(2) minimize xDx + yEy + cx + by

constrained by Dx - A'y +¢ >0

AX + Ey +b >0
(x,¥) 2 0.
We shall need (2) for future reference.

By defining 2z = (x,y) and W(z) = (SiK(x,y),-sbK(x,y)), it is

clear that (1) has the form
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(3) minimize 2zW(z)

constrained by W(z) > ©
z 2 C.
& into &
With N=n +m, W can be regarded as a mapping of ” into R'. Wken

K 1is convex-concave and twice continuously differentiatle, the mapping

W= (Vll(, -val() is continuously differentiable and its Jacobian matrix,

v K(x,y) VEK(X,}')

11
JV(Z) = ’
T K(x,¥) Y, K(x,y)
can be shown to be positive semi-definite for ell (x,y) € RixR‘: g

In this section, we study optimality criteria for programs of the
form (3) where V:Rl: - RN is an arbitrary continuously differentiable
map.

In (3), the objective function 2W(z) is obviously nonnegative over
the constraint set, provided it is nonempty. Hence any feasible vector
which makes the objective function vanish must te coptimal. This much is
true regardless of any assumptions on W. The necessity of the vaniching
of the objective function at an optimal sclution is the sutstence of the
next result.

(4) Theorem. Le* 2 ve an optimal solution of (3) where W 1is a2 con-
tinuously differentiable map with a positive semi-definite Jacobian matrix
at ; Suppose furthermore that the constraints are lagrange regular at

2. Then
(5) W(z) = o.

Proof. For convenience, let M = Jw('i). By the assumption of
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Lagrange regularity, there exists a vector € > C such that

w(2) +M'(2-9) >0
2w(2) + M'(2 -Q)]1 =0
w(Z) = o.

These facts, the feasibility of 2, and the positive semi-definiteness

of M' allow us to construct the following string of inequalities:
(6) 0 MW(2) = 2M' (0 - 2) < (2 - Q)M (0 -2)goO.

But (6) implies (5).

Thus, under the assumptions of (L), the equetion (5) is the criterion
for optimality in (3).

Another version of the same theorem involves the assumption that the

Jacobian matrix Jv(i) has positive principal minors, i.e., that the

square submatrices of Jw(i) along its main diagonal have positive deter-
minants.
(7) Theorem. Let 2 be an optimal solution of (3) where W 1ie a con-
tinuously differentiable map whose Jacobian matrix has positive principsl
minors at 2. Then its constreints are lagrange regular at %2, and the
objective function vanishes there.

Proof. To see that the constraints are Lagrange regular at 2, we
use the hypothesis that Jﬁ(i) has positive principal minors. In general,
if M 1is a square matrix with positive principal minors, the system of

homogeneous linear inequelities
uwm 0, ux0

has only the trivial solution (22, Theorem 1]. The Lagrange regularity



now tollows by a straightforward application of II-(18) in which

f = -W, x=12, and p = N

i
For the second assertion, we again let M= Jw(%), and let m

denote its i-th column. The Kuhn-Tucker conditions componentwise are

{
A il\ A
3 3 . e
zi[wi(-) +m(z - 1)) =0
ﬁiwi(a)-_-o 11N
{1123
Hence for each 1,
0CEW (3) = 2283 -0) < (8, -2 )3 -0
11 i 1 1
That is,
A iA A
(zi-ﬁi)m(z-u)gO 1< 1N

But since M (and therefore M') has positive principal minors,

2 -U=0 by [22, Theorem 2]. The result now follows.

(8) Remark. It is known (see for example [37]) that positive definite
matrices have positive determinants and consequently have positive prin-
cipal minors. (We offer an alterrate proof of this as a by-product of
some results in section IV-3.) Of course, the converse of this proposi-

tion is false; symmetry i{s required as an extra hypothesis.

