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ABSTRACT

A survey of work on rotating boundary layers on axisymmetric

bodies is given. Exact similarity solutions are discussed and the

limits for which the effects of transverse pressure gradient and

curvature become predominant are noted. A general momentum-

integral solution for both laminar and turbulent flow is presented,

using a simplified form obtained from the generalization of simi-

larity properties to include shear laws applicable in turbulent flow.

The interaction of the boundary layer and the outer flow is dia-

cussedand solved for some examples of enclosed flows. Implica-

tions of such an interaction for certain aspects of the tornado

problem are noted.
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NOMENCLATURE

A boundary-layer interaction parameter defined in Eq. (6-1)

a stagnation-point inflow gradient

C normalizing factor for the similarity velocities of Eq. (3-2)

c constant in the shear law of Eq. (5-3a)

c I , c 2  constants in the shear laws of Eqs. (5-5) and (5-6)

C I iterated shear law parameter of Eq. (5-25)

f? normalized meridional velocity profile in the boundary layer

g normalized tangential velocity profile in the boundary layer

K body thickness as defined in Eq. (3-1)

k i , k2  momentum-integral constants evaluated in Table 1

I characteristic axial length

rm radial mass flow through the container of Figure 6 (positive for
radial inflow)

n boundary-layer coordinate normal to the wall

P normalized pressure variation across the boundary layer

p pressure

Q boundary-layer volume flow divided by Zir

R radius of the body or wall

r radial coordinate

defined in Eq. (6-4)

r*' viscous core radius of the tornado

Re radial Reynolds number, rn/2nipv (positive for radial inflow)
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NOMENCLATURE (Continued)

8 boundary-layer coordinate along the wall

O maximum value of u 8

U velocity component in the s direction outside the boundary layer

u radial velocity

un boundary-layer velocity component in the n direction

u boundary-layer velocity component in the s direction (positive
in the direction of increasing s)

V tangential velocity outside the boundary layer

v tangential velocity

w axial velocity

x similarity variable in the slender-body transformation of
Eq. (4-2)

z axial coordinate

Cexponent in the power-law variation of the body of revolution

P exponent in the power-law variation of the velocity

r vr outside the boundary layer

6 boundary-layer thickness

curvature parameter defined in Eq. (4-9)

n/6(s)

{[(R + n)IR]2 - l)/f

)L I , X3 profile constants liven in Table I

Iexponent in the shear law of Eq. (5-4)

v kinematic viscosity
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NOMENCLATURE (Continued)

P density

T ~(Z + ) / 2(l + pL)

T Ts wall shear components

4' axisymmetriC stream function

angular velocity

Subscript

o denotes value at s 0
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I. INTRODUCTION

The boundary- layer problems considere!d herein are for an axisymmetric

steady flow of a viscous incompressible fluid, rotating with some circulation

distribution which is not restricted a priori in any way, on walls which are

also necessarily axisymmetric. Admittedly this generality leads to the

inclusion of some artificial-looking cases, but the extra effort is justified by

the clarification it provides for some limiting singular cases of practical

interest.

Boundary layer problems in rotating flows are unique inasmuch as, for

Imany applications, a strong interaction exists between the boundarf layer and

i the outer flow. A method in boundary-layer theory, which has the flexibility

and simplicity needed for the solution of such problems, will generally turn

out to be an approximation involving some variation of the classical momentum-

£integral method. A critical evaluation of such a method involves comparison

with known exact solutions, which in turn are always based on some similarity

properties that hold for certain external conditions, at least in limited regions.

The first part of this paper will be devoted to a review of similarity solutions

together with discussion of the limitations of the flow regime in which the
solutions are valid. Next, a momentum- integral method will be established

the laminar case in a form which is well suited for generalization to

turbulent flow, and finally, applications to the interaction problem will be

discussed.
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II. DIFFERENT TYPES OF ROTATING BOUNDARY LAYERS

In this section, different types of rotating boundary layers are delineated

depending upon the orientation of the wall to the axis of rotation and the role of

the driving pressure gradient. Because of the strongly preferential

direction along the axis of rotation, walls which are circular cylinders

parallel to the axis lead to flow prolems quite distinct from those connected

with nonparallel walls. The radius of the wall surface from the axis of rota-

tion is called R. Three cases of R = const. are considered first, then R

const. is discussed, and finally the precise distinction between these cases

is determined by finding how nearly constant R must be for the R ; const.

cases.

The boundary-layer simplifications (valid if the boundary-layer thickness

is much smaller than R) reduce the axisymmetric Navier-Stokes Equations for

constant property fluids to the following set of equations, expressed in

boundary-layer coordinates s and n, along and normal to the wall meridian

(e.g., Ref. 1):

au VdR Iau 8
U s -v +v a v

Us 8vR + 'In V a v  
(2-2)

Snn

v_ 2 [1 (d 2--1 2 (2-3)R u-'s' P F

a + n 0 ( Z - 4 )
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Here, u and un are the velocity compontents along s and n, v is the
tangential velocity, p the pressure, p the density, and v the kinematic

viscosity.

If R is constant, then un and ua are the radial velocity u and the

axial velocity w, respectively, and s = z, which is the axial coordinate. It

is seen that in this case Eq. (2- 1) is completely decoupled from the circum-

ferential flow unless 8p/8z depends on it. Boundary layers nn circular

cylinders parallel to the axis can be divided into three classes depending

upon the role of ap/Oz, as discussed in the following paragraphs.

Consider first the case where ap/Oz is independent of v. From Eqs.
(2-1) and (2-3) it may be deduced that this will occur either if v is small in

I
comparison with w or if v is independent of z. Equation (2-1) then is the

classical boundary-layer equation with the corresponding usual estimate of

the boundary-layer thickness 6:

6 "(2-5)

With v independent of z, Eq. (2-2) can be formally integrated to give

v = const. (exp 2u dn) dn (2-6)

To be consistent, it is seen that the radial velocity u must also be independent

of z. Also, continuity requires that the axial velocity and consequently the

axial pressure gradient be linear with z. In the special case when w vanishes,

the possible solutions degenerate to the "suction" case with u constant and v

given by Eq. (2-6).

