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Abstract 

The paper is concerned with the decay of the energy of disturbances 

which are propagated according to the wave equation with variable index 

of refraction in the exterior of a finite star-shaped reflecting body. It 

is shown that the energy 01 the disturbance decays like some power of t”\ 

Certain conditions of growth and continuity are made on the index in order 

to insure some decay factor. 

The energy decay is obtained by estimating the solution of an integral 

equation which results when one applies the Friedrichs » "A-B-C method" to 

the modified wave equation operator. Using the energy estimate with other 

familiar estimates, one obtains a rate of decay for the disturbance itself. 
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Introduction 

Let us consider disturbances which are propagated In three-dimensional 

space according to the modified wave operator 

UXX + Uyy + Uzz " C 2(X>y>z) = 0. 

If, initially, the disturbance were confined in some finite region in the 

exterior of a finite smooth reflecting body, one would expect that after 

a certain fixed time most of the disturbance would have propagated to infinity. 

In [1] it is shown with certain restrictions on the body that this is the 

case for c = 1, and the disturbance at a point dies out exponentially. 

For the non-homogeneous wave equation one also finds that if 

u satisfies initial data of compact support and the equation 

Uxx + Uyy + uz2 ■ = e(x,y,z)e 

in the exterior of a smooth, finite, star-shaped body on which 

ufxjyjZjt) = 0 t > 0j 

., -loot 
then ue tends exponentially in time to v(x,y,z) at every fixed point 

exterior to the body. Here v satisfies 

V + v + v + w v = £? 
XX yy zz V ß 

exterior to the body, 

v = 0 

on the body and v satisfies the Sommerfeld 
radiation condition at infinity. 
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This result Is known as the limiting amplitude principle. The proof is 

based on Klrchoff % theorem and on the previous energy estimate. 

One expects that both the energy decay and the limiting amplitude 

principle are also true with a variable speed of propagation. Here an 

estimate will be found for the energy decay in any fixed region. A proof 

of the limiting amplitude principle similar in nature to [2] is not possible 

since Kirchoff >S representation theorem is no longer valid in an inhomogene¬ 

ous medium. But, it will be shown that all solutions to the initial 

boundary value problem for the homogeneous wave equation with variable 

index of refraction decay in time at any fixed point exterior to the body. 

One mqy expect some restrictions on the index of refraction for, 

if the index oscillated very rapidly, the energy might be trapped between 

two minima of the speed of propagation. However, in the case of the earth 

and its atmosphere, a good approximation for the behavior of the index of 

refraction is: 

where cq > ^ > 0 and ß > 0. 

This case will be covered by the hypotheses on the index, and the energy 

does go to infinity. 

The estimates are obtained by the methods used in [2]; i.e., the 

energy estimate will be obtained by a variation of the A- B - C method 

of Friedrichs. This consists in multiplying the differential operator 

A u - c*2 utt = 0 

by the operator 

Au + B*Vu + Cu 

——-- 
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and integrating over the space exterior to the body. By strategically 

choooing the A, and C> and by applying the divergence theorem to the 

resulting integral, one obtains an integral equation. Upon estimation of 

certain terms in the integral equation, one finds that the energy in any 

fixed finite region exterior to the body decays in time like some power 

of t“1. 
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The main theorem to be proved is: 

Theorem 1: Lpt u be a smooth solution of 

(1) uxx + V + Uzz ' c'2(x'J,>z)utt = 0 

in the exterior of a smooth, star-shaped, finite three-dimensional body B 

on which the boundary condition 

(2) u = 0 

is satisfied. Let u satisfy the initial conditions 

(3) u(x,y,z,o) = f(x,y,z) 

(^) ut(x,y,z,o) = g(x,y,z) 

where f and g are both twice continuously differentiable and of compact 

support. Suppose c(x,y,z) satisfies the following conditions: 

c(x>y>z) is continuously differentiable 

c(x,y,z) is a function of the distance from the origin of the 

coordinate system 

min c(x,y,z) = 7 > o 

for all r = /x2 + y2 + z2 > 0. 

(5) I 

II 

III 

IV 

Then 

(6) t J ( |V (ru) I + c 2(rut)2) sin 0 drdípdô < M 

R 
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where M is some constant depending upon c, f, g, R and 

(7) a = max 
(Kr<°c 

5 < 2 . 

