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\\ ABSTRACT
Y

Two~-dimensicnal steady-state solutions (suitable for
computer evaluation) are given for moving normal contact

loads (sliding or rolling) on the surface of a semi-in-

finive viscoelaatic base, without—restriction--to-simpile
profiles (e.g. circular,cﬁlinders) or to the simplest
viscoelaég;p:ﬁeala (e.g. a single relaxation time, same
behavibftin shear and dilatationj.

DExamnles worked out include (a) the rigid cylinder
rolling on a material haveng 5 relaxation times; (b) the
flat punch with corners rounded to eliminate infinite pres-
sures. The results for (a) show that the variation of
rolling resistance over a range of veloclties becomes smooth-
er with the greater number of relaxation times. The results
for (b) show the dependerice of She pressure peaks, near the
ends of the contact, on the nature of rounding of the
corners and the tilt of the punch.

Three dimensional solutions are considered for the

purely viscous material. It is shown that there 1s a

steady state for a base of finite thickness, but not for

TQ:::\
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A
!

the semi-infinite base. |




pisis mw’mm@Mw

TABLE OF CONTENTS

INTRODUCTION AND SUMMARY

CHAPTER

CHAPTER

CHAPTER

I:
1.1
1.2

1.3

1.4
1.5
1.6
II:
2.1
2.2

2.3
2.4
Table
III:
3.1
3.2
3.3

W)
g

GENERAL FEATURES OF MOVING LOAD PROPLEMS
Elastic Solution
Linear Viscoelastic Materials

Solution of Viscoelastic Moving Load
Problems

Steady State Solution

Energy Dissipation

Examnles of Moving Loads

MOVING LOADS CON A PURELY VISCOUS MATERIAL
General Solution for a Viscous Base

Three-Dimensional Problem, Concentrated
Load

Uniform Pressure on a Circular Area
Base of Finite Thickness

2.1

MOVING CONTACT PROBLEMS

Formulation of the Steady State Problem
Outline of the Two-Dimenslonal Solution

The Equivalent Elastic Problem for a
Moving Load (Steady State)

EEP Method for Moving Contact Problems

iv

page

o O v

20
33
Ly
52
63
64

70
T4
83
89
90
91
96

100
106




CHAPTER 1IV:
401

4.2
4.3
4.4

CHAPTER V:

5.4
5.5

Flgure
Tables

BIBLIOGRAPHY

THE ROLLING CYLINDER PROBLEM

Formulation of the Rc¢lling Cylinder
Problem

Analytic Solution by the EEP Method
Direct Analytical Solution (Morland)

Other Treatments of Rolling Contact
Problems; Comments

A NUMERICAL METHOD FOR TWO-DIMENSIONAL
MOVING CONTACT PROBLEMS

Numerical Evaluation of Surface
Displacement

Numerical Procedure for Moving Contact
Problems

Numerical Solution of the Rolling
Cylinder Problem

Examples of Rolling Cylinder Solutions

Numerical Solution of the Nearly Flat
Punch Problem

8 I - VIII
5.1 - 5.7

133
134
138

142
149

157
163
168
174




[P

¥
o b o -

» v
Lt AL

1
[

Lo

NOTATION

References to the text are given in parentheses.

G(x,y)
G, (v)

H(t)

I, (x), I,(x)
3" (¢)

J(t)

Ko(x), Kl(x)
K., Kp

K(€)

load or contact area (Fig. 1.1)

coefficients in numerical procedure (egn. 5.8a)

creep function in dilatation (similar to Fig. 1.2)

dimensionless form of B*(t) (eqn. 1.8b)
incomplete Beta function (p. 78)

coefficlients in infinite series for displace-
ment (eqns. 2.13, 2.1%4)

"equivalent elastic problem" (Sections 3.3, 3.4)
exponential integral function (p. 56)
resultant horizontal force {ean. 1.47, Fig. 1.8)
dimensionless form of F* (eqns. 1.%9, 1.51)
= K /K, > 1
=pu e > 1

function depending on the elastic surface
displaceasent (eqn. 2.4, Fig. 2.1)

1im G(x,y)

X -

unit step function (footnote 2, p. 8)

modified Bessel functions of the second kind
creep function in shear (Fig. 1.2)
dimensionless form of J (t) (eqn. 1.8a)
modified Bessel functions of the second kind
initial, final elastic bulk modulus (eqn. 1.8b)

kernel in integral for two-dimensional visco-
elastic surface displacement (eqn. 1.42Db)
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N*
N

f

N

P(x,y,z)
P:QSPX:QX

Q(€,n)
Q' (8)
R
S, (x)
p*
T

*

U
\'/

Y, (x)

total vertical load (Fig. 1.8)
dimensionless form of N* (eaqns. 1.48, 1.50)
= 2pN, (eqn. 4.2b)

potential function of pressure distribution
(ean. 1.2)

linear differential operators in viscoelastic
stress-strain relations (egns. 1.10a,b, 3.11)

dimensionless form of q(x,y) (ean. 1.29c)

= pQ(€), (ean. 4.2a)

radius of rolling cylinder (Fig. 4.1)

Struve's function

retardation time of viscoelastic material (p. 18)

characteristic time constant of viscoelastic
material (p. 11)

vertical partical velocity (eqn. 1.38)
velocity of moving load or base (Figs. 1.1, 1.8)
Weber's Bessel function of the second kind

radius of circle (Sections 2.3, 2.14)

distance glving placement of contact surface
(Fig. 3.1%

constants in model representation of visco-
elastic material (p. 31)

length of flat portion of nearly flat punch
(Fig. 5.4)

deviator strains (p. 13)
dilatation (p. 13)
o0

= [ y(£)al , constant of viscoelastic material
o
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nless form of Glx,y} (egn. 2.10¢)
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¢

Chapter II: thickness of finite layer (Fig. 2.11)
Chapters IV,V: parameter in rolling cylinder
problem (egn. 4.11)

actual length of contact region

ratio of Bessel functions (egqn. 4.16)

number of divisions of contact region (Chapter V)
pressure distribution normal to surface (Fig. 1.1)
constants representing magnitude of pressure
Laplace transform parameter (footnote, p. 17)
deviator stresses (p. 13)

time

displacement components (J = 1,2,3)

vertical displacement at surface 2z =0

= uz/VT , dimensionless form of u,

funetion giving shape of contact surface
(Section 3.1)

dimensionless form of w* in two-dimensional
problem (eqn. 3.5b)

dimensionless elastic surface displacement
in Chapter II (egqn. 2.10b)

values obtained from w(£) 1in numerical pro-
cedure (egn. 5.8c)

cartesian coordinates fixed with respect to
the base (Fig. 1.1)

cartesian coordinates fixed with respect to
the load (egn. 1.1)

viii




a small angle of tilt of »igid profiie (¥Fig. 5.1)

8 = b/VP , dimensionless form of b (Fig. 5.1)
v Euler's constant = .5772157...
v(¢&) characteristic creep function (egn. 1.25)
8 = d/VIP , dimensionless form of d A
513 Kronecker delta (footnote 2, p. 13) i
5(t) Delta function (footnote 2, p. 8)
€44 total strain components (p. 13)
4! dimensionless coordinate; Section 5.5: ratio
of rounded corner lengths (eqn. 5.24? |
n* viscosity of purely viscous material (egn. 2.1) J
] = Oy 3 angle }
ek length of kth segment in numerical procedure g
x = K /b
A = 4/VT , dimensionless form of £ %
hoske . initial, final elastic shear modulus %
Vs Ve initial,‘g}nal Poisson's ratio §
N = x/VT, dimensionless form of X |
P = R/VT, dimensionless form of R ; dimension- g
less radial coordinate (egqn. 2.10a) ‘
Oy 4 stress components (p. 13)
T = t/T, dimensionless time (in Chapter II,
defined by egn. 2.10a)
¢ = 2pa
X coefficient of friction (egn. 1.53)
w(g),nk(g) functions used 1in numerical procedure (eqns. 5.4b,d) ‘

ix
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INTRODUCTION AND SUMMARY

Distributed loads moving over the surface of a de-
formable material are of frequent occrrrence in engineering.
Many technical opcrations involve a moving roller or
slider. Impact of a high-spead Jet on a moving surface,
and certaln cases of explosive loading and oblique impact
equlvalent to such Jetsl, provide sor  of the less obvious
examples, When the velocity of the load is small compared
with stress-propagation speeds, 1lnertis may be neglected
and the problem treated as quasi-static. In this case, 1if
the material is elastic the solutlion 1s the same as for the
stationary load problem, but now carried along unchang=zc
with the load. 1If, however, the stress depends not only
on strain itself, but also on time derivaiives of strain,
the sclution to the moving load problem hass no such immed-
late relatlion to the corresponding statiotary load
solution,

In this lnvestigation, a steady localired load moves
at constant velocity in a straight line on the initially
flat surface of a semi-infinite base. The base material

1s linearly viscoelastic, isotropic and homogeneous, with

L See, for example, Abrahamson [1]2.

e Numbers in brackets refer to the Bibliography.
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stress-straln relations expressed in hereditary integral
form (or as differential equations in special cases). It
1s free from body force, at constant temperature, and
initially at rest and undisturbed. Inertia effects are

neglected. The problems are considered with the usual

hr et b

assumptions of linear theory: infinitesimal strains,
boundary conditlions applied to the original undeformed
surface,

The principal features of interest are:

(1) the possibility of a steady state when the
load has been moving uniformly for a sufficlently
long time;

(11) the solution for such a steady state;

(11i1) the rate of energy dissipation in the
viscoelastic material.

A consequence of energy dissipation is that work is re-
quired to maintain the uniform velocity of a moving body
applying the load, and the moving body encounters a
resistance (e.g., rolling resistance).

The general problem of a moving load on a semi-
infinite base is treated in Chapter I. It 1s shown that
a steady state 1s always reached 1f the base is a solid,
but there 1is no steady state 1f the base 1s a viscoelastic
Tfluid. General expressions for surface displacement are

developed, and some examples given. Moving loads on 2

< § s

purely viscous material are considered in Chapter II.
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Specific results are given for a uniform circular load,
showing the change in surface displacement with time.
Although there is no steady state for a semi-infinite base,
it 1s shown that for a base of finite thlckness there is

a steady state, ite character depending on the way in
which the lower boundary of the base 1s attached to its
support.

The rest of the investligation 1ls concerned with the
steady state moving load problem resulting from the moving
contact of a rigid vbody of given shape with the surface of
a viscoelastic solld. The general theory of such contacts
1s consldered in Chapter III. Further detalled analysils
is limited to two-dimensional (plane strain) problems. The
particular problem of a rolling rigid cylinder 1is considered
i Chapter IV. Socme results available in the literature,
for materials of very restricted behavior, are examined
and their limitations discussed. A numerical method for
solving two dimensio.al moving contact problems is devel-
oped in Chapter V. ‘'he method, suitable for computer
evaluation, can be used for very general contact profilles
and any viscoelastic solid. Solutions are given for sev-
eral rolling cylinder examples, 1llustrating the results
for various materials over a range of contact times.
Results for a material with five retardation times show
that viscoelastic creep effects are much less pronounced,

and the rolling resistance vs. veloclty curve much smcothern

3




than for a simple material with a single retardation time.
These results indicate that a single retardation time does
not adequately characterize the behavior of actual materials
in moving contact problems., Illustrative solutions are
given also for a flat punch with corners slightly rounded.
The pressure 1s everywhere finite, but there are sharp

peaks at the ends of the contact. Results indicate how

the pressure peaks depend on the nature of rounding of the

corners and the tilt of the punch,
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CHAPTER 1
GENERAL FEATURES OF MOVING LCAD PROBLEMS

The quasi-static proble.: of an arbitrary load moving
uniformly on the initlally flat surface of a semi-infinite
linear viscoelastic base 1s considered in this chapter. 1In
rectangular coordinates x*, y®, z¥* fixed in the viscoelastic
material, the base 1s taken as z® > 0, with the surface
z* = 0 , In this discussion, "load" refers to a pressure
a(x*, y*) applied normal to the surface over an area A.
There are no tangential tractlons and no other normal trac-
tions applied to the surface. The load 1is moving at constant
veloecity V i1in a straight line parallel to the x* axis
(Fig. 1.1). For later convenience are introduced coordi-

nates X, y, 2 moving with the load:
x=x*-Vt,y=y3",z=2* (1.2}

where t 1s the time elapsed from some initial point.

q(x*,y*) ~ N
{
tlHlxIN" - ___/'SL’ N x*
| \a 1)
- NP
W
FIG. 1.1
5




1.1 Elastlic Solution

The problem of a load on the surface of a semi-infinite
elastic solld is the well-known Boussinesq problem, and the
complete solution 1s readily available (see, for example,
Love [22], p. 192). For the quasi-static moving load prob-
lem, the results are the same as for the load fixed, but
carried along with the load. The moving load solution 1s
thus the solution for the fixed load with x* replaced by

x‘l

- Vt, or expressed directly in X, y, z coordinates.
The elastic solution makes use of the potential of the

pressure di<ftribution:

! !
Py.z) = 3 [[ HET) axtey! (1.2)
A

where ﬁ’zx//(xrx')2+(y-y')2+ ,2 1s the distance from a

element at (x', y', O) to the field point (x, y, z). 1In

particular, the vertical displacement at the surface is

1-

uy (x, ¥, 0) = =2 P(x,,0) (1.3)
where uf(x,y,z) is the displacement in the z direction
(the superscript e indicates the elastic solution), v is
Poisson's ratio and p the shear modulus of the elastic
material. All displacements can be expressed in terms of

P(x,y,z) and \/}(x,y,z) dz ., and from these the strains and

stresses can be found.
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In the two-dimensional problem of plane strain, the
load does not vary with y, and extends infinitely far in
the y direction. The problem can then he considered in the
(x,z) plane, with a load g{x) (for a unit length in the y
direction) applied over a segment of the x-axis of length
£. For convenlence, this segment 1s taken as 0 < x < £.
The dicsplacement u, from the initlially flat surface1 is
infinite (because as a three-dimensional problem the load
is infinite), so displacement must be expressed relative

to some arbitrary point on the surface. From (1.2),

{ =
P(x,0,0) = %— ‘/:/ — q(x') dx'dy!
T NI N
0= Y (x-x')%+(y"')

)/
= % \/~q(x‘)log|x-x'|dx' + constant (1.4)
0
Ther, P
e . 1-v 1 '
u (::) = & - = = fq(x')loglx—x']dx (1.5a)
0

where A [s an arbitrary constant. The displacement rela-
tive to a point X, on the surface is
£
e € l-v 1
uz(<) - uz(xo) = %‘/ﬁ q(x')[log]xo—x‘|— log|x-x'|]ax?
© (1.5Db)

-

I :
u, will alway: refer to the vertical displacement at

the surface z = 0,

7




1.2 Linear Viscoelastic Materials

The stress-strailn relations of viscoelastic materials
are time dependent. At any instant they depend on the past
history as well as the present state of the material. For
any particular material, this time dependence is convenlently
determined by a creep test., A constant stress is suddenly
applied to an initially undisturbed specimenl,.and the re-
sulting strain 1s measured. The functlon giving the strain
varlation with time for a unit applied stress 1s called the
creep function, J*(t), of the material, i.e.,

2

e(t) = J*(t) for® o(t) = H(t)

J*(t) 1is necessarily zero for t < O , since the material
is initially undisturbed; J*(t) increases monotonically for
t > 0.

A linear viscoelastic material has a ratio of stress

to strain that is independent of the magnitude of the stress:

1 Viscoelastic materials will always be considered ini-
tlally undisturbed, with the load applied at t = 0; thus,
e(t) = o(t) =0 for t < O.

2
1, €50 °

dH(tYdt ,

H(t) 1s the unit step function: H(t) = {?’ £<0

Its derivative 1is the delta function, 6(t)
which has the properties O+

5(t) = 0 for t # O, \/“6(t)f(t)dt = £(0).
-

i
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e(t) = o, J*(t) for o(t) = o, H(t)

Many materlals of practical interest can be considered
linearly viscoelastlic, at least for small enough applied
stresses. This has the important consequence that the cumu-
lative effect of several loadings 1s just the sum of the
individual effects. The responée to arbitrary time-varying
stress 1s then obtalned by superposition, leading to the

heredlitary integral stress-strain relation for linear visco-

elastic materials:

t
e(v) = ["(sr) P o (1.6)
0

If there are suddenly applied loads, the stress and
strain historles willl not be continuous functions of time,
but will have Jjump discontinuities when these loads are
applied. Treated in the classical manner, integrals such
as (1.6) would need to be considered in several parts, with
the effects of the Jumps added as extra terms. It is more
convenient to work with generalized functions--the step
function and its derivatives--which take care of the effects
of Jjump discontinuities without special consideration, This
approach can be interpreted as the limiting case of rapidly-
changing continuous functions. The use of generalized

functions can, however, be established on a rigorous



mathematical basisl. If the discontinuity occurs at t = O,
the lower 1imit in integrals such as (1.6) 1s taken as 07,

to include the effects of the Jjump. In this way, 1nitial
values of stress and strain functions and derivatives, taken
at t = 0 , are all zero for initizlly undisturbed materials,.
Initial values at t = O due to sudden loads at t = O are
then accounted for by the generallized functilons. Thls often
eliminates the need for explicit evaluation of initial values
of unknown functions, thus simplifying the solutlon of many
viscoelastlic problems. The use of generalized functions in
viscoelastic problems 1s discussed by Corneliussen and Lee
[5].

Viscoelastlic materials fall into two general categories--
sollids and flulds. A viscoelastlc solid has a finite upper
limit to 1ts creep after a long time. This means J*(t)=1/E,,
a finite value, as t =+ . A viscoelastic fluld continues
to creep without 1limit after a long time; thus J*(t) = =
as t -+« . The characterizatlion of a viscoelastic material
as so0lld or fluld depends on the extent of time appropriate
to the particular problem. After a long enough time, a
viscoelastic solld acts essentlally as an elastic solid.

The material exhibits its final elasticity, with final elas-

tic modulus Ef. Most viscoelastic solids also have initial

1

See Friedman [15] for the use of generalized functions
in mathematical analysls, and for further references on the
theoretical foundations.

10
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elasticity. A suddenly applied stress produces an instan-

taneous response, then additional creep az time passes. 1In
this case, J*(0F) = l/EO # 03 E, 1s the initial elastic
modusus. If there is no initial elasticity, J*(ot) = 0.

Representative creep curves are sketched in Fig. 1.2,

v e —— s vmm——_ wvrmom e m— v

,/f::jjééizféSIIEj"1n1t1a1 elasticity

<-so0lid, no 1initial elasticity
£t .

FIG. 1.2

It is convenlent to express creep functions in non-
dimensional form. An appropriate time parameter, T , is
2rosen., Viscoelastic materiais may exhibilt one or more
characteristic retardation times, one of which can be used.
Then, a non-dimensional time variable 1s taken as T‘= t/T.
For a viscoelastic solid with initial elasticity, a dimension-
less creep function is conveniently defined by J(1) = EOJ'(TT),
and the final elastlc response represented by
F=E J¥«) = E,/Ep. Then, the stress-strain law (1.6)

becomes

T
e (1) =_%3~; [ a0 358 a (1.7)
/.

11




with J(0Y) =1, J(w) =F, 7 =t/T . This non-dimensional
form based on an initial elastic response will be used in all
that follows, unless otherwlse noted,

The discussion so far has consldered a one-dimensional
state of stress and strain. In a general three-dimensional
state, the response of a linear 1sotropic homogeneous visco-
elastic material can be described by two independent creep
functions. This 1s analogous to an isotroplc elastic ma-
terial where two elastlc constants are sufficient. The two
functions are conveniently taken as the shear creep functlon,
J*(t) , and the dilatation creep function, B*(t) . For a
material with initial elasticity, these are non-dimension-
alized in terms of the inltial elastic response and a

common characterisitc time parameter T:

]
-

I(t) = 2u J*(x1) , J(0%) (1.8a)

B(t) 3%, B*(<T) , B(0t) =1 (1.8b)

where Ko is the iritial elastic shear modulus and Ko
1s the 1nitial elastic bulk modulus. If the material is
a sollid, with a final elastic response, the shear and
dilatatlon creep functions will each approach a finite
limit as t - ®» . In this case, J*(«) = 1/2n, and
B*¥(w) = 1/3Kf » where W, and K, are the final elastic

modull. Then,

12
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J(ew) = FJ 5 B(x) = Fy (1.8c)

where FJ = uo/uf >1, and F = KO/Kf > 1.

General three-dimensional stress and strain 1s described
in standard suffix notationl, i,J taking on the values 1,2,3
corresponding to the coordinate axes Xy = X, x2 = Y,

Xo =2 .
3

Stress components: oifx,y,z,t) 38 = gy

W}
@
o

Stress deviator componentszg sij(x,y,z,t) = 013-

I
m

Strain components; eij(x,y,z,t) ; dilatation e

1
Strain deviator components: eij(x,y,z,t) =€y5 -3 ed

Corresponding to (1.7), the stress-strain laws are>

T ds, ,(t)
e5(t) =g [ 3(e-0) —54— et ; (1.92)
J
T
e(t) = == f B(1-g) 92LL) g¢ (1.9b)
3K, ) 4

L The summation convention is used, so that repeated
indices mean a sum of terms with index values 1, 2, 3.

2 513 1s the Kronecker delta symbol: 613 =0 for i #j,
éij =1 for 1 = j.
3

The stress-strain components are of course functions of
the -~ace variables (x,y,z§
explicitly indicated.

as well as time; this is not




For an elastic materlal the creep functions are Just the
step functions, H(t). In this case, (1.9a,b) reduce to the

stress-strain laws for an elastlc body:

1

1
€,, = m— 8 ; e = 6 (1.9¢)
1) 7 ey "1 3Ko

L amar i x et

Mechanical models, made up of suitable combinations of
springs and dashpots, can ve used to represent viscoelastic
materlals. The load-deformation behavior of such models
exhiblits many of the important features of actual materials.
By taking a large number of elements 1n a model, a partic-
ular material can often be approximated quite closely. The
springs allow for storage and recovery of energy and the
dashpots allow dissipation of energy that is characteristic
of viscoelastic materials. In fact, molecular theories of
viscoelasticity have been based on this type of model (see,

for example, Bland [3]). For three-dimensional states, two

ey gpthnr vy b

such models would be necessary in general, to represent

PP ——

shear and 4dilatation. The advantage of using models 1is

that the creep function can then be expressed 1n a simple
~analytic form, as a sum of exponentigl terms. Thls permlts

mathematical analysis of viscoelastlc problems to be carried

much further than would otherwise ke possible, bringing to

light significant features c¢f the solution that are charzc-

teristic of actual materials. !

14 %
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Model representation permits a stress-strain law to be

expressed as a linear differential eguation, rather vthan the
integral equation (1.7). This can be expressed
P{o) = Q(e) (1.10a)

; where P and @ are linear diffcrential operators of the

form
P= 2 p ’ Q= 2 ¢q .
k=0 K 3t% =0 K 3tk

Py and Qe beling constants for the particular model. 1In

three-dimensional problems, two sets of operators are needed.

For shear P(Sij) = Q(eij) (1.11a)

and for dilatation P'(e) Q’(e) (1.11b)

More detalls and further references on viscoelastic models

and their differential equations are given in Lee [20],
Bland [3], and Kelly [18].

e et gy TR

A convenient model to use is the general Voigt material.
This is made up of a serles of Kelvin elements (spring and
dashpot in parallel), with a separate spring to represent
initial elasticity if it is present (see Fig. 1.3). A
model representing a viscoelastic fluid must also have a
separate dashpot, giving unlimited creep under locad. For

each Kelvin element, the stress-strain law is of the foz*ml

; 1

A dot indicates the derivative with respect to time:

f(t)= 3£/t .
z 15




0 = FE(e + T¢), where T = 1n/E 1is the retardation time of

the element. A Voigt material thus has n characteristic
retardation times, one for each Kelvin element, with an

initial elastic modulus EO and a final elastic modulus

n
Ef =E 4+ 2 E, . The simplest model that exhiblts the
o] k=1 k

initial response, delayed creep, and final elasticity char-

acteristic of a viscoelastlic solld is a Volgt solid wlth &

single retardation time, called the standard linear (or

three parameter) solid (see Fig. 1.3).