1The family.of the corresponding solutions without boundary-layer assumptions
was investigated systematically by Donaldson (Ref. 2).
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An example of this first type of boundary layer with a nonvanishing

pressure gradient is the case of the superposition of stagnation-point flow

with a constant line source to form a "stagnation circle" on a coaxial cylin-

drical wall. In this case the inviscid flow outside the boundary layer is

given by

u = -a(r - R /r) I w = 2az (2-7)

In this example, Eq. (2-1) becomes identical with the boundary-layer equation

associated with two-dimensional stagnation-point (Hiemenz) flow. Rotation of

the cylinder may be superimposed without affecting u and w. The tangential

velocity distribution in the boundary layer is then determined from Eq. (2-6).

Next, consider the second type of boundary layer in which the axial

pressure gradient is coupled to the pressure gradient across the boundary

layer. The terms in Eqs. (2-I) and (2-3) are of the same order if the orders

of v and w are connected by the relation w v 46/1R. This relation together

with the estimate of 6 from Eq. (2-5) leads to

6/ z R W~ AV \l/ (2-8)
6..e(2)\R/

This type of boundary layer was first considered by Stewartson (Ref. 3). He

calculated similarity solutions for cases in which either a semi-infinite

cylinder was rotating in a fluid otherwise at rest or a fluid was in solid-body

rotation within a stationary cylinder, and also considered the shear layer at

the interface of a rotating body of fluid bounded by a body of fluid at rest

(Ref. 4). It should be noted that in this type of boundary layer the axial

velocity w, although actually smaller than v (which provides the driving.

pressure gradient for w), is only smaller by a factor involving the fifth root

of the Reynolds number.
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Third, consider the case in which the boundary conditons force the
axial velocity to be much less than the circumferential velocity. From Eqs.
(2-I) and (2-3) the axial pressure gradient must then be of higher order
(in an expansion parameter which turns out to be a Rossby number) than the

transverse pressure gradient. This means that the leading term for v must

be independent of z. Equation (2-6) is then valid again for v, with the
attendant restriction that u must also be independent of z. Again, through

continuity, w has to vary linearly with z. This approximation reduces the
equations to the form considered in the first case, but their interpretation is
now quite different. In the first case, u and w were completely independent
of v, so that the flow pattern might have existed even if v = 0. whereas in the
present case the secondary flow quantities u and w are strongly ccupled to

v through the higher order approximation of the rotation, which is z-dependent.
This expansion procedure for small Rossby numbers has been systematically
developed by Lewellen (Ref. 5). Actually, the boundary- layer approximation
is only of incidental advantage for this method; no restriction on the charac-
teristic radial dimension of the flow is required in its original formulation,
which will be discussed further in connection with the boundary layer-rotating

flow interaction problem in Section VI.

If the radius of the wall generator has an appreciable variation, the
radial pressure gradient has a component which enters the meridional

momentum equation (Eq. 2-1) and provides a coupling with the tangential

momentum equation. This yields the fourth type of rotating boundary layer

which is the most commonly considered case. Prandtl's classical assumption
to neglect 8 p/On applies and leads to the elimination of Eq. (2-3) from the

system of boundary-layer equations. This set may apply to either a rotating

wall or a rotating external flow. However, by considering Eqs. (2-1) and

(2-2) at the outer edge of the boundary layer, it may be established that a
variation of the external circulktion r with s cannot be assumed unless the
external velocity U s is zero. Therefore, U5 a 0 is possible only for a
potential vortex (r const.) or for r = 0 with rotating wails.
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It now has to be established how parallel to the axis a wall may become
before the normal pressure gradient, which is neglected in this fourth type of

boundary layer, has to be reintroduced as comparable in its effect to the

gradient parallel to the wall. With the pressure change across the boundary

layer estimated from Eq. (2-3) to be of the order

2
Ap 7 ~ T (2-9)

the s-derivative of this pressure term is found to be negligible compared with

the terms retained in Eq. (2- 1) if both 6 << R (which already has been assumed)

and

d6 dR
do <- (-10)

From condition (2- 10) it follows that the approximation leading to the elimina-
tion of Eq. (2-3) is applicable unless either R = const. or the slope dR/dS
falls below a small limit which itself is decreasing with the Reynolds number.

Thus, the first three types of boundary layers considered must be restricted

to cylinders for which R is quite constant with z.

The system of Eqs. (2-1), (2-2), and (2-4) applicable for most rotating

boundary layers, will be treated by two methods: similarity transformations

and approximate integral techniques.

-7-
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III. SIMILARITY SOLUTIONS

Similarity transformations have been investigated systematically for

general three-dimensional boundary layers by Gels (Ref. 6). He has shown

that a sufficient condition for similarity in the present problem is that the

radius of the body of revolution varies as a power law of the meridional

length

R = KsG (3-1)

and that both circumferential and longitudinal velocities should vary with the

same power of R. In conformity with this last condition let

v = CR~g(M) u5 = CRO'(C) (3-2)

where

=n/6ls) ; 6 - )1V 3-3)

Equations (2-1) and (2-2) can then be replaced by

fo + 71 1 + ulZ + p)]fff - cif,2 + ag2 = CLg2(0) - ef,(.o) (3-4)

+ +'[1l + a(? + P)]fg' - CL(P+ I)z's = 0 (3-5)

zIshizawa (Ref. 7) has considered more general similarity conditions for

boundary layers over bodies of revolution.
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and from Eq. (2-4)

Un -RP6(P + 3)f + (a - 1)ff'1 (3-6)

Unless P = - 1. either g(ce) or f'(o) must be zero, as was noted in the preceding

section.

The wall shapes given by Eq. (3- 1) have different character for different

values of a. For a < 0, the radius R approaches zero asymptotically; these

infinite cusps are excluded from the present discussion. The cuspedmeridians

connected with a > I are also rather unrealistic. In the most interesting

region of 0 < a. _ 1, similarity solutions are reached asymptotically for bodies

behaving as R - zL for large R. The value a = 0 has to be excluded, as was

shown before, together with bodies too slender for condition (2- 10) to be
satisfied, i. e., for bodies with a < 6 /r .

Interesting conclusions can be drawn by comparing the growth laws of

* the body radius and of the boundary-layer thickness, i. e., Eqs. (3- 1) and

(3-3). If a.(2 + P) < 1, then 6 grows with a higher power of s than R so that

for some large value of s the boundary-layer approximations will break down.

