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PREFACE 

In this Memorandum the author indicates how the 

mathematical technique of dynamic programming can be used 

to handle a number of processes that arise in biology, 

engineering, economics, and psychology, and, in general, 

to deal with a wide class of problems that require 

learning and adaptation because of insufficient informa- 

tion about the nature of the underlying process. 
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SUMMARY 

The intensive study in recent years of a variety of 

descriptive and variational processes,  such as those 

which arise in biology, psychology,  engineering,  and 

economics,  has uncovered many problems which are too 

complex to be solved by classical mathematical techniques 

In order to describe some of the difficulties  involved, 

the author briefly reviews  the essentials of the 

classical approach for dealing with processes of this 

sort,  in which there is insufficient information about 

the state variables.     He then indicates some of the ways 

in which dynamic programming and adaptive control may be 

used to bridge  the gap between classical and modern 

theories.     Finally,   the author  indicates  some of  the 

problems encountered in the study of  adaptive processes 

and suggests  some directions  for  future research. 
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DYNAMIC PROGRAMMING,  LEARNING, AND ADAPTIVE PROCESSES 

1. INTRODUCTION 

The recent intensive study of biological, medical, 

psychological, engineering, and computer processes has 

uncovered large numbers of problems which escape not 

only solution by means of classical mathematical tech- 

niques, but even formulation. 

In order to see what some of the difficulties are, 

it is necessary to understand the essential features of 

the classical approach to descriptive and variational 

processes. We shall briefly review the essentials of 

this approach and then indicate some of the ways in which 

dynamic programming furnishes a natural bridge between 

classical and modern theories. 

Finally we shall indicate some of the major problems 

which are encountered in the study of adaptive processes 

and suggest some directions of research. 

2. DETERMINISTIC DESCRIPTIVE PROCESSES 

Let S be a physical system under examination and 

let us introduce a set of variables x,,X2/...,xN 

describing the state of the system at any time t.  The 

vector x(t) = (x, (t),..,,xN(t)) is called the state 

vector.  To determine the behavior of the system over 

time, we further postulate an equation of the form 

(2.1)    ^ - g(x(s), ~CD < s < t). 
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where the notation indicates that the function g depends 

upon the entire past history of the process.  In many 

situations, we can assume that (2.1) has the form of an 

ordinary differential equation 

(2.2)    ^ - g(x), x(0) - c; 

see [1] for the more general case. 

The study of the properties of the system S has 

thus been reduced to the study of the analytic behavior 

of the solutions of a differential equation, a 

considerable reduction in difficulty. 

3^ STOCHASTIC DESCRIPTIVE PROCESSES 

It w i soon recognized that this concise description 

of a physical process was either not available or not 

applicable in a large number of significant situations. 

Either the functions g(x) were not known, or if 

precisely known, of such complicated form as to be 

unusable due to the high dimension of the vector x.  In 

other cases, the initial state was not known. 

To circumvent these difficulties, which at first 

sight appear to be major obstacles to progress, random 

variables were introduced, wit-h average behavior 

replacing unique behavior over time. 

Thus, (2.2) might be replaced by 

(3.1)    al - g(x(t),r(t)), x(0) - c. 
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where c is a random variable and x(t)  is a random 

function of  t.  In some cases, as in quantum mechanics, 

the random variables are not explicit and the equations 

are of the type shown in (2.2), with the components 

representing probabilities or else functions from which 

probaoilities are generated. 

4. DETERMINISTIC VARIATIONAL PROCESSES 

In the study of control processes in engineering 

and economics, we encounter quite naturally the problem 

of minimizing functionals of the form 

T 
(4.1)    J(x) - | g(x,xl,t)dt, 

0 

where x is subject to various initial and terminal 

conditions as well as to local and global constraints. 

In mathematical physics, these questions arise in 

connection with alternative formulations of the behavior 

of systems. 

5. DISCUSSION 

In pursuing this classical route, we tacitly assume 

detailed knowledge of the following: 

(5.1)(a) number of state variables, 

(b) cause and effect, 

(c) values of state variables,   initially and 

throughout the process. 
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(d) probability distributions—if random 

variables are present, 

(e) criteria—if ehe processes are of 

variational type. 

How do we proceed if this information is not 

available? 

6. LEARNING AND ADAPTIVE PROCESSES 

Since we are treating new types of processes and 

problems, it is reasonable to expect that we will intro- 

duce some new concepts and some new analytic tools.  The 

new concepts are those of learning and adaptation, and 

the new tools are dynamic programming and adaptive 

control. Just as the boundary between learning and 

adaptation is not precise, so there is considerable 

overlap between dynamic programming and adaptive control. 

It is clear that there is little to be done about 

ignorance in the short run.  Hence, we focus our 

attention upon multistage processes where information is 

obtained at each stage.  The basic problem is that of 

using this information so as to improve decision making. 

Fortunately, a fundamental idea from the field of 

engineering, namely, feedback control, provides the 

essential clue.  A mathematical abstraction of this 

leads to the theory of dynamic programming [2,3,4]. 
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With this mathematical apparatus we can handle a 

number of processes which arise in psychology, biology, 

medicine, economics, and industry—all fields where 

learning, adaptation, and feedback play primary roles. 

The feedback to mathematics itself is in the form 

of new ideas and new fields in which to roam. 