General Voilgt Material (fluid)

(A Voigt solid has no free dashpot, l.e., 1 = » )

5 E E E
—/
Lo ANNZ— [ —0-Iy
EO nO | N S
Ty M2 ﬁEA n

Standard linear solid
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More Kelvin elements with different retardation times
can be added to glve a more complex model that may 1ln certain
cases satisfactorily approximate a real material. However,r
real materials appear to have no discrete retardation times,
so a model with a large number of elements 1s usually neces-
sary to accurately represent an actual material over a long
time span. The determination of constants to fit such a
model to a test curve can be very tedlous, and the result
is still only an approximation. It is frequently more de-
sirable to use the test curve directly in an integral law
such as (1.9), which can be evaluated numerically. The
approximation is then numerical rather than physical, and
the resulting error can be estimated and controlled more
readily.

The creep function for a model material can be determined
directly from the differential law (1.10) by using the
Laplace transforml. The linear differential operators P

and Q become polynomials in s , so that (1.10) transfofms~

to _ _ _ . »
P(s) 0 = Q(s) € {1.12)
where
_ n , _ n
P(s) = 2 p s , &s)= 2 q 5"
k=0 k=0
1

The Laplace transform of function f(t) 1is:
. )
F(s) =2(f(t)) = [ e %% £(t)dt . It is taken in the general-
5-
1zed sense, starting at t = 0~ , to include the effects of
discontinulties at t = 0. :
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From the definition of a creep function, e(t) = J*(t) when
o(t) = H(t) , thus &(s) = J*(s) when o(s) = 1/s . Then
from (1.12),

T*(s)=1 L (1.13)
Q
For a general Voigt material (Fig. 1.3), the result 1is
ey =Ll.lyl .1 i3 1
E,' 5 Mg 2 8 o1 Bt 8Ny
n f
- %- . é [1 T -——-BL: (1.14)
o) sTO k=1 1 + sTk
where T2 = n,/E, 1s the retardation time of the k' Kaivin

: _ * _

: element, £ = EO/Ek , and T = nO/EO . This model is a
f1uid material,. because of the presence of the free dashpot
with viscosity Mo - In a solid, there is no free dashpot,
and this term in (1.14) is absent (no = o, T; = »). From

(1.14), the creep function is

J*t) = £,(1 - e~t/Tey lu(t)  (1.15a)

txilr-a
Tms

9
E S

[1 + E: +
O ‘0

This has the initial response J (0%) = %» , and the long-
o
time unlimited creep J7(t) ~t/n, as t — . With the

R term absent, the solid has a final limiting value of

creep  J*(w) = 1/E; =(1/Eo)(l + % fk).
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In dimensionless form,

o) = [+ + 3 £(1 - ¢”7/T) JH(x) (1.15b)
0 1

where T = t/T , T, = TQ/T and T 1is a characteristic time
n ]
parameter., Then, J(0*t) =1, and J(w) = F =1+ Z £l
k=1
For a standard linear solid, n=1, T = T{ . Then,

Jt) =1+f(1-¢e"); JHw) =F=1+F¢

Most experlimental data on actual viscoelastic materials,
such as high polymers, provide information on the behavior
in shear or simple tenslon. Very few tests have measured
dilatation alone, so data for the creep curve B(t) are
frequently not available. In the absence of specific in-
formation, several assumptilons of dilatational Béhavior have
been made. Each may, in certaln circumstances, be a good
approximation to actual behaviorl. The common assumptions
are:

1) elastic dilatation, B(<) = H(T)
2) 1incompressible, K =wx, B(1) =0
3) siunllar behavior in suear and dilatation, B(t) = J(71)

In terms of Polsson's ratio, v , which is discussed in the

next section, 2) corresponds to v = 1/2, and 3) corresponds

1

For further discussion, see Staverman and Schwarzl [29],
Section 6d; Ferry [9], Chapter .Jd.
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eﬁv;to Vv, o= constant. Even when actual data are avallable,
o use of one of these assumptions may lead to significant
: simplifications in the analysis of a problem, without being

3 - . . too seriously in error,

1.3 Solution of Viscoelastic Moving Load Problems

Many problems 1in viscoelasticity can be solved by
; removing the time dependence with a Laplace transforml,
1;fwhich reduces the viscoelastic problem to an "assoclated
- eélastic problem" (Lee [19, 20]). Taking a Laplace transform

f%—bi‘the viscoelastic stress-strain laws (1.9a,b) gives

- 1 - - - 1 _ _
€4 =3 8 (s) 84 4 e 3K s B(s) ( )

(0]

< - ,”aﬁiheee<are the same as the transforms of the elastic laws

:ffl.9c§ if g, 1s replaced by uo/sﬁ and K by Ko/sﬁ .

" If a.laplace transform of the boundary conditions 1s pos-
sible, the viscoelastic problem becomes an elastic problem
in the transformed variables, with the elastic constants
now functions of the transform parameter s. This 1s the
acsoclated elastic problem, and if its solution can be
found, the viscoelastic solution 1is obtained by inversion

of the Laplace transform.

1 The Laplace transform is taken with respect to the
dimensionless time T = t/T . The generalized transform,
starting at t = 07, wi’'~™ always be used. In this way,
initial conditions are ai! zero for an initi~1lly undisturbed
material.

20




¢ K e e i

i

For an assoclated elastic problem to exist, it must be
possible to transform the boundary conditions. There are
two types of boundary conditlons: tractions prescribed on
a region Rl of the boundary surface, and displacements pre-
sceribed on a region R2 of the surface. If the reglons R1
and R2 do not change with time (the quantities prescribed
on them may vary with time, however), then a Laplace trans-
form 1s possible., If R1 or R2 change with time, a Laplace
transform of the boundary conditions 1is not generally pos-
sible, and the above method of solution is not applicable.

A procedure equivalent to solving the assoclated elas-
tic problem (when it exists) is to solve the original vis-
coelastic problem as an elastic problem(with the same
boundary conditions as the viscoelastic¢c problem), take the
Laplace transform of this solution, and re¢place the elastic
constants by thelr appropriate viscoelastic analogues from
(1.16). This is often much easier than solving the asso-
cilated elastic problem directly; use can be made of exist-
ing solutions from the theory of elasticity. Frequently,
the elastic solution is in the form of functions of space
and time multiplied by rational functions of the elastic
constants. The transformed viscoelastic solution is then

a procduct of the transformed elastic solution and creep

functions, and the inverslon is Jjust a convolution integral.

In replacing the elastic constants according to (1.16), the
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term sJ (or sB) occurs. This 1s the transform of

J(t) = aJ(t)/dr [or B(x) = dB(t)/dt]. The viscoelastic
solution is thus a convelution of appropriate creep function
derlvatives with the elastic solution.

As an example, suppose an elastic solution has the form
e 1
g (X:Y:Z:T> = E f(x:yxz,T)
Taking Laplace transforms gives
- e . 1 =
€ (xy,2,8) = 7 T(x7,2,8)

Replacing u by “0/33 gives the solutlion of the assoclated

elastic problem, and inverting gives the viscoelastic solution

T
1 .
i [ 30 ezt

o

g(x:Y:Z:T) =

Elastic solutions frequently contain Poisson's ratio,
v = (3K - 2u)/2(3K + p) , which depends on both shear and
dllatatlon properties of the material. 1In forming a.. asso-
clated elastic problem, v 1s replaced by this same function

of the transformed creep functions:

3K 21 3K " 3K sJ - 2u_sB
v (= - =22+ D) = e O
sB sd sB sd 2(3KosJ + uosB)

(1.17a)

This can be consldered the transform of a viscoelastic

Poisson's ratio, v(1), which varies with time, so that

22




Tmres

i 4os 1 veaer Y,

o (1.17b)

s v(s) =

Then, v 1s replaced by sv(s) in the assoclated elastic

problem.

From the initial and final value theorems of Laplace

transforms (see, for example, Thomson [33]),

3K, - 2H, "
= 2(3KO - HO) = v, (1.18a)

]

v(0%) = 1im s¥(s)

where Vo is the Poisson's ratio of the initial elastilc

response, and

v(w) = 1im s¥(s) = v, (1.18b)

S o

where Ve is the final value of Poisson's ratio. If the
material has a final elastic response, then its Polsson's
ratio 1s v, = (3K, - 2u,)/2(3K, + pbp). Using (1.8¢) this

becomes

3?0 "Quo + QuO(FJ-Fb)/FJ
BKO + My -~ uO(FJ_Fb)/FJ
Thus, Ve > Vo if FJ > Fb s, and Ve < Vo if FJ 4 Fb .
If the material 1s fluld in shear and solid in dilatation, so
that J(w) = » while B(w) 1s finite, then v, = 1/2.

An example of a simple model that exhibits features

similar to more general viscoelastlic solids is one with

standard linear solid behavior in shear,and elastic dilatation.
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Then~,

J(1) = [1+ £(1-e7")]H(7) ; B(x) = H(7)
3(3) = 8J(s) = 1 + T§§ ; B(s) = sB(s) = 1

_ 3K0[1 + £/(1+s)] - 21
s¥(s) = B3R IT + 1/(TFs) T+,

=y [1 + e 1 }
o} (BKO-QMO)(3KO+MO) s+ [1+ 3Kof/(3Ko+uo)]

9fKOuO 3Ko+uo+3KOf
vit) = v |1+ [1-exp(- 7 J|H(7)
(7) 0[ (3K,-21,) (3K +u +3K ) 3Kt ]

For example, if X =@©/3)u , then v = 1/3,
Vp = (3+41)./(9+8¢F) ,

v(t) = %[1 + §-§§f [1-exp( - 9;81' T)]]H(T)

For additional examples and discussion of Poisson's ratio,

see Kelly [18], Freudenthal et al. [14].

V(T)h
Vfﬂ/—-_—“‘;‘_‘
v

o
L T

FIG. 1.4

4

The retardation time T* is taken as the time parameter T.
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For the present problem of a given load moving on the

surface of a seml-infinite base, boundary conditions on the
surface z = O are

S _ [-a(x*-Vt,y) under the load
SPA S Vt,y,0) = L0 7" outside the load (1.19a)

sz(x*,y*,o) = Tyz(x*,y*,o) = 0 everywhere (1.19b)

Since the tractions at each point on the surface are known
for all time, a Laplace transform of t° boundary conditions
1s possible, and the problem can be solved as an associated
elastlec problem. The vertical surface displacement u,
(on z = 0) will be considered in detall. The same procedure
can be used with the known elastic solution to find the
viscoelastic displacements and stresses at all points in the

semi~-infinite material.

The elastlc solution, as given in (1.2), (1.3), 1s

us(x*- vIT,y*,0) = iﬁ-‘i P(x*- VIt,¥",0) (1.20)

f q(x',y')dx'ay’
Jv/(x%-VTT -x! Pt (3% -y 1) 2

P(x*- vr1,y*,0) = %—

The superscript e indicates the elastic solution. Taking

a Laplace transform gives

GZ (x*,y*%,s) = lil B(x*,y*,s)
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gives the assoclated elastic solution

a =

. sJ(s){1 - sv(s)] B(x*,y*s) (1.21)

|-

)

Inversion then gives the deslred viscoelastlc surface
displacement.

Although (1.21) could bte formally inverted as it stands,
in the form of a convolution integral, the final result is

seen more clearly by proceeding further. Let

3(t) = [1+ 3y(7)IH(x)

(1.22a)
B(x) = [1 + B, (r) JH(x)
with
Jl(O) = Bl(O) =0
tTﬁen
sd(s) = 1 + sjl(s) ; sB(s) =1+ sﬁl(s) (1.22b) 7
Also, let x = Ko/ho Then (1.18a) becomes ;
v, = (3x-2)/2(3x+1) (1.23)

From (1.17b). after simplification,

3 sul o o 91c S
L si(s) = (vg)|1 - 22
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Then, uging (1.22b) and (1.24),

sJ

- l-v
- - 1
2. sJ(s)[1-59(s)] = —2 ll + 8y 39§4 L — “(1+33ﬁ]
Mo o) 3K+ 1+3xsJsB;
Ncw let +v(t) be @ new function such that
- . 9x sdy - 8By =
vis) = 8d) - =37 ET T 3T F5E5, (1+s3;) (1.25)

Then (1.21) can be written

l-v

pA o

© 1+ Y(s)] B(x*,y*,s)

[vi}
i

Inverting this gives the desired surface displacement

1-vO 1-vo
u, (x¥ydt) = P(x*-VvIt,y*,0) +
z Lo Ho

T

T
JFv(c>P<x*-vmw+vwc,yro>dc
O

= uS(x*-VIr,y*) +‘/ﬂy(§) uS(x*-vIe + voe, v¥)ag

o

where u: is the displacement due to the initial elastic

response, given by (1.2,3) for a three-dimensional problem,

and by (1.5b) for a two-dimensional (plane strain) problem.

Expressed in coordinates moving with the load

(x=x*—V‘I"r,y=y*),

T

1, (%¥57) = ug(y) + [ 9(E) wilx + vig,y)at
O
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The expilclt evaluation of u, regulires the functlon
¥(t). If the creep functions J{t) and B(t) can be ex-
pressed analytically, =0 that thelr Laplace transforms can
be found, then direc. inversion of (1.25) gives +y(t). How-
ever, for actual materlals, the creep functions cannot
usgually be expressed 1n simple analytic form, but are avail-
able only as curves cor tabulated values from tests. Instead
of the several approximatinns and considerz™1le labor that
may be needed to fit a curve with an analytic function, take
its transform, then invert {1.25), it 1s better to obtain
v(1) directly from the given data by a numerical procedure.

For this purpose, (1.25) can be written:

_ 3x8dy+ sBy _ 1 _ _
Y(S)[l + Tx F 1 ] = SJl + ETTS) (BKSJl'i‘ SBl) SJl
Ix B 3. -sB
(3x+8) (3x+1) [831 - SB1 + s31(sJ1—sBl)]
3xsd, + U4sB
—_ T - 91‘: T -aB m 1 1 T
= 53 = U5%F5) (3%F1) (sJ;-sBy) + 3x+h 893
inversion cf this gives
. . .
' 3xd, ()48, (€) .
y(t) +f 13K+1 y(t~t)at = J,(r)
)
: T 3xdy (0)+4B (L)
91( 4 B 3 X 1 1 T
- ey gty [9107) -8y (1) ] ﬂ[ Ix+0 JyT-L)ae
o)
(1.27)
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This is a Volterra integral eguation of the second kind for
the unknown function <vy(t). It can be solved numerically by
a finite difference method, requiring numerical values of
the derivative of each creep function at intervals from O

to 1. A procedure for solving such integral equations has
been developed and discussed by Lee and Rogers [21]. Using
a slight modification of their procedure, equation (1.27)

can be solved numerically as follows: Let

M(C) = gy [3x31(8) + By(0)]
T 33, () +B (£)
; s 7 1 1 : .
F(1) = Jy(7) - (3K+Z§(3K+lj(di~8ﬁ.+h/‘ 3eFE Iy(=-L)ag
2

M({) and F(t) are known or can be found from the given creep
functions J(t) and B(t). Then, (1.27) beccmes

T

(1) +f&1(r-r,h(c)dc = F(7)

O

Divide the time into intervals Ty i=1,2,+++, n+l;

Ty =0, Ty =7 . Let y = y(rn+1) = y{1). Then,

v = ¥(0) = F(0) = 3;(0) - rzmitserry [91(0)-By(0)]

_ 1 1
Tntl T TF 12 W 'rm_l-'rn) {F(Tn«f-l) - §M(Tn+1"'rn)
n-1
1 .
t3 121(71+1+71){M(Tn+1'71+1)‘ M(Tn+1-Ti)] }’n = 1:2,--
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In this way, v(t) can be evaluated in successive steps,
starting from <=0. The time 1intervals can be variled as
deslred; equal intervals in log T may be convenient.

The function y(t) will be qualitatively similar to
J&(T), as can be seen from (1.27). It is a monotonic de-
creasing function, concave upward. If the material is a
solld, the creep functions approach asymptotically a limit-
ing value; thus, jl(w) =Bi(x) =0, so y(w) =0 . If
the material is a fluid, the creep functions approach a
linear function of time after a long time, so vy(w) = Yy > O.
For a general Voigt model, from (1.15b),

f /T
. _ L - - k
Ji() = T + T ©

MDD
~ N

If the material is a solid, T0 = o , and jl(T) decreases
exponentially to zero. An actual material will have the
same qualitatlve behavior for 51(1) , and thus for +y(T).

A representative sketch is shown in Fig. 1.5.

v(t)4
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If the material is assumed to have ccnstant Polsson's ratio
[B(t) = J(t), or incompressible (v = 1/2)], then <v(1) =
Jl(w)‘. If the dilatation is assumed elastic, B, = O in
(1.27). As an example, for a material with sivandard linear

solid behavior in shear and elastic dilatation,
J(t) = [1+ £(1-e7")] H(7) ; B(t) = H(t) (1.28a)
51(1) =fe " , By(7) = 0

Inversion of (1.25) gives

3xf

. f - 3 -(1 + 2==—)1]
¥(t) = 5 = [e7" + 3EFI)2 © 3x+l(1 50)
1+v
_ k-2 _2e 0
where Vo = a(zxrI) T * = 3 T,

For any material whose shear and dllatatlon behavior are
represented by mechanical models, such as the general Voigt

solid, <vy(%) will be a sum of exponentials, in the form

y(t) =2 fie-b1T .
1

For further applications, it 1s desirable to express
the surface displacement (1.26) in dimensionless form. This
is most conveniently done by using as a characteristic length

parameter the quantity VI . Then, the following dimension-

less varlables are introduced:




Coordinates: £ = %T , 7 = %T (1.29a)
(moving with the load)

uz(x,y,O)
Displacement: v(é,n) = G (1.29b)
Pressure: Q(&,n) = m T a(x,y) (1.29¢c)
o

Using these, the elastic displacement is, from (1.20),

A COEEY) Q(¢',n )ag'dn’ (1.30)
A V(g-£")® + (nn")?

The viscoelastic result (1.26) then becomes:

T

v(€,1,7) = vo(£,7) +f y(£) ve(&+L,m)aL (1.31)

o

For a general three-dimensional problem, using (1.30),

v(gm1) =5 [[@lg'n") -
27\”[ [“(e-e’)2+ (n-n")%

T

+,Jf y(&)dat ] at'dan'  (1.32)
o V(£-£+1)%+(n-n")°

For a plane strain problem, from (1.5a),

A et
v(g,t) - V(CO,T) = \/~ Qe") {10€:§%g5%
0
T

e +E-€|
+\Z‘Y(C) 8 TERLE] dc}de (1.33)
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where A = is the dimenslonless length of the loaded

S

rezion,

1.4 Steady State Solution

The stress and deformation patterns in the base change
with time due to the delayad creep and recovery of visco-
elastic materlals. After a sufficlently long time, however,
the transient effects may disappear, so that these patterns
are unchanged with further passage of time. In this case,

a steady state exlsts for an observer moving with the load.

With respect to coordinates fixed in the base, functional
dependence on time then occurs only in the combination

x* - vt . In coordinates X,¥s2 moving with the load, there
is no expliclt time dependence. The question of whether and
under what conditions a steady state occurs, and some of its
consequences, will be considered in this section.

The viscoelastic solution (1.31) contains time explicity
only as the upper limit of the integral. If this integral
exists as T -+ o , a steady state 1s reached, and 1s given
by (1.31) witr T = » . If the value of the integral in-
creases without limlt as T —+ o , no steady state exlsts.

Consider the integral in equation (1.31):

I(T) E‘/Ev(c) &+, m)ag |
0]
= %\Z?v(c)[47“Q(€ﬂ n') 9§£$ﬂl]‘dc (1.3%4)
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where T

Viert-£')% + (n-n °

If I(w) exists, there 1s a steady state. Let T, be a
large but finite time. Then,

I(e) = 2(r,) + [ )| [f ae'n)29L | ar
T A

~~
[ ]
W
Ut
Ny

1
r

I(TO) 1s finlte, so only the second term must be considered.
Since { 1s always large in this integral, the integrand
can be expanded in terms of C'l:

> o)

f UfQ '}dc“[v(C){gg+-1:-é—+.... ]dl;

T, (1.36a)

where N_, Ny, .... are finite terms depending on (£,7) but
not . If the materlal is a viscoelastic solid, y(¢) de-
creases monotonically to zero as ¢ = « . In this case,
the integral (1.36a) is finite. Thus, I(w) exists; a
steady state is always reached when the semi-infinite mate-
rial is a viscoelastic solid. If the material is fluid,
v(£) decreases monotonically to a constant value, Ye o
as { =+ . Then, y(C) = Yo t yl(g) > where y,({) decreases
monotonically to zero as { — «» (see Fig. 1.6). The inte-

gral (1.36a) becomes

N

g N le
[ve + ¥ (O[22 + =5 + ...]aL = Tdc+ [-£1 4 .. 14
T‘O[ Ut fo *c[o ¢ (1 36b)
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The second integral 1s finite, hut the first term integrates

to nyoilog g]? , which is unbounded, so I(x) does not

] o
exist. Thus, a steady state 1s not reached when the material
is a viscoelastic fluid.

If the problem is two—dimensional,

(<) =\/‘y<c L/‘Q ¢') log ,;ig—gif g1 ot

For large ( , the log term 1s expanded in powers of C'l
to givel
6ot -E €0 -¢'
log m—-&-’r log ll'*"—g—" -10gl1+§z-§'—l
! )
£t e &+ £-¢
~r BT t oo ]

Following the same procedure as before, an integral of the
same form as (1.36) results. Thus, the concliusions are the
saﬁe for the two- and three-dimensional cases: There 1s a
steady state when the material 1s a solid; there 1is no
steady state for a fluld.

For a viscoelastic fluid, where -y(Z) = Ve t+ yl(g),
the displacement (1.31) becomes

T T
. e A
v(&,m,m) = vE(&,m) + ve [ vE(&+C,m)aL + [ v,(2)vE(E+L,n)aL
f 1
0 o
1 The symbol ~ means asymptotically approaches ;s 1l.e.,
f(x)~g{x) as x -+ a means 1im | £(x)-g(x)| =
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The term with Ve 1s due to the unlimited creep of the
material, and this is what falls to reach a steady state.
The fluld behaves after a long time as i1f 1t were puiely
viscous, as given by the term with Vg Thus, to decide
if a steady state 1s reached for a general viscoelastic
fluld, 1t is necessary to consider only an ldeal viscous
fluld. A viscoelastlc fluld will have a steady state if
and only 1f the 1deal viscous fluld does.

The failure to reach a steady state when the base is
a fluld has been shown here for a semi-infinite base. 1In
this case there are no constraints or supports to prevent
the displacement from increaslng without 1limit as the fluid
material undergoes uniimited creep. If the base was not
semli-infinite. but a layer of finite thickness suppcrted
from below, the creep would be constrained and a steady
state might result. This possibility will be considered

" in more detail in Chapter II.

