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ABSTRACT 

General additive functions called rewards are defined on a "regular" 

finite-state Markov-renewal process.    The asymptotic form of the mean 

total reward in [0,t] has previously been obtained, and it is known that 

the total rewards are joint-normally distributed as    t -► oo.     This paper 

finds the dominant asymptotic term in the covariance of the total rewetrds 

as a simple function of the moments of the per-transition rewards,  and the 

"bias" term of the mean total rewards.     Special formulas for the dominant 

covariance term of "number of visits",  and "occupation time" in given 

states are also derived. 



LIMITING COVARIANCE IN M/JKOV - RENEWAL PROCESSES 

Consider a finite-state Markov-renewal process   which moves through 

states V^'-'-VSc+l'--- at tlnie8 so-0<si<--- Sk<Sk+i<"- 

If a reward is earned during each transition from state to state, and if 

successive rewards are additive, it is of interest to study the total reward 

earned during the interval [0,t]. Typically, the reward earned during a 

transition from i,  to i,   might be a random variable which depends 

upon the values of i, , i, , , S. ,- S. , as well as on the "excess 

time" t-S (S. ^ t < S.+1) of any uncompleted transition. 

Thus, the total reward earned in [0,t] is a random sum of additive 

random variables, and has a well-defined, though complicated distribution. 

The purpose of this paper is to summarize some known results on the 

asymptotic form of the mean total reward, and to present some new results 

on the dominant asymptotic term of the (co-)variance of the total reward. 

These results are useful primarily because a central limit theorem often 

holds for the distribution of total reward, as t -♦ w . 

DEFINITIONS, NOTATION, AND SUMMARY OF RESULTS 

The definition of a Markov-renewal process is that: 

^k+l- J i \+l ^ X + \ I ^ • i • W-1! ' ^ ' V \.l'--Sl'  Scf0) 

k=0,l,2,.. r   K=U,I,Z,.. 1 
= QijCx) = Pi/ijCx) |i,J=l,2,...M j 

In other words, the process may be considered as an imbedded Markov 

chain in which the movement between the M states is governed by the 
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transition probabiiltles   p.,  , and In which the transition intervals, 

T(i. , ^.i ' " ^i, i" SL     are independent samples from the d. f.     ?*    i      (* )  • 
\* k+1 

Thus, once the initial state    1      is given, the bivariate 

distribution    ^ .(')    determines the entire process,  since    p      ■ Q    (oo). 

For simplicity, we assume   F.-Co) ■ 0. 

Let    u,   = t - S     be the elapsed time r;ince the last transition 

(0 ^ u^ ^ 1(1, ,  1,   , )) and define the random variables 

a<V W uk lT(1k' Vi» and b(1k' 1k+i
J "k i^v w» 

for all ka0,l,2,... over the appropriate ranges of the arguments, a 

and b (for short) may be thought of as partial rewards which are accumu- 

lated after a time IL  has elapsed between a transition from state i 

to ij. -jj it is assumed that the Joint distribution function of a and 

b is known, and that all its moments are finite for finite  T . 

In particular, denote the mean partial rewards and the second (cross-) 

moments of a and b by: 

p^(u i T) - E{a(i,j;u | T)) ; p^(u | T) - E{[a(l,J;u | T)]2) ; 

AB 
p1(3(u | T) - E{a(l,J;u | x) b(i,J;u | T))    (l) 

etc., and let 
M 

Pitj(T) - PijCx |T) ; p^ » f  p^T) dP^Ct) ; P1 - ^^(2) 

J-l 

M 

and   pa A71! Pj. 

i«l 
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be the final transition reward, and its various average values,  for all 

moments of (l).    The    m    are the stationary probabilities of the associated 

Markov chain probabilities,    p. .  . 

The total reward of type A earned in    [C^t]    is defined as: 

V^" I a(v l^i; T(1k' w i^v w^ + 

(3) 
+ a(iN(t),  iN(t)+lJ UN(t) lT(lN(t)' VtKl^ 

where   N(t) ■ sup{k ^ 0: 8.  ^ t)    is the number of transitions In    [0,t]. 

(if   N(t) ■ 0,  the first term in (;, is _ero).    Thus, the total reward 

is the sum of all the total transition rewards accumulated during   N(t) 

transitions plus the partial reward earned during the excess time.    A 

similar expression holds for    D.   (t) . 
x0 

We shall denote the mean and second (cross-foments of the total 

rewards    A   and    B    by: 

I^(t) - E(Ah(t))    ;    ^(t) . ECCA^t)]2)  ;    ^(t) - E(Ah(t)Bh(t)} 

ik) 

etc. 