Conversely, for I > a > 1/(2 + P), boundary-layer theory is applicable for

half-infinite bodies without restrictions on the arclength s. In the limiting

case, Q(2 + .) I, the growth of boundary layer and body are similar. It

will be shown in Section IV that this case involves similarity between the first-

order boundary-layer quantities and the terms which are usually retained for

second-order effects. Correspondingly, a treatment of the problem is given

which includes "higher-order" effects without resorting to an expansion

procedure.

Within the class of similarity problems defined by Eqs. (3- I) to (3-5),

the cases that have received the most attention in the literature correspond

to a p 1. For this value of a and P, Eqs. (3-4) and (3-5) were first used

by von Karman (Ref. 8) and by Cochran (Ref. 9) to find the flow due to an

infinite rotating disk in an unbounded fluid at rest. It was later used by
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Bodewadt (Ref. 10) to solve the opposite problem of a uniformly rotating

fluid over an infinite stationary wall. Batchelor (Ref. 11) considered the

family of solutions in which the ratio of the fluid rotation to the disk rotation

varies from -o to +00. The solutions for some of the flows discussed by

Batchelor were obtained numerically by Rogers and Lance (Ref. 12). Stagna-

tion flow against a rotating disk was studied by Hannah (Ref. 13) by including

a source on the axis of rotation at infinity. Stuart (Ref. 14) and Nanda (Ref.

15) have given these flows a further degree of freedom by considering the

disk to be porous with a uniform flow through it.

Values of P other than one are also of interest; the problem of a fluid

rotating over a stationary wall with a = 1 has been considered by King and

Lewellen (Ref. 16) for - I : P 1, corresponding to the flow range between

solid-body rotation and potential flow. It was found that the oscillations

exhibited in the Bdewadt solution for p= I increased in magnitude and

wavelength as P decreased; no solution exists for the potential flow P = -1.

The existence of oscillations in the profiles can be proven from the

formal integral of Eq. (3-4). With the boundary conditions

f(o) = f'(o) = f'(o0) = 0 (3-7)

Eq. (3-4) integrates twice to give

f + (00Z-p G fd W + a.(2 + 3p)]f'2 + 2aMLg 2 (Go) - g 2 ])dC (3-8)Iz® + i'(+P +o J

Thus, for a.> 0 and p> -2 it is always nec.ssa-y to find g > g(GO) at some

point within the boundary layer. The only tUne a monotonic profile is possible

is when the wall rotates faster than the fluid. On the other hand, it can be

seen from Eq. (3-5) that g mist be monotonic when P = -1. This proves that

there can be no solution for the potential vortex in which the fluid rotates

faster than the wall (for all a > 0), by contradiction with the established

necessity of oscillations.

-11-



Physically, the oscillations occurring in the boundary layer when the

fluid rotates faster than the wall appear to arise in the following manner.

The radial inflow, induced by the retardation of the tangential velocity in

the neighborhood of the wall. actually convects angular momentum into the

region so strongly that it forces a local overshoot in the tangential velocity.

This overshoot increases the centrifugal force locally to induce a radial

outflow, which convects a circulation defect, and the whole process is

repeated to yield the oscillatory approach to infinity.

For a * 1, apparently the only numerical solutions in the published

literature are the computations of Geis for 1 1, and a = 4/5 and 3/2 for

rotating walls with the fluid at rest. The profile shapes of these solutions

are very similar to those obtained for a = 1.

Investigation of the meridional mass flow carried in the boundary layer

shows interesting properties of the similarity solutions found thus far. From

Eqs. (3-2) to (3-3), it follows that

a= f UsR dn= [CvR+0+1 /aK l/a]l/2f(0) (3-9)

First, we note that the geometric parameter K of Eq. (3- 1), which did not

enter Eqs. (3-4) and (3-5), now explicitly scales the flux. For instance, all

disk flow results (a = 1, K = 1) are directly applicable to cones with K < I;

Eq. (3-9) shows that the flux increases with de-reasing cone angle for the

same radius. This shows that the effect of the reduced centrifugal force

component is more than compensated by the increased wall area.

Of particular interest is the sign of Q and its derivative with respect

to R. For 0< a < I and P> -2, the exponent of R in Eq. (3-9) is always

positive. (Actually, p . -I is a necessary condition for a stable rotating

outer flow. ) For all known similarity solutions of this group, the boundary

layer takes in fluid and flow is radially outward if the wall rotates and the

fluid is at rest; for rotating fluids over walls i- rest, the radial boundary-

layer flow is directed inward and fluid is expelled into the outer flow. (No

-12-



mathematical proof that there are no exceptions to this rule has been found,

but physically their occurrence is improbable. )

The latter case is anomalous inasmuch as the fluid first has to flow into

the boundary layer in the course of its development; in the case of similar

solutions, the inflow is thought of as occurring at infinity, and the boundary

layer begins with an infinite reservoir of Q which is being steadily expelled

as the radius decreases. These solutions may be thought of as having

"terminal" similarity. Although, as pointed out by Stewartson (Ref. 3),
there is no assurance for an asymptotic approach to this group of similarity

solutions if the actual boundary-layer development begins at a finite radius,

conditions similar to those of the similarity solutions are approached near

the center of a finite disk. Mack (Ref. 17) argues that the B8dewadt solution

is approached at the center of a finite stationary disk perpendicular to the

axis of a fluid rotating as a solid body, and King and Lewellen (Ref. 16)

speculate that the same approach to a similarity solution holds for more

general values of p.
Investigation of the initial development of the boundary layer at a finite

radius leads to a different category of similarity solutions. This has been

done by Stewartson (Ref. 3) for a finite stationary disk in a rotating flow.

Based on this initial solution, Mack (Ref. 18) calculated a series expansion

of the Blasius type for boundary layers on stationary disks in external flows

having power-law variations of the circumferential velocity. ranging from

potential vortex to rigid rotation. His "exact" series solution served as a

test case for the momentum methods to be discussed presently. The initial

similarity properties (power laws) of Stewartson's solution also play an
important role in the analysis using momentum methods and will be obtained

later in that context.

Mack undertook a second generalization of Stewartson's work by calcu-

lating the initial similarity profiles for the case in which both the disk and

the fluid rotate (Ref. 19). If the two rotational speeds have only a amall

difference, the problem can be linearized; the solution approaches the well-

known Ekman spiral (Ref. ZO), which is obtained in all limits of this kind

(e. g., also by Rogers and Lance).