Before proceeding with the proof, a few remarks will be made on the 

conditions on the index of refraction. Condition I is needed for the appli¬ 

cation of the divergence theorem to the di 'ferential operator. Condition II 

was assiimed because of the simplification involved in the integration and 

also because of its good approximation to physical considerations. It seems 

possible that angular dependence could be introduced, provided certain 

boundedness conditions are made on the index and its derivatives. Condition 

III is needed to maintain the hyperbolic character of the differential equation. 

Condition IV puts the greatest restriction on the index. In effect, it says 

that for large r the index should approach a constant like 0(r”^). That this 

condition is reasonable can be seen from the paper by Miranker [3] in which 

he shows that the Rellich uniqueness theorem is valid fo- the reduced wave 

equation with variable index of refraction, provided tne index approaches a 

constant for lerge r like 0(r“^). Thus this condition is a natural one if 

a limiting amplitude principle is to hold for the variable case. That |c| 

should be less than i¡2r might be improved; however, it was the simplest 

necessary condition in order to get a decay in the energy. If, for example, 

we consider the earth's atmosphere, 

c(r) = 1 - (1 - 7)e"ßr, 

we obtain the following restriction on 7. [We assume that c(r) has been 



normalized to be one at infinity.] By (5) 

|6(r)| -(1- yjpe*^ y/2r 

2(1-7) By'1 < e^V1. 

The minimum on the right side la obtained for r > 0 when r » ß“1. We obtain 

2(1 - 7) 7*1 < « 

or 

2(2 + e)’1 < 7t 

Thus the index may change by no more than e(2 + e)’1 of its maximum value 

in order for our result to hold. We now proceed with the proof of the 

theorem. 

-°0^ 0110086 a spherical coordinate system so that the body B is star- 
! ¡üi ' 

shaped with respect to the origin, i.e., r < 0, where r is the radial 
n ~ n 

component of the unit normal pointing into the body. Let D+ be the domain 

of influence of the initial data at time t. Writing equation (l) in 

spherical coordinates, one obtains 

(8) (r Vln S)r 
—5- 

r sin 0 

(u9 sin Q)q u 

2 4 « r sin 0 

W 
-2_4 _ 2_ r sin o 

tt 

c2(r) 
0. 

Multiplying (8) by the operator 

(9) Au + Bu + Cu. 
r t 

and integrating over the entire domain of influence, one obtains 
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(10) J j (Au + Bur+ Cut)^ 

0 D. V 

(r ursin0)r (uesinô)e u 
W 

2 2 2 2 
r sin© r sin© r sin © 

dvdt= 0. 

Now set ru 

(n) 

(12) 

(U) 

V and choose 

A = 2t 

B = 2rt 

c=t2+r* aç. 
Jr0 c2(C) 

For convenience the explicit form of B and C will not be exhibited; however, 

we will exploit their form in the following calculations. After the change 

of variables, (10) becomes 

(14) . 

/ f (Bwr+Cwt) (‘ 
rt r» \ 

am*. +(V^2 + 
w..sin© » , 
tt \ dvdt 

= 0. 
r sin© c (r) / r 

Using the fact that 

2(B« w ) * (Bw‘)_ . B w 2» ^ 2 
r rr' r'r r r 

and 2 (Cwtwrr) = 2(Cwrwt)r - 2 - (Cwpt+ , etc 

one obtains for (l4) 

• f 

ñ 
o Dj. 

L BslnOw2 + 2Csin0w V - Ë “f + Ë|iiî2u® 
r r * r2 sin 8 c2(r) 1 

Bsindw 

V 
© 

- ^CfiinOL,2 . ^ 2sin^w^w^ . CsinOw? . Csin©w? Csin©w: + "aAU^wtwr + ^"t + -X—© 
r sin© c (r) c (r) r / t 

2Bwcpvr + 2%^ \ + ^2sin©Bwewr 2Csin©wewt 

2 ' p 
r sin© r sin© 

+ 4w2rt^i^- sin© 
^ c (r) 

9 © 

drdqnfcdt = 0. 
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Applying the divergence theorem to this equation one obtains 