IV-2. Quadratic Programs
This section is devoted to an existence theorem for problem (3)
when it is essentially a quadratic program. The composite problem for

quadratic programming was stated as (£). If we set



- D -A' >
M = ( >) q = (C}b) ’ ard z = (x)y)

problem (2) becomes

(9) minimize z(Mz + q)
constrained by Mz + q > O
z > 0.

\

This is an exampie of (3) where W(z) = Mz +q and Jw(z) = M.

We study the general problem (9) under the assumption that either
M 1s positive semi-definite or M has positive principal minors. With
linear constraints, lLagrange regularity 1s present, and the optimality
criteria, (4) and (7), are in full force: 2 solves (9) if, and only if,
2(M2 + q) = O.
(10) Theorem. If M has positive principal minors, problem (9) has an
optimal solution.

Proof. By [22, Corollary 2], there exists a vector satisfying tke
inequalities Mz > O, z > O. A suitably large positive scalar multiple
of any such z will be feasible for (9). Since z(Mz +q) > O for all
z 1in the nonempty polyhedral convex constraint set of (9), it has an
optimal solution by III-(45).

(11) Remrrk. If (9) has a nonempty constraint set, it has an optimal
solution, regardless of ncv M 1s qualified. But in general, the optimal
solution need not make the objective function vanish.

We emphasize that when (9) represents the composition (2) of dual
quadratic (or in the extreme case, linear) programs, an optimal solution

of (9) solves both the primal and the dual problems Conversely, if an




optimal solution to either the primal or the dual problem exists, then
a solution to (9) exists. In this sense, they are equivalent. However,
the composite problem has certain features which lend themselves to a
constructive solution technique, i.e., an algorithm, which will bte

presented in Chapter V.

IV-3. Principal Pivoting

In problems such as (5), a vector 2z is sought which satisfies the

conditions

(12) w(z) 20
(13) 2 >0
(14) MW(2) = 0.

We now let w denote an N-vector and form the system of eguations
(15) w, -W,(2)=0 11N,

The problem can be viewed as one of finding a pair of nonnegative,
orthogonal vectors, ¢ and 2, satisfying the system (15).

Let us assume that W 1is defirned on all of RN. The N variables
w, in (15) are dependent, ancd the other N variables 2z, are independent.

1 v
In the language of linear programming, the v, are basic variables and

the z, are nonbasic variables. (See [8].) This terminology will be

used here. A basic solution to (15) is one in which the nonbasic variables

all equal zero.
For the remainder of this paper, we denote the set of integers

(1,...,8) byN. For 1i,j €[N, we shall define LA BJi/azJ. This

J
notation is suggested by the analogy with the special case W(z) = Mz + q.



ij)’ then wij A 0

In the next chapter, we shall wish to reverse the dependence roles

If M= (m

of certain pairs of variables in the system (15). The idea will be to
select a certain equation, say k, in (15) and "solve it" for one of its
nonbasic variables zJ as a fuiction of i and the remaining N -1
nonbasic variables. When this is done, we shall substitute for z‘j in
the remaining N - 1 equations and obtain a new system. The aim of this
section is to make these notions more precise and to describe the relation
between the Jacobian matrix of the original mapping and that of the
derived mapping.

We recall, first, an obvious, but useful, fact about functions of
one real variavle. If f:R- R 1is a continuously differentiable function
with derivative f' satisfyirg f'(x) 285> 0 (f'(x) £ -8 < 0) for some

8 and all x € R, then f 48 a strictly increasing (decreasing) map of

Now suppose that fo- fixed k,J € ﬁJ, there exists % > C such that

N

wkj(z) 2% or A f(z)< -% forall z € R, Then the k-th component

k)

function W, maps R' onto R. In particvlar, for each ;k € ® and
each (N-1)-tuple (El""’EJ-I’EJ+1""’;N) € A1 there exists o unique
EJ € R such that

== - Y

W, = wk(zl""’zN"
Hence there exists a well-defined function ﬁk on RN such that
(16) 2y = Qk(zl""’zj-l’ wk’zj¢l""’zN)
if, and only if,

wk = wk(zl’.'.'zj-l'ZJ,ZJ+1’...,2N) .
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Since we . ' . to denote basi. and nonbasic variables generically by
w and 1z, respectively, we alter the notation of the entire set of 2N

variables as follows:

(17) # -8 (2)=0.