7.  ITERATION AND TRANSFORMATIONS 

Let us begin at the classical level with the concept 

of a transformation.  Let p,  a point in phase space, 

denote the state of a system S and let T(p)  denote 

the state a unit of time later.  Then the behavior of 

the system over time is equivalent to the study of the 

iterates,  PTJPO*•••iPn*• • •^  where 

(7.1)    p1 = T(p),p2 = T(p1),...,pn+1 = T(pa). 

8._ DYNAMIC  PROGRAM?fING 

Let us  now extend  this   idea  in the  followio^  way. 

Instead of keeping the  transformation fixed over  time, 

let us  suppose  that we have  a choice of  the  transformation 

to be applied  at each stage.     If    q    denotes  the choice 

variable,   or control variable,   we have 

(8.1)     pl  «= T(p,q1),p2  = T(p1,q2),...,pn+1  = T(Pn^qn) 

The q.  are to be chosen so as to minimize a given 

criterion function 

,. • • 



(8.2) RCPJP^.. .^^2* •••) 

A set of    q.     is called a policy,  and a set whi-h 

minimizes  is  called an optimal  policy. 

If we  assume  that    R    has  a separable  structure, 

(8.3) R  = g(p,q1)  + g(p1,q2)  + •••, 

and  introduce  the  function 

(8.4) f (p)  = min R, 
[q] 

then the principle of optimality [2,3,4] yields the 

functional equation 

(8.5)    f(p) * min [g(p,q1) + f(T(p,q1))]. 

^1 

In the continuous case, the analogue of (8.5) yields 

as a by—product the Euler equation and the entire set of 

classical conditions of the calculus of variations [5]. 

9.  ABSTRACTION AND EXTENSION 

Since we have carefully avoided defining the phase 

space to which p belongs, nothing prevents us from 

taking p  to be a point in an infinite—dimensional space 

or from choosing as components of p probability 

distributions, past histories, and so on. 

We thus have a quite general formulation of multi- 

stage decision processes.  It remains to apply this 

formalism to the study of learning and adaptive processes. 
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10.     ADAPTIVE  PROCESSES  AND LEARNING 

The fundamental  tool  for  treating   ignorance  is 

probability  theory.     If  we do not know the value of a 

parameter,  we  assume  that  it is  a random variable with a 

given  probability distribution.     If  we  do  not know the 

probability distribution,   u    take  it  to be  a random 

probability distribution,   an element  of  a  family of 

probability distributions.     If we GO not know the 

family   ...  and  so on.     In  this way,   we  are   led quite 

naturally to  the consideration of hierarchies of 

uncertainties;   see   the  discussion  in   [6], 

The generalized  state of a system     S     in an 

adaptive process  consists   then not only of   the usual 

physical  state,   but contains also  the best  current 

estimates of unknown  quantities.     These  estimates may be 

numbers,   e.g.,  expected values and variances,  or they 

may be  probability distributions. 

At  each stage of  the  decision process  we must make 

a decision,  a choice  of     q,     and we must  estimate  the 

new state    T(p,q)     on  the  basis of new information.     Note 

that  in many cases,   part  of  the decision process  is  the 

determination of  how much  effort  is  to be devoted  to 

obtaining additional   information. 

For analytical  details,   see   [7],   [4]. 

"Learning" can now be  interpreted on several  levels, 

consistent with  the concept of hierarchies  of uncertainty. 
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It  is  first of all  the ability to estimate efficiently 

at each stage so  that ultimately the unknown elements 

become known.     It  is  secondly the ability  to estimate 

inabilities—to—estimate on  the basis of a model of simple 

uncertainties,  and  to  introduce more  sophisticated 

uncertainties,  and so on. 

We  see  then  that we are  led to  the concept of 

levels of  intelligence,   an  idea which  is  quite  important 

in connection with  the construction of automata. 

11. APPLICATIONS 

Let us note that these ideas can be applied to the 

construction of simulation processes, both in the business 

area [8] and in the field of psychiatry [9].  They afford 

a simple and flexible framework for the study of many 

multistage processes and have many immediate uses in 

modem control theory [4]. 

12. COMPLEXITY 

As  far as obtaining  numerical answers   to  numerical 

questions  is concerned,   we  are nowhere near a satisfactory 

situation.     If  the  dimension of    p     is   small,   we have 

efficient  routine  techniques using digital  computers;   if 

the  dimension is   large,   e.g. ,   10,  or  if    p     has components 

which are  functions,   these  methods  fail.     Although a 

number of approximate methods  exist which enable us  to 

treat many additional classes of problems—e.g.. 
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polynomial approximation,   stochastic  approximation—we 

have  not  really come   to  grips  with complexity. 

In particular,   we  have no  idea at   the  present of how 

the  human mind handles   situations   involving huge masses 

of  data,   conflicting   information,   and   imprecise criteria, 

and   then makes  a decision. 

It  seems  quite  clear  that  when we   someday understand 

the  neurophysiological  basis of  the  human memory,   or 

memories,   and   the  human  data—retrieval   system,   then we 

shall  make progress   in  other areas.     Furthermore,   when 

we   agree  to emancipate  ourselves   from  the   restriction of 

universally  true   theorems  and   theories   and  study approxi- 

mations   in  logical   space,   then we   shall   develop powerful 

approximation methods   in  science. 
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