When the material is a viscoelastic solid, the steady

state solution is given by (1.31) with T = = 3

@

v(g,m) = ve(&,1) +f7(§) ve(g+t,7)dL (1.37)

¢

The steady state 1s evident only to an observer moving with
the load at velocity V; the coordinates (€,7m) are also

moving with the locad. It 1s convenlent to think instead
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of a fixed load and coordinate system, with the éemi~infinite
base moving uniformly under the load, in the negative ¢
direction (Fig. 1.6). A particle of the base comes from the
right (£ = ») and has been traveling horizontally for a long
time. It continues to mcve with constant horlzontal velocity
V , but it also acquires a vertical velocity as 1t comes under
the influence of the lcad. The path of the particle is de-
formed 1in the vicinity of the load, but the particle 1s
eventually moving horizontally again far downstream., Parti-
cles initially on the surface remain on the surface, and
undergoe the vertical displacement uz(x*-Vt,y*) = uz(x,y)°

The vertical velocity of surfa~e particles is

du du ov(E,n)

* P
U

EBT— ="V5'X—Z' =-V""B'é:-—" (1'38)

Thus, the vertlcal veloclty of a particle on the surface is

prooortional tc the siope of the deformed surface.
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When a steady state does exist, the resulting expressions

or surface displacement (or any other di:placement or
stresses) can be found directly, without the necessity of
considering tims explicitly. Consider the load and coordinate
system (%,y,z) fixed, and the viscoelastic base moving at
constant velocity V in the negative x direction. For simplic-
ity, a one-dimensicnal state c¢f stress 1s considered. The
argument is easily extended tc gshear components and dilatation
in a gereral three-dimensional state.
Av. element A in the base; now at coordinate x, movesl
on the pathline A'A (Fi.. 1.6). Suppcse while at x' it re-
ceived a stress increment do = [Jdo(x')/dx'] dx'. This has

int'luenced the element for a2 time (x'-x)/V, and the resulting

strain increment is

d(x) = g- 3(7 =2 do
O

Adaing up all such increments from the initial position of
the element at xt = o b0 1its present position a x' = x
gives the total strain

X
. ' _ AL :
e(x) - & [ (E) AEL ex (1.39)
o)

oo

1

Deformatlons due tc the applied 10ad are infinitesimal
and can be neglected, so the only motion is in t.e negative
x-direction at velocity V.
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The elements are coming from an undisturbed state, so that
o(w) = O . Thus, integrating (1.39) by parts, and letting
¢ = (x'-x)/vT,

(o]

f C(x+VTL) J(E)ag (1.40)

o)

f‘jlb—‘

e(x) =
)

This is the steady state equivalent of the stress-strain law
(1.7). Similar laws, analogous to (1.9a,b), for shezr and
dilatation can be obtained in the same way., The stress-strain
law (1.40) can be considered an operational extension of the
elastic law e(x) = 1,'/}3O o(x) , with 1/E  replaced by
3(C)/EO and the integratiocn carried out as indicated in
{1.40). 1In the same way,(l—vg/uo [6(¢) + v(¢)] repiaces
(l-g)/uo in the elastic suri:ce displacement (1.3), which

leads to the viscoelastic steady state displacementl

(3) = =2 [ [6(2)+v(e) IB(xvEL, 3)a
Uy (%,5) = 5= [ [8(&)+y(£) IP(x+VTL, y)dL
0]
or, . o .
u, () = ug(xy) + [ ¥(E)uG(evee,y)ae

o

In dimensionless terms:

o]

v(€,m) = v<(&,1) +f7(l:‘)ve(€+c,n)d’;

o

which is identical to the previous result (1.37).
1

This operation can be Jjustified more rigorously using

Fourler transforms in a way similar to the use of Laplace
transforms n the preceding section.
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The steady state solution feor the surface displacement
of a semi-infinite base is given by (1.32) or (1.33), with

T = o. The result for the three-dimensional problem can be

wrltten
v(€,n) = f»/Q(e','n')K*(e—ﬁ'sn—n’)d?dn‘ (1.41a)
A
nhere K*(¢&,n) = R S l\/ﬂ y(L)as (1.41b)
2 /&% 2J Je+) 2

For a two-dimensional probiem,
A
v(e) -v(g,) = [ (') IK(E,-£")K(E-E)Jeg’  (1.42a)
o

>}

K(¢) = log|e| +j Y(L) log|&+s| ac (1.%2b)

O

where

These results are for a visccelastic solid with initial
elasticlity. The dimensionless terms €,7,v,Q are defined
in (1.29), while y(¢) is obtained from the creep functions
of the material by (1.25) or (1.27).

It is of Interest to examine the surface displacement
far away from the load. The loaded area will be taken to
include the origin of the coordiriate system. In the three-
dimensionsl case, 1let p2 = g2 + n2 be very large; p is
the (dimensionless) distance of a point on the surface from

the origin. Then, as p = o ,

Lo




o0

K*(&,m) ~ 55 (1 + [ v(0)at] - -e-i-ée Ey(2)dL + ...
9}

v(E,m) ~ fs—— -—}ff@ ¢',n')at ' o' Lli'fi)dﬂ
S

Using (1.25) and the final value theorem of Laplace trans-

forms, 1t can be shown that

S 14m (. . = Ko L-ve ,
Jofyu;)dc = oo 1+ @] = 15 o (1.43)
Then,
v(€,n) ~ﬁ——j‘:g— C—2 5 ffq(e ,n')og dn’
|

The total load, N*, applied to tbhe surface is
. ~ R
=ffq(X',y')GX'dy' = (VT)‘fIQ(E ,n )dg'an’
A A

Thus, far away from the load,

(£:m) ~ == L
vig.Tm) ~ ———— or
VE22  eop(vr)? e ’
1-v
1 N* £ 4
uZ(X,Y) ;235:;5? 2 hp (1.4%)

Thlis 1s the same displacement that would result from a

concentrated load of magnitude N* applied at the origin.
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The result is that far from a locallized pressure distribution
mo- 4 on the surface of a viscoelastic solid, the surface

d: .placement 1is the same as that for a concentrated load of
the same total magnitude, acting at the origin on the surface
of an elastic solid with the final elastic modull of the
viscoelastic material. This is true in any direction, whether
ahead of or behind the moving load. The initilally flat sur-
face is deformed in the vicinity of the load, but graduclly
returns to its initial level after the load passes. Far
enough away from the load, the actual pressure distribution
has no effect; only the total load is significant.

In a two-dimensional problem, as || = = ,

1-vf N*

W(8) - vlgg) ~ ot Syr [loslgo] - loelel] (1.45)
Here the result 1s the same as for a line lcad of the same
total magnitude, N* = f q(x)dx' , per unit length in the
y-direction. Again thg base exhibits the final elastic
behavior of the viscoelastic material. The surface levels
far ahead of and behind the load are the same, and the slopes
tend to zero as }E] -+ o , For any two-dimensional (planv
strain) problem, elastic or viscoelastic, the load is dis-
tributed on an area unbounded in the y-direction, and thus
the total lcad 1s infinite. There is no lower boundary to
the base to restrict the resulting‘deformation,'éé the dis-

placeme&E far from the load 1s infinite relative to points
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neair the load. The displacement must thus be expressed
relative to an arbitrary point go rear the load.

For the extremes of very large or very small velocity,
the viscoelastic solution approaches as a limiting case the
corresponding elastic solution. For V = O , the viscoelastic
material exhibits its final elastic response when a steady
state 1s reached, and the result is the same as if 1t were
an elastic sclid with the final elastlc behavior. For very
large V , the load passes so fast that there 1s time only
for the initial elastic response. Thus, as V-« , the
result 1s the same as 1if 1t were an elastic solid with the
initlal elastic behaviorl. These results are confirmed from
the 1limiting values of the surface displacement. Written

out completely, the steady state solution 1is, from (1l.4la,b)

l-v
1 \ 1
u,(x,y) = 4 ° 5= q(X‘:y'z{
> = Vixx')Pe(yr)?
+ v(£)ds | axtay: (1.46)

o VQ;HWHI—XOE+(y-y92

For V=0, (1.46) becomes

1-v, ° 1-ve
u,(%,y) = o [1 +f'y(§)dc} P(x,y,0) = e P(x,y,0)
0o
! .

1 The solution in this case 1s no longer physically mean-
ingful, because the problem canrot be treated as quasi-static.
The limiting case may be approachad, however, for relatively
large velocitles still within the restrictions of the quasi-
static assumption.
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This is the elastic solution (1.3), with elastic constants
uf R vf of the final elastic response. For V—+o , the
inner integral in (1.46) vanishes, so

1-v

u,(%,5) = uoo P(x,y,0)

which 1s the elastlic solution for the initizl elastic

responze.

1.5 Energy Dissipation

When a perfectly elastic materisl is loaded, work done
on the body as 1t deforms 1s stored internally as strain
energy. If the body is subsequently unloaded, recovery takes
place instantaneously. The strain energy is released and
there 1s no net work done in a complete cycle. In a visco-
elastic body, however, recovery takes place gradually after
unloading, and not all of the stored energy is released.
Energy is dissipated within the material during the loading
and unlcading process. Thus, net work must be done on a
viscoelastic body, even though it may eventually return to
its initial shape. The amount of work depends not only on the
init’al and final states, but on the history and rate of load-
ing during the prccess. 1In a mechanical model of a visco-
elastic material, the dashpot elements account for internal
energy dissipation, while the springs provide for storage of
free energy. The dissipation in actual materials is often

attributed to "internal friction" or "elastic hysteresis losses."
vl
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Conslder a moving load applied to some body in contact
with the surface of base material. The contact is perfectly
lubricated {or "frictionless") so there are no tangential
surface tractions. The body would move at constant velocity
with no resistance if the base were perfectly elastic. How;
ever, resistance 1is encountered with actual base materials,
and a force 1s needed to maintain constant velocity. A
common example 1s the resistance to rolling of a cylinder
or sphere. Experimental evidence1 indicates that rolling
resistance 1s nearly independent of the roller materlal and
of the lubrication between roller and base. Also, when the
surface is well lubricated, resistance is nearly the same
for rolling and sliding. This indicates the resistance 1s
due to bulk propertles of the base material and not to sur-
face phenomena. Energy dissipation in the base material as
it 1s deformed 1s the primary factor. Work must be done by
the moving body to provide the energy dissipated in the base,
and thils accounts for the resistance to motion. In the al-
ternate view adopted here, the base moves under a fixed load,
and external work must be done on the base.

Since a viscoelastic material dissipates energy, the
problem of a moving load on a viscoelastic base being con-
sidered 1n thls chapter 1s one way to account for and pre-
dict resistance to moving loads. The initially flat surface

=

- Bowden and Tabor [4], Tabor [30,31], Tabor and Atack
[32], Flom [10,11].
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of the bave is deformed by the load q(x,y). Because there
are no tangentlial stresses on the surface, the load must
remain normal to the deformed surface., Consistent with
other assumptions of the linear theory, the effect of the
infinltesimal horizontal components of the load can be neg-
lected compared to the vertical components. Thus, in
sclving the problem for stress and displacements, the load
1s considered to remaln vertical and appllied to the unde-
formed surface, To evaluate the energy dissipation, however,
the horizontal component of the load and deformation of the
surface must be considered.

At each polnt on the surface under the load there 1is a
vertical component q, = 4 c~s¢ and a horizontal component
4y, = q sing, where tang = - Suz/ax is the slope of the
deformed surface (Fig. 1.7). With the restriction to small
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slopes, the total vertical load is

NY = \Zyiq(x,y) dx dy
A

The resultant horizontal force at the contact is

ou,, (x,)
F¥ = —\éyaq(x,y) _EEE;_Z_ dx dy (1.47)

It 1s convenient to introduce dimensionless forces N and F,

given in terms of the quantities of (1.29) by

N=_° 1L_N' _ [Toce nyae g 1.48
s TamE o Q(€,n)d€ an (1.48)

1 F* _ _ T v ov(E,
o T o -\é/NQ(ﬁ,n) ——%%—31 a¢ an  (1.49)

In a two-dimensional problem, the body is an infinite cylin-

der (not necessarily circular), with axis in the y direction.

Then, N and F are forces per unit length, given by

v, 1 §* [
N = T = W=IQ(€)d€ (1.50)
0
1-vy N* 4y ov
Pl pfuodRa o

0]
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The force F* is entirely a consequence of the visco-
elastic behavior of the base. The deformation wil. not be
symmetric, even for a symmetric load distribution, because
the viscoelastic material experiences delayed recovery as 1t
moves under the load. There wilil always be a horizontal re-
sultant of the contac’, pressure, acting on the moving base
(or body) opposite to the direction of motion. This will be
shown in the two-dimensional case for simplicity (the three-

dimensional case is similar). From (1.42a,b),

O L [ e [ [ B ] et

o] 0

. Substituting this 1in (1.51) glves:

F = ffa(&)a«& ) d ff Q(g)a(e") fg—i—é%g% dede’

The first teim is the contribution from the initlal elastlc

response:

AA

.—.ff Q(e)Q(E) g%g'%"’ ; interchanging £ and €' gives
00
AN s ‘ A e

=%f[ a(e)a(e!) % - -{[Q(e)a(e') gee’ _
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Thus, FO = 0 ; there is no contribution from the elastic

response. Then,

¥ --ﬁq(e)q(e')fg{—gl_g# agag" (1.52)
00 0

The horizontal force depends directly on the function y(¢)
which charactérizes the viscoelastic behavior of the material.
For an elastic material, <y(¢) =0, so F = 0.

At the contact, the force F* acts to resist the motion,
and can be referred to as a "resistance" or "friction" force.
A convenient dimensionless measure of F* is the coefficilent

of friction x, givzn by

F l{fa(e,n)(avﬁﬁ)dedn

_EF L 1.
N 2Jo(e,n) agan (1-53)

>~

]
Zl’li
*f &

iz coefficient varies with the veloclity, total load, and
load aistribution. With the restriction to small slopes,
ou,/3x = v/ << 1, ana thus F* <K N* (x << 1). This
agrees with observed evidence; for example, resistance to
rolling on hard surfaces is usually found to be very small.
For equilibrium, there must be resultant horizontal
forces equal to F* acting cn the body and on the remote
boundaries of the vase (Fig. 1.8). These forces are needed
to move the base and hold the body fixed (or, alternately,

to move the body and hold the base fixed). Work is done

k9




FIG. 1.8

on the base at its remote boundaries, at a rate

*

W=VF"=- vf[q(x,y)(auz/ax) dxdy (1.54)
A

This equals the rate of energy dissipation within the visco-
elastic base. No work 1s done at the contact, since particles
are moving under the load at right angles to the direction

of the load.

In the limiting cases of very fast or very slow velocity
(V=0 or V=) it was shown in Section 1.4 that a viscoelastic
so0lid behaves 1like an elastic solid, and the viscoelastic solu-
tion 1s the same as the elastic solution. As these limits

are approached, it i1s a plausible expectation that energy
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dissipation and vresistance to motion will decrease to zero,
since they are zero in the elastic problem. This is now

shown to be the case. From (1.52),
1"V l ,‘-ZE o . d
F* = uoo = «A/‘ q(x)q(x')g/‘ ;%%%%:%T dxdx’ (1.55)
00 )

For V=90 , thls tecomes

F*=1 ¢ %,:fvmdc : fj alx)a(x') L%

0

The double integral has been shown previously to be zero, so
F¥*=0 . For V=0, the integrand vanishes, so again

F* = 0 . The resistance increases from zero as V increases
from zero, and decreases to zero as V gets very large. It
will have at least one maximur at some intermediate veloclty.
For a given load, N¥ is fixed, so x = F*/N* has the same
behavior as F*. The resistance to a given load, due to
energy dissipation as the velocity varies can be seen best

by plotting x vs F; Fig. 1.9 shows how this might appear.

XA

b - — - -

Xmax

/

FIG. 1.9
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There is an alternate view of the way in which work 1s
done on the moving viscoelastic base. The load g(x,y) 1is
taken as strictly vertical on the deformed surface, Particles
under the load have a vertical velocity U* = -V du,, /dx
(1.38) in the direction of the load. Thus, a load element

qdA does work at a rate-

aw

1
a
(e
Q.
Y
-
i
Q
>
!

u
-V (52) alx,y)aA

The total rate of work done is then

[

du
W=-v/f (352) alxy) dxdy

This is (in the linear theory) the same result as before
(1.54). But here the work 1s done at the contact of load
and base; no worl: 1s done at the remote boundaries. Thus,
the source of energy is quite different from before. This
alternate view gives rise to difficulties in physical inter-
'pretation. The vertical pressure 1s not normal to the de-
formed surface, so there are tangential stresses. This con-
tradicts the assumption of a perfectly frictionless contact,

since the base and load are in relative motion.

1.6 Examples of Moving Loads

The results given so far in this chapter apply to any

load distribution and any linear viscoelastic material. Some
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examples of particular loads are now considered. The material
used will be a general Voigt so0lid. This adequa“ely repre-
sents characteristics of actual materials such = polymersl,
while allowing results to be expressed in analytical form.

For such a material,

m
- 5 r,eP1b 1.
ey = E g (1.56)

The steady state surface dilsplscement (1.37) 1s then
m

v(em) = vo(gm) + 2 ory [ et vS(ermar (1.57)
i=1 5

Integrating by parts gives

m f m f
v(g,n) = (1+ = 22 ) vo(e,m) + 2 2 vU(E,nsby)
i=1 "1 i=1 Y1
(1.58a)
where o
vV(g,n;b) sfe’b‘i W%{C’n) at (1.58b)
o]

Tre elastic part of the displacement gives no contribution
to the resisting force. Thus,
£y

b, F'(b,) (1.59a)

|

I

|
I3

=1

1

Ferry [9] and Tobelsky [34] give creep or relaxation
data for many polymers, with discussions of their properties
and references to original literature.
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where

aVVlg,T]‘b) Y
F'(b) =[] Q(&,n) 51> dedn (1.59b)
¥ E

The results (1.58), (1.59) are sums of terms which are
identical except for the value of the constants fi and bi;
there i1s one term for each exponential in (1.56). 1In vhe
examples to follow, only a single term is indicated, and tb~
functions vv(e,n5bi) and Fv(bi) are evaluated for an arbi-
trary value of b, The results thus presented correspond to
a single term in (1.56), 1.2., v(¢) =f¢ e PC . A more
general model 1s then easlly treated as a sum of fterms, as
indicated in (1.58), (1.59).

Even when the meterial behavior is expressed in the
simple analytic form (1.56), the surface displacement in a
.general three-dimensional prcblem cannot usually be given
in simple terms. This is evident even in the most elemen-
tary case, that of a concentrated load at the origin (Example
A). Therefore, the other examples will be two-dimensional
(plane strain) prob.ems, for whiclk results can be given in

'relatively simple expresslons.

A) Three Dimensions Conczntrated Load

Q(€,ﬂ) = 26(5)5(n)

Ve(&»n) -
\/€2+n2
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The integral in {1.60) has no simple evaluation in

the g2nerel case; some special cases are gilven.

For 1, = O

v(€,0) = ‘e]; - febg Ei(-bé) s £€>0
= ®© ] & < O

as E=+w, v(E0)~F(1+§) -.g:%(.g.g-;;g..g

For € = O:

v(om) = [p + £ F [8;]on]- Yo|on])

Y is Weber's Bessel function of the second
kind, order zero.

S, 1s Struve's function of order zerc.

as |n| =0, v(0,m) ~ -i,rl]—l -f % log |b7|

OSSR W

cfy 1 1
as 7! =@, vI0,) ~{1+5) 2 -p—1 1.2
I oo In| (b|n])3 (b7)

The surface displ-cement is infinite at the origin and
all along the negative £ axis; at all other points it
is finite. Some typical surface profiles are sketched
in Fig. 1.10.
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Surface §

Profiles 9

|

1 v
Parallel to £-axis Parallel to nm-axis
FIG. 1.10
B) Two Dimensions Concentrated Load
QUE) = 6(8)

€
ve(e) - Ve(ﬁo)= log IEE' » &, arbitrary

¢
v(g) - v(g,) = (1 +§) log[g2| + & [¢°%E, (-bg)-eP8oE, (-bg )]

(1.61)

Ei(-x) = -L/~ EE- dt 1s the Exponential Intagral.
X

00

3
as |[§] =0, v(g) - v(g)) ~ log |52|

as |€] =, v(€) - v(E) ~ (1+ {-) log é_gl

A surface profile 1s sketched in Fig. 1.11.
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Example B Kelvin solid

FIG. 1.11

A concentrated load is an idealized case which is use-
ful for some considerations, agd the results can serve as a
fundamental solution to be integrated for more general prob-
lems, At distances far from the load, the results for any
distributed locad are nearly the same as those for a concen-
trated load. Near the load, however, the actual distribution
is significant. A concentrated load is a singularity which
has an infinite displacement at the point of application.
The elastlc displacément under a concentrated load is also
infinite. Thus all points of the viscoelastic surface that
have passed under the load retain infinite dispiacement. 1In
the two-~dimensionral problem, the concentrated load is actually
a line load; the singularity is not quite as pronounced. The
displzcement immediately under the lcad is infinite, due en-
tirely to the initlal elastic response. However, points that
have passed under the load have recovered to a finite dis-
placement. If there is no initial elasticity, the displace-

ment in the two-4dimensional problem is finite even under the
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load. For example, a model with a single Kelvin element

glves:

&
v(€) - v(&,) = log |g2| + e E;(-be)- e"Po, (ve,);

for €20 v(0) - v(e,) = vy + log &, -¢*%0 E, (-ve,)
A sketch of this displacement profile is shown in Fig. 1.1l1.
A distributed load can be considered an integral of a
concentrated load. The singularity is no longer present,
and displacement under the load 1s finite. Two simple cases
of distributed loads are given in examples C) and D) as two-
dimensional problems. The resisting force and coefficient
of friction are evaluated in . 2se examples, along with the

surface displacement,

C) Two Dimensions Uniform Load

UE) =, » 0<KELA

N=Q A

(o]
ve(¢) ‘*’g(o) =Q, [(&- x)loglegx - ¢log|é| + N log Al

-

%; [v(€) - v 0)] = (1 + £)[(&-A)log|e-A| - Elog|| + A log A]

(1.62)
[log(b|g-A]) «eb(e‘”)Ei[-bgg-x)} - log b|g|

+
c‘m!*"a

+ engi(-bg) - log bA + e-bei(b%) -v1
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v(E)

Sketch of displacement

The low point (where dv/9€ = 0) always occurs for
0< €<% . The slope 3v/3¢ 1is infinite at & = O
and € = A.

A
F=- [ §F 6 = qv(0) - v(N)]

F i _
1 -
where h,(x) = 5 [2y + 2 log x-ein(-x)-e in(x)]
X X
as x=0, hy(x) ~§-_(2-y -log x + 5+ ... =0

as X = w , hl(x)~%(logx+'y--]-'§--—¢ -0
x x

See Fig. 1l.12.