-13-



The growth and decay of the boundary layer may be analyzed more

completely with the aid of integral methods, but first let us consider the

extension of similarity solutions to include curvature effects.
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IV. CURVATURE EFFECTS

As already noted, the application of the system of Eqs. (2-1), (2-2),

and (2-4) to very slender bodies is limited by the fact that when the boundary-

layer thickness becomes of the same order as the radius of the body it is

necessary to include the transverse pressure gradient. It can also be seen

that this is the regime in which

I a a (4-1)

an

and can no longer be neglected in the viscous terms. It should perhaps be

repeated that the transverse pressure gradient can become large:r than the

parallel component without curvature terms becoming important. This is

Stewartson's case for which the body radius is much larger than the boundary-

layer thickness and the body surface is quite parallel to the axis. Of course,

even in Stewartson's problem if the body is long enough an axial position

where curvature terms are important will be reached since the boundary-

layer thickness increases with length while the body radius must remain

essentially constant.

In the curvature regime it is appropriate to replace the boundary-layer

approximation with a slender-body approximation which assumes that

characteristic radial dimensions are much smaller than any characteristic

axial dimension. Lewellen (Ref. 21) has shown that the resulting slender-

body equations are compatible with a similarity transformation of the form

m

..v = . g(x)

w m f, (x) (4-2)

x "rz 1 )/2
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This is similar to the transformation of Eqs. (3-2) to (3-5) when 6 and

R vary as the same power law of s, and s is taken equal to z in agreement

with the slender-body approximation. Thus, whenever

-=-1 (4-3)

Equations (3-4) and (3-5) can be extended to include the effects of curvature.

For this case, the equations are

2

(1 + En)f
' + (fa + ff" - (1 - 2 )fIZ + ag

I +

= Cg 2 (04 + (I - 2a)P - (1 - Z)f'2(0o) (4-4)

(I + (n)g" + fg' - (I - a)f'g= 0 (4-5)

P' gz (1 + (n) " 2  (4-6)

The new definitions of f and g are

vr =Ri R)g(i1) (4- 7)

u S CRO f'(n) (4-8)

with the variable replaced by

- R ] ' = 2 (4-9)
L R Z

/16+
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and the new independent function P defined by

p = 4p(CRO)P(Y) (4-10)

The parameter c is a measure of the effect of curvature and is actually equal

to 26/R when 6 is small. For c -- 0, ? 1 and Eqs. (4-2) to (4-6) reduce to

Eqs. (3-4) and (3-5) when Eq. (4-3) is satisfied.

The body shape determined by Eq. (4-3) for uniform rotation, i. e.,

when 1. 1, is a = 1/3. The velocity profiles in the boundary layer of such

a 1/3-power-law body which rotates in a fluid at rest may be obtained as a

function of c by numerical integration of Eqs. (4-4) to (4-6) with the boundary

conditions

*=0: f= f' = 0 , g=
(4-11),=o:f' -0 g g-0 , P-0O

.3
The results of this computation are shown in Figures I to 3 for a

range of values of e. The profiles obtained for the rotating disk boundary

layer and the square-root power-law body are also included for comparison.

Increasing the curvature effect is qualitatively similar to decreasing the

power-law exponent of the body.

3t

These computations were performed by the Aerospace Computation and Data
Processing Center. The authors are particularly indebted to R. F. Kramer
for this work.
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V. MOMENTUM INTEGRAL SOLUTION FOR A ROTATING
FLUID OVER A STATIONARY WALL

The first treatment of the boundary-layer problem in rotating flow. by

momentum-integral methods was given by von Karman (Ref. 8), who con-

sidered the rotating disk, in both the laminar and turbulent cases. Taylor

(Ref. 22) calculated the laminar boundary-layer development on a wall at

rest, with a vortex as the outer flow. In both these investigations the

circumferential and radial momentum-integral equations were used to de-

termine the thickness and the radial velocity peak of the boundary layer.

Von Karman's results (in the laminar case) were subsequently confirmed by

Cochran's exact similarity solution. In extending Taylor's work, Cooke

(Ref. 23) introduced a further refinement, admitting two different thicknesses

for the radial and the tangential layer, and requiring that the radialboundary-

layer equation at the wall also be fulfilled (referred to herein as the "waU

condition"). Cooke's results were quite different from Taylor's. Therefore,

although the application of momentum-integral methods to the boundary-layer

problems of a rotating wall in a fluid at rest appears to be straightforward,

the opposite case of a rotating fluid confined by a stationary wall appears more

complicated. This latter problem is the one to be carried through in detail

here.

A critical evaluation of the momentum-integral methods became possible

with the help of Mack's series (Ref. 18) [which superseded earlier solutioas

by Garbsch (Ref. 24) who used a "local similarity" type of approach]. Dis-

cussions of different integral methods were carried out by Mack (Ref. 17, 25)

and by King (Ref. 26). In this section, a method will be presented which

incorporates the best recommendations of both authors for the laminar case

and which permits generalization to the case of turbulent flow.
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The analysis is based on the tangential and meridional momentum-

integral equations, which can be derived from Eqs. (2-2) and (2-1) and are

written in the following form, with Ua = 0:

(Q") - XQCai = I R5-1)

Xd 2 -R 1- p 5 (5-2)2 + 3'" U-9 =  "p

where X, 2 , and X 3 are profile parameters defined in Table I. By use of

the appropriate profile shapes (also given in Table 1) and shear laws, Eqs.

(5-1) and (5-2) are applicable to both laminar and turbulent flow; they

determine the two unknowns, namely, the boundary-layer thickness 6 and the

meridional boundary-layer flux Q (defined in Eq. 3-9), with r(s) and R(s)

(body shape) given.