After we define

(18) F(2) =w (2 ,...,zj_l, ﬁk(z),zj+l,...,zN), 1 e N- (k},
a new, equivalent, system emerges:

(19) qi = Qi(z) = 0, 1e€ N

The system (19) is said to be obtained from (15) by a simple pivot

(k,J). The mapping W 1s continuously differentiable.

(20) Definition. A principal pivot in (15) consists of a finite se-
quence ((k,J)} of simple pivots such that both projections of ((k,J))
into \J equal S , for some SCN . If § = (k), we shall speak of (k,x)

as a principal pivot on k. We shall write

(21) W= P(W;((k,J)))

1f the system @ - W(z) = O 1s induced by the principal pivot ((k,J))

"

in the system w - W(z) = O. For a principal pivot on k we use the
simpler notation W= P(W;k).

If W= P(W;(k,§)), the Jacobian matrix J~ 1s given by the formulas
(see (7, p. 118])
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(22) ij = l/wk.j
LTI
“u ) wki/wkj 1,£e N - (4,k)
Bip=Vyy- (wijwkl/wkj)'

Now let @ = P(W;k). We shall need a relationship between the princi-
pal minors of Jﬁ and those of Jﬁ, for which we introduce another notation.
If M 1is an arbitrary matrix of order N andu[cfv, we denote by (M%{ the
principal submatrix of M formed by deleting row and column i from M for
each 1 ¢ /. The empty matrix, (M)I., will be admitted, and its determinant
will be defined to be 1. Of course, M= (M)¢.

(23) Theorem, If W = P(W;k), then

(24) I(JQ)I | = |(Jw)1 N I/ka torall T € N
where vertical bars denote determinant and the connective A denotes the
symmetric diff‘erence.l

Proof. The statement is obvious when N = 1. Assume N > 1 and (24)

holds for all smaller positive integers. It will suffice to prove (24) in

the cases | = ¢ and T = (k). Now

Mioo Yk 9 Mk o i
wk-l,l e wk-l,k-l ¢ wk-l,k...l PR wk-l,N
-W W -W W
I(J§)¢| = _wll. W ¥ wkjk'l wl wk,k'l»l cee wk N
kk kk Kk  kk Kk
Mo, 00 kel k-1 @ Wkal kel 00 Ve, N
le 0D C wN,k-l 0 wN,k+l vos HNN
= {

lFor a more comprehensive treatment of this and related problems, see

Tucker's paper [4O]. _35-




This is proof of the first part.

These equations are based on the well-known effects that elementary row

operations have on determinants.

(25)

| 99 )| =

" Gy | M

Corollagz.
then so does Jﬁ.

If @ = P(W;k)

. R

1,k-1

-~

* W) k-1

W

As a direct consequence of (24), we have
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For the second we have

wl,k+l

W

N, kel

k+l,k+4l

oo W

(See, for example, (5, pp. 301-302:.)

3\
/

has positive principal minors,




This is one of the several invariants under (simple) principal
pivoting. Another, which we state without its simple proof, will appear
in a forthcoming paper by Tucker and Wolfe [L4l].

(26) Theorem. Let W(z) = Mz + q. Suppose a principal pivot in the
system w - (Mz + q) = O yields the system w - (Mz+q) = O. Then M
is positive definite (semi-definite) if, and only if, M 1is positive
definite (semi-definite).

Using this invariance theorem, we can prove an assertion made above.
(27) Theorem. The determinant of a positive definite matrix M 1is posi-
tive.

Proof. Every principal submatrix of a positive definite matrix is
positive definite, and its main diagonel consists of positive elements.
We use induction on the order of M. If M is of order 1, there is
nothing to prove. If M 1is of order N > 1, a principal pivot on the
index 1 yields a matrix M which 18 also positive definite. By the
inductive hypothesis, l(i)[l} |> 0, and by (24), |M|= m Kﬁ)[l) [> o0,
which completes the proof.