Yy = .577216.. ;, Euler's constant
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D) Two Dimensions Elliptical Load

ee) =2 % AET, o<
A

n

iy [v5(8) - v¥(0)1 = - g%+, 0<e<

- €%+ ¢ + ¢ - 5| VE(EN)

2
-pcosnt BE L ap,g<o0, 6>

i [V(8) - v(0)= (1 + 3) (-6 + ne)

+ §§L-2e + Ae7PM2 (eb€~1)K1(§50], 0< £ <A

(1.64)
= (1 + P)(-€%e + |e- 5| VETEY

2
- {1\— cosh'll%g- - 1]

+ §§ [-26 + A OM2(eP6 _ 1) (BR

28 /N-1
- %bxz eb(g-k/2) / .,/ue 1 e-b?\u/2 du]

+1

+ 1 for € > A
lower limit of integral is {
-1 for £ <0
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Slopes are finite at 5§SS§§§§3§}§A
, \\“EK//
€ =0, A %\\\\l A
0 ) £,

v(E)

Sketch of displacement

” i . L d

Low point occurs for

0<E<)

X =1N 6%5 [1 - 2K (BT (3™ = 7 @ £ ny(BY)

where hy(x) = % [1 - 2K, (x) I,(x)]

as x=0, ha(x) ~

N ¥

(.6159 - log x) =+ 0O

X =, %u)~?u-%+.”)ﬂo

IR

.01 .1 1 10 100
x (log scale)
FIG, 1.1i2
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Some results of examples C) and D) indicate general
conclusions that apply to other distributed lcads. The dis-
placement relative to £ = 0, v(£) - v(0) , i1s everywhere
finite in the vicinity of the load, and increases like
-log|¢| as || =+« . Example C) has a discontinuity in the
pressure, a sudden Jump from zero to Qo s at each end of
the loaded area. This results in an infinite slope 3Jv/d¢
at each end where the Jump occurs. This 1s a general result;

if there 1s a finite Jjump in the load at £ = € ~he slope

o ?
will contain a term log[g-go| s, and will thus be infinite

at 50 . In example D), the pressure 1s continuous and goes
to zero at the ends; the slope 1s finlte everywhere. 1In each
example, the pressure distribution is symmetric about the
center of the loaded area (€ = A/2) . However, the displace-
ment is not symmetric because of delayed recovery 1ln the mov-
ing viscoelastic base. The low point in the surface profille
wlil always be displaced downstream from the center of the
load. The velocity is convenliently representea in dimension-
less form by VT/£ = 1/A . The variation of resistance with
veloclity for a glven load is then shown by a plot of yx vs
1/A . For the two examples, this variation is indicated by
the plots of hl(x) and he(x) in Fig. 1.12. Each example
shows that yx 1ncreases from zero, reaches a single maxi-
mum, 5nd then decreases to zero again, as the veloclty goes

from O to » .
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CHAPTER II
MOVING LOADS ON A PURELY VISCOUS MATERIAL

The problem of a load moving on the surface of a purely
viscous material is considered in this chapter. By "viscous
material” is meant an ideal incompressible viscous fluid, in
which stress 1s linearly related to strain rate. This 1s a
special case of the general viscoelastic fluid considered in
Chapter I. Such materials as dough or road asphalt may some-
times be treated as purely viscous. Even metals may be con-
sidcred viscous flulds when subjJect to high speed impact
(Abrahamson [1]). The problem is treated as one of slow
steady motlion of a very viscous fluld, so0 that inertia forces
are negligible and linear theory can be used. As in Chapter
I, the load q(x,y) will be normal pressure on the initially
flat surface z = 0 of a base of infinite extent (see Fig.
1.1).

The principal interest will again be the surface defor-
mation as the load moves with constant velocity V in the x
direction. The base 1is undisturbed for ¢t < O , and the
load 1s applied at t = 0. The resulting deformation will
vary with time due to both the motion of .he load and the
viscous nature of the base. The relative simplicity of the
purely viscous materlal allows solution of some three-

dimensional problems. These glve some idea of the much
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greater difficulties encountered in the same problems with

a general viscoelastic material. In Section 1.4 it was

shown that the question of a steady state for a general vis-
coelastic fluld can be anaswered by considering the same prob-
lem for a purely viscous material. In particular, since
there 1s no steady state for a semi-infinite base, the pos-
sibility of a steady when the base is a viscous leyer of
finite fhickness is considered.

2.1 General Solution for Viscous Base

For an incompress;yle viscous fluld with viscosity n*,

the relations between stggss and strain are

#* . .
844 = 2n €14 » &= 0 (2.1)
For an incompressible elastic solid, with v = % s
84 = 2M ey » €= 0 (2.2)

In a quasl-static problem with prescribed tractions on the
boundaries, equilibrium and boundary conditions are the same
for elastic and viscous materialsat any instant of time.
Also, for an elastic material €44 = 1/2(uihj+ uj,i)’ while
for a viscous material éij = 1/2(1'11,J + &J,i)’ Comparison
of these relations makes evident the "viscous analogy" for

slow motion of a viscous fluid: the viscous solution is the
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same as the incompressible elastic solution with u replaced

by n*, v =1/2, and strains replaced by strain rates.

In particular, elastic displacements become viscous velocl-

ties. This viscous analogy corresponds to the use of the

associated elastic problem for general viscoelastic materials.
In moving load problems, the surface displacement for

an incompressible elastic material is u:(x*-Vt,y’) in

coordinates (x*,y*) fixed with the base, where ug(x*,y*) =

(1/2n) P(x*,y*) 1s the displacement for the same load at

rest. Thus, from the viscous analogy

%F uz(x’,y*,t) = §%, P(x*-vt,y*)
Since the surface is undeformed at t = O, uz(x*,y*,o) = 0,
The viscous dilsplacement is then
t
uz(x*,y*,t) = E%? ‘/‘ P(x*-vt' ,y*)dt

o)

Changing to coordinates (1.1) mcving with the load

t
u(%,7,t) = ﬁi f P(x+ Vt - Vt') at'
o
x+Vt
1
u,(x,y,t) = HEY \/~ P(x',y) dx! (2.3)
x
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hese coordinates, it will be more convenient to think of
the load at rest (with the origin included inside the loaded
area), and the base moving under it with velocity V in the
negative x-directicn. The base may be elther semi-infinite
or a layer of finite thickness.

The general solution for surface displacement 1s given
by equation (2.3). This can be expressed in terms of a
function G(x,y), defined by
X

G(x,y) = %*V \/ﬁ P(x',y) dx! (2.4)
)

\Y)

Since P(x',y) 1s (except for a constant factor) the elas-
tic displacement for the given load distribution, G(x,y)
represents the area between the initial and deformed sur-
faces of an elastic base, from x' =0 to x' =x, in a
slice parallel to the x-axls at the glven value of y (see

Fig. 2.1). Then

u,(x,y,t) = G(x+Vt,y) - G(x,¥) {2.5)

The term G(x+Vt,y) represents a "wave" moving with the
base. The other term @({x,y) 1s a displacement of the same
shape, flxed relative to the load. The difference of these
terms gives the net displacement, which varies with time as
the "wave" is carried downstream (see Fig. 2.2). If the

area under the complete elastic curve is finite, so that
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ing value as t =+ , and there is a steady state., If
G(w,y) 18 infinite, there is no steady state.

When the elastic displacement is always positive (this
1s the case for a semi-infinite base), G(x,y) 1is a monotonic
increasing function as shown in Fig. 2.2. When the base 1s
a layer of finite thickness, the elastic displacement may be
negative (rise above the initial surface) at some distance

from the load. Then, G(x,y) will have the form shown in
_ iim

= X-go

o

Fig. 2.3. Let Gw(y) G(x,y); there is a steady state

if this limit exists, If G_ > 0, the steady state dis-

placement is u,(x,y) = & (y) - G{x,y). The result is a
depression of finite depth extending infinitely far down-
stream from the load, and zero displacement far upstream
from the load (Fig. 2.4a). In the case shown in Fig. 2.3,
it 1s possible to have Gco = O, Then, the steady state is
u, = -G(x,y). The displacement 13 zero far from the load
in any direction, and a definite localized hump is left near
the load (Fig. 2.4Db).

When the load is symmetric with respect to the y-axis,
so that q(x,y) = q(-x,y), the elastic displacement will be
symmetric (thus even in x): P(x,y) = P(-x,y). Tien, the
function G will be antisymmetric (odd in x): G(x,y) =

-6(-x,y). In this case,
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u, (-x-Vt,y) = G(-x,y) -G(-x-Vt,y)

= <6(x,y) + G(x+Vt,y)

uz(x,y)

Thus, the viscous displacement will be symmetric with respect
to a line parallel to the y-axis, halfway between the fixed
origin (x=0) and the point on the base originally at the
origin (x = -Vt). Thi: 1line of symmetry, to be called-the
trough line, is then x = - Vt/2 . It moves downstream at
half the velocity of the base material. The displacement

along the trough line is

u,(- 3 V&,3,t) = 26(3 Ve, y) (2.6)

If G(x,y) 4: a monoteonic function, this 1is the maximum

displacement for given y ¢nd t (see Fig. 2.5).

viscous displacement
(fixed y,t)

F1G. 2.5
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For a pressure.g{x,y) on a semi-infinite base, the dis-

placement function is

P(x,v) = 2= q(®,y") dx'dy!
3 K/;/(x-x'>2+(y-y')2

The displacement 1s always positive [for q(x,y) > 0], with

a maximum near the load, and approaches zero far from the

load (see Fig. 2.1 for typical profile). ror large

r = ~4;§;;§ , P(x,¥y) 1s nearly the same as for a concen-
N

trated load, i.e., P(r) ~ 55— a5 I = , where

N = 4{ q(x,y)dxdy. Thus, the function G(x,y) 1is nearly
the same far from any distributed load as for a concentrated
load N at the origin. It 1is useful, therefore, to consider
the case of a concentrated load 1in some detall.

For a load N at the origin,

N 1 N 1
Pry) L -0 L1

er r 2T

vx2+y2
Then, from (2.4)
X e N [ s/’o"i
N ax X + /X +y
G(x,y) = = o - . log b }

S R
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From (2.5),

2 2
Yrn*vV uz(x,y,t) - log [x+Vt +4/(x+VE)° + ¥ ,} (2.7)

N
X + x2+y2

i ’s 2ot e Bty tye
Lilas P AL

For a glven y, G(w,y) 1s infinite, confirming the conclusion

T4 PTURI R Dty

in Chapter I that there 1s no steady state. At any polnt on

the surface, as ¢ =+ o ,

* Ipmp——
4#% \' uz(x,Y:t) ~ log Vt - log(x‘+~/;§;y2 + log 2 + %{ .
(2.8)

Thus, the displacement increases without 1limit as { - .
It can be shown that the vertical velocity auz/at of the
surface approaches zero, and the surface slopes (BuZ/Bx,
Buz/by) approach finite values a< ¢ = o .

: For a given finite time, the displacement (2.7) is

% positive everywhere; 1t approaches zero far from the load,
: as |x| or |y| = «. Thus, appreciable s.rface deformation

occure only in the vieinity of those points on the surface

oy

that have passed under or near the load. The displacement
1s symmetric about a trough line at x = - Vt/2 , as dis-
cussed in Ccction 2.2. The maximum displacement at any given
y and t is, from (2.6)
5—pg - . .
- N .{\Z(Vt)4+4 —’Vt]_ R -1[ 1
uZlmax T 2mm*V log ‘éﬁ%] T o2mm*W tanh ./ : QJ
1+(2y/vt)
(2.9)

s
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Because the load 1s concentrated at a point, the elastlic dis-
placement 1s infinite at that polint., The viscous displace-
ment 1s thus infinite at all points that have passed directly
under the icad, i.e., for y =90, -Vt < x < O, The contcur
lines of constant displacement at a given time are elllipses,
with commen foei at the initial and present load positions:

y =0; x =0, -Vt. The contour ellipse for (47n*V/N)u, = D
has a constant eccentricity e =(eD-nAéD+l), and an expanding
major axis Vt/2e. Figure 2.6 shows typical profiles and a
plan visw of the surface for a concentraced load.

Except near points that have passed under the lcad, the
results for a distributed load (symmetric about the y-axis)
are qualitatively similar to those for the concentrated load.
The general shape of the surface 1s like a shallow bowl, with
displacements decreasing monotonically in any direction from
the low polnt at y =0, x = - Vt/2. The surface approaches
its initlal flat position far away from the loaded regilons.
As time goes on, the displacement increases without 1limit,
but at a continualiiy slower rate. For the semi-infinite base,
there is no localized "hump" formed near the load, but rather
a downstream depression that is continually deepening and
moving away from the load. The contours of constant dis-
placement willl be simple closed curves, symmetric about the

trough line, To demcnstrate these results for a spzcific dis-

tributed load, an example will be considered in the next section,.
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Surface displacement, fixed t (eqn. 2.7)
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2.3 Uniform Pressure on a Clrcular Area

As a three-dimensional example of a distributed load,

a uniform pressure qq acts on a circle of radius a.

Then,
a(x,y) = ar) =g, » O0O<rga

where r =‘/x2+yé . The viscous base is semi-infinite.

The following dimensionless quantities are used:

t=2, =L, 0= -VZ B T-F (2.10a)
2u e
w(p) = ] u_(r) (2.10b)
*
g(€,n) = 23 a(x,y) (2.10¢)
Oa
v(€,M,7) = gﬂ:g u,(x,¥,t) (2.104)
Q08

The elastic displacement can be expressed 1n several
ways. The most convenlent form for use here 1s derived using
the Hankel Transform (Sneddon [28], p. 469), and glves

o0

w(p) = [ 3(w) 3 (pu) G (2.11)
o

This integral 1s a sreclal case of the Weber-Schafthelitlin
discontinuous integral (Watson [35], p. 398), and hac the

series form

T4




le(u) J (Pu) ﬁ'l}' = 1 ('§: %‘ 5 1 92): P S_ 1
= QFl ('5’ ’ %‘ 5 2 5 "1—2'): p 21
P
2 —
= 7 > p =1 (2.12)

where

< o - S r(atk) TI(b+k _r(jg_)_'_
oF1 (b5 ¢5 x) =1+ el "%(ETl T FcHk]

is the hypergeometric function. Thus,

w(p)=1-k~’3lckpk pgl
_1l . § p p(El) o5
2
=T p=1 (2.13)
where

c -1 (r(5)12 D -1 [r(er5)1% ey c
KT f(eken) T K T )P(en) | 2D
Z (2.14)

(Numerical'values of ¢, and

D, are given in Table 2.1 at — So I T

the end uf the chapter) A pro- l
file of the elastic displace- us(r

2

ment 1s sketched in Fig. 2.7. FIG. 2.7
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Since P(x,y) = 2u uZ(r) = q,a wip) » (2.4) and (2.10c) give

€
gen) = [ (V27 e (2.15)
o
and (2.5) and (2.104; give

V(i,m'r) = S(Qﬂ,ﬂ) - S(E:T}) (2'16)

The function g(&,n) 1s independent of any physical param-
eters, 80 the numerical values need be determlned only once
for all problems of uniform circular load. Then, the viscous
dlsplacement at any polint on the surface for any time is

2

9,2 +Vt
uz(x,y,t) = zg*v {g(xa s %) - 8(% s g)]

Because there are two different expressions (2.13) for
w(p), one for p <1 and one for p > 1, there is more
than one form of g(€,n) evaluated from (2.15). Since
g(€,n) = - g(-€,1) and g(€,n) = g(€,-n), 1t 1s sufficient
to evaluate g(€,n) for (£,n) in the first quadrant only.
There are three forms for g(2,n) , one for each of the

three regions shown in Fig. 2.8.

l
Numerical values of g(£,n) can Woo(2) . (&,7)
v
be determined from the expres- N
(;})X (3)

sions which follow. Some \

S| £ o
values are glven in Flg. 2.9, 1 T
and contour lines are sketched FIG. 2.8
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(1) p<1,0<n<1,0<8E <192

g
- 2,.2\k
,n) = )= [[1 - = ¢ (L% d
g(€,n) sl(En)a/‘[ 2 (£5+%) *1ag

S : 2,.2,k
=t -3¢ g
¢ - 2 k[(c m°)* ag
3 .
Let K 2
e = [ o - e 3 (e (G
° (2.172)
I1(¢,0) = e oKt (2.17b)
Then -
B(6m) = & - 3 o Ty(e,n) (2.18a)
* Cp okl
8,(£,0) = € - = 5= & (2.18b)

1

(2) p>1, 3>1

3
- - i_ . 2 2,. 2, ~{k 1)
BT = sM) = + = D + ¥5) |q
Let
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With the zubstitution £ = 1 cot ¢ , thls becomes
/2
Iﬁ (€,m) = n72K f sin®%"1 ¢ a¢ (2.19b)

where 6 = tan~! 2 (see Fig.. 2.8).

For numerical evaluation, thls can be expressed
in terms of the incomplete Beta function Bx(a,b).
With x = sin®% (0 <6< ),

2]
fsinzk“l ¢ d¢ = % By (k,3)

O

Then, (2.19b) becomes

2 (&,0) = 5 17 [B1(k,5) - By(k,p)] (2.19¢)

Values of B (k,3) are tabulated in Pearson [28] for

= 0(.01)1.00, k = 1(1)50,

As £ =, -k(e,n) ~ 3 ‘1 2kBl(k’2) B '1‘12 £ T%%I_JILT nag_(ek??

As £ =0, I2(g,n) ~ gn (BFD)_ 2l o -(2kt3)e3
Using (2.19a,c),

g, (£,m) = 5 log &2 4 D (€,7) (2.20a)

PT
?;'f\)
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5.0¢

4.01

2.0‘.

Lines of constant g(£,7)

for uniform circular load

g(-¢,n) = -g(€,n) ; g(é,-n) = g(€,n)

FIG. 2.9
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or 1 e ,1 3 2K
gz(ﬁ:ﬂ) = = §'108 tan‘g + ] kzl D {Bl(k,QJ -B (k:Q)]
- (2.20b)
where x = sin26.
1 cosb -2
For a given 6, as -, Gy~ - log tan +..
P 2 2 2’ TE sinz
pP21,0<n<1, &> /2
Vl-nz 4
gen) =eglen) = [ W+ [ w( /P e
0 —r
1-n

gl(J 2+ ) f

€ . 1
et 1en) = [ (BB o, (nx L g2y
Vi-?

%‘ ek [Bne(k:§) -bg2(k,5)] (2.21a)

where s = n/p

(1 - 72K (2.21b)

%}IH

Ii(E,O) =

B £ e, INEN) ~3 0B o(kd) - g 67
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Then, g5(E:m) = &){ vVi-iZ, )+ & log )
3 - 1+V1-'!]2
ot 3
+ 2 D Ip (€,1) (2.22a)
k=1
x C D o D
K k k .-2k 1
8:(€,0) =1 - Z(mgy -5%) - 2 58" +5log g
3l6s ol 2RFL T 2K T 2 Bk 2
(2.22b)

As € = o for a given 1, both 8o and 83 behave like

1/2 log € and increase without 1limit. This again confirms

that there i1s no steady state.

There are several regions c¢f the surface, each having

a different expression for the displacement v(€,n,t) =

g(&+t,n) - g(€&,n) , because of the different forms of g.

These regions are shown in Filg. 2.10a for 0< 1< 2,

and Flg. 2.10b for 1 > 2. Displacements are symmetric

=-1/2, 50 only the

about the € axis and the trough line
quadrant 1> 0, € > - t/2 1s considered.
{
|10 i P
IV~ |
,/’ \ 4 N ///;;I
] oz gx i) . [ -z -9/ ot
\ '/ /fv\
N NP
v i I,

FIG. 2.10a

FIG. 2.10b




1 ..

Points always under the load (beginning at T == 0).

.

4

v(é,n,T) = 81(6”,71) - gl(t::n)

II. Polnts never under the load.

v(€,m,7) = gy(€+t,m) - go(€,m) for 7 > 1

It

g3(6+t,m) - g3(€,n) for ng1

(Both cases glve the same analytic expression,)

ITY. Polnts originally outside the load which have moved
under 1it.

v(€,m,7) = g3(€+7,1) - g(€,7)

IV, Polint originally outside the load which then moved
under 1t and are now outsicde again.

V(g:ﬁ:'r) = 83(€+T:’".) + 83((€|,T})

Displacements and slopes are ccntinuouz across the
boundaries of these regions. The meximum displacement

occurs at € = -1/2, n = Q:

T . - k Ty .
Vnax= 28(50) = w|1 - T (BT L o< g
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The resulting deformed surface 1s smooth, with
displacement everywhere for finite 1. As T = «,
v(g,n,t) ~ % log T at all points on the surface. The
general description in the last paragraph of Section 2.2
applies in particular to this problem, and conclusions gilven
there can be verified directly from this section. At any
finite time, the displacement far from the load is nearly

the same as for a concentrated load N = qowaz.

2.4 Base of Finite Thickness

When the base 1s semi-infinlite, the viscous material
flows without 1limit due to the vertlical veloclty resulting
from the load on the surface. There 1s no lower boundary
to the base, sc the vertical dlsplacements continue to 1in-
crease with time and no steady state is reached, If, however,
the base had a lower boundary, so that flow 1s constrained at
some depth below thz surface, vertical displacements would
not Increase indefinitely., It seems quite likely on physi-
cai grounds that this situation would lead to a steady state
when the base 1s moving horizontally under the load. The
base of finite thickness does of course represent a real
situation more clcosely than does the semi-infinite base.

The thickness of the base 1s thus a critical factor for
establishment of a steady state in problems of this type,

when the base 18 a fluld material
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To investigate thils situatlion more closely, the hase
will be considered as a layer of constant finite thickness
h , but extending infinitely fer in the x and y directions.
As before, the load q(x,y)

1s applied to the otherwise

a(x,¥)
e FPAW 4
free surface 2z = 0 , and the 3 : J v
\
viscous layer moves with velo- 3' f ; %
city V in the negative x divec- 77T i
¥

tion (Fig. 2.11). The bottom
FIG. 2.11
of the layer, z = h , rests
on a riglid support, so that vertical velocity and displace-

ment are prevented. One condition 1s thus

4 (xy,h) =0 on z =1t (2.23)

The way 1n which the layer 1s supported at the lower boundery
1s quite important. The two extremnes are considered here;
other possibilities will fall in between. One exvrsme 1is
rigid attachment so that tangentiai displacements are pre-

vented. This gives the conditicns {for a muving base)

The other extr<me 1s no attachment (i.e., frictionless

support), o0 there will he no tangential stresses., Then,

Top = {(X,¥:0) = 1Xz(x,y,h) =0 on z =nh (2.24b)
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The problem of an axisymmetric load will be consldered
in more detail. The results for other distributed loads
would be qualitatively similar. The lcad is g(r) on a
circle of radius a. The dimensionless quantitiss {2.10a-4d)
are used. Also, let q(r) = q Q(p) » where Q{p)} 1s di-
mensionless anc dq is some measure of the load magnitude.
Following the analysils of Sneddon [28], the incompressible
elastic solution 1s determined using Hankel Transforms. The

resulting surface displacement 1is

w(p) = [&(w) T,(pu) FOw) au (2.25)
o)

1

a(u) = [ alp) To(pu) p do (2.26)
o

For a uniform load q_, Q(p) =1 and Q(u) =

The function PE(>u) depends on the method of support. For

rigld attschment (2.24a)

= cosh sinh X - X
(x) = =5~ 2200 (2.27)
x~ 4+ cosh™x

x3(l --g—x2+ c..) as x=0

LI

2) -2X+

~ 1 - 2(1+2x+2x%)e as x = o
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For frictionless support (2.24b)

2

2 sinh™x
F(x) = 2x + sinh 2x (2.28)
1 . 1 b
~ 5 (1 - 5 X +...) as x =0
~ 1 -2(1+ 2x)e_2x+... as X = o

In both cases, F(x) increases monotonically from zero and

approaches 1 asymptotically as x goes from O t0 w.

For a semi-infinite base, A =« and F(Au) =1 1in each
case. Then, for a uniform load, (2.25) reduces to (2.11).

From the elastic cdisplacement (2.25), equation (2.15)
glves

~
p=

4
g(e.m) = [ | [aw) POW) 3,(VEB? ) aufar (2.29)
o}

V)
C

The possible steacy state depends on g_(n) = 1im g(€,m).

= g-ﬁm

Letting € =« in (2.29), and using

JO( \/gc‘f"qg = Jo(ﬁ) Jo(ﬂ) + 2 kil JK(E_)JK(U)

[ s lug)ag = &
o

the f integration in (2.29) can be carried out. This gives

[>+]

g,(m = [ &) FOW I () + 2 3

a
) Jen)l = (2.30)
O

1
i




The integrand of (2.30) is finite, continuous, and behaves

ke u (WF1/2)

(m > 1) as u=® . Although (2.30) cannot
be evaluated analytically, it can be verified that g_(n)
has a finite value. Thus, the base of finlte thickness does
reach a steady state.

The nature of the steady state depends on the value of
gw(n), as discussed in Section 2.1. This would require a
numerical evaluation of the integral (2.30), or of the sur-

face displacement and the area 1t encloses. For frictionless

support, F(Au) of equation (2.28) can be approximated by

exponential terms (Sneddon [28]), and the resulting integrals
can be evaluated. This gives g_(n) > O for any 7 , thus
indicating a steady state with a finlte depression downstream
(Fig. 2.4a).