For the shear in the turbulent case, von Karman's adaptation of the

Blasius law to the three-dimensional case (Ref. 8) will be accepted:

,res = cp(0 2 + V2)( ,L)2 +V , ,) i  (5-3a)

V ; _ = _ (5-3b)
T res/T 2  s res 2%/u! +V

where e, 1/4, after Blasius, and c = 0. 0225; 0 = (u ) max  Numerical cal-

culations based on the set of eq]1ations given thus far were first carried out

for the turbulent case by Weber (Ref. 27).
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Table 1. Momentum-Integral Profiles and Constants

Laminar Turbulent
Profi(es and Constants ( a- = 3/4) (. = 1/4, a- = 9/10)

us / f' (n/6) 27/4 (l - ;2 l. 69 2 7 -

v/V = g(n/6) 2 2 17

l f(1)/f '(I - g) d; 2.5 4.93

,12

x 2 =f f-d;/f2(1) 1.375 1.63
0

X3 4 (1 - g2) d; 0.467. 0.222

cI  g(O) = 2 0.0225

c 2  f"(0)/f(I) = 12 c/f(1) = .05 13

kl3 + 2 >2 c2 1

k1 = x + +.2 --- 10.05 13.5
~~1 31 Ix3

k2 = lr-0(c alk-1 1.56 0.145

As a first step towards a simplified practical method, the "starting"

properties of the boundary-layer development will be investigated analytically,

based on Eqs. (5-1) and (5-2). It is assumed that at radius R = R the

boundary layer begins with zero thickness 6 and with vanishing meridional

velocity us (and Q). 4 In the laminar case, such an analysis should recover

4For a discussion of the effect of finite initial values, see Mack (Ref. 17).
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the similarity properties of Stewartson's solution (Ref. 3) as far as the

power-laws of mutual interdependence are concerned; the constants of

proportionality, however, as derived from the momentum- integral equations,

will not agree with Stewartson's exact similarity solutions. unless, naturally,

Stewartson's profiles are used to calculate the different profile parameters in

Eqs (5-1) and (5-2).

The aim in the turbulent case, then, is to find the proper extension of

Stewartson's "initial" similarity, which will differ from the laminar case

primarily (i. e., in the power-law exponents) because of the difference in the

shear law. The turbulent shear formulas (5-3a) and (5-3b) can be simplified

for the initial flow situation, where << V; it is found tbat

~cPVZ 2 Tcp OV( $ (5-4)

or, using the variables r and Q,

T = cIP-(A (5-5)
R

or IvR\-6

To czp=~~' (5-6
* 6R

Note that these initial shear laws cover both the laminar and the turbulent

cases for the proper choice of the exponent p. The expressions for laminar

flow are found for ,L = 1; turbulent cases are obtained by using the Blasius

value p. = 1/4, or some other empirical value, e. g. , p = 0 for rough surfaces.

The appropriate definitions of Cj and c 2 are given in Table 1. In the laminar

case, these constants depend on the gradient of the velocity profiles at the

wall.
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To obtain the initial similarity solutions, Eqs. (5-1), (5-2). (5-5), and

(5-6) are solved inserting the constant values R = Ro ,  r ro , and dR/ds = R'.
0 0 0

Put 6 = BQ and eliminate dQ/ds between Eqs. (5-1) and (5-2), noting that

Q(O) = 0; B and x are thus determined. The result of this somewhat lengthy

but straightforward calculation is

6 2 +L = c X k klvR l+ro( +)(- Reo)" 1Q (5-7)

where

k 2 (5-8)

It is reassuring to note that, indeed, the exponents in this relation contain IL

only, and that for L = 1 Stewartson's similarity law (up to the definition of the

constant kI) is re-established.

Thus far, the results obtained are consistent with the original methods

proposed by Taylor (Ref. 22) and Weber (Ref. 27) which are easily manageable

with modern computing techniques. Nevertheless, further rimplifications

will be sought, which will make an analytical solution possible. This is

particularly desirable in view of the fact that it can be done with little or no

loss in accuracy.

The method proposed is to use Eq. (5-7) not only initially, but through-

out the whole range of the calculations, with the initial constants Ro , r o , and

R' replaced by the variable local values R. r, and R'. This relation will

replace the meridional momentum equation (5-2). The main argument for use

of the generalized relation (5-7) is that in conjunction with the tangential

momentum equation (5-1), it yields not only the proper initial similarity, but
also the terminal similarity properties of the solutions of King and Lewellen

discussed in Section III. It can be shown that such a relation is the only
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possible power law connecting Q and 6 that is consistent with both initial and

terminal similarity. Before considering the generalization of the terminal

similarity to the turbulent case, a simple interpretation of Eq. (5-7) for

laminar flow will be discussed.

A variation of the momentum-integral method proposed by Anderson

(Ref. 28) and by Mack (Ref. 25) replaces the meridional momentum-integral

equation by the wall condition of the meridional laminar boundary-layer

equation, which relates the pressure gradient to the normal shear gradient.

The corresponding relation has the same form as the generalized Eq. (5-7),

although the constant k I has a value slightly different from the result of

Eq. (5-8) (given in Table 1). Comparison of the results of this method with

solutions provided by the original Taylor scheme was carried out by Mack

(Ref. 25) and by King (Ref. 26) and have shown that the agreement is close

everywhere; the advantage of the use of Eq. (5-7) lies in its analytical

simplicity.

For turbulent flow, the interpretation of the proposed method by use

of the wall condition is not possible. Moreover, the shear laws given by

Eqs. (5-5) and (5-6), which were needed to obtain Eq. (5-7), can be used for

laminar flow (1& = 1) over the whole range of the calculations, but they are

only initial laws for turbulent shear. However, Eq. (5-4) gives values of the

shear which differ from the results of von Karman's original formulas (5-3b)

only by a factor (I + 0 2 /V 2 )( I1 -' ) / 2 , and 0 V can be considered as an upper

limit for the radial velocity peak. While an iterative correction for such a

discrepancy could easily be devised, no such steps will be taken, as turbulent

shear laws in three-dimensional flow situations have uncertainties beyond the

factor quoted. The somewhat lower values provided by Eqs. (5-5) and (5-6)

are accepted, for the sake of analytical simplicity. Comparison with results

of Weber (Ref. 27), who uses Eq. (5-3b), indicates that the effects of the

simplification on the final results are not significant.

The task of determining the power-law properties of the terminal

similarity solutions, as generalized to the turbulent case, can now be under-

taken by various methods invokving the momentum-integral equations. It can
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be shown that for all shear laws considered thus far, and for all values of ,

terminal similarity solutions are obtained for which U and V vary with the

same power of R, i. e., U - V - R. The factor between the different turbulent

shear law approximations noted in the previous paragraph has therefore a

constant value and does not affect the powers of the terrminal similarity.