It is straightforward to calculate the Joint distribution of A(t) 

and B(t) from the Joint d.f. of a and b . However, in this paper, we 

shall concentrate on the limiting forms of the means and (co-)variances 

of these total rewards, as t -* » . These are important, since it is 

well-known that in most "regular" cases of an M.R. P. the limiting Joint 

distribution of several additive functions such as A(t) is the multi- 

variate normal     . Thus, knowledge of the dominant terms in the means 
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and covarlances gives a very good approximation to the Joint d, f, for 

long observation times; and, it is these terms which are useful in dynamic 

progracmiing of an M.R. P. with infinite horizons1 . 

We shall restrict our attention to the case in which all the states 

in the Imbedded Markov chain are positive recurrent, and in which the first 

two moments of the first-passage time d. f. s, G. .(•), are finite; it 

is also convenient to assume that all the G. .(•) are non-lattice, 

although this is net restrictive if the limits are defined correctly    . 

For references to cases in which the limiting distribution may not be 

normal, see Reference 6. 

The dominant term and the next term (here called the "gain (rate)" 

and the "bias", respectively) have previously been found for the mean of 

A(t), as t -♦ oo L ""• ■'.  In Reference If, MILLER finds also expressions 

for the dominant covariance term for semi-Markov processes (p.. ■ 0, all l) 

with Ma2 and 5 states.  In Reference 5, FYKE expresses the dominant 

covariance term for general M, R. P. s by finding a closed form for the 

second moment of that portion of A(t) between successive returns to 

a given state; the results are expressed in terms of a renewal function 

for an associated M. R. P. with an absorbing state. 

The main contribution of this paper is expression of the dominant 

covariance term as an explicit function of the bias term of the mean 

rewards, - that is, in terms of the first two moments of the first-passage 

d. f. s.  This expression also includes the excess partial reward in (5)» 

which is not considered in the othei- references. As special cases, 

explicit formulas are found for the variances and covarlances of the number 

of times a given state is entered, and for the occupation times of a 
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given state. 

Special results which are needed for this development are given in the 

Appendix. 

MEAN TOTAL REWARD 

It is easy to show that the mean of (5) is given by the renewal 

equations: 

M 

<(t)-p^c#t)+ £  r Hj(t.x) dQ^x) (5) 
J-G. 

for all t ^ 0 , and for all starting states h . A similar expression 

holds for the mean total reward of type B . 

The transient term in (5), C7h(t) , is: 

M 

j-i  * 

which we define for all iroments of (l). Under the finiteness assumptions 

of those moments, we have lim,    Ou(t) ■ 0 J we set: 7 t -* » h 

hJ rah(t)dt   and  S-^TTJSJ   , (7) 

M 

which are finite. 

Let N (t) be the number of times a transition is made into state j 
J 

during [0,t], and define the renewal function. M^fa) ■ E[N (t) | i - h] 

and its (LaPlace-Stleltjes) transform, 111.(3) a   /  exp(-st) dK^t) . 

From equation (A.7) of the Appendix, the (LaFlace) transform of (5) can 

then be written as: 
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M M 

J-l J-i 

where the tilde is used for the transform of the appropriate functions. 

It is well known^1-' that: 

^(a) (9) 

a>  « —>U—  - - 0  + 5 
hJ  2(u )2   a     ^ 

with the limit possibly being taken in the Ces&ro sense,  (in (9), 

|ij.' io the k  moment of the first-passage-time d. f.; see the Appendix). 

In terms of the renewal function bias, ax.  ,  it is then possible to 

u^ a theorem due to Sraith1' , or the usual Tauberian limit theorems 

[2] of transform calculus to ehow that  : 

limt-«. CRh(t) " gAt] "^ + o(l) (10) 

with the reward gain rate being given by: 

M 
A 

g I ^/^) (11) 
J-l 

and the reward bias as: 

M M 

%" I VJ "I ^/^   • (12) 
J-l        J=l 

A similar result holds for the asymptotic form of the mean total reward 

of type B .  Notice that neither of the domi:iant terms in (9) or (10) 
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depends upon the starting state;   this Is a consequence of the assumption 

that the imbedded Markov chain is ergodic, and may be generalized,  if 

.   .   „ t5][6] desired 

THE DOMINANT COVARIANCE TERM 

By the use of arguments similar to those which led to  (5), one may 

show that the second (cross-)moment of total reward is given by the 

renewal equations: 

M 

iml (15) 

M M        t 

I lo'Zi™ ty-x) v +1 /0 
H5B(t-x) dv 

J-i j-i 

for all t ;> 0, and all starting states h . 