The class of matrices with positive principal minors includes all

positive definite matrices, whether or not they are symmetric.
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CHAPTER V

NONLINEAR PROGRAMS WITH POSITIVELY BOUNDED JACOBIANS

V-1. The Main Theorem

According to IV-(10), the program

(1) minimize 2(Mz + q)
constrained by Mz +q > O
z2>0
has an optimal solution i{f M has positive principal minors. (This has
also been established constructively, that is, by an algorithm [9].) It
is natural to ask whether the same kind of theorem can be proved about

the program

(2) minimize zW(z)

constrained by W(z) > 0
z>0
wvhere it is assumed that W:RN - RN is a continuously differentiable
mapping and has a Jacobian matrix Jv(z) with positive principal minore
for all z € RN. It cannot.

In fact, such hypotheses do not even assure the existence of feasible
vectors. This can be seen in the one-dimensional problem with W(z) = e 7,

If wve postulste feasibility, there is still no hope. Recall that our
optimality criterion says that a feasible vector 2 1n (2) is optimal

1f, and only 1f, zW(Z) = 0. Now let
-2
wl(zl’z2) =-e "l +2,
wz(zl,zz) = z,.

Then the Jacobian matrix is



ao - (50 1),

and it has positive principal minors for all z ¢ R2. The program is

clearly feasible. If %2 = (Ql,i solves it, then

2)
A -; A, A2
zl(-e 1+ 22) +2, = 0.

o = O; but the only finite value of zl for which -zle-zl

can vanish is 0. The vector (21,;2) = (0,0) 4s not feasible, since

A~
Therefore 2

it violates the constraint wl(zl’22) > 0.

The search for a condition on the mapping W which would guarantee
the existence of a solution to (2) has led to the following notion.
(3) Definition. A continuously differentiable mapping W:RN - RN has
a positively bounded Jacobian matrix Jw(z) if there exists a number

such that 0 ¢ 8 ¢ 1 and such that for all z ¢ RN every principal

minor of Jﬁ(z) lies between & and 8T,

In (2), if the mapping W has a positively bounded Jacobian matrix,
the optimality criterion is the same since the Jacobian has pcsitive
principal minors. Furthermore, if W(z) = Mz + q, its Jacobian matrix
is identically M and is positively bounded if, and only if, M has
positive principal minors. Thus, the class of mappings with this rather
strong property is nonempty. By considering what the condition means
for real-valued functions of one real variable, we note that multivariate
mappings can be constructed which also have this property.

We can now state an invariance theorem which will later play an

important role.

(L) Theorem. If W:RN - RN has a positively bounded Jacobian matrix

and W = P(W;k), then W also has a positively bounded Jacobian matrix.
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Proof. There exists a real number ® such that 0<% ¢ 1 and
for all z € RN and all ['Gﬁd,

6 < | (5,(2)) | ¢ o7

It follows fram IV-(2L4) that

-2

6g | (3(2))_ | < ®

I
for all ; € RN and ZQN, hence ;J has a positively bounded Jacobian
matrix.

The desirability of a positive lower bound for the partial deriva-
tives wkk (k er) was suggested by the examples above. This property

need not be preserved in the absence of an upper bcund property. For

example, if

S Nt
Wl(zl,ze) =

W =2z +2,,

2(21025) = 2 + 2,

ve may choose any & between O and 1 as a lower bound for the princi-
pal minors of Jﬁ(z). (Their actual lower bound is 1.) Eutzthey have

nc upper bound. If W = P(W;l), we find that Wi, = 1/(e 58 1)

which i{s positive but not bounded below by any positive real number.

Thus, the positive lower bound property is not invariant under principal
pivoting unless there is also an upper bound praperty. This example

helps to motivate the definition (3).