The two-dimensional problem can be treated in the same
way. The elastic displacement can be determined using Fourier
transforms. The result is similar to the axisymmetric prob-
lem; for a layer of finite thickness, the expression for dis-
placement (corresponding to equation 2.25) is the same as
for a semi-infinite base (corresponding to equation 2.11) with
the additional function F(Au) . For the same support con-
ditions (2.24%a,b), F(Au) 1s the same as for the axisymmetric
problem (2.27, 2.28). Thus 1t is reasonable to expect that
the effect of the kind of support at the lower boundary(z = h)

on the nature of the steady state will be similar for two-
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dimensional and three-dimensional problems. The two-dimen-

" sional problem of a uniform load on a base of finlte thick-

ness, rigidly attached, has been solved by Abrahamson and
‘Goodier [2]. This solution gives g, = 0 , and the

resulting steady state 1s a localized hump near the load

- (similar to Fig. 2.4b).

These examples suggest general concluslions about the

gteady state displacemént for any load distribution on a

“base of fihite'thickness. Whén the base 1s rigidly attached
f?ét‘thg lower boundary, gm(n) = 0, The deformation would
_“be localized, forming a hump at the load (Fig. 2.%a). When

the lower bounddry is not attached (i.e., frictionless

‘"*gguppOft),igm(ﬁ) > 0. There would be general deformation

“downstream from the load, forming a depression of finite

“--_depth (Fig. 2.4b). The overall form of the steady state

|

disrizcément 1s thus determined by the way in which the
base is supported at the lower pboundary. Regardless of the
kind of support, a purely viscous (and thus any viscoélas-
tic fluid) material of finite thickness will always reach

a steady state.
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CHAPTER IIT
MOVING CONTACT PROBLEMS

When a moving body of glven shape 1s pressed into another
(stationary) body, the problem is one of "moving contact."
There 1is some load distribution within an area of contact
where the deformed surfaces of the two bodles must match.

If one or both bodies 1s viscoelastic, dissipation of energy
§~~f*wf"* will produce resistance to the moving body, and in general
the contact conditions will change with time.

In this and followlng chapters, a particular viscoelas-
tic moving contact problem will be considered. A rigid body
‘moves with constant veloc¢lity V in the x-direction over the
initially flat surface (z=0) of a sémi-infinite viscocelastic
solid. It 1s keld in contact by a constant normal force N¥,
which préduces a contact area A of unknown shape, extent, and
placement. The surfaces are "frictionless" (i.e., no tangen-

tial stresses) and non-adhesive, so the load distribution is

normal pressure g{(x,y) > O within A. The moving contact is
ﬁhus a moving load problem as discussed in Chapter I, although
in the contact problem the load q is initially unknown. It
was shown in Section 1.4 that a steady state is always possi-
ble; only these will be considered. Then, the contact area
and pressure do not change with time. Once they are deter-
mined, the "friction® force F* (which resists the motion)

can be found as 1in Section 1.5.
g0
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3.1 Formulation of the Steady State Problem - - -
It is again convenient to consider the rigid bodyAstéi;v‘
tionary (in x,y,z coordinates), with the base moving in*thé
negative x-direction at velocity V (see Fig. 3.1). For some
fixed orientation 6f the body, its lower surface has é‘»lvz‘r'ic‘)‘}ﬁjrvi:‘w
shape given by z = constant + w*(x-b,y-c) , where (b;c) are
the coordinates of a fixed (but arbitrary) reference pointuﬁ'
in the body. The body is held in contact with the moving -~
base by a load N* normal to the initially flat éurfacérof
the base (i.e., vertical) and any horizontal 10ad F* (the

resisting or "friction" force) that may be necessary. Fov .

a glven N*, the size, shape, and placemént of the contact .-~ = °

4t o Bl

area A is initially unknown, except that*it"mu$t 5f'sourséff3

1t D :
b b, 07 A it

coincide with some part of the surface bfitﬁé-ﬁigidibﬁdy,f;j:
In the actual analysis, it will bYe convenient to allow the .. J:; k
rigid body to rotate through a small angle‘abqgt ﬁhéthrii

zontal axls, from the orientation implied by the funétion

ontact

drea A 3 j
zY

FIG. 3.1

o1




w¥(x,y)., The anoun: znd axis of this slight tilt 1s alsc

H
H
i
H
H
3
H
H
H

initially unknown.

7o formulate a definite problem, the conditions of cen-
tact must be further specified. There 1s nc¢ adhesion between
the contact surfaces so q(x,y) > O inside A. If the sur-
face were sufficlently uneven, breaks in contact would occur
wlithin the overall area whenever complete contact required
negative pressure (adhesion). It is postulated here that
the surface is such as to maintain contact over the full area.
This means the area A will be a simply connected region,
bounded by a simple closed curve called the "edge" of the
contact.

To insure a unique solution to a given contact problem,
only smooth contacts will be considered. For a "smooth" con-
tact, by definition, the displacement u, and its derivatives
auZ/Bx and Buz/By are continuous across the edge of the
contact. This requires the pressure q(x,y) *o be zero all
along the edgel. The alternative to smooth contact is a
sharp corner at the edge, with Infinite pressure there., If
the rigid body had such a sharp corner, any vertical lvad N*
(above a certaln minimum) would give proper contact. This

possibility is excluded by requiring smcoth contact.,
1

A finive non-zero pressure at the edge wou'd produce a

continuous but vertical slope (see example C, Section 1.6),
which would not in general fit the lower surface of the
rigid body.




L m—

The moving contact 1s a mixed boundary value problem,
since normal dilsplacement is prescribed over part of the sur;
face; and normal stresc 1s prescribed elsewhere. For the
quasi-static, st=ady state problem, the equilibrium and

strain~-displacement relations to be satisfied are

Nf

(ui,j.+ uj,i) (3.1a)

and the stress-strain relations can be written (from Section

1.4)

QMOGU(X’:{,Z) =/ d_géﬁ'l Sij(x+VT§,y,z)d§ (3.1b)
0
K e(xy2) = [ BEL o(xvre,y,2)ag (3.1¢)
O

The boundary conditions on z = 0 are

sz(x,y:O) = Tyz(x,y,O) =0 for all x,y (3.za)
oz(x,y,o) =0 outsice A ‘
) (3.20)
u,(%,5,0) = & + a x + py + w*(x-b,y-c) inside A

/.

where a,B,8 are constants initially unknown (o and B are
components of the possible small angle of til%), and A is
the initilally unknown contact area. The unknown contact

pressure inside A is q(x,y) = - oz(x,y,O) > 0.
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For smootin contect, u, and 1ts derivatives are continuous,
‘and q{x,y} = O on the sdge of the contact. ‘The load com-

ponents, from Sectlon 1.5, are

. N ~ Buz
N =‘£/ a{x,y)dh ; F* = -\Z]q(x,y) 5% 9A
A A

It 1s evident from the mixed boundary conditions and
the other conditions tc he met that seclutlon of a moving prob-
lem will in generalrbe very Jifficult., It seems llkely on
.pnysical grounds that a solutlon will exist, provided the
 iower furface given by w*x,y) 1s sufficilently smooth.
vThis means, for examplé, that for a given load N¥*, there will
be & definite area, g, a, B, and & which allow all the con-
ditions to be satisf{ied. However, to attempt to find a solu-
/tion there must be some knowledge or assumption about the
contact area. In a general three-dimensional problem, the
arez is a two-dlmensional region, thus encompassing an infi-
nite number of possible shapes, as well as the other unitnown
parameters of size and placement. The motion ¢f the base in-
trqduges an asymmetry not present in stationary contact prob-
lems, =80 that the methods of the Hertz theory for elastic
contact problems are not useful here., In view of these
difficulties, a solution for even the simplest three-

dimensicnal problems is out of reach at this time.

o4




A considerable simplifzéation results if the problem
is two-dimensional, l.e., the rigid body 1s an infinite
cylinder (with arbitrary cross-section). Taking the cylinder
axls to be in the y-direction, the piroblem can be conslidered
in the x,z plane. The area of contact is then simply a 1iine
segment, specified by two parameters: its length £, and a
distance bt fixing its placement on the rigid body surface.
The surface is now given by 2z = 6 + w*(x-b). For conven-

jerce (as in Chapter I) the contact wii. rz taken from x = O

to X = £. The boundary conditions (3.2a,b) become

TXZ(X,O) =0 , -0 _<_ X S_ 0o (BQBQ)

GZ(X,O) =

I
o
b

IN
o
\e
»

v
5

(3.3b)
u,(x,0) = 6 + ox + w¥{x-b) , 0L x< £

The unkiiown pressure is q(x) = —cz(x,o) for 0 < x< £
Other conditions to be satisfied are
a(x) >0, 0<x< £ ; q(4) =q(0) =0 (3.3c)

u, and auz/ax continuous and finite1 at x=0, x=4
(3.34)

and from (1.45),

1--vf l
He T

u (x) ~ - N* log |x| as |x| = (3.3e)

: The displacement U, must be measured relative to some point

near the load (see Section 1.1). This point will usually be
taken as x=0, z=0.
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The load components (per unit axial length) are
y/

)
N* . ( ) . * 7 duz 4
= g(x)dax Fi'= - | a{x) 55~ dx (3.4)
O

O

-~

Further discussion of moving contacts will be restricted to

two-dimensionali problems.

3.2 Outline of the Two-Dimensional Sclution

For a typlcal material element at the surface, nelther
stress nor displacement is known for all time, so the bound-
ary conditions cannot be transformed to glve an assoclated
elastic problem. To obtaln a solution, the unknown pressure
dlstribution is treated as 1f it were known. The analysls
1s carried out to satisfy the prescribed conditions, which
then determine the pressure. With given pressure the prob-
iem 1s one of a moving load, and the expressions for steady
state displacement given in Chapter I will apply. The
following dimensionless quantities {most of them introduced

in Chapter I) will be used:

_ iy _ Db
€=§VTT": 7\"-—"“‘“:5:'{71'17 (3.58)
v(€) = u (x)/VT 5 w(€) = w*(x)/vT (3.5b)
1-vy 1
Q(E) = 7 el (3.5¢)
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A
l-v *
o 1 N
Ne 2 7 Yr- { Q(t)at (3.54)
Pt fr- ! ale) § ot (3-5¢)

Given properties of the viscoelastic base include (&)
(related to the creep functions, equation 1.27), the time
parameter and veloclty in the combination VI, and the initial-
elastic response (1-v_)/b . Also glven is the shape of the
rigid body surface w*(x). 1In an actual problem, the verti-
cal load N¥ and the tilt o might be specified, with the ex-
tent and placement of the contact to be determined. However,
in the analysis it is advantageous to proceed otherwilse.
Because b enters the problem in a complicated way in tbhe
function w*, it is much easier to solve for c, which occurs
only as a linear factor (equation 3.3b). Thus, the extent
and placement of the contact region are specified by regard-
ing £ and b as known. The tilt a and pressure Q(€) are then
unknown quantities. After solving for these, the necessary
load components il and F can be determined.

Conditions to be satisfied are

Q(E) >0, 0< &N QO0)=q(r) =0 (3.6a)

E

i v(€) and Ov/3¢ continuous at £ = O (3.6b)
§ and € = A

g
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The displacement v(£) is measured from € = O , so that
here v(¢) represents what was written v(£)-v(0) in Chapter
I. Then v(0) =0, so that (3.3b) becomes

v(E) = at + w(&-B) - w(-B) , 0O & <A (3.7)

The relation between pressure and displacement 1s given
by (1.42a,b) with €, = 0. Thus, (3.7) becomes

[><]

f)\Q(ﬁ'){los Ié-éTl +f’y(§) loglé_.e’.%.é_r‘dc] dt' =
O

o)
at + w(€-B) - w(-B) , 0L E LA (3.8)

This 1s a Fredholm lintegral equation of the first kind for
the unknown pressure Q(£). The solution gives Q(£) in terms
of a, and a is then determined from the conditions of smooth
contact (3.6a). The load components are then given by (3.5d,e).
Once Q(€) is known, the surface displacement outside the
contact region is found from (1.42).

To summarize the general analytic procedure for a two-

dimensional moving contact problem: given (&) , w(§)

a) Choose values of A, B
b) Solve the integral equation (3.8) for Q(¢)
c) Determine a from (3.6a)

d) Find the required N and F from (3.5d,e)

98




To get numerical values of the actual physical guantities
(4, b, a(x), N*, F*], VT and (1-v_ )/u  must be given also.

The integral equation (3,8) can be written

A
[ e K(-6") - K(E-£")]ag" = of + w(E-) , O < & <A
0

where ©

K(e) = log|¢| + [ ¥(2) log|gst] at (3.9)

0
The kernel K(-£')-K(£~£ ) is the displacement at £ due to a
unit concentrated load at £'. If real material properties
are used, the creep functiéns will be avallable as curves or
tabulated data. Then, y(¢) is evaluated numerically as out-
lined in Section 1.3, and K(£&) would also have to be évalu=

ated numerically. If the materlal is represented by a

mechanical model {general Volgt solid),

v(t) = ? fje‘bj(g) from Section 1.3. Then, (3.9) gives

f,j f,j bt
K(E) = (1 + = 2) log |&] ~= L e J° B (-b,8) (3.10)
b b 1 J
33 J J
The general behavior of K(£) is similar to that shown in
Fig. 1.13. The function is logarithmically infinite as
|€] =0 and as || = .
With an analytic form for the kernel, there is some hope

of obtaining an analytic solution to the integral equation

(3.8) for a given w(#). The stress-strain laws for materials
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represented by mechanical models can be given in differential
form as well as the integral form (3.lb,c). This differen-
tlal form makes it possible to reduce certain viscoelastic
problems to "equivalent elastic protlems" (abbreviated "EEP")
(not to be confused with the "associated elastic problems

of Chapter I).

If the EEP can be solved, the viscoelastic problem 1is

reduced to the integration of ordinary difrferential equations.

In moving contact problems, this procedure (calied the "EEP
méthod") can be carried out only for very restricted material
properties. In these cases, the result is equivalent to
analytic solution of (3.8). The results are useful in spite
of the restrictions, and indicate what can be expected in
more general cases. The next sections will consider the EEP
method for steady state moving load and moving contact

problems.

3.3 The Egquivalent Elastic Problem for a Moving Load
(Steady State)

When the stress-strain laws can be given in differential
form, such as equations (1.1la,b), an EEP can be formed from
the viscoelastic problem. The method will be described here
for the steady state moving load problems of Chapter I.

Since time appears only in the term x*-Vt = x , 9/0t be-
comes -V 0/9x , and the differential operators (1.10b)

become
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Ll

P=P = by -V —— 3 Q, = Q = pX ('V>
X koo py{ V) axX x T 2 Yk axk
(3.11)

The stress-strain laws (1.lla,b) become’

D8y 5(x9,2)] = 2, Qx{eij(x,y,Z)] (3.12a)

Prlo(x,¥,2)] = 3K, Q.le(x,¥,2)] (3.120)

From the actual stresses and strains are obtained

"derived stresses and strains," denoted by "~", and defined

by

~

siJ

]

Pol8yg) 5 6 = By(6) (3.13a)

Then, the stress-strain laws (3.12) become

~e ~

Spq = BHg 85y 3 9 = 3K, e (3.14)

which are the same as the elastic stress-straln laws. The

total derived stresses and stralns are defined by

~ o~ l r 1 1
Oy4 =555 +3 6546 = Px(cij) b3 6iJ(PX~PX)(9)
~ o~ 1 ~ l ! -

1 For convenience, the initial modull are introduced as
indicated. Then, the P and @ operators are all dimunsionless.

101




Q
w4
Ny
[l
O
ct
=
[¢X
[

guilivrium equations gilves

~ _L !

~ _ 1 " .
Thus, GiJ,J = 0 1n general only 1if Px = Px . Similarly,
the derived strains satisfy the compatibllity equations in
general only if Q= Q;.

1

If Px = P! and Qx = Qx s the viscoelastic material

X
has identical behavior in shear and dliatation, which corre-
spads to a constant Polsson's ratio v. This behavior 1s a
considerable restriction on even the ideallzation of a
mechanical model, and is not usually found in real materials
such as polymers. However, by making this restriction re-
sults can be obtailned approximating more reallistic behavior,

? = 7~ and indicating genéral features of interest.

It will be assumed in what follows that v 1s constant.

~o

’Thenu-qij = Px(oij) and €39 = Qx(eij) . The derived
stresses satlsfy the equilibrium equation Eij j= 0 , and
2
Ehe derived strains are compatible. Derived displacements
are defined by uy = Qx(uj) and then €43 = 1/2(u1’3+uj,i).
Thus, the derived stresses and stralns satisfy the same
relations as an elastic problem. The viscoelastic problem
is reduced to its "equivalent elastic problem" in the de-

rived quantities, with boundary conditions derived by apply-

ing Px to prescribed tractions and Qx to displacements. The
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EEP 1s a protlem in the theory of elasticity, and if it can
be sclved the derived quantities Eij’ Ej’ etc., will ke
known explicitily.

Since Px and Qx are differential operators, each visco-
elastic quantity is related by a differential equation (in
X, with constant coefficients) to the corresponding derived
quantity. For example, Q(u,) = kgl qk(-V)k akuz/axk = G;(x).
Solution of these differential equations admits certain
arbltrary functions of y and z, which must be determined to
complete the viscoelastic solution. This requlres consider-
aticn of stated or implied c¢onditions of the viscoelastlc —
solution, such as continuity or behavior at infinity, and
the boundary conditions., Every viscoelastic problem will
vield only one EEP. But a given EEP may lead to many visco-
elastic problems, and the additional conditions are needed
to distinguish the proper solution.

It is necessary to be very careful in formulating the
EEP from the given viscoelastic boundary conditions. Dis-
continuities in the x-dlrecticn in prescribed boundary
functions or their derlivatives will become singularities in
the EEP boundary conditions after applylng the differential
operators Px’ Qx' These singularities must be included in

obtalning the elastlic solution of the EEP. For example, if

a prescribed boundary traction has a finite jump, its first
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derivative becomes a concentrated load in the EEP, its second
derivative a concentrated ccaple, and so on.

The EEP method of solving viscoelastic problems 1s use-
ful grincipally when 1t leads to a ciosed form analytic sclu-~
tion. This effectively limits consideration to low order
differential opersators, 1.e., & mechanical model cf few
elements. Otherwise, the elastic solution of the EEP would
be complicated by the presence of high order singularities,
and solution of the Jdifferential equations would bte diffi-
cult. Thus, in addition to the requirement of constant v,
the material behavior is further restricted to a model with
a small number of discrete retardation times. Even with
these severe restrictions. an analytic solution is useful
in studying significant {eatures of the problem and identi-
fying characteristic quantities. This is particularly true
for moving contact problems, which will be discussed in the
next secvicn,

To demonstrate the method, a simple moving load¢ example
Will be considered. The two-dimersional problem of a constant
load q, on a length £ is treated for the standard linear

solid (Fig. 1.4). In dimensionless f rm. with




the viscoelastic operators

2 <$‘
/ »

viscoelastic problem

A _ 9
Pe—.l.‘f‘f EE

d [l
Q =1 - 1 ©
£ oE | (ﬂ/:/L/ 7 .

The load can be written

a, EEP

a(g) = a [H(E) - H(E-N)]

FIG. 3.2
The boundary condition is then

a(e) = Ppla) = a (1+£) [H(E)-H(E-N)] - q,[6(€) - 8(&-A)]

The discontinulty in the load gives rise to the concentrated
forces (Fig. 3 7). For this load, the elastic¢ solution is,

with v(g) = u.'x)/VT ,

%;?K€)=(1+f)[ﬁ - € loglg| - (A-£) log|An-£|] + Log|€]|-log|E&-A|

where A 1s arbitrary. The viscoelastic soluticn is deter-

mined from
v = Qg(v) =V - gg - - &b %E (e'gv)

Integrating this with the v given above ylelds

%; v(g) = aeb + A + (14£)[|€-A|10g|E-A| - € log|e]]

+ fllog|é-n|-e* " B1(n-£) - 10g|e] + eBEi1(-£)]
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where A 1s the arbitrary constant of integration As {€|—>m,
v(ig) ~ - SHON (14+f) log|€| must be satisfied. This will be
true only if A = 0. The final result agrees with (1.62) <
example ¢), Section 1.6, with A such that v(0) = O.

3.4 EEP Method for Moving Contact Problems

In this section the EEP method is applied to the two-
dimensional steady state moving contact problem of Section 3.2.
As before, the method 1is restricted to materials with differ-
ential stres>-strain laws and constant v. The differential
operators (3.11) expressed in dimensionless form are
5 pk(-l)k %gﬁ ;oQ =1+ s qk(—l)k Eall

k=1 k=1 aek
(3.15)

Within the contact the displacement (3.7) is prescribed,

Py = Fj +

while the pressure Q(£) is urknown.
Differentiation does not alter the contact region, so
the EEP is again a contact problem. Applying the operator

Qg to the prescribed displacement (3.7) gives the EEP boundary

condition
~ m k 2K _
T8) = 0glv(a)] = w(8) - e+ 3 q(-1)" TP, 0 e

(3.16)

Solution of this elastic contact problem gives the pressure

Q(¢). Then,
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We) - pla(e)) - Fa+ 3 op(-0F LT (37)
g 3¥ 7 o1 Tk otk

is the differential ejuation for the actual viscoelastic
pressure Q(£).

Part of the viscoelastic displacement is purely elastilc
(see equation 1.58a), while the rest is an integral of the
elastic displacement. 8o the viscecelastle displacement and
derivatives will have the same (and nc worse) discontinuilties
as the elastic. By limiting the problem to smooth contact,
the viscoelastlc displacement and slope will be continuous.
However, the second derivative of the displacement, azv/agz,
has a discontinuity of unknown magnicude at each end of the
contact (£=0 and é=A), and all higher derivatives have singu-
larities there. This means a Qe of second order (or higher)
will give singularities in displacement of unknown magnitude
at £ =0 and £ = AN 1in the EEP. Prcblems with such dis-
placement singularities could be formulated mathematically
in elasticlity theory, but they would have nc direct physical
interpretation. It 1s unlikely that elastic solutions to
such problems are avallable or could be readily obtained.

Thus, to be able to apply the EEP method with any hope
of significant results, the material must be further re-
stricted fo a model with differential operators no higher

than first order. Then, because of the conditions of smooth

contact, the displacement in the EEP is continuous, and the
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possibility of a concentrated load at the ends of the contact
region is eliminated. If smooth contact were not required,
the EEP would have infinite jumps in displacement and con-
centrated loads of Infinite magnitude at each end of the
contact region.

Consideraticn is thus limited to a Kelvin solid (no
initial elasticity), for which Pg = 1 , or a standard linear
gsolid, for which Pg = 1+f - 0/0% , where 1+f = initial
elastic modulus/final elastic modulus. For both solids,

Qg =1 - 0/06 . Even though limited to these two simple
models, the EEP method gives results that are useful. The
standard linear solld exhibits some significant characteristics
of more general viscoelastic solids, so its behavior indicates
what might be expected in more general moving contact problems.