By taking the transform of (15) and using (A. 7) and (8), one may 

then find an explicit expression for K~(s), in terms of nij-Cs) 

and the various rewards similar to (8); we shall not reproduce it here 

since it includes at least six rather complex terms. 

The procedure is then straightforward, although tedious: the limiting 

AB, v 
forms of each of the terms are then examined, and ^ (t) is found to 

2 
be asymptotically of the form   kpt    + k.t + k    + o(l) .    The limiting 

A B 
form of    R (t) R (t) ,    obtained from (10), is then subtracted, and the 

quadratic terms cancel.    The dominant covariance term {lk) 

a t-»oo t tr>»LL^/t ■ft 
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Is then found to be, after a great deed, of algebraic manipulation, and 

use of the forraulas of the Appendix: 

h 
1 
v 

AB 

M   M   M 

+ 11 IVij kifjA + *lf>tA] 

< i-XJ-lksJ. 

-AB     ^B A 
.   (^ P  > ^ P  ) 

V 

(15) 

for all h , with 

M    M 

- II ^i rxpij(x)dQij(x) 

i«i>i 

(16) 

and M     M 

v Vijvij 
Inl   Jal 

J      V^ -E{T(1,J)) 

AB       _AB 

(17) 

As might be expected on Intuitive grounds,    CT     ■ C       Is Independent 

of the Initial state    h . 

A somewhat simpler expression results If we substitute the appropriate 

gains and biases from (ll) and (12): 

.AB      1 AB 
M      M 
V     \ r A    B        B    A, +   L    Z. VlJ[plJWJ + P1JWJ] 

L 
1^1 J-l 

A. B      .Bv        B, A        A. 
g(S    - X ) + g  (S    ->) 

(18) 

In either case, the correct dominant term for the variance, C;  , 

is obtained by setting B equal to A . 
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IIUMBER OF VISITS AND OCCUPATION TIMES 

As important special cases, let us consider the asymptotic means 

and (co-)variances of: the number of times a state J is visited 

in [0,t], n.(t) ; and the total occupation time of a state J in [0,t], 
J 

T.Ct), defined as the total time for which state j la the last state 
J 

visited. For definiteness, we shall consider only states 1 and 2, 

although the results can clearly be extended to any (sets of) states. 

The starting state is always h . 

We have already indicated that: 

limt ^ jCECN^t) |i0 - h] - ^(t)) - (T^t/v)! "^ + 0(1)  (19) 

where we have used the fact that [i, , = V/TT, , (A.2). A similar 
J J J 

formula applies for state 2. 

It is easy to show that: (20) 

limt ^ {E[T;L(t) | i0 = h] -  (7T1V1 t/v)) = Cü^V1 -  (7T1v;[
2)/2v)+ o(l) 

where 
M 

'^ = XPiJE[C'r(i,J)3k} (k-0,1,2,5...) 
J=l 

To find all the   (co-)variance terms,  we substitute in the appropriate 
Nl      , Tl 

terms for the mean rewards.   (For example,    p. . (t | T) » 6.,   , and    p   .(l | T) - 

Nl Tl (2) "l 
6    t ,  for all    J  ,  and all    0 < t ^ T);[S      = 0 ;  S      » ^v^  72 ;  A      = 

Tl (2) 
77 v,   ; >>     ^ ^i vi      > an<i so on* ^   We f inci: 

C "    7 ^l^  +7T^21) ('     • 
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cll%-^ArV-v-{    (   /    } (22) 

(25) 
M M 

iT2 i r    v1 v Vo    (2)     (2) i c    ■ v Ivs L pijvijü)j2+ Vi 1 ^J^JI - — (viv2 + v2vi ); 
J-l J-l 

J-l 

N1T2        if V V2V22)\ c    a 7iV2ai2 + 7r2Z. ^j^fji —v—; 

M /_  ^ (2) 

(25) 

c     3 v iVi^Li +7riIVifji -   ^^— J (26) 

To obtain the above forms, some formulas of the Appendix must be used, 

particularly (A. 12): 

Formula (22) above is well-known, but it is believed the others are new. 