(5) Definition. A solution (w,z) cf the system

(6) v, =W (z)=0 1 e N

is nondegenerate if at most N of its 2N compci.ents are zero. Otherwise




it is degenerate.

(7) Remark. There are perturbation techniques in mathematical programming

for ensuring nondegeneracy. One of them involves the replacement of the
1
real variables by lexicographically ordered vectors. {See [10] and

(8, Chapter 10].) It will henceforth be assumed that all solutions to

(6) are nondegenerate. Nondegeneracy implies (a) that in no basic solu-

tion of (6) can there be a basic variable with value zero, and (b) that
for each value of z, ki(O,.‘.,O,zr,O,...,O) = O for at most one 1 € N.
Recall that to solve (2), we need a nonnegative solution (3,2) of
AN A A
the system (6) such that zw = O. The nonnegativity of (w,z) corresponds
to the feasibility of Z.
(8) Definition. The number of negative coordinates in a solution of (6)

is called its infeasibility index.

A basic solution to (6) with an infeasibility index of zero solves
problem (2). It is such a solution we shall show to exist. This will
be accomplished by an iterative procedure which does not employ nonnegative
solutions to (6) until the last step. (Therein lies part of its novelty.)
But with a scheme of this kind, the "improvement" in successive iterations
must be measured by something other that the change in the value of the
obJective function, 2W(z). We do this by obtaining a (finite) sequence
of solutions to (6) such that the corresponding infeasibility indices
form a monotonically decreasing sequence. The main result, then, is the
following existence theorem.

N N

(9) Theorem. Let W:R - R Dbe a continuously differentiable mapping

with a positively bounded Jacobian matrix. Then there exists a vector

: In (1), e.g., q 1is replaced by (q,I), each component of w,z by a

vector.




2 > 0 such that W(z) >0 and 2W(z) = O.

Proof. It will be convenient to make the notation reflect the
iterative nature of the method. Therefore we replace the original

system (6) by
0 ), O
v/ -w(z)) =0 teN
Every system we encounter in this proof will be derived from its pre-

decessor by a simple principal pivot. In gereral, the system after the

v-th 1iteration will be denoted

w' - wv(zv) =0 teN
i i
where
V-
w' = P(W l;kv) v=12....

At any stage, 1f (W'(0),0) 2 0, we have the desir:d result. If this
(basic) sclution is not nonnegative, it has a positive infeasibility
index. It suffices to show that it can be lowered by at least one through
a ’inite number of principal pivots, for the infeasibility index of the
initial solution (WO(O),O) is at most N.

Assume WV(O) has a negative component, say r. ince de is
positively bounded (recall the invariance theorem, (L)), there exists a
positive nusber & such that wir(zv) > 6. Hence w;{D,...,o,z:,a,..,,o,

= 0 for same positive value Z: of the variable z;. Coneider the ce®,

of values of z: such that 0 ¢ z: < Z: and
\J v v
wi(o,...,o,zr,o,...,o) >0 if wi(o) > 0.

This bounded set is closed and hence compact. Let its maximum element



be denoted C:. We shall call C: the critical value of z: for this

iteration. By tr: nondegeneracy assumption, it is positive and uniquely

-

v v
determines an index s such that ws(O,...,O,Cr,O,...,O) = 0. Let

v

lads ;6). If 8 = r, that is Cr

wt o opw

v ‘ ]
= Zr, then (WV?l(O),O) has a

lower infeasibility index than (wv(o),o). If s ¢ r, then the in-

v
feasibility index of the solution (W +l(o,...,o,;:,o,...,a),

(O,...,J,Q:,O,...,O)) does not exceed that of the previous solution.

We now consider the compact set of z:+l (alias z:) suck that
v v+l v+l
Cr < zr < Zr satisfying
v+l v+l v v
W, (0,...,0,2.77,0,...,0) 0 1f w(0,...,0,§,0,...,0} > 0.

Let §:+l be its maximum element. Then, by our assumption of nondegeneracy,

it follows that l;:*l

> C:. Now we repeat these steps.