(15) 
/ {(fVt + B(2Wr - 12 * ¥t r ' " i ' 2/ ^ *r- 

cc(r) ]■ 

Vr 
* sin 0 r sin 0 

Vt) 
1 /% 

(- 
, . 2B v_v 
+ I—g“ 0 r + 

7~Vt ) 
» sinOdSdt 

r1! p J^rt p 
J J 3T c(r) wtsinOdrd«WOdt = 0, 
o D, c vr) 

where rv, and ôy are the various components of the unit normal 

pointing out of the four-dimensional time-space region. The surface 

integral ln (I5) may be subdivided into three integrals • one over the body 

B from time t « 0 to t » tj,» the second over the initial data up to the 

radius r = aj the third over the region Dt . Hiere is no contribution 

for large values of r since the solution is Identically zero outside the 

domain of Influence of the initial data which are of compact support. 

Hie integral over the body, I , is given by 

(16) 

C1 "f 1f ß(2vr * lW|2) rv + r + 2 -jVA] 
0 E L r';oin9 r2 J 

• / V “ ©! 
O B 

sin ödSdt 

r dOdt 
V 
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vuere we have made use of (2), (12) and the fact that ty 

B is star-shaped r^ < 0 and therefore 

(17) Ix < 0. 

0 

The integral over the initial data is 

(18) lr ■ i(C 
o 

c (0 5 

f P vt2 
|V w| + -- I sinOdrdi-pd© 

c (r) V 

We make use of (13) to obtain (l8). By (3), (4), and (^) 

The integral over the region D , I , is written as 
tl ^ 

(19) = »y0 ^“Íy"jWtWr + V12 + ^ j sin0drdq»dö. 

Combining (l6), (l8), and (I9) and \isin^ (17) > one obtains 

“T |c(r) J |Vw|2 sin ©drdqdOdt is positive 

c>) 

on B. Since 

is bounded. 

sin9drcfc|i<iô 

we can subtract 

it from the left side of (20) without destroying the inequality. 
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Consequently we have 

Considering the first integral in (21) 

parts to obtain for this term 

we integrate 

r 

r o 

by 

sinOdrdcpdO 

sinOdrdcpdO • 

Applying Schwarz 's inequality to the term in (22), 

one has 

(25) l4rt;|WtwrC’2(r) | < 2^0^(^ (w2 + c"2w2) 
-li 

Subtracting the positive term 

2 

l 2rt. JL 
2 , 2_ 

r sin 0 
+ ~2 vq ) sin9 ârd^d© 

from the left side of (21), and applying (23) to the first integrand does 

not alter the inequality, and one obtains 
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Nov if we suppose that c(r) is a monotonie increasing function, the 

second term on the right side of (24) would be strictly positive and we could 

therefore neglect this term since the left side would then surely be less 

than Ig. However, if c(r) is not monotonie increasing we proceed as follows. 

In (lO) set A = B = 0 and C = 1. One thus has 

wttslnQ \ 

c2(r) J 
0 • 

Integrating as before one obtains 

/ 1f {2(Vt>r sin 9 + 2 
O D l r sin < 

5, (yin 

9 r2 

2 2 
2 wœ w sin9 wl sinO - -_L . _L_ 
r 2 9 

r sinO c¿(r) 
|- sin Ô 

r /1 

dvdt 
= 0 
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Applying the divergence theorem, there results the following surface integral 

As before,the surface integral is taken over the body B, the initial domain 

and the domain of influence at t = t^. Since v = 0 on B, vt = 0 on B. 

Therefore the integral reduces to the following identity 

(25) + r? )sin 9 drdcpdO 
c2(r) / 

2 

+ Wt 
+ ?— 
c (r) 

^sin 0 drdcpdO. 

This identity expresses the notion of conservation of energy. 

Now consider the last term in (24). 
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The last integral is finite by conditions (3) and (4). By condition (5) 

IV, one has 

Max 
r <r<po 

o o 

(?) 
1/3 

c5(U I2 
¡ rt.sXv. 

' (") 

1/3 2/3 

<-V (L) * — 
- 2?2 V/ y} (0 ■ 

Therefore the left side of (26) is bounded by some finite number which will 

be called 

Choose a sphere Ot which is contained in Dt. Let <>t be centered at 

the origin ond have radius « yt, where 0 < « < < 1. Using (7) and (26) in 

(24) one obtains 

2 

(27) t* (1 . . )2^ w|2 + I§-j sin « drdcpdO 

•ai ltdtit(|vw|2+4) sin0 drdcpde 

< !2 + ri t 1“ ”*/ ^r|ô 
l^l2* \ sin O drdqpde . 