For a 2-state semi-Markov process (p ^ ■ P29 ■ 0) , formulas 

(22), {2k),  (25), and (26) agree with MTT.T.F.R'- ■*. The others are not given 

by him. 

MARKOV CHAINS WITH SINGLE-INDEX REWARDS 

Consider a discrete-parameter Markov chain in which the rewards 
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depend only on the state entered, i.e. p (t | l) ■ p > for  all 

0 < t ^ T = 1, and all J . Then (15) becomes: 

M MM 
AB        AB      0   V        A B       V    V /AB        B A. .„. 

C      = p      -  2   ^^PiPi +   l    L^iftSö  + PiPJ) (27) 

1=1 l=d   JrJ. 

where, of course, the 0). . now have a simpler solution, since all trans- 

ition intervals have unity length.  If we make the substitution: 

cij = ^Aj + ^ji * ^i6ij ^ 

then M MM 
nAB       V      f AB        A Bv   V V A     B fon^ 
c = 2/1^1 -pipi)+ L z.picijpj (29) 

1-1 lal   J^l 

[5] which is a slight generalization of a formula in KEMENY AND SNELL ^J 

(Theorem k.6. 5., p.   87). 

We note that (9) does not agree with KEMENY and SNELL, since their 

limiting process is over the Integers k=«C,l,2,..., and in our notation 

they obtain: 

"Vo,!^...»^ " (kV] =% + (1/2 ^ + oa) 

and similarly for (lO).  This affects only the bias term . 

(50) 

NUMERICAL EXAMPLE 

As a numerical example of the calculation of the variance,  consider 

the example of Reference 2,  in which a two-state alternating process 

(p      B p      =1)    represents a running machine   (State l) or one that has 
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broken down. The two (maintenance, repair) policies which tied in gain 

rate, g , were: 

I.     (cheap maintenance,  expensive repair) for which 

a(l,2; u | T) o lOOu (0 ^ u <. T)  ;    ^^ a h day8 

a(2,l; u | T) = -100 - 200u  (0 < u ^. T)    ; v      = 1 day 

and II.     (expensive maintenance,  expensive repair) which changes transition 

(l,2) rewards to: 

a(l,2; u I T) = Qka (0 ^ u ^ T)    ; v      - 5 days. 

Note that these are deterministic, linear rewards, giving simple forms 

for (l)  (2)  (6)  (?) and  (17).    Letting      a*    «   V^ -    ^j]2      be the 

variance of the transition time, we find the asymptotic forms of the mean 

reward (lO) to be: 

Policy I: R^t) B 20t + 150 - 8 a12 + 22 0^ + o(l) 

R2(t) = 20t - 1^) - 8 o2
2 + 22 a^ + o(l) 

Policy II: R^t) ~ 20t + 151 2/5 - 5 l/5 ^g + 18 1/5 C^ + o(l) 

R2(t) = 20t - 168 1/5 - 5 1/5 ol2 + 18 1/5 a^ + o (l) 

2 
It is important to note that   o,p    would,  in general, be different in 

Policies I and II. 

In Reference 2, we resolved the tie in gain rates for deterministic 

2 2 
transition Intervals  (all    0, , = 0)    in terms of the bias of Policy 2.(151T > 150) 

IJ 5 

If we now compute the dominant term of the variance of reward, we obtain: 

Policy I:        Var A, (t) • (l,280 o2 + 9,680 (£ )t + o(t) 71 12 21 (h^2) 

Policy II: Var    A^t) Z  (682 2/5 0^ + 8,066 2/5 O^h + o(t) 
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which are of rather large magnitude for moderate    t  (lOOjSay), and 

exponential transition time d„f. s.     If we attempt to resolve the tie 

on the basis of minimum variance, we see that different values for 
2 

0      in the two policies could break the tie either way.     Of course, 

deteministic transition times give zero for the dominant variance term. 

CONCLUSION 

As indicated in the beginning,  it is possible to extend these 

results to more general M. R. P. j    however,  it is clear that soon certain 

terms retain their dependence on the Initial state, or cease to exist. 

It is also possible to find the next  ("bias") term of the covariance 

explicitly;  however,  this term depends upon the initial conditions, and 

appears to have little practical interest. 