From (3.16), the displacement in the EEP is

(e) = ot + w(g-p) - w(-p) - a - BLEBL o< <
(3.18)
and ¥V 1s continuous across the ends of he contact region.
This 1s a contact problem in the plane theory of elasticity,
for which general methods of solution are well known. The
solution gives the pressure 6(5) and the complete displace-
ment V(£€) except for an arbitrary constant. Thus, Qe)

includes a "flat punch" term of arbitrary magnitude
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Upp = Q/ VETRE] , 0 E <A (3.19)

which gives constant displacement in the contact region,

For the Kelvin solid, Q(%) = E(g) since P€ = 1. For
the standard linear solid, from (3.17)

W)=+ a-S

and thus 3

Q) = ael1¥0)E o (D)8 [o-(I+DC Frryar  (3.20)
t

where A and d are arbltrary constants. The constants, QO,
and the unknown tilt o , are determined by the smooth con-
tact conditions (3.6a,b) and the asymptotic form of the dis-

placement (from equation 3.3e)
v(g) ~ - [1+Ff) N loglé]| as |¢] == (3.21)

Once Q’(g) and o have been found, the solution is essentlially
complete, and other quantities of *nterest can he determined.
Application of this method to a particular problem, the roll-

ing c¢ylinder,.is given in the next chapter.
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CHAPTER IV
THE ROLLING CYLINDER PROBLEM

One of the principal problems of moving contact in
visccelasticity 1s the rolling of a circular cylinder (or
sphere) on a flat surface. Osborne Reynolds made an exten-
sive study of the problem in 1876, and since then several
other attempts to explaln and predict rolling resistance
have been madel. The most significant recent developments
have resulted from the work of Tabor and his colleagues
({41, (6], [30]: [31], [32]) since about 1950. The ex-
perimental work showed that rolling resistance is nearly
independent of surface lubrication, and arises principally
from energy dissipation within the rolled material. This
has led to two general theorles attempting to explain roll-
ing resistance. One, developed chiefly by the Tabor group,
makes use of measurements of hysteresis loss in simple
loading-unloading cycles, together with the solution for
rolling on an elastic base. A simllar procedure has been
suggested by Drutowskl [7 ]. A second possibility is to
consider materials which can, at least approximately, be

regarded as linearly viscoelastic. As already explained in

Section 1.5, viscoelastic ma“erials dissipate energy,which

1
Discussion and additional references in Bowden and
Tabor [ 4], Kelly [18], Drutowski [ 6].
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gives rise to resistance to moving loads. Flom ([10], [111,
[12]) has sought to connect rolling friction with simple
energy loss measurements on viscoelastic materials, His
tests of hard spheres rolling on several viscoelastic poly-
mers show that the variation of coefficient of friction with
velocity of rolling is qualitatively similar to the descrip-
tion of Section 1.5 (Fig. 1.9 ). There are few other ex-
perimental results avallable for spheres or cylinders roll-
ing on materials of viscoelastic character. Some tests of
Tabor [16] on rubber indicate that for cylinders longer than
several times the diameter, the behavior is essentlally two-
dimensional.

This chapter considers in detall the two-dimensional
problem of a rigid circular cylinder rolling on a semi-
infinite viscoelastlic solid. The contact is supposed per-
fectly lubricated, so there are no tangential forces at the
contact surface and there is no distinction between rolling
and sliding. This 1s treated as an example of the general
moving contact problem of Chapter III. Several published
treatments of the problem are examined. Each involves spe-
cific limitations which prevent more general application.

A different, less limited, method is proposed and illustrated

in the next chapter.
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4.1 Formulation of the Rolling Cylinder Problem

The rigld cylinder, of radius R, 1is consldered fixed,
and the viscoelastic base moves under it with veloclity V.
The contact reglon extends
from x = 0 to x = £, and the

downstream end x = O is a

distance b from the center of

N "

M
)/

the cylinder (Fig. 4.1). De-

formations are assumed small

(1.e., £ << R), so that within
the contact region the surface
of the cylinder can be approxi-

mated by a parabolalz

w(e-p) =-A(e-8)°

In this psoblem w(£-p) contains a term linear in £ with
unkncwn'magnitude B, so there 1s no need to introduce the
additional tilt a. But now B is to be found, and not,

as in Section 3.2, assigned initially. For a given g, vari-
ation of b in thils speclal case amounts to a tilt of the
contact surface.

The displacement within the contact region is, from (3.7)

v(£) = 5 (B¢ - 36°) , 0 <€ < (4.1)

! Using quantities defined by (3.5a-e) and p = R/VT.
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It is convenient to introduce new dimensionless guantitles

d(e) = p ale) = g > 7 alx) (4.2a)
0]
o) l—VO n ar ¥ r?\
N' =2p N = %T m = %T = 2\/ Q'(&)at (4.2b)
O
G

The integral equation (3.8) then becomes

A
jwu%M£v-M&wwv=Be-%¥,ose<x
0]

(%.3)

Proceeding as in Chapter III, the creep function v(¢)
is given, and a value of the contact length A 1s chosen.
The solution of (4.3), along with the smooth contact condi-
tions (3.6a,b), gives the pressure Q'(£) and the parameter
B. The total load N' is then found from (4.2b). Rolling
resistance is convenlently represented by the coefficient

of friction x. Using (3.5d,e), (4.1), and (%.2a,b),

A
x=F=% 7 [ (&-B) a(e)ae
(0]
and thus
A
px =g [ EQe)es -5 (4.4)
(0]

The actual physical and geometrical quantities can pe
convenlently represented by dimenslionless combinations in-
volving only the radius R, actual total 1load N*, and initilal
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elastic constants (l-vo)/uo. These combinations, given on
the left-hand sides of (4.5a-d), are formed as follows (the
quantities on the right-hand sides having been found in the

solution for a given A):

vzlocity gg = ;E;; (4.5a)
pressure ;ﬁ; a{x) = gg Q' (&) (4.5b)
Coefficient of friction g; X = Agg pX (4.5¢)
g placement g; = gg B (4.54)

is one-half the contact length for an elastic solid. It is
then possible to exhibi’ the variation with velocity of q(x),
Xs or b, for a given total load and radius. For example, a
_plet of Rx/éo v VI/a_ shows the variation of coef-
- ficient of friction (rolling resistance) with velocity.
In Section 1.% it was shown that the limiting cases
V—~+0 (A=) and V= o (A= 0) are elastic. This can be
used to find the corresponding limiting values of certain
gquantities in the rolling cylinder problem. For V=« ,
the material exhibits its initial elastic behavior. The

solution for glven displacement (%.1) is
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For V -+ 0, the material exhibits its final elastic behavior.

The solution is the same as for V=« , except that uo/(l-vb)

is replaced by uf/(l-vf) = l/(l+f)'uo/(l—vo) , where

(> ]
f = [ y(¢)d¢ . Some limiting values are given in Table 4,1.
)
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4,2 Analytic Solution by the EEP Metiiod

The rolling cylinder problem can be solved by use of
the EEP method outlined in Section 3.3. The viscoelastic
material must be a svandsed linear (or Kelvin) solid with
constant v. This 1s a severe restriction on the materlal
behavior, but it allows & complete analytic solution. The
same solution has been-previously obtained by Hunter [17].
The EEP method makes more evident the underlying assumptiors
and conditions of the problem, and 1s clearer and more direct
than the somewhat different procedure of Hunter. The final
results of the EEP method are the same as those of Hunter.

Detalls of the procedure for a standard linear solid
are now given, The differential operators are

- 3 . 5. -1.09
Pe=1+f-55 5 Q=1-%

Applying Q€ to the displacement (4.1) gives
i - 1.2
pv(E) =D+ (14p) € -5 £, 0L ELA (%.7)

where D is an arbitrary constant. The elastic contact prob-

lem with prescribed displacement (4.7) has a pressurel

~ . A+B(E- D)
mp Q(£) "o T VEE » 0S €™ () 8)

Muskhelishvili [25], Section 116a.
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where A 1s arbitrary and B =1+ g - % . Frcm (3.20) and

(4,2a), the viscoelastic solution is

) _2
@'(8) = & o008 [ (26 {A':/’Z(i 2, e Jog
; (2-E) |
(%.9)

The upper 1limlt on the integral 1s here chosen so the con-
dition @'(A) = 0 is satisfied. The conditioa Q'(0) =0
must also be patisfied. Setting £ =0 in (4.9), the inte-
gral can be evaluatedl. It must vanish identically, glving

the relation

A \
A=% (B - o+ (4.10)

where Il’ IO are modificzd Bessel functions of the first
kind, and
o A v
h=(1+f1) 3 (4.11)

Another relation 1s needed between A and B. Tc¢ obtain
this, the displacement must be considered. Cutslide the con-

tact region, the elastic displacement due to the pressure

(4.8) 1is

~ .2 .
p v(€) = D + (1+B)g-—é- g2 -(A + E’}—)cosh 1 ]%5- - 1]

-{s—l%l--%M-%[},/E(E‘T-)\', £<0 or £>1
(4.12)

Erdelyl [8], equation 7.12(10).
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pv(E) = eﬁ[ e S1pv(L)] dt + ceb

whére C 1s an arbitrary constant (which may have different
values inside and outside the contact region) and the upper
lumit is chosen for convenience. As |£| ~—+ o , this expres-

sion gives

2

pv(€) ~ pv(E) + Clee = Clee - (A + %—) log |&]| + constant + ...

This will have the proper asymptotic form (3.21) only if

C, = 0. Then, substituting for pv from {4.7) or (4.12),
and choosing D = - B glves
1,2 ¢ :
pv(€) = Bt - 56 -e>I(€), £<0 or £>A (4.13a)
where
2 .2
I(¢) .-—.f [(A + 3 cosn™t |28 _ g
g

sl -3 - 3p Ve [etar (was)

(for € < O, the upper 1imit is O rather than ®)

Inside the contact region, the displacement is

pv(€) = B - 5 €2 + [c, - T(n)]e®
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Choosging C, = I{(2) gilves the correct displacement (}.1).

vvvvvvvvvv 2 _— g
To meet thie conditlon of continuous dispiacement at £ = A

requires, on comparing (4.1) and (4.13a), that I(A) = O.
Evaiuation® of the integral I(A) leads to the relation

K, (A/2)
ATl
A =53 K372 (1-B) (4.1%)
where K , K, are modified Bessel functions of the second Aé .

kind. From the two relations (4.10) arnc (4.14) A and B

can be determinesd, and then B =B-1 + % .

Continuity of v(€) at £ = A has been guaranteed, and
from (4.,13a,b) this is true at € = C also. Since
V=v - dv/3¢ and both v and vV are continuous, the siope
ov/d¢ 1is also continuous. From (3.5d), and since
T =2 = (1) o - 4

the total load is given by

A A
(umn=<nﬂj”maa=/ﬁu>@+Qn)-mw
(o] (o]

Thus, using (4.8), with Q(A) = @(0) =0,

A A+B(¢ - -2-)
; +

(1+£) pN = 2 f{ —

o)

E(A-¢ ]dg = A + g

Erdelyi [8], eguation 7.3(15).
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The asymptotic form of the displacement (4.13a,b) as |£]| —

is 1, . A°
v(g) ~ - E(A + 8—) log || = - (14f) N log |E]

(4.15)
whicrh satisfies the condition (3.21). All the conditions
of the problem are now satisfied,
This completes the solution for a rolling cylinder on
a standard linear sollid base. Numerical results are obtained
nost directly by specifying A (with a given value of f), ’

then proceeding with evaluation. v~ing the following formulas: |

1)  h =3 (141) (4.11) \
K (A/2)I (h)
_ o i ;
2) m= R (%), (5 [0 <m 1] (4.16)
K (A2)
- Y. 1 m
3) A=5T1 K (%/2) Tm (4.172)
B B=1- 4 L (4.17b)
5) B=3-Tr T (6 < 5] (4.18)

6) Q(e>=—e(1+f>W2f -ht[ 22 + (B ViE o

1-t
(4.19)
where 1 = 28/A-1
2
A
7) N' =2pN=:5 [a+g (4.21) %
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Evaluation of the coefficient of friction from (4.4) leads

to 2 1
X = r3p - BIL + B¢ ] (4.21)

The surface displacement for the rolling cintact is given by

. O

pv(e) = 8¢ - 5 €% -5 ™% [a(t) e™M2 P ae, £ <o

n (%.22a)

= BE - % g2 0< &< {4.22p)

-t -2¢6°-3 e”“/zk/~g(t) e M2 gt , &>

k (4.22¢)

where

glt) = (4 + §—>cosh-1;t' + % (B - % t),/tzj“I é

(4.23)

To obtain the pressure distribution over the contact region
a numerical evaluation in step 5) is necessary. Hunter [17]
gives a plot of Q' (£) for the one case f =1, A = 1.6, A
sketch of the general case 1s given in Fig. 4.2, along with
an elastic contact for comparison. The effect of viscoelas-
ticity is seen in *he non-symn. >y of contact region and
pressure distribution, and the resultant horizontal force.

The variation of rolling resistance with velocity is

best presented by plotting Rx/ao Vs VT/'ao » as suggested
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different velocltles are obtained by varylng A. The result
1s a curve of the form of Fig. 1.9, wilth a single maximum.
Typical curves are given by Hunte.rl for f = 1and £ = 9.

In an actual rolling cylinder problem, the physical
quantities f,V,T,N*,R, might be specified. To determine the
contact region and pressure, a nlot of! A Vs V'I‘/'aO (for a
given f) 1s useful. The given data determines V‘I'/'aO , and
the approprizte A can te found from the plot. Then the

other quantities can be determined by the procedure Just

‘given.

Elastic Viscoelastic

Forces on
Cylinder

Contact
Pressure

a(é)

FIG. 4.2

1

N Note that Hunter's a is 4/1+f times the ao used
ere,
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icn ned in the

same way as for the stanéard linear solid. There 1s no
initial elasticity so the final elastic response is used.
For this material, f& = 1 and Qg =1-0/08 . Only A
need be specified to obtain a solution. The results are

summarized below:

K (ne), !
3 (¢]
1) B = [1 4 mj (4.24)
A N
2) B=B+5-1 (4.25)
1-v o
3) pale) =B /xg + VEIA (4.26)
1-v * -
£ 1 N* A A |
k) el (B + 3) (&.27)
| ; R T

The Kelvin so0lild 1is of interest as the limiting case of a
standard linear solid with the initial elastic response much
smaller than the final response (i.e., very large f). In

this limiting case, the pressure is infinite at the upstream
end, € = A (see Fig. 4.2).
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Direct Analvtiecal Solution (Morland)

LJ\)

Starting from the fundamental field equations (3.1a)

DAL M Byt fetnss ¢ TARLAS Byl AR L L A1 1wt .

and the general stress-strain law in integral form (1.9a,b),
viscoelastic problems can be treated directly as boundary
value (space) and initial value (time) problems. Morland
[24] has investigated the rolling cylinder problem in this
way. Conditions to be satisfled are given by (3.3a-e). The
genefal procedure 1s ocutlined be'cw, anq,scme,detailsxof
Morland's sclution are given.

At first, the analysls appllies to the general two-
dimensional problem of a normal load moving on the surface

of a semi-infinite base (as in Chapter I). Morland takes

"a Pourier transform with respect to iime. The transformed
problem 1s then essentially an elastic problem, and the
solution is expressed as Fourier integrals (in x*). At this
stage the condition of steady state 1s introduced, and after ;
considerable manipulation the time variable is repléced by
the steady state variable x = x* - Vit. The result is thenl

(in the notation of equation 1.29)

/Q[fl(s) cos s€ + fg(s) sin s€] as (4%.29a)

O

Q&) =

R IE

1 The whole analysis to this point could be done more
directly and simply by. considering a moving load, steady
state problem from the beginning, including the apprcpriate
stress-strain laws (3.1b,c). Then, a Fourler truensform with

respect to £(=x/VI) gives an elastic problem which leads
directly to equations (4.29a,b).

i24




W(8) = [9(s) {iry(s) + Us)eys)](cos st - 1)
0

ds
+ [£(5) - 9(s)ty(s)] sin st} 82
(4.29v)
where fl(s) = £,(-s) and fa(s) = - f5(-s). The functions
¢(s) and ¢(s) are related to the creep functions and are

defined by
¢(s)[1 - 1y(s)] = 1 + ¥(1s) (4.30)

where <Y(s) 1s the Laplace transform of v(¢) and
1 =,/-1 . For a given moving load, f, and. f, are known, and
(4.29b) gives the resulting deflection.

The moving contact problem is considered, as before,
by assuming some length of contact, and finding the neces-
sary total load. Then, fy(s) an¢ fz(s) are unknown functidﬁg.
Once they have been fcund, the complete splution can be
obtained; It 1s convenient ’ ’
here to take € = 0 at the
center of the contact region.
This region is then |&] < 2/2
(see Fig. #4.3). The boundary
conditions (3.3) become

FIG. 4.3
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(4.31a)

AY
ol >

Q(e) =0, igl

vg) =z UB-B) &-5871, [8l<s (4.31b)

It 1s necessary to add an additional flat punch pressure,
Q [(r2)? - 21712, to q(2) glven by (4.29a). The re-
sulting displacement 1s found by the method of Chapter I,
and is added to (4.29b). For this, Morland assumes

y(¢) = 2 ffabig--i e., a mechanical model--for the visco-

elastic behavior. The additional displacement 1s then

f

v (&) = §§¢(i§u-ﬁ%, &l <5 (%.32)

With this assumption for (),

(s) = £ (s)-¥(s) ! (4.33)
¢(s 1+ 3 s ®(s)Y(s) = s = .33)
T 522 L bZes?

Satisfying the bcundary conditions (4.31la,h) leads to the

equations

Jr[fl(s) cos st + fe(s) sin s¢] ds = 0 , |£] 2_% (4.3%a)

£,
fqb[(f +¥f,) (cos s&-1) + (£,-yf)sin 26195 + g 5 Lk (b D) (1-e"18)
by

;...a

=3B -D e -3, [e] 25 (h.3%)
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These are dual integral equations for the unknown functions
£,(s), fg(s). Morland procedes by splitting each of (4.3%4a,b)
into odd and even parts. Then, a solution 1s assumed in the

form of series of Bessel functions

00 2\_ _ o A
£1(s) =7Q, = ay, Jo(5 s) 5 £(s) = ”Qomflazm-lsz-l(é' s)

which satisfy (4.34a) identically. Introducing these into
the odd and even parts of (4.34b) leads eventually to two
infinite sets of equations, which are combined into one
infinite set of linear equations for the unknown constants
a - The coefficients of an in the set are integrals of

¢ and ¢ with Bessel functions, a typical integral being
A A das
JEOENCDENCEE -

o]

The solution of this infinite set of equations, with the
additional conditions Q(+ N/2) = O , gives the an, Qs

and . This formally solves the contact problem, giving

fl and f2 as an infinite series. The contact pressure is

then glven by

Q o B
2

: ) =% co: g [1+ mfl ay, cos(2md) +m§1 om—1 Sin((2m-1)6}]
§

i

é

[
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where £ = A/2 sin 6. From this it follows that

1
N=mQ, ., px-= %’[1 - 2By 5 @

A 1 ]

Thus, for a given A, the coefficients of ay must be determined
and an infinite set of linear equations solved. Then the
pressure, total load, friction coefficient and other quantities
of interest can be found. The whole process must be repeated
for each value of A,

To carry out the calculations, Morland makes some simpli-
fying approximations. The material behavior 1is approximated
by assuming ¢ = constant and ¢ = constant in the lntegral
parc of (4.34b). The coefficient integrals can then be
evaluated in closed form. For the "flat punch" displacement
(#.32), a different approximation 1s used by taking a2 single
term in the sum (i.e., standard linear solid with constant v).
‘The solution 1is further approximated by using a 9x9 block -
instead of the infinite set of eguations. Even with these approxi-
mations, much numerical work is needed to get results for
a single value of A, Morlané glves one numerical example
and the resulting curve of pressure distributlion over the
contact region. The results are given below for this exam-
ple, in which A = 1, f = .5. Also glven are the corres-
ponding results by the method of Section 4,2 (Hunter) fcr

comparison.
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Quantlity Method

Hunter Morland
yr 2.40 2.21
a
(o]
B RIVT 490
PX .067 .072

}.4 Other Treatments of Rolling Contact Problems; Comments

Although each of the methods of Sections 4.2 and 4.3
can be applied only with certaln restrictions and approxi—
mations, each starts from an "exact" formulation of the roiie
ing contact problem in the sense that the viscoelastic base
is treated as a continuum, and the mutual effect of adjacent
elements 1s taken into account. However, only two-dimensional
problems can be satisfactorily treated, and analytic solutiéné
are possible only for limited kinds of viscoelastié behavior.

Rolling contact problems have alsc been discussed by
adopting a representation of material behavior which is more
widely applicable, but much more approximate. The visco-
elastic base is assumed to be made up of lndependent verti-
cal columns, like a Winkler foundation. Each column is a
one-dimensional viscoelastic rod with regard to vertlcal

stress and straln, and the deformation of any one column
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has no effect on and is not affected by any other columns.

Thus, some of the features of viscoelasticity are present,
including delayed recovery and energy dissipation, but the
overall behavior of the base as a continuous materlal is
only approximately represented.

With this simplified representation, both three and
two-dimensional rolling contact problems can be treated.
The base has a finlte thickness h, and the vertical dis-
placement of any column is thus hc , where € 1s the

strain. The stress-strain law can be written

o(t) = E\/yé(t-r) e(t) dr (4.35)
o)

where G(t) 1s the relaxation function. If the surface dis-
placement is prescribed, (4.35) gives the necessary contact
pressure. By prescribing a spherical or cylindrical dis-
placement, the rolling contact problem 1s essentially solved.
Due to the delayed cecovery behin® the roller, the contact
region and pressure are not symm:tric. This givesa resist-
ing force and a corresponding coefficient of friction, and
thus provides some qualitative description of rolling
resistance.

Applications of this simplified treatment of rolling

contact problems include: Flom and Bueche [13], sphere on

a Kelvin solid; May, Morris and Atack [23], cylinder on
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Maxwell fiuid, standard llnear and more general sclids;
Norman [26], cylinder on a Kelvin solid. Results are quali-
tatively similar to those of the more "exact" methods of
Hunter and Morland. In particular, the coefficient of
friction varies with velocity in the manner previously dis-
cussed, increasing with veloclty to a single maximum, then
decreasing to zero. When a mechanical model 1s used for the
material behavior, G(t) 1s a sum of negative exponentials,
Then the results can be expressed in analytic form, in

terms of elementary functions.

In summary, this simplified treatment gives some use-
ful results of a qualitative nature for the rolling contact
problem, and involves only straichtforward (although perhaps
tedious) integrations. However, it is a someﬁhat crude
representation of the actual behavior of the base, For the
more accurste representation of the base as a continuum,
analytic solutions (such as Hunter, Section 4.2, and Morland,.
Section 4.3) are available only in limited cases of two-
dimensional problems. The direct method (Morland) applies
in principle for general viscoelastic bhehavior, but in
practice approximations are needed. Even then, an infinite
set of equaticns must be solved, which requires further
approximation and much numerical work for each particular
example. The EEP method gives a complete closed-form ana-

lytic solution, with no approximation in the analysis, and
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numerical work is needed only to get the detalled pressure
distribution. However, this method can be used only for
simple models (standard linear or Kelvin solids, with con-
stant v) that in some respects represent the behavior of
viscoelastic materials. Thus there are significant limita-

tions to each of these methods of obtaining an analytic solu-

tion of the rolling contact problem.




CHAPTER V

h NUMERICAL METHCD FOR TWO-DIMENSIONAL
MOVING CONTACT PRCBLEMS

There 1s no complete analytic solution of the moving
contact problem available for a general viscoelastic material.
The EEP method discussed in Chapters III and IV can be used
"only for a material of very restricted type, represented by
a simple model with constant v. ¥For a rolling cyllinder this
method allows a complete analytic solution, but for other
shapes of contact surface the analysis is much more compli-
cated and does not in general yield closed-form expressions.
The direct analytical method discussed in Section 4.3 can in
principle be applied to any contact surface on any viscoelas-
tic material. Rut invoived analysis 1s required, and then
much approximation and numerical work is needed to obtain. a
definite result.

For the general moving contact problem, with arbitrary
contact surface on any viscoelastic solid, it is evident
that the solution murt be obtained numerically. This can
best be achlieved by using numerical procedures from the be-
ginning, thus avoiding lengthy =2nd elaborate analytical
procedures. Creep functlons available only as numerical
data can be used directly, eliminating the laborious task
of trying to represent the data analytically. This chapter

presents a numerical method for solving the two-dimensional
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steady state moving contact problem (as formulated in Chapter
III). The procedure, restricted only by the requlrement of
smooth contact, 1s simple and direct, and readlily adapted

for digital computer. The method is illustrated wilth the
specific problems of a rolling cylinder and a "nearly flat

punch".