Dt-°t 

Using (b) IV and (25) on the last term in (27) one obtains 
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f%1 tat f 4rl¿ I 

»t-°t 
i^i2 t X 0 , sin 0 drdcpdO 

c'ir)^ 

" [ 4 (w|2+t) sin *drd^ ] [f12 tdt ^ ] 

/ w2 \ 
< NVtf|2 +-j-Jsin « drdtpde J jl2 + 2«'5/'1*!'1 J 

-1-1, -1 
vrtiere = € 7 (27 ) . The last expression is finite by (3) and (4) 

and is bounded by some constant T^. 

Now if we set 

/ hs+ J0).\ At)/ 
sin 0 drdcpdd = E (0t), 

one obtains the following inequality from (27) 

(28) t2 (1 - € )2 E(0 ) - a J t e (ot)dt < i2 + + r2 = Tj. 

Dlls can be rewritten as 

2 /^1 
(29) t* E (0 ) t E (0t) dt < r. 

where = a (1 - e ) -2 

r4 - r3 (1 - b )’2 . 

Set t E(O^) = G(t) in (29) which becomes now 



15 

t G(t) - 

t 

o < r4 or 

Integrating (30) from t = 1 to t = ^ one obtains 

(3D t^/o ^ o (t)« < !1 . + f11 E(0T)dT . 

[Note: The choice of the initial point is quite arbitrary and t 

chosen Jut» • for convenience.] 

But by (25) the last tern in (31) is finite and (31) becomes 

(32) £' o (x)dx < fy +r5) tai 

pi ' ' 
where ^ -/ T e (0T)dT. 

Returning to (29) one obtains 

(33) E(0. ) < 

For large this becomes 

E(0. ) < M t"(2"al) 
Z1 

E(0 ) < 

tl 

1 was 

0 < e « 1. 
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By letting ^ become i«rge enough, any finite fined region »ill 

eventually be included in 0^. Thua for large R c ot and by the 

definition of E (0^), one obtains the result as reiuired^n (6). Unis if 

max 
r <Kpo o 

*§1*1 
is less than 2, one can obtain a rate of decay for the energy in any 

finite region. 
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Appendix 

It is now possible to say something about the decay of the solution 

u of (l) - (5). We have the following: 

Theorem 2: If u is a smooth solution of (l) - (5) in the exterior of a smooth, 

star-shaped ’.nite body B, then 

(34) |u| <1^ t'(l'6/2). 

The proof makes use of two basic lemmas which will only be stated as 

they are quite familiar and appear in [2], 

Lemma 1. Any solution u of (l) and (5) satisfies the inequality 

where R is the region in space between B and a fixed sphere of radius R 

depending only on X,Y,Z. The two positive constants 1^, Kg depend also 

only on X, Y, Z. 

Lemma 2. tet R be a sphere of radius It, then one has 
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ftoo£i Let u be a solution of (1) . (5). Then ut is also a solution of 

(l) - (;) with different functions f and g. Thus ut also satisfies (6) but 

with a different constant By lemmas one and two. 

(37) |u| < KjKj ^ |W|2 Sin e árdalo'] ^ 

Applying (6) to (37) for t such that R < e 7t , one obtains 

+ ~r) Sl!‘ * drd^9 

|u| < Mgt^1*6/^ . 

Thus if a < 2 one will have a decay for the solution. 

References 

[1] Lax, P. D. 
Morawetz, C. S. 

Phillips, R. S. 

Exponential Decay of Solutions of the Wave 

Equation in the Exterior of a Star-shaped 

Obstacle} Comm. Pure and Appl. Math., 16, 
No. 4 (1963) 477-406. — 

[2] Morawetz, C. S. 
The Limiting Amplitude Principle; Coram. Pure 

and Appl. Math., 1^, No. 3 (1962) 349-361. 

[3] Mi ranker, VT. L. 
The Asymptotic Theory of Solutions Au + k2u = 0‘ 
N.Y.U., Courant Inst, of Math. Sei., Research 
Report No. BR-21. 

1/2 



BLANK PAGE 