At every iteration, there i3 a basic set of variables. Since the
critical values increase strictly, the repetition of a basis wouid imply
a contradiction in the critical value of z: for that iteration. There-
fore, after finitely many principal pivots, the rth basic variable reaches
the value O; at this Juncture, a principal pivot on the index r lowers

the infeasibility index, and we say trat a major cycle has ended., As ve

remarked earlier, at most N major cycles are required to obtain a nonnega-

tive basic solution with infeasibility ircex zero.

V-2. An Algorithm for Quadratic Programming
The existeace theorem (9) provides an effective algorithm for solving
problem (2) when the required values are rczadily comuputed. This is par-
ticularly true when W 1is of the form W(z) = Mz +q and M hLas positive
principal minors.

In this section, we present an algorithm for solving the quadratic
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program (1) under the assumption that M 1s positive semi-definite.

The algoritim, adapted fram (9], is analogous to the method of existence
theorem Jjust proved. It will involve principal pivoting ard share the
characteristic that never does a feasible solution appear unless it is
optimal.

We know, IV-(1l), that 17 (1) is feasible, it has an optimal solution.
But 1t is clear that (1) need not be feasible if M 1is merely positive
s~mi-definite; our aigorithm must be able to handle this contingency.
We therefore " 2gin our discussion with a useful observation.

(10) Remark., If the matrix
, m m
(11) \ mll Ol2 )
2l

is positive semi-definite, then

(12) m, + My = O.

This is true because

(13) mx2+(m + x.x_ > 0 all (x x)eR2
1151 12 Yy X% e 1"% :

However, (13) can hold only if (12) holds.
This remark helps us to prove
(14) Lemsr. Let (W,2z) = (w,z) be a solution of the system Iw -

(Mz + q) = 0 where M 1is a positive semi-definite matrix of order N.

If for some

£¢0, W.<O,m _=0, and m_>0 all 1eN,

then the system has no nonnegative solution.

Pzoof. Since m_. = C and m . >0, for all 1€ N, it follows

from the remurk above that m q 0 forall 1ice¢ N .  Now
b
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N

implies that q_r < 0 sinceZ_' mrizi 2 Y. DBut the equation
=1

i

f=1

can have no nonnegstive solution; tnerefore the entire system has no
nonnegative sclution

The reason for assuming 2 < O will become clear in the sequel.
Looking ahead “.c the algorithm, we perceive that if the conditions of
the Lemma o . no critical value of the nonbasic variable z_ can
be found. As matters stand, the converse of this proposition is not
true. What may happen is that the entries of the r-th column of M
possess siins which agree with those of the corresponding basic variables,
These entries, being the partial derivatives of the btasic variables vy
with respect to 2 make it impossible to ascertain a critical value
for Z .. Under such circumstances, z. could be increased without limit.
However, some solvable programs have this property. As a very simpie

example, let

(15) M = (i i) and q = (-1,-2).

A

The vector z = (0,2) is optimal in the program (1) formed with M and q.
To circumvent this difficulty, we introduce an artificial lower

bound for negative basic variables. Let f be any number such that
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(16) - < B < min [qilieN}.

If the minimum on the right-hand side is nonnegative, then the zero
vector is optimal and there is nothing more to be done. The other possi-
bility implies that B is negative. Throughout the algorithm, B will
be used as a lower bound for all basic variables whose values are nega-
tive. The lower bound for all nonnegative basic variables is still zero.

At this point, we must revise our notion of nondegeneracy.

(17) Definition. A solution (w,z) of the system Iw - (Mz +q) = O 1is
nondegenerate if at most N of its 2N componcnts have the value O or
B. Otherwise it is degenerate.

This new definition extends the earlier one (5). We shall assume
that all solutiorsto the system Iw - (Mz + q) = O are nondegenerate.
This will imply that if (w,z) is & solution and z € [O,B]N, tnen for
all 1eN, v, ¢(0,8. If for 1 eN - (r), Ei e (0,), then for all
values of Z. wi(;l,...,E;_l,zr,z;+l,...,E&)e[O,B} for at most one i eN.