5.1 Numerical Evaluatlion of Surface Displacement

The steady state surface displacement due to a two-
dimensional pressure distribution Q{£) (0 < € < A) moving
on a semli-infinite viscoelastic base, given by (1.42a,b),

is A
v(8) - v(g,) = [a(e) (g, -1 K(e-g)Jag!  (5.1)

0
é where - %
K(g) = log [g] + [¥(2) log (&+t) ac (5.2)
u A §
\ q %
%1 and €, 1s an arbitrary point on the surface (Fig. 5.1). The :

dimensionless quantities given by (3.5a-e) are used. It is
supposed that the pressure 1s everywhere finite, and that
R(0) = Q(A) = 0. This is the case, for example, when Q(§€)
arises from a "smcoth" moving contact (define¢ in Section 3.1).
Te evaluate numerically the integral in (5.1), a smooth
pressure distribution Q(€) on 0 < £ < A 1s replaced by n
trapezoidal load elements (Fig. 5.1). Within a typical
segment €, ; < & < & (k = 1,2,...,n) the pressure is repre-

sented by
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Q(g) = Qk (g) = E—I-{:ék-l [Qk(g"ﬁk—l)'Qk-l(g'gk)] (5-3)

-

where Q = Q(€,) » &, =0, & =7. The displacement (5.1L)
then becomes
€y
We) - vlgg) = 3 Qe (e, )-K(E-6 1) Tae!
€k-1
Substituting for Qk(g) from {5.3) an¢ for K{&) from (5.2),

and with Qo = Qn = 0 , this can be reduced to

n-1

2l (8)-2,(t,)] (5.4a)

wm-vwg=ék

BN
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Q- (\"‘;) = ( + _'\L\_ (e - 7 K \;/- N, 'kg)
K 9k+1 Qk’ K\ =/ Qk k-1 6k%1 k+1

(5.4b)

Kk(€> = w(&-ﬁk) H ek = E“k - gk-—l (511\0)

o

o(€) = £210g]€] +fv(¢>(g+c)glogle+ctdc (5.4d)

@)

The integral in (5.1) is thus replaced by a finite sum. For
a given choice of the division polnts gk, the functions

Qk(ﬁ) depend only on the creep function y({), and may be
regarded as evaluated once for all, for some glven viscoelas-
tic material. Then (5.4a) gives the displacement for any
pressure distribution in terms of its Qe values,

The trapezoldal pressure 1s continuous, but has dis-
continuous slope dQ/d¢ at each ék' The resulting displace-
ment 1s consequently continuous with finite slope dv/d¢
éverywhere. But, as may be verified from (5.4a), dev/dg2
will be infinite at each gk. The pressure could be better
approximated by polynomials of higher degree, which would
glve smoother pressure and displacement. But the added
smoothness does not justify the increased complexity in-
volved. It is better to use the simple representation

given by (5.2), taking more divisions if increased accuracy

is desired.
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he pressure Q(£) 1s known, the total load is

N=fQ(€) ag

o

Substituting from (5.3) for Q(£), this becomes

n-1 n-1
by

Q e ) =13 q(e, 46 (5.5)
k=1 k(€k+1 k-l) 2 k=1 k' k+1 k)

|

1
N=5

The displacement at any point on the surface can be
determined from (5.4a,b) for any viscoelastic sclid. The
elastic solid is covered by y(¢) = 0. If v(¢) is in
nun.erical form, determined from measured creep functions

(as described in Section 1.3), then the integral in (5.4d)

would have to be evaluated numerically. If +y(¢) has an

appropriate analytlical form, w(£€) can be expressed analyti-

cally. For example, if the viscoelastic material can be

m )
represented by a general Voigt solid, so that () = = fie-bii,

i=1
then
) m fi o m fi
oé) = (1 + = 5_) £° loglé| + &(1+2 logl|E|) = —5

i=1 ~1 i=1 bi

2f

be€ . m
+ [log|g| - e 1€ ﬁi(—biﬁ)] > -—% (5.6)
i=1 1

where Ei(-x) is the Exponential Integral.
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5.2 Numerical Procedure for Moving Contact Problems

The moving contact problem was described in Chapter III,
and the general procedure for obtalning a solution was out-
lined in Section 3.2. Values of p and A (Fig. 5.1) are
chosen, and the unknown pressure 1s found from the integral
equation (3.8). Since B and A are not independent in a
particular smooth contact, it 1s necessary to include an
unknown angle of ti1lt o along with the prescribed contact
surface w(£-p). Then, reasonable values of B and A can be
chosen independently, and the solution will give the neces-
sary tilt for this to be a possible smooth contact.

For a numerical solution, the unknown smooth pressure
1s approximated by n trapezoidal elements. The number
‘and'spacing of the division polnts gk wlll be governed
by the accuracy desired and the character of the specific
problem. Followlng the procedure of Sectlon 5.1, the integral

equation (3.8) becomes

n-1
%k_z_l Q[ (£)-0,(€,)] = (&-,)a + w(E-B) - w(&,-B)
0< & <A (5.7)

where Qk(&) is given by (5.4b-d) and ¢, 1s arbitrary.
There are n unknown quantities, the n-1 pressure ordi-

mates @ = Q(£,) , k= 1,2,...,n-1, and the tilt a.
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To sclve for these unknowns, the method of collocation
is used. If (5.7) is satisfied at each of n points £ = E;,
0 < 55 <A (J=1,2,...,n), there will be n equations for
the n unknowns. Iich of the unknowns occurs as a linear
factorl, so the problem is reduced to solving a set of simul-
taneous linear algebraic equations. For given divisions of
the contact region (&k) and given points of collocation (53)
there will be a unique solution for the Qk and a. With this
solutlon the left side of (5.7) will exactly equal the right
slde only at the points 53 > but agreement will be close
throughout the contact region if these points are suitably
chosen.

It is convenlient to choose one of the division points

&k as the reference point ga, and the remaining gk as the
collocation points gg . The collocation procedure then in-
sures the prescribed displacement at each end of the contact

region and at the n-l1 intermediate poinﬁs at which the

pressure 1s determined. Let

Ao = (€) - (&) 5 k=1,2,...,n-1 (5.82)
Aip = &5 - QJ (5.50)
WJ = W(gj - B) = W(Qa - 6) (5-80)

1 This is the principal reason why the small tilt o is in-
troduced as an unknown --tecause it is a linear term. If the
tilt were prescribed or implicit ia the function w{€E-B), B
could not be prescribed, but would have to be found in the so-
lution. Since P is not a linear factor in general, the whole
procedure would be greatly complicated.
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where J = 0,1,...,n except J = a. Then, (5.7) becomes

Qk Ajk + a AJn = wJ s J=0,1,...,n except J = a
(5.9)

This 1s the set of n equations to be solved for the n
unknowns Qk(k = 1,2,...,n-1) and a, which gives an approxi-
mate solution of the integral equation (3.8). The smooth
contact conditions (3.6a,b) are automatically satisfied in
this formulation of the problem.

Once the Qk are known, the total load N 1s given by
(5.5). The coefficient of friction is

E
A K
F 1 dv 1 B K Sw
o Sk-1 (5.10)

The complete numerical procedure for solution of a two-
dimensional moving contact prcblem is summarized below:

Given: <y(f)-a creep function of the base material
zsee Section 1.3)

w(€)-prescribed shape of contact surface

1) Choose values of A, B.

2) Divide the contact region into n segments at the
points go = 0, gl,...,gk,...,gn = A. Choose one
gk as reference point ia’

3) Determine AJk and Wy from (5.8a-c),(5.4b,c), using

(5.4d) for a general visccelastic material, or (5.6)
for a Voigt solid.
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) Solve the set of n simultaneous linear equations
(5.9) for a and Q (k = 1,2,...,n-1). The pressure
distribution is then given by (5.3)--straight lines
connecting the ordinates Qk at the points &k .

5) Find the total lcad N from (5.5), the coefficient
of friction from (5.10).

6) Displacements at any polints on the surface are found
from (5.4a).

For each pair of values of B and N this procedure gives
one solution, with particular values of N and o . If
either the actual loed N* or the velocity V 1is then speci-
fied, the othev is determined by this solution. This means
that if certain values of V, N*, and a are wanted, trial
solutions must be made with various values of B and A until
the desired results are obtained.

The actual numerical calculations are straightforward;
and can be programmed for a digital computer. Evaluation

of the coefficients A will depend on the form in which

jk
v(¢) is expressed. For a Voigt solid, the general analytic
form (5.6) can ve used. If the creep functions are given
numerically, y(f) can be found as described in Section _.3.
Then, the integral in (5.4d) is evaluated numerically. Com-
puter library routines for solving simultaneous linear
equations are uvesually availlable.

To summarize, this numerical procedure ylelds a solu-

tion to the moving contact problem by representing the unknown
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ressure aistrivution as n tTrapezoidal elements. The pre-
scribed displacement is then satisfied at certain points in

the contact region, leading to n simultaneous equations to
be solved for the unknown pressure ordinates. The principal
advantages of the method zie its simplicity and flexibility,
and that it can be used for any viscoelastic (or elastic)

solid and for any shape of contact surface subject to the E

conditions of smooth contact. In the next sections, numeri-

cal results are obtalned in some specific applications.

5.3 Numerical Solution of the Rolling Cylinder Probliem

coamit

The numerical method of Section 5.2 will be applied to
the rolling cylinder problem as formulated in Section 4.1,
where it was indicated that B8 is to be found and it is not
necessary to introduce a . The physical quantities are shown
in Fig. I (at the end of the chapter), and the dimensionless
quantities are defined there. It 1is convenient to choose
&a = &O = 0 . Then, using (4.1) and with Qk' = Q'(gk) s

(5.7) becomes

n-1
X

i 2
o1 Qk [Qk(ﬁ) - Qk(O)] = 25& - & s 0 S g S A (5'11)

Collocating at the points ek , k=1,2,...,n , the set of
equations corresponding to (5.9) is

n-1
2
k=1

1 » 2 -
Qk AJK + 2&(‘53) = - gj s J=1212,...,n (5'12)
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where A, 1s given by (5.8a) with €, = 0. Once the solu-
J
tion has been obtained, the total load is (from 5.5)

. n-1

N 2 (Bt ) (5.13)

and the coefficient of friction is (from 4.4, 4,2a,b, and

5.3)
n

pr1 6 T Ex g (

-1
1
pXx = NT %1 Ql:l (e"k+l—€k-1) 3 - B

k=
From the elastic solution and the existing solutions

for standard linear solids (Section 4.2, Fig. 4.2), it is

expected that the pressure distribution wiil be smooth for

a general viscoelastic solid. This suggests division of the

contact region into equal segments. Then, gk = k6@ , where

e = gk - ek"l = % K} k = l,2,o-.,n (5’-15)

The set of equations (5.12) becomes

ot Q' A 2B6j = -3%6° , § = 1,2 (5 16)
- = - K] = 3 ,...n . -
k=1 k “jk
where now
Ajk = Qk’.(gj) = Qk(O) (5.178}

Qk(ej) = %‘[Ew(gj"gk) - w(ﬁj-ﬁk_l) - w(gj—gk‘!‘l)] (5~17b)
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and w(g) is given by (5.4d) or (5.6). The total load (5.13)

becomes ' n-1

k=1
and the coefficient of friction (5.1#4) becomes

Z Qe &)

PX = 51— B (5.19)

Division into equal segments is used for all rolling cylin-
der examples given in this chapter.

A particular problem for a glven material [given y({)]
is fixed by choosing the number of divisions n and the
length 6 of each segment (or A = n8). The coefficients
AJk are determined from (5.17a,b), and the set of n simul-
taneous equations (5.16) is solved. This determines
Q. (k=1,2,...,n-1) and B. From (5.18), (5.19) N' and
px are found. The results are most conveniently expressed
in terms of the quantities defined by (4,5a-d). Each value
of A (or 8) corresponds to a certain V, if N* is specifiled,
or to a certain N*, 1f V 1s specified. To illustrate the
procedure, some specific examples are given in this and the
next sections. The numerical work was performed on a digil-
tal computerl, using an existing library routine for solving
the simultaneous equations.

1 The IBM 7090 at the Stanford University Computation
Center (using eight significant figures).
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A good check on the numerical procedure is provided by

the elastic base, for which Y(¢) = 0. The known analytic

solution is

Q'(g) = $VEVE (5.20)

=
]
w
]
N>

and the pressure distribution is symmetric about .£ = A/2.
Numerical results for n= 10 and n = 40 are given in
Table 5.1. In each case R = A/2 exactly (to eight signifi-
cant figures), and symmetrically located values of Qi are
identical to at least six significant figures. Values of

Qé for n = 10 are about 2%, those for n = 40 about .5%,
lower than the exact solution. Values of N' are less than
the exact value of 4.,8% for n = 10, 1.2% for n = 40.

When the material is a standard linezr solid with con-
stant v [i.e., y(&) = fe_c], results of the numerical methodzr
can be compared with the complete analytic solution given in
Section 4.2. A few such examples are given in this section
to indicate the accuracy of the method. Increasing n
beyond a certain value will not necessarily mean more accur-
ate results. When the segments are very short (6 small,

n large), increased precision {more significant figures) is
necessary, requiring careful attention to the details of

calculation, and perhaps more sophisticated numerical
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techniques. Trial solutions for several values of n will

enable seiection of a suitable value of n for a particular
class of problems.

Two rolling cylinder problems are solved with n = 10,
20, and 40. In each, A = 1 and (&) = re 6, with £ = 1
in one example, f = 10 in the other, Results are given in
Table 5.2, and pressure distributions are shown1 in Fig. II.
Numerical values are consistently improved with larger n,
the error being roughly halved when n 1s doubled. Except
near the ends, the pressure distributions for all three
values of n are nearly the same. On the basis of such
examples, n = 20 was chosen for use in all subsequent roll-
ing cylinder examples. Comparison with the analytic solu-
tion indicates errors of 2 to 5%. The computer time needed
for a typlcal solution with n = 20 was .1 to .5 minutes.

For a given base material [given y({)], the complzste

range of rolling cylinder problems 1s covered by varying A

from O to ». To illustrate typical results, numerical solu-
tions for some representative values of A are given in
Table 5.3, along with the analytic solution for comparison.
In these examples, (&) = et (f=1). Numerical values com-
pare with the exact solution as follows: B - very close
agreement; N' - numerical solution consistently 2 to 3% low;

px - error of 5% or less. The limiting cases A = O and

1 Figures lzbeled with Roman numerals are at the end of
the chapter.
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e solution (Tabhle 4,1,

A= o are the same ag the elast
Section 4,1), These limits are closely approached fcr

A= .01 and A = 100 respectively. The pressure distri-
butions are snown in Fig. IV. For A = .01 and A = 1CO the
pressure ls very nearly symmetric, while for A =1 1t 1s
noticeably non-symmetric. For large and small A, B/A
approaches .5, while the lowest value of B/A occurs for

A = 1. The variaticon of coefficient of friction with veloc-
ity is shoun in Fig. VI, where Rx/éo is plottec against
VT/éO (log scale). The friction curve has a pronounced peak,
with the maximum cccurring for V‘I’/'aO = 1.42 (A = 1.6).

The results of this set of examples indicate some fea-
tures which are characteristic of any viscoelastic rolling
cyiinder problem. The elastic solution is symmetric and
gives no resisting force. A viscoelastic material, due to
its delayed recovery and energy dissipation, glives rise to
asymmetry in the solution and a resisting force (indicated
by x). The asymmetry is evident in two respects (see Fig.
4.,2): 1) the contact region is displaced upstream, so that
its center (€ = A/2) does not lie directly below the center
of the cylinder (£ = B); this means B/A is less than 1/2
(the elastic value), the difference indicating the amount
of asymmetry; 2) the pressure distribution is not symmetric
in the contact regicn; the maximum pressure cccurs upstream

from the center of contact., These features are clearly shown
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in the examples just given; particularly for A = 1,

15 =4

As the
velocity goes from O to », the resistance (for a given total
load) increases from zero, reaches a maximum for A near 1,
then decreases to zero. This confirms the predictions made
in Section 1.5 about the variation of y with velocity.

The examples give consistently low values of n (about
2 to 3% for n = 20). This error is due principally to an
inaccuracy inherent in the approximate representation of the
pressure distribution. The pressure elements on each end
are triangular (Fig. 5.2), with finite slope at £ = © and
€ = A. The exact pressure distribution, however, will have
a vertical slope at the endsl. To compensate for this, thne

numerical sclution tends to gie

H

! 1 QF ( & ) ‘
Q ard Q about 2% larger, and | -
1 -1 =
1
the other Qé slightly smaller, b QE 3
Ql > H i
than thelr exac*t values. This : i
tendency can be seen in Table (Y :
i
5.1. Even with this correc- o % o\ En
2 ol 3=
vion, the total load (area n n n
under the pressure curve) FIG. 5.2

found 1n the numerical solution is smaller than the exact
value, The di“ference is indlcated by the snaded regions

in Pig. 5.2. With smaller segments (lsrger n), a steeper

1 ) . . , .

This 1s true for the eliastic solution {5.20), and is
alsc true for viscoelastic solids with initial elastic
response.
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siope at the end 1is possible; thus more closely repregenting
the exact pressure distrlbution. This is evid?nt in Fig.
III, where the same problem i1s solved for different values
of n, The numericsl procedure could be improved somewhat
by using unequal divisions of the contact region. Smalle-
segments could be used near the ends, since that is where
the pressure changes rapidly.

Comparison of the numerical and analytic solutions for
these examples shows that the numerical method with n = 20
gives resnults within a few per cent.of the exact values.
This suggests that the same procedure could give equally
satisfactory results in problems for which no analyvtic solu-
tlon can be focund. An analytic solution is available only
for a standard linear solid with constant v. Two principal
restrictions of this model are 1) similar behavior in shear
and dilatation [B({) = J(¢), thus v = constant], and 2) a
single retardation time. Although some general features of
rolling cylinder problems are exhibited with this model,
other important aspects are not adequately represented. In
the next section some examples will be given for which the

material behavior is not so restricted.

5.4% Examples of Rolling Cylinder Solutions

More general and realistic viscoelastic behavior is
i1llustrated by simple Voigt solids, each having several
retardation times and not restricted £o constant v. Then,
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v(¢) = 2 fie'biC ; with m > 2, and w(¢) is again glven by
(5.6). i;%e numerical procedures of Section 5.3 is used, with
the contact region divided into 20 equal segments.

The dilatation behavior of certain viscoelastic materlals
can sometimes be considered as elastic. In this case, B({)=1

and v varies in time, with vf > v The simplest such

0"
material behaves in shear as a standard linear solid, with
J(¢) =1+ fl(l—e_c); this will be used for illustration.
In addition to fl’ the initial Poisson's ratio o must be
specified. For this set of examples, f; = 1 and Vo = 1/3,

and the final Poisson's ratio is = .412. Then, from

Ve =
(1.28b)

1.8889¢

(&) = .750 e + 027778 &~ (5.22)

Results for representative values of A are given in Table
5.4, The 1limiting cases A = 0 and A = « are found from
Table 4.1 (f = .765 in these examples). The pressure Jdis-
tribution for A = 1 is plotted in Fig. V. The viriation of
friction coefficient with veloclty is shown in Fig. VI.
Some corresponding results for the material having the
same behavior in shear, but constant v, are shown in Table
5.3, and Figs. V, VI. Comparison shows the results for the
two materials (differing only in dilataticnal behavior) to
be nearly the same. Thils indicates that in rolling cylinder
proklems the exact nature of the btehavior in dilatation is

not a critical feature, With elastic dilstation, the effects
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of viscoelasticity (minimum B/A, maximum Rx/éc) are again

most pronounced for )\ in the neighborhood of 1, but the mag-

nitude of these effects 1s somewhat less than for the materlal
with constant v.

In all the examples considered thus far, the viscoelas-
tic material has been a model with a single retardation time
in shear. For such a material, most of the transition from
initial to final elasticity takes place in a short time span
(on a log scale), about one decade on each side of the re-
tardation timel. This means most of the wviscoelastic be-

havior is concentrated in this short time span. In the roll-

|
d
|

ing cylinder problem. A 1s the dimensionless time needed for
a given element of material to traverse the contact region.
When A is near 1, the element undergoes most of its transi-
tion from inlitial to final behavior during the time of con-

tact, and the viscoelastic effects are very pronounced.

This is somewhat analogous to resonance in damped vibrations.

weraaind e’

When A is less than about .1, the contact time is too short
for littie more tran the initial elastic behavior to be
effective. Likewise, when A 1s larger than avout 10, the
contact time 1is long enough that the final elastic behavior
predominates. Thus, the asymmetry of the solution 1la most
pronounced for A in the neighborhood ¢of 1. and the fricticn-

velocity curve has a definite peak in thiz neighhkorhood.

1 .
This retardation time i1s used to form tre dimenzion-
less time variable 7 = t/P, so if hgs the valve 7 = 1.
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These aspects of the results indicate that the model
with a single constant retardation time is very artificial.
Rather than discrete retardation times, actual materlais
appear o have a continucus distribution over a large time
span. The behavior of an actual material over the full
range of contact times £/V can be adequately represented by
a single model of discrete :etardation times only if there
1s a broad spectrum of such times. The viscoelastic effects
will be slignificant over a much wider range o. A, but the
magnitudes of these effects will be considerably decreased.

This will be 1llustrated by a simple model with constant
v and five redardation times, v = .01, .1. 1, LU, and 100.
The retardation times have equal weilght in the creep be-

havior, and the final elasticity is the same as for the

set of examples of the last section {f=1). Thus,

J(t) = 2 - .2(e_'017+ o1t -7, -10T, e_loof)

y(£) = .2(.01e "84 107154 70h 1071904 100e7100%)

(5.23)

The results for A = 1 are given in Table 5.5, and the pres-
sure dilstribution shown in Fig. V. For compavrison, these
include also results previously given for two materials with
a single retardation time in shear. A few points on the
friction-velocity curve are shown in Fig. VI. Although

only five discrete times were used, the results are in
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striking contrast to the single time model. For A = 1,

the 5-time model glves a much more symmetrlc solution, with
B/N much closer to .5. The friction curve is broad and
smooth, with no pronounced peek. The maximum again occurs
near A = 1, but the curve is relatively flat over the flve
decades covering the retardation times. The maximum value
of the coefficlent of friction is considerably reduced,
being only about 1/5 of the peak for the single time model
with constant v.

These results and other examples lead to the general
conclusion that a single-retardation-time model is not ade-
quate for describing quantitatively the behavior of actual
materials when subject to rolling contact over a wide range
of contact times. Actual materials with a brcad spectrum of
retardation times will not produce the pronounced viscoelas-
tic effects of a single-time model. Instead, these examples
indicate that the effects will be much reduced in magnitude
and spread over a broader range of contact times. This is
evident also in the example with elastic dilatation. The
difference in shear and dilatation behavior introduces a
seccndary retaréation cime of relatively small weight (see
5.22). But even this produces a noticeable decrease in the
friction and a more symmetric solution (see Table 5.5).

For a given final elasticity f and contact time », a model

with several retardation times will have a more symmetric
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solution and lower friction than the corresponding single-

time model. There are definite computational advantages 1in
using a model to represent an actual material, but the model
must have at least several retardation times for the results

to be at all realistic,.

The discussion so far has been concerned princlpally

TR TUTE T

with those aspects of viscoelastic behavior which are influ-

enced by the retardation times. But also important is the

magnitude of the change from initial to final behavior.