The primary application of these results would seem to be in the 

fact that variables    ([^(t) - R^(t)]/vTt)   j   {[B (t) - R^(t)]/>/t)   ;.... 

have a limiting multivariate distribution with zero mean and (co-)- 

variances    C   ' ,  C;      ,  etc.    For instance,  this might make certain problems 

of estimation easier.     Another possibility might be the selection of 

"independent" rewards as linear combinations of other conflicting, 

covariant goals,  for a given iMarkov-renewal process. 
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APPENDIX 

We summarize certain formulas on M. R. P. s which are needed in the 

text.     Some of these formulas are from References 1 and 5.     (in all that 

follows    i,J,  = 1,2,...M). 

Let    v^.      and   (jj.        (k-0,1,2,.)    be the    k        moments of the 

transition interval d. f.,    ?..(.),  and the first-passage time d. f., 

G, .(•)  ,  respectively;    the superscript of the first moment is suppressed, 

and it is assumed that the first two moments are finite.     We define the 

averaged moments successively as: 

M M 
,00   V    „oo oo    V .» vi   =, L pijvij       and   v LVi 

J=I i-i 

where the    TT.     are the stationary probabilities associated with the 

imbedded Markov chain.    These two sets of moments are related through 

the    p        by: 

M 

^J  ^ Vi    +  I^Aj (A.1) 
k=l 

M M 
(2) (2) V V (2) 

^ij    =    Vi        +    2   lPikViÄj+  L^kJ (A-2) 

k=l k-1 
k^J k^J 

5/ summing (A.l) and (A. 2) when multiplied by TT. , the simpler diagonal 

moments follow: 

Mj. = (v/^) (A. a) 
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M     M 

^)"(1^){v(2) + 2I IWiAj} ■    (A-5) 

1-1 k-1 

Let   K '' N    be the number of times state    J    is visited In [0,t], 

and dei'i; -  ohe renewal function    »^.(t) - E{N (t) | lo - h)   (Thlp Is 

6, .    more than the renewal function used In References 1.  2. and 5). 
nj 

By direct arguments: 

M t 

k«l     u 

Define f(s) as the LaPlace transform of f(t) , or the LaELace- 

Stieltjestransform of F(t) - / f(x)dx . Then {k,h)  has the transform: 

M,    0 

\^B)m\l+  IW8)\j(8) (A-5) 
k-1 

By direct arguments, the Indices under the summation can be changed 

so that: 
M M 

Is*(8) \iM ' I V8' \iM (A-6) 

k=l k=l 

for all    h,    j,    and   s > 0 .  Denoting the corresponding matrices 

by dropping the subscripts and the transform argument,   (A, 6) reads: 

q m ■ m q    ,  and from (A. 5) we get the Inverse matrix: 

[I  - q]'1 -m (s > 0) (A.?) 

with    I    the Identity matrix.     (A. 7) Is particularly useful In solving 

the renewal equations of the text. 

It Is well known that, under the assumption of an ergodlc Imbedded 
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Markov chain, non-lattice    G. .(. )    with finite first and second moments,  the 
^ J 

limiting renewal function hns the form: 

llnt>- V^-^V3-^*0^ (A-8) 

with (2) 

^"A ■^+ ^ (A-9) 

(With lattice   G. .(.),  (A, 8) still holds as a CesÄro lljnit.) 

It then follows from (A. 5),   (A.6), and some Tauberian eurguments that: 

M 

L . y p (-L.) (A.10) 

M ^M v M 

I^^ja iv^j+ ir: -1 4 pkAj (A-:L1) 
k-a k=l JJ       k-1 

v 
k«l 

M      M 

i-1 J-l 

These last four formulas are believed to be original;    they are particularly 

useful in reducing special forms of (15). 

Similar forms obtain for the gain,    g ,    and bias term,    w     of the 

mean reward (lO),   (ll), and (12).    We have: 
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M 

g I w ■ e (^ 
M 

v I O^p, - (S/v) (A.15) 
kpl 

M 

wh + gv h ■ ^+1 phkvk (A-16) 

M MM 

I Vwk • I I "WW^ + gvh - ^ (A-
1

?) 
k-1 IüBI ^1 

M     M 

i V ^ 

k=l i-1 

M     M 

I I Vi/i/j • i ^^ -s (A-18) 

i-1 J-l 

Equation (A. 16} Is used in the policy-Improvement portion of an 

[21 
algorithm for dynamic programming In a Markov-renewal process 
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