The notaticn will be analogous to that of (9). We replace the

0 0

original system by Iw - (Mpz + qo) = 0. In general, either the system

v+l i (Mv+lzv+1 & qv+-) =

Iv 0 will be obtained from Iw’ - (M'z’ +4q’) =0
by a principal pivot operation, or else it will be the identical system.
The steps of the algorithm are listed below; a more cdetailed discus-

sion follows.

Step 0) Set v = 0, define (;O,;O) = (qp,o) and define P as any
number satisfying (16)
- -V
Step 1) If (w ,z ) > 0, stop. The solution is optimal.

Step 2) Determine r eN such that \7: <0 or 'z': = B.

die



v Vo =
Step 3) Let Cr be the largest value of z: 2 z; satisfying
the following cunditions:
v -y
(1) 2. < 0 if 2. = B;
. v, -V vV =V =V e =V
(i1) wrkzl""’Zr-l’zr’zr+l""’°N) <0 if w <0

V=V - v =V -V e TV _
(1i1) wi(zl""’zr-l’zr’zr+l""’zN) 20 if w >0
v, =V -V v =V -y
(1v) wi(zl""’zr-l’zr’zr+l’°"’zN) 2B if v, <0.
Step 4) If C: = +x, stop. No feasible solution exists.
=y
Step 5) If Cz = 0, let E¥+l = 0, Eq+l =2, for all 1€ N - (),
and let #'* - wV(E”*l) = w“**(E”*l). Return to step 1

with Vv replaced by v + 1.

Step ©) Let s be the unique index determined by the conditions

(11), (1ii), and (iv) in step 3.

Step 7) If m:r = 0, perform the principal pivot ((r,s),(s,r));
=+l v v+l V = v+l v ot
put w =z, w = Cr’ 2, =z, for all 1 ¢ N (r,s)
and then ;z+l = wr*l(zv*l) for all i eN - {(r,s). Return

to step 3 with v replaced by v +1 and r replaced by e.

zv+l -
)

\ D ot 4 - vV =V - v+l v+l v+l
ws(zl""’zr-l’cr’zr+l""’ZN) and W, = W, (z77°)

Step 8) If m:r > 0, perform a principal pivot on 8. lLet

Step 9) If s = r, return to step 1 with v replaced by v + 1.
Step 10) If s # r, return to step 3 with v replaced by v + 1.

This completes the statement of the algorithm. Now for a few ex-
planatory remarks. We point out first that the procedure is designed to
rule out any increase in the infeasibility index from one iteration to the

next. Every return to step 1l is accompanied by a decrease in the infeasi-

bility index of at least one. The cnly possible values of the nonbasic
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variables at a return to step 1 are 0O and B . Consequently,
&’,z") >0 (in step 1) implies z’ = 0 and hence the orthogonality
of the pair.

In step 2, such an r exists if step 1 does not cause termination.
Not both ;: and E: are negative. This is a property of the initial
solution and it is preserved throughout the process.

Step 3 is clear.

The assertion in step 4 follows from (1l4) and explains its hypothesis,

zso.

The condition of step 5 implies that ;: =

in this case. We simply increase the value of the r-th nonbasic variesble

B. No pivoting is required

and adjust the values of the basic variables accordingly. Then we increase
v to v + 1.
Step 6 makes sense because the conditions (ii), (111) , and (iv)
determine some s; it is unique by nondegeneracy.
v

If m =0, then r # s in step

for the definition of s and

/

the nondegeneracy assumption imply that EH:/ az: is not zero. Under thesec
circumstances, we cannot make a principal pivot on & (as we would have

done in (9)). We have &v:/bz: = m:r <0 (either (iii) or (iv) determines

s). Hence, by (10) m:s > 0. The principal pivot ((r,s),(s,r)} can be

achieved. Recall that

v+l v+l v v+l v -
% 2o W, =2, V., =W, all i€ N . (r,s}
v+l v V+1 v v+l v

s =v, g Vo 2, =2 all 1 ¢ N - {r,s}.