ORI

This 1s most conveniently indicated by the ratio of final
to initlal deformation in a creep test. In particular, for %
moving load or contact problems this ratio is given by 1 + T,
where =(f’y(§)d§ . Small values of f indicate nearly elas-
tlc behavior. Large values of f mean that the final response
1s much greater than the initial response. The limiting

case as f - o 1s a material with no initial ela.ticity.
This means no free spring in a mechanical model (Fig. 1.3).

The simplest such model is a Kelvin solid, consisting of a

spring and dashpot in parallel and having one retardation

time.

To l1liustrate the effects of the value of f, a standard

linear solid with constant v is used, thus y(¢) = re5.

Fig. III shows the pressure listribution for f = 10, A = 1.

RS UEOE RN

There 1s a sig~ificant peak 1n the pressure very close to

the upstream end of the contact region. The results for
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various values of f, with the same contact time A = 1, are

given in Table 5.6, and the corresponding pressure distri-
butions in Fig. VII. The case f = O is the elastic solution
which is symmetric. As f is increased, the viscoelastic

effects become more and more pronounced: p decreases, indl-

arpidizg S, )

cating the contact region is displaced more and more upstream;
the maximum pressure increases and the peak shifts closer to
the upstream end; the friction increases (although the veloc-

ity remains nearly constant). For the limiting case as

f—+o , the Kelvin solid, there is an exact analytic soiu-
tion given in Section 4.2 (4.24-28). In this limiting case,
the pressure peak is infinite and 1s at the front end of the
contact region. Since the Kelvin solid has no initial elas-
ticity, the results in Table 5.6 and Fig. VII are based on
the final elastic constants (1-vp)/M, to allow comparison.
These results indicate that for large f the viscoelastic
effects (asymmetry, friction coefficient) will be much in-
creased over the effects for small f. In particular, there
will be a significant peak in the pressure distribution near

the upstream end. The presence of this peak is due to the

smali initial response relative to the final response when
f is large. The deformation near the front of the contact
is produced principally by the initial elastic response,
while farther downstream the longer time of contact pro-

duces a much greater response. Thus, a very high pressure

A RN PR RN bl A

155




AANr A

comparable in magnitude to the deformation in the rest of
the contact region. As f gets larger, a greater pressure 1s
needed, so the peak increases. In the limit f —+ «» , there
is no initial response, so an infinite pressure 1s needed.
The example used here 1s a situation most favorable to pro-
ducing a peak. The time of contact (A=1l) coincides with the
single retardation time of the material, so the viscoelastic
effects are exaggerated as explained earlier. With this
same material, if A >> 1, the contact time is long enough
so the final elastic response 1is effective over nearly all
the contact region. 1In this case the resulfs are nearly the
same as the elastic solution for all values of f. For

A< 1, the short contact time means only the initial elas-
tic response is effective over most of the region. The solu-
tions are thus close to elastic again when f is not too
large. However, for very large f the initial response is
very small and not significant, so the solution approaches
that of the Kelvin solid.

The significance of several rather than just one retar-
dation time in the material behavior has already been dis-
cussed. Thls 1s particularly evident when f is large. As
an example, the results for the 5-retardation-time model used
previously, this time with £ = 100 and N = 1, are given in

Table 5.6, The solution is considerably more symmetric and
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the friction coefficient much less than for the corresponding

single-time model. The pressure distribution 1s very nearly

curve in Fig. VII (with slightly

the same shape as the f =1

greater ordinates) and there is no pronounced peak.
Actual materials, such as polymers, may have values of

f as high as 104. However, when f 1s very large there are

difficulties in the numerical calculations due to the sharp

peak. Many divisions of short length are needed in the

vicinity of the peak. 7This is evident in Fig. III, where

results for different values of n can be compared. But, as

mentioned in Section 5.3, other difficulties arise when very

short segments are used. Attempts were made to estimate the

peak by further theoretical considerations, and so remove

it from the numerical calculations, but without success.

5.5 Numerical Solution of the Nearly Flat Punch Problem

As an 1llustration of another application of the numeri-

cal method for moving contacts, the problem of moving "nearly

fiat" punch is considered in this section. A "flat punch”

is » rigid (two-dimensional)
body with a plane surface at N*
some angle o pressed into the ‘ |

viscoelastic base (Fig. 5.3)

by a force N*. If the punch \

is perfectly flat, the.contact
FIG. 5.3

will be a straight line with-
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sharp corners at the ends, In this idealized form, the pres-
sure will be infinite and the slope of the deformed surface
will be discontinucus at one or both ends of the contact.
Real corners, however, will be slightly rounded, notf perfectly
sharp. The pressure at the corners mav be high, but finite,
and the cocontact will be smooth. The important question is
how the peak pressures depend on the shape of the rounded
corners. Such a "nearly flat punch' may score or gouge
the base surface 1if peak pressures are too high. Avoidance
of such damage is a practical problem of frequent occurrence.
Some aspects of the moving contact of a nearly flat
punch will be investigated The corners willl be assumed to
be circular arcs {radius R), with the length of the rounded
portion very small relative to the total length of contact
(Fig. 5.4). The problem is then treated as one of smooth
contact. The length 4 of the flat portion is fixed. Then,
the length of the rounded corner in contact on the left end
is b, and for a total contact length £ the length of the
rounded corner on the right end is /Z-d-b = nb, with
b<< £ . In general mn # 1 Dbecause the contact is not
symmetric.
The elastic solution for smooth contact of a nearly
flat punch (reported elsewhere) shows that, while the

pressure 1s everywhere finite and 1s zero at the ends, very

sharp peaks occur just inside the ends of contact. As the
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length of the corners becomes i
smaller (i.e., b/d = 0), the R

peak gets sharper, and in the ;** ‘
1limit the sclution becomes that b, d b

for a perfectly flat punch. ,

This suggests that the visco-
X .

elastic solutlion may also have
sharp peaks in the pressure FIG. 5.4

distribution near the ends.

The viscoelastic problem 1is treated as outlined in

Section 5.2. Lengths are expressed as dimensionless ratios

to VT:

; n = (A-0-8)/B (5.24)

-4
° = ¥7

The other dimensionless quantities given by (3.53—6) are

used. The shape of the contact surface (with the circular

arcs approximated by parabolas) is given by

WQﬁ)=—%%&m2, 0<t<p
=0 , BLELBHS
1 2
- - g5 (e L B o< E <

The n collocation points are ¢ sen, and, taking ga = B

(Fig. 5.1), w(ga—a) = 0. Then, from (5.9),




& Qi Ajk + ¢ A, = w; s ¢ =0,1,...,n; except J=

k=1 1

(5.25)

where , ntl \

Qk = ka ’ N = LPN = k—il Qk( 6k+l+ekl,

¢ = 2pa , and
w, = 2pv, = - (€ —B)2 O0<CE, <P
J J J ’ = 2J =
= 0 > P < éj <6+ 8 (5.26)
= -(6,-p-8)% ., B+0O <& <N

The Ajk are given by (5.8a,b) and (5.4%v-d) with €, = B
For a particular problem, values of B and A are chosen, thus
determining n (6 is a given guantity). The solution then
glves the pressures Qi and the tilt ¢. To obtain a partic-
ular value of ¢, for example, several trials with different
A and/or P may be necessary

For illustration, the results of one set of examples
are given. A standard linear soclid with constant v 1s used,
so y(¢) = e %, 1In these examples, & = .99 and 8 = .005;
the only variation is in 7n (thus A varies slightly). The
division of the contact regioc:n and the choice of n is based
on the expectation of sharp peaks near the ends and rela-
tively little variation near the center. After some pre-

lindnary trials, n = 22 was chosen. A typical division is

shown schematically for 1 = 1.67:
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(not to scale)

The results fcr several values of 1 are given 1in Table
5.7, and some pressure distributions are shown in Fig. VIIT.
The sharp peaks in the pressure are present as anticipated,
and the expected asymmetry is shown by the greater height
of the upstream peak. Another expectation is verified Ly
the regular change 1in tilt as the upstream corner is lenghened,
other factors being constant. The tilt 1s nearly zerc when
1 = 1.67, and the body rotates clockwise as 7 is increased.
The pressure distribution is very little changed near the
éownstream end, but there 1is significant change near the
upstrean end as n is varied. The peak pressure and total
load N' increase with 7, and the line of action of the verti-
cali resultant moves upstream. For the zero tilt example
(n = 1.67), the line of action of N' is at £ = .60.

These examples indicate the general suitablility of the
numerical method for viscoelastic moving coﬁtact problems
of thls type. Even with a relatively small n, the important
features are evident in the solution. The method can of
course Pz applied for mere general viscoelastic materials
if desired. The shapes of the rounded corners can also be
easily changed. For example, the stress peaks could perhaps

be made more nearly equal by using different radii at the
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two ends. It is interesting to note that (within the
limitations of small displacements and smcoth contact) the
radius of the rounded corner enters only as a scale factor
in the pr 3sure and locad expressions. Thus, if b, d, and nb
(Fig. 5.4) are kept the same, the pressure distribution

expressed by

remains unchanged if the radius R 1is changed. However,
the total load changes in proportion to R , so the actual

magnitude of the pressure q{(x) changes similarly.
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= half-lengtn of contact on elastic base (uo, v

Material Properties:
uo, Vo - initial elastic constants
T - caaracteristic time parameter

¥(¢) - a creep function, defined by eagn. 1.27

Dimensionless Quantities

€=—V%; AN=x55 B=x55 P =3%
a'(8) = 5% % g5 alx)
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FIG. I THE ROLLING CYLINDER PROBLEM
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TABLE 5.1

ROLLING CYLINDER ON ELASTIC BASE,
NUMERICAL AND ANALYTIC SOLUTIONS

Values of QL for A=10

Numerical Analytic

4OE /N n=10 n=40

1 . 508 -Telrs
2 675 .693
3 .825 .839
Iy 7T .942 .955
6 1.125 1.134
8 1.234 1.263 1.271
10 1.368 1.379
12 1.429 1.449 1.460
14 1.509 1.518
16 1.529 1.550 1.560
18 1.575 1.584
20 1.561 1.583 1.590
N 23.80 24 .71 25.00
B/A . 5000 . 5000 . 5000
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JABLE 5.2

ROLLING CYLINDER RESULTS FOR VARIOUS n
y(&)=te 5; r=1

Numerical Analytic
n=10 n=20 n=40
B/A L4025 L4014 .4008 . 4003
N! .2048 .2097 .2121 L2114k -1
pX .1213 .1231 . 1239 . 1249 -
Q'max. .1350 . 1359 L1364,
A . 1981 .1965 .1958 L1952
S{ .0697 0712 .0718 o712k L oy
pX L4257 L4291 .4308 L4322
Q'max. .0835 .0719 .0665

Corresponding pressure distributions are shown
Figures I and II.
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TABLE 5.3

ROLLING CYLINDER RESULTS FOR VARIOUS A

B/A  N'/A°

. 5000 . 2500
L4932 . 2500
L4g3h .24h0
L4612 .2491
L4620 L2430
. 4003 L2148
Lbo1k . 2097
L4768 L1377
L4768 L1343
L4975 .1263
L4975 L1227
. 5000 . 1250

A - @nalytlic soclution,
N - numerical sclution,
# - limiting case,

0

y(¢
P

. 00006
. 00006

.00380
.00410

.1249
.1231

L4292
L4276

L4925
4828

. 5000

)=e

70
92

Rx/a, (aO/BN*)q ma x

~C
V‘I'/ao
2/\ 0
200.0 .01340
202.4 .01402
20.0 .0760
20.28 .0832
2.16 .270
2,184 . 2688
.270 .116
L2729 L1167
,0281 .0138
.0285 .01378
2.828/A 0
Section 4.2
Section 5.3

exact solution

.3183

.3186

.3180

. 2967

L2273

L2254
.2250

Pressure distributions are shown in Figure II1I.
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TABLE 5.4

NUMERICAL RESULTS FOR ROLLING CYLINDERS

Standard linear solid in shear, elastic dilatation

v(£) =.750e"% + Lo2778e1-889C

Vo =333, v =.412 , f =.765

£
A B/N  N!'/A° VT/a, pX Ry/a, (a/2N%)q ..
0 .500 .250 o 0 0 .318 (exact)
.01 gy 24k 202 . 000054 .0109 .319
.1 A7l L2430 20.3 .00317 . 0643 .318
.5 LJA430 0 L2330 k.14 .0403 167 .312
.75 L4230 L225  2.81 .0692 .195 .306
1.0 o2 L2177 2.15 .0576 .210 .301
1.6 427 0 200 1.40 .157 .219 .289
2.0 L4330 ,192  1.14 .1895 .215 .282
5.0 46 162 L496 .308 .153 .250
10 .480  .150 .258 .364 .0940 242
100 498 L1399 .0268  .413 .0111 .240
1000 .500 .138 .0027 @ .415 .0011 .240
% .500  .142 0 L432 0 .240 (exact)
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TABL!

L
\J1

ROLLING CYLINDER RRSULTS FOR VARIOUS MATERIALS

A=
2) Standard linear solid, (¢y =1 + (1 - e”C)
constant v (£) = e-g
£) Standard linear solid J(¢) =1 + (1 - e’c); B(C) = 1
in shear, elastic N -1.889¢
dilatation (vo =.333) (&) = .780e > + .02778e" "
¢) Five retardation times  J({) - P \
in shear, constant v y}@)} see equation (5.23)
2 . 3 .
B/A N'/A oY !T/ao 1:4:2(_/‘O {a /2N%)q
a) 4ol .2097 L1231 2.184 .269 .297
b) .4215 2171 L0976 2.146 L2100 301
c) .L469L 1738 402 2.399 056 068

H
3
3
%
3
g
3
§




TABLE 5.0

ROLLING CYLINDER RESULTS FOR VARIOUS f

A =1 in all cases

Results are based on the final elastic response: a?=aé/5:§
£ B/  (1+£)N' X VT/'af Rxgaf jgf/?N*)g ax
Single retardation time
0O .00  .250 0 2.000 0 .318 (exact)
1 401 L4419 .123 1.546 .190 .420
10 .197 .790 429 1.129 L43y .892
100 .149 .872 .524  1.06" .559  3.08
o .143 .893 .538 1.058 . 569 w  (exact)
Five retardation times
1 .469 .348 .040  1.696 . 068 .379
100 L401 .576 .133  1.319 .175 .515
TABLE 5.7
NUMERICAL ESULTS FOR NEARLY FLAT PUNCH
8 =.005, & =.99, ¥(t) =e 1
Q' x 10
@ xlOLl T A N‘xlo)1l left max right max min
-2.52 1.0 1.000 2.52 11.9 12.C .71
- .32 1.6 1.003 3.56 12.0 19.1 .91
.05 1.67 1.00335 3.74 12.0 20.1 .93
.53 1.8 1,004 3.97 11.9 21.5 .96
1.30 2.0 1.005 4,36 12.0 23.6 .99
6.13 3.0 1.019 6.66 11.9 35.7 1.23
173

i
:




0

}..-l
i\

BIBLICGRAPHY

Abrahamson, G. R. "Permanent Periodic Surface Deforma-
tions Due to a Traveling Jet," Journal of Applied
Mechanics, 28, December 1961, p. 519.

Abrahamson, . R. and Goodier, J. N. "The Hump Deforma-
tion Preceding a Moving Load on a Layer of Soft
Material," Journal of Applied Mechanics, 28, Decem-
ber 1961, p. HOS.

Bland, D. R. The Treory of Linear Viscoelasticity,
Pergamon, 1G60.

Bowden, F. P. aud Tabor, D. Irlction and Lubrication,
Methuen, 1356.

Corneliussen, A. R. and Lee, E. H. "Stress Distribution
Analysis for Linear Viscoelastic Materials," Collo-
quium on Creep in Structures, ed. N. J. Hoff,
Academic Press, 19062.

Drutowski, R. C. "Energy Lcsses cof Ballz Rolling on
Plates," Sympcsium on Friction and Wear, ed.
R. Davies, Elszevier, 1G59.

Drutowski, R. C. "Linear Dependence of Rolling Friction
on Stressed Volume," Symposium on Rolling Contact
Phenomena, ed. J. B. Bidwell, Elsevier, 1902.

Erdelyi, A., et.al. Higner Transcendental Functions,
Bateman Manuscript Project, Vol. 1II, McGraw-Hill,

1953.

Ferry, J. D. Viscoelastic Properties of Polymers, Wiley,
1961.

Flom, D. G. "Rolling Friction of Polymeric Materirlin-
Elastomers,” Journal of #Applied Physics, 31, 1960,
p. 2006.

Flom, D. . "Rolli
Thermoplastics
1961, p. 1426,

Q
it
2

Fricticon of Poliymeric Materials-
Journal of Applied Paysics, 32,

Fiom, D. G.. ”quamig Mechanlical Losses in Rolling Con-
tacts,” Symp sium on Rolling Contact Phenomena,
ed. J. B. Bi~we i, Elsevier, 1G02.

1Tk




i B Rl

3
E |
2

13.

1k,

15.

16.

17.

18.

19.

20.

2l.

23,

23.

2k .

Flom, D. G. and Bueche, A. M. 'Theory of Rolling
Friction for Spheres,' Journal of Applie¢ Physics,

30, 1959, p. 1725.

Freudenthal, A. M., Bileriek, M. P., anc¢ Henry, L. A.
"One-dimensional Response of Linear Viscoelastic
Media," International Journal of Mechanical
Sciences, 4, May-June 1962, p. 211.

Friedman, B. Principles and Technigues of Applied
Mathematics, Wiley, 1950.

Greenwood, J. A., Minshall, H. and Tabor, D.
"Hysteresis Losses in Rolling and Sliding Friction,"

Proceedings, Royal Society of London, A259, 1960,
p. 480.
Hunter, S. C. "The Rolling Contact of a Rigid “ylinder

with a Viscoelastic Half Space," Journal of Applied
Mechanics, 28, December 1901, p. b61l.

Kelly, J. M. "Moving Ldad Problems in the Theory of
Viscoelasticity," Dissertation, Stanford University,

1962.

Lee, E. H. "Stress Analysis in Viscoelastic BOdiesig'
3,

Quarterly of Applied Mathematics, 13, 1955, p.

Lee, E. H. "Viscoelastic Stress Analysis," First
Symposium on Naval Structural Mechanics, ed.
J. N. Goodier and N. J. Heff, Pergamon, 1960.

Lee, E. H. and Rogers, T. G. "Solution of Viscoelastic
Stress Analysis Problems Using Measured Creep or
Relaxation Functions," Journal of Applied Mechanics,

30, July 1963, p. 127.

Love, A. E. H. A Treatise on the Mathematical Theory
of Elasticity, 4th edition (1927), Dover, 1944,

May, W. D., Morris E. L., and Atazk, D. "Rolling
Friction of a Hard Cylinder Over a Viscoelastic
Material," Journal of Applied Physics, 30, 195G,

p. 1713.

Morland, L. W. "A Plane Problem of Rolling Contzct in
Linear Viscoelasticity Theory," Journal of Applied

Mechanics, 29, June 19€2, p. 345.

7=



25.

26.

27.

28.
29.

33.

34,

35.

Muskhelishvili, N. I. Some Basic Problems of the
Mathematical Theory of Elasticity, (trans. J. R. M.
Radok), Noordhoff, 1953.

Norman, R. H. "Rolling Friction of Cylinders on Planes,"
British Journal of Applied Physics, 13, July 1962,
p. 350.

Pearson, K. Tablesg of the Incomplete Beta Function,
Cambridge, 1940,

Sneddon, I. N. Fourier Transforms, McGraw-Hill, 1951.

Staverman, A. J. and Schwarzl, F. '"Linear Deformation
Behavior of High Polymers," Chapter I in Die Physik
der Hochpolymeren, Vol. IV, ed. H. A. Stuart,
Springer, 1950.

Tabor, D. '"The Mechanism of Rolling Friction," Philo-
sophizal Magazine (7), 43, 1952, p. 1055.

Tabor, D. "The Mechanism of Rolling Friction," Pro-
ceedings, Royal Society of London, AZ29, 1955,
p. 198.

Tabor, D. and Atack, D. "The Friction of Wood," Pro-
ceedings, Royal Society of London, A24Y6, 195K,
p. 539.

Thomsog, W. T. Laplace Transformation, Prentice-Hall,
1961.

Tobolsky, A. V. Properties and Structure of Polymers.
Wiley, 1960.

Watson, G. N. A Treatise on the Theory o. Bessel
Functions, 2nd edition, Cambridge, 1953.

176




Prag gy« paenl

£ OB iy

g

e

i e GOENE ) R ION | T I T S RRE I ke ey

‘l“5‘!!SEI1!!i?%i'li!!?ﬁ!nfBﬁi!l!i"!?%Emﬁm!E!;ii!i%l!“!3,5!!ii!5!WE!?i!i!EIEﬂi!!?ﬁmﬂ@mﬁﬁ'lmyﬁ&ﬂﬁmwﬂmmﬂ“'mnm

(1)

(2)

(1)

(1

(1)

(2

L)
—

~ e
[

(1

(1
(1

(1

{1

(1

)

-

PUNY

)

)

)

)

)

Lo

Technical Reports Distribution Lis

Commanding Officer (1)
USNNOEU

Kirtland Air Force Baze
Albuaquergque, New ﬁeaico

Attn:

Code 20 (Dr. J. N.
Brennan)
(1)

U. S. Atomic Energy Commission
Washington 25, D, C

Attn:

Director of Research

Director (1)
National Bureau of Standards
Washington 25, D. C

Attn:

Division of Mechanics

Engineering Mechanics
Section (1)

Aircraft Structures

Commandant

. S. Coast

Guard

1300 E Street, N.W. (1)
Washington 2%, D. C.

Attn:s

Chief, Testing and
Development Div,

U. S. Meritime Administration (1)

Gen, Adminstration Office
Building

Washington, D. C.

Attn:

Chief, Div. of Prelimi-
nary Design (1)

National Aeronautics and Space
Adminlistration
1512 H Street, N.W.

Washington, 2%,

Attn:

D. C.
Loads and Structures Div{1}

Director
Langley Aeronautical Lab.
Langley Fleld, Virginia

Attne

Structures Div.

(1)

Director
Forest Products Lab.
Madison, Wisconsin

Civil Aercnzutics Administ. (1)
Department of Commerce
Washington 25, D.C.

Attns

Chief, Airecraft Eng. Div.
Chief, Alrframe and
Equipment Div. {1}

Natlonal Sciences PRoundation
1520 B Street, N.W.
Washington, D.C.

Attn:e

Engineering Sciences Div{1l)

Natlonal Academy of Science
2101 Constitution Avenue
Washington 2%, D.C.

Attns

Tech. Dir., Committee on{1l)
Ships Structural Des.
Executive Sec., Comm.
on Undersea Warfare

Director, USAF Project BAND (1)

Vias

US Atr Force Liaison Off.

The RAND Corporation
1700 Main Street
Santa Monica, California

T (1)

Dr. H. Norman Abramson

Man.,

Engineering Analysts

Southwest Research Institute
8500 Culebra Road
San Antonlo 6, Texas (1)

Professor Lynn S. Beedle

Fritz Engineering Lab,

Lehigh University

Bethlehem, Pennsylvania (1)

Prof, R. L. Bisplinghoff

Dept. of %eronautical Eng,

Masgsachusetts Institute of
Technology

Cambridge 39, Massachusetts

Prof. H. H, Bleich

Dept. of Civil Englneering
Columbia Unlversity

New York 27, New York

Prof. B. A. Boley .
Dept. of Civil Engineering
Columbia University

New York 27, New York

Dr, John F. Brahtz

J. N. Pomzroy and Co.
3625 West 6th Street
Los Argeles &, Czlif,

Prof, G. F. Carrier

Plerce Hall

Harvard University
Cémbridge 39, Massachusetts

prof, J. E. Cermak

Dept. of Civil Engineéring
Colorado State University
Fort Collins, -Colorads

Prof. Herbert Deresiewicz
Pept. of Civil Engineéring
Columbia University