Furthermore, it can be shown that the same power laws are obtained with

Taylor's and Weber's method, i.e., Eqs. (5-1) and (5-2), as with the

simplified approach proposed here based on Eq. (5-5) and the generalized

Eq. (5-7). The latter equations are repeated here for convenience:

dQr - X Q rXc rZ (5-9)

62+1= C1k X1 VLR1 + lr(l+L)( R')l 1Q (5-10)

In terms of the boundary-layer vari..oles, it may be noted that 0 -V implies

the relation Q - r6. The terminal similarity dependence of Q and 6 can be

expressed as follows: if

r = cR l + P (5-11)

then

Q B VI/(+O)R(-R") /(l *)rl/(+) (5-12)

6 B (5-13)
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The generalization of Bidewadt's similarity to the turbulent case is of

particular interest; the axial velocity derived from Eqs. (5-11) and (5-12) for

1 and R' = -I is

1 = 3= + 1 BI/11)v/l)R-)/I) (5-14)

so that forL = 1/4, w--R3 / 5 .

The constants B1 and B2 depend on the c;hoice of the particular integral

method; based on Eqs. (5-9) and (5-10), it is found for the disk (R' -) that

F1  (Cl)l )+ 2X (5-15)

B2 = (CIXIkIB 1 )1/(2+I) (5-16)

where

N X 1 - )I + )- -1 (5-17)

The agreement of the numerical values obtained from these equations with
the numbers calculated by King and Lewellen is poor but reasonable in view

of the big difference between the smooth profiles used for the momentum

methods and the oscillatory similarity solutions. For instance, in the

B*dewadt case (p = 1; IL = 1), Eq. (5-15) yields BI = 1.26, while the exact

value is 0. 68.

Actually, there even e.xists a limit for a meaningful solution, as the

value of N after Eq. (5-16) must be positive. The limiting exponent A which

makes N vanish can have no true significance as it depends on the profile

parameter X1 (as well as on other possible variations of the present method).

It can be noted, however, that in the potential flow case, i.e. * = -1, neither
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the King-Lewellen similarity solution nor the approximate solution exists.

The spurious limit of the approximate method naturally can shed no light on

the difficult existence questions involving terminal similarity, but it is

consistent with the estublished nonexistence for = -I.

For the case of fluids rotating over a fixed wall of finite extent, the

significance of the King-Lewellen similarity solutions and their turbulent

generalizations lies in the possibility that they may be approached as terminal

solutions for R- 0. As the different variants of the momentum methods give

very similar results in the terminal phase, and identical solutions in the

initial development, it is not surprising that their mutual agreement is strong.

Thus, the choice of Eqs. (5-9) and (5-10) can be justified by the fact that they

are equally as accurate as Taylor's method and lead to the following closed-

form solutions:

ZO~ ~ -a r1 s2X/-R(- R')] ( l'0)lOds

(5-18)

+ k2  X1 ) 2 'Ik 0--

and the value of 6 is given by

6 2= (Zcr-1)/1

6(c XkL) (-1)/kl I-I Z 2(1 -a) rRI/WR)( 2)

x{fo r'l//[ RR' Rl.)/rd} (5.19)

The remaining task is to make a choice of profile shapes and to compute

the constants needed in these formulas. In Table 1, the most widely used

profile shapes are quoted, together with the numbers derived from them.
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As a first example, the results of Eq. (5-18) for the laminar case with

r= cR over a finite disk are compared to Mack's series solution (Ref. 18).

Figure 4 shows that Q. according to Mack's results, grows monotonically

inward for a potential vortex P= -1 ; the initial development for P > -I is

described by the same (Stewartson) solution, but a maximum in Q develops

which, according to Mack, nearly coincides with the practical convergence

limit of his series. The results of the momentum method proposed in

Eq. (5-18) closely reproduce the position and the magnitude of the extremumn

of Q, including the monotonic growth for 5 = - 1. Also plotted in Figure 4 are

the predictions of some similarity solutions of King and Lewellen; they are

approached by the momentum method results, within the limits discussed

previously.

Next, consider the potential vortex, r = const., for different shear

laws. For a flat finite disk, s = R0 - R and Eqs. (5-18) and (5-19) give

(cX)ZI ¢-1v2(1- o)rZ-rR[ (RR 1s(/0"

I c (5-z0)

6= (c2X 2k1)(Za. 1) 2 V (l.a)1 zor. l)[ I a.) iaJ/

(5-21)

For small a, Q" (s/Ro) and 6 -(S/o)(f" )/ .. This is in agreement with
Stewartson' a similarity for laminar= 3/4) and generalizes it for the

turbulent case.

Ifp. 0 and w 1, Eqs. (5-18) and (5-19) simplify to

Q = cXr1 Ifr 2 I ds (5-22)
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6= - ds} (5-3)

The result, appropriate for turbulent flow with rough surfaces, may also be

used approximately for smooth surfaces (ii = 1/4) if c I is replaced by a value

c I , estimated iteratively as an "average" friction coefficient from a Blasius-

type empirical shear law. In the case of constant (or nearly constant) values

of 1, Eq. (5-12) gives

1/2

s CIXi (5-24)

and according to Eq. (5-2), c 1 has to be defined as

C R (5-25)

From Eqs. (5-24) and (5-25), 7 1 can be evaluated; it varies with the power

R/2(I + R) = 1/10 of R/s. Evaluated for a finite disk at the midpoint R = s,

it is found that

XCIR=s = (Xc 1 ) l1/(l+.+) k l/2(l+41')( v / rVR /(l+L) = 0. 133(1v/rIl/S

(5-26)

Equation (5-22), with X IC 1 , replaced by Xl 71 after Eq. (5-26). was used for

the interaction problem in Ref. 34. (The original number given by Rott

(Ref. 29) was 0. 135, based on the assumption c 2 = 0.)
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The discussions of this section can provide an explanation, in retrospect,

for why methods with an additional variable like Cooke's (Ref. 23) may lead

to an erroneous result rather than an improvement. Briefly, Cooke's addi-

tional parameter (the boundary-layer thickness ratio) can behave, for R - 0,

as R, where any value of y 0 0 admits a solution which is in disagreement

with the admissible terminal similarity. The investigations of King (Ref. 26)

[who also corrected a numerical mistake in Cooke's analysis] indicate that

indeed a singular behavior of the additional Cooke parameter occurs for

R -0; a different three-parameter solution investigated by King apparently

suffered a similar fate. It seems that the three equations. with partly over-

lapping physical content, do not provide enough independent information for

use in such an approximate method to adequately control the additional degree

of freedom. It is believed that an improvement of the present method must

account primarily for the change in character of the profile, which begins

smoothly for growing Q but probably always acquires some oscillatory

character for outflow.

Naturally, a breakdown of the boundary-layer theory always occurs

as R -- 0; this is outside of the scope of this paper. It has to be noted that

such a breakdown can also occur at a finite radius due to a local disturbance;

observations by Rosenzweig, Ross, and Lewellen (Ref. 30) have shown that

a vortex chamber, a large fraction of the fluid contained in the boundary layer

approaching an exit hole is actually re-ejected axially into the chamber,

instead of leaving through the hole. A quantitative theory of this effect is not

yet available, but it can be stated that the type of breakdown In the boundary-

layer development, which in plane flow is described by the term "separation",

will lead in rotating fluids to effects widch extend very far axially outside the

boundary layer.

In summary, a momentum method is proposed which is believed to

provide a tool useful in both lathinar and turbulent flow, including somewhat

unusual regions of outflow from the boundary layer, but excluding zones of

very local but violent flow changes.
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VI. APPLICATIONS

For most applications of rotating boundary-layer theory, the finite

boundaries of the external flow make it necessary to consider the mutual

interaction of the boundary layer and the external flow. Flow about a rotating

disk depends upon the size and shape of the container within which the disk

rotates. Even when the container is large, it is neaessary to consider the

source and disposal of ti.e flow induced in the rotating boundary layer in order

to ascertain the eventual influence of the boundary-layer flow on the primary

flow. Some examples where this interaction problem has been solved will

now be considered, and then speculation offered as to how this interaction

may be important in the case of a tornado.

Perhaps the simplest example of the interaction of the boundary layer

and the external flow is that of flow between two infinite disks discussed by

Batchelor (Ref. 11) and Stewartson (Ref. 31 ). If both disks rotate at the

same rate, the total fluid between the disks will also rotate at this rate and

there will be no boundary layer. However, for the general case, when the

disks rotate at different rates, the fluid between the disks must adjust to make

the flow from the two boundary layers compatible. The fluid between the two

boundary layers may rotate at a rate intermediate of the rotation of the disks

so that there is flow into the boundary layer on the slower rotating disk and

away from the boundary layer on the faster moving disk. An exact speed of

rotation that will accomplish this matching of the axial velocities outside the

boundary layers when the disks are rotating in the same direction may be

obtained from the numerical results of Rogers and Lance (Ref. 13). The

rate of rotation of the main fluid as a function of the ratio of the rates of

rotation of the two disks is given for this case in Figure 5. The problem is

more complicated when the disks rotate in opposite directions since a, reversal
in the tangential velocity is required at some point between the two disks;

in general, Rogers and Lance were unable to obtain solutions for this case.
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Batchelor and Stewartson both agree that the behavior shown in Figure

5 is correct when the disks are rotating at almost the same rate. However,

as Q2/fl -. 0, Stewartson maintains that 92f also goes to zero. This assertion

was borne out by his experiment performed with two 6-in. diameter unshrouded

disks. When one disk only was rotated, the main body of air between the disks

did not rotate. On the other hand, Maxworthy (Ref. 32) has performed a similar

experiment, attaching to the rotating disk a cylindrical wall which encloses

the fluid between the disks. The fluid on the axis between the rotating disk

and the stationary disk was found to rotate at a rate close to the value pre-

dicted from the numerical results of Rogers and Lance.

In the two experiments quoted it is cleLr that the boundary conditions at

the outer edges of the disks play a dominant 7.ole in determining the flow.

This difference in the flow between the open and enclosed cases is also brought

out in the work of Picha and Eckert (Ref. 33). Thus, the question is raised

of whether more than one solution is possible for the limit in which the ratio

of the diameter of the disks to the length between them (d/I) approaches

infinity. In the opinion of the present authors, the flow described by Batchelor

is the only solution in this limit and the numerical results of Rogers and Lance

correctly predict the flow as long as the boundary-layer thicknesses are much

smaller than the distance between the disks, i. e. (Z /V)1/ 2 >> 1. 0

A problem where the interaction is perhaps more strikingly illustrated

is that of a confined vortex driven by a radial convection of angular momentum.

Consider the problem of flow through a rotating porous cylinder bounded at

two axial positions by stationary end walls as shown in Figure 6. Assume

that radial flow enters uniformly through the porous cylinder and an axial

flow leaves through exhaust holes at the center of the end walls. The angular

momentum acquired by the fluid in passing through the rotating cylinder is

convected in radially to set up a vortex within the container. In the regions

next to the end walls, boundary-layers are formed which may have a strong

influence on the vortex within the container. This problem has been
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considered for laminar boundary-layer flow by Anderson (Ref. 28 ) and for

turbulent boundary-layer flow by Rosenzweig, Lewellenand Ross (Ref. 34).

(There is also a difference in the way fluid is exhausted from the container

in Refs. 28 and 34. ) A corresponding linear problem for the complete

container rotating has been considered by Lewellen (Ref. 21).

The character of the vortex in the primary flow is largely determined

by the local Reynolds number Re based on the radial mass flow at any

radius (Ref. 2). If the radial Reynolds number is large (>5), the vortex is

very nearly potential (v - I/r) except very near to the center where the

tangential velocity must go to zero. If the radial Reynolds number is small

(xl) the vortex is very nearly in solid-body rotation (v - r). On the other hand,

the strength of the vortex controls the amount of radial mass flow induced in

the boundary layer, as seen in the preceding sections. By continuity, radial

flow diverted to the boundary layer reduces that passing through the vortex.

This then is the interaction problem: a strong vortex forces radial mass flow

into the boundary layers; this diversion of radial flow to the boundary layers

reduces the strength of the vortex; and the weakening vortex forces flow out

of the boundary layer back into the main flow.

The strength of this interaction is determined by the ratio of the mass

flow the boundary layers are potentially capable of carrying to the total mass

flow passing through the container. To be specific, consider an interaction

parameter A, defined as the ratio of the radial mass flow at r = 0 in the

boundary layers on the two end walls if the vortex remains potential to the

total radial mass flow rii through the container. From Section III, Eq. (5-18)

gives

A = 2k w~v/ro ) 2(l -w) -r o Ro (6-1)rh/Zirp (-I

It can be seen that the interaction parameter will remain small unless the

ratio rh/ZirproR° is small. This ratio of radial flow to circulation, which

governs the relative effects of rotation, is a Rossby number. In Refs. 5
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and 21 it has been shown that when such a parameter is small it is

advantageous to expand the primary flow outside the boundary layer in terms

of this parameter. The leading terms in the resulting strream function

expansion are dependent only on the boundary conditi3,8 i of the primary flow.

The leading term in the circulation expansion is then determined from the

equation

r 7-(7 r) -W 2 {+(r, 1) - gr,O0)J! 0(6)

When z = 0 and z = I are taken as the edges of the boundary layers on the

two end walls, 44r, 1) - q(r, 0) is determined from the boundary-layer

equations. In fact,

r1)- ir, 0)] R (6-3)V1e{ -

with Re defined as rim/2wipv.

The methods of solution discussed in Section III may be used to solve

for the flow in the boundary layer as a function of an arbitrary circulation

distribution in the main flow. The interaction problem then is to solve Eqa.

(6-2) and (6-3) coupled to the boundary-layer equation (5-18).

In general, the simultaneous solution of Eqs. (6-2), (6-3),and (5-18)

requires numerical integration. However, there is an interesting analytic

solution in the limit of large radial Reynolds numbers. In this limit the

circulation is constant for

I/ f

r > r (1 - A- (6-4)

while the total mass flow is being diverted to the boundary layers. For

r < r, all of the radial flow is confined to the boundary layers, and the

circulation profile assumes the distribution that will keep the radial flow
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in the boundary layer constant. From Eqs. (6-2) and (6-3),it is seen that any

r distribution is possible in the limit of Re-- ao and Q-ii/4wp. From Eqs.

(5-9) and (5-10), the r distribution that will keep 0 = ri/4wrp is found to be

This r distribution is valid for r e < r < ;. Inside re the distribution depends

upon the details of the exhaust and will not be considered here. This limiting

solution is compared with numerical results in Ref. 34. There is good agree-

ment even at a radial Reynolds number of 10, except in the immediate

neighborhood of r = r and r = re where sharp breaks occur in the infinite

Reynolds number limit. Equation (6-5) gives a good approximation for the

tangential velocity distribution when the viscous effects in the boundary layer

are much more important than in the outer vortex flow.

Having considered two examples of the interaction occurring due to a

rotating boundary layer, let us speculate on the possible importance of such

an interaction effect in the case of the -boundary layer associated with a

tornado. A review of some mathematical models proposed for the dynamics

of a tornado has been given in Ref. 21. None of the models reviewed consider

the influence of the ground boundary layer.

Some of the essential flow pattern associated with a tornado appears in

a model proposed by Rott (Ref. 35) in which

u -ar w 2az (6-6)

= I- -ar 2 1 2v] (6-7)
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Equations (6-7) and (6-8), which represent an exact solution of the

incompressible Navier-Stokes equations, yield a viscous core size of

r* = (6-8)

*ith

r
Vmax =O. 64 00 (6-9)

Although very few of its characteristics are known precisely, it does
42appear that for a tornado r is of the order of 10 m /sec and v is of the

order of 102 rn/sec (Ref. 4). If it is assumed that a = 102 sec " I (corresponding

to a reasonable vertical velocity of 10 m/sec at z = 500 m), then for Eqs.

(6-8) and (6-9) to be consistent it is necessary to have v = 0(10 m2/sec).

This value of viscosity is six orders of magnitude larger than the laminar

value of air but is of the same order of magnitude as the turbulent virtual

viscosity assumed by some other investigators.

Consider now the boundary-layer flow near the ground which would be

induced by this model. Although it requires a rather large extrapolation, an esti-

mate of the mass flow in the boundary layer can be obtained from the analysis

in Section V of a turbulent boundary layer on a disk. The flow diverted to the

ground layer at a large radius must be returned to the flow within the viscous

core. The possible importance of this flow diversion to the overall tornado

may be indicated by a ratio of the radial flow outside the boundary layer to

that within the boundary layer at r*. Using Eq. (5-26) to estimate the

boundary layer flow, one obtains

2! 0.3v 00 0r415 (6-10)
m It* ar* 2
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where I is the axial extent of the radial inflow in the tornado. For an roII
of order one and the previously mentioned values for the other parameters,

this ratio of inass flows is of order one.

Based on the mass-flow ratios involved, it has just been demonstrated

that the influence of the boundary layer may be significant. This influence of

the boundary layer may be limited to significantly increasing the vertical

velocity within the viscous core of the tornado. However, a further inter-

action between the boundary layer and the primary tornado flow becomes

important when the required sink at altitude is considered to be limited

rather than infinite. Then, an interaction similar to that found in the rotating

porous cylinder will occur because of the division of the flow between the

boundary layer and the main flow. (For further details see Ref. 21). The

extent to which the ground layer does influence the dynamics of the tornado

may possibly be determined by measurements of the sink strength at altitude.
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VII. CONCLUDING REMARKS

A survey of work on rotating boundary layers has been given. Perhaps

the most significant extension to existing theories which has been included is

the general momentum-integral solution for the boundary layer formed by a

rotating fluid in contact with a stationary wall. In this solution, the boundary-

layer development may be either laminar or turbulent and the wall contour

rather arbitrarily orientated with respect to the axis of rotation.

Several areas open for future research are suggested by the present

survey. One area which should prove fruitful is that of shear layers between

rotating and nonrotating fluids. One special type of shear layer was mentioned

in the discussion of Stewartson's work in Section II. Actually, shear layers

analogous to 4II the different types of boundary layers discussed herein should

be possible. The study of radial shear layers may be an advantageous way of

approaching the intriguing "vortex breakdown" problem (Ref. 36).

An interesting boundary-layer question concerns the extent to which

the flow solution calculated by B~dewadt is approached at the center of a finite

stationary disk perpendicular to the axis of rotation of a fluid in uniform

rotation. Schwiderski and Lugt (Ref. 37) have touched upon this, as have

many others (Refs. 16, 17, 30, 38), but the question remains unanswered.

The boundary-layer solutions discussed herein have a wide range of

applications. Probably the most undeveloped of these is in the area of ground

effect on such atmospheric phenomena as cyclones, tornadoes, and dust

devils.
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