The values they acquire in th=2 new solution are given as follows:



-+l
z

v, =V - v =V -V
% Hs(z zN)

sosipl 2
 fod »y -l ? cr’ r+l’ E

- vV =v -
L Cr'zx'«-l""’zl!)

L e dn 1ot

;v-rl
8

Vv, =V
wr(zl""’

i i
G“i’*l = wz*l(?“l) for all 1 ¢ N

+1

After the principal pivot ((r,s),(s,r)), the matrix M has

among its entries

v
v+l -nrr 0
Y © ¥ I 2
B sr
v+l 1
m = — > 0
rs u‘v
rs
v+l 1
Ber = o’ <0
sr
v+l
n“ 0.

The instruction, in step 7, to return to step 3, with v replaced

by v+1 and r replaced by s, suggests an attempt to increase

zv+l

. (alias w:_) from its negative value, . It was this variable

which we originally wanted to increase toward zero. Notice that n::l
so that w:"l (alias z:) will not be affected by the forthcoming increase.

The principal pivot indicated in step 8 is possible because n:' > 0.

=0,

If the alternative corresponding to step 9 is the case, the meaning

v

of the previous stepr is that the negative variable v, has risen to O,

as we wished. In other words, s was determined by (ii). In the new

solution, we shall have ;:_"l =0 and ;:_"1 > 0.



From step 10, we re-enter step 3 and increase the r-th nonbasic

variable further. An important point is that after the principal pivot

on 8 , we get

-mv
v+l - 8r >0
8T v *
1}
88
Hence the s8-th basic variable will increase as z:*l is increased.

We are now ready to argue the finiteness of the process. As ve
have already stated, every return to step 1 entails a reduction in the
infeasibility index. Since it never increases during the process, only
finitely many returns to stepl man cccur. (These correspond to major

cycles in (9).) Only finitely many returns to step 3 can occur between

returns to step 1. If step 2 is entered at iteration vo , & particular
v
index r 1is determined, and step 3 asks that ,‘rO be increased. In
v

each iteration preceding a return to step 1, the variables vro and

z:_O each increase monotonically, and their sum mcrease: ina s;.rict
sense. The N - 1 nonbasic variables distinct from 2z (or vro "
vhichever happens to be nonbasic) all have value O or p . These
facts preclude the possibility of infinitely many iterations before a

return to step 1. Consequently the process is finite.

V-3, An Application of the Main Theorem
The existence of theorem (9) is applicable to the noonegative saddle-

point problem (see III-L).

(18) Theorem. Let K:R°xK® - R be a twice continuously differentiable

function and suppose that (711(, -V2K) has a positively bounded Jacobian
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A AN

matrix. Then K has a nonnegative saddle-point (x,y).

Proof. We use the interpretation of (2) as the composite program
A AN

IV-(1). By (9), there exists a point (x,y) such that:

(19) v,K(x,¥) 20, WK(xy) =0, x20
(20) V2K(-‘(,}’) <0, WEK(x,)’) =0, y20.

Since K 1is twice ccntinuously differentiable, VllK anl -VéeK are
symmetric; they both have positive principal minors. Hence both are
positive definite. This implies that K 1is strictly convex-concave

(29, p.406]. The proof is complete since (19) and (20) are the necessary

and sufficient conditions for a nonnegative saddle-point of a differentiable

convex-concave function.

We mention, in closing, that for thie point

A A

max min K(x,y) = min max K(x,y) = K(x,y)

Y0 %20 x20 ¥20

Therefore (18) may be construed as & minimax theorem. Many such theorems

may be found in the literature [17], [38], (39]. Although many involve
convex-concave (but otherwise more general) functions K, compactness
appears to be an essential ingredient in the hypotheses. It is felt

that the noncompactness of Ri and RT Justifies the restrictive hy-

potheses of (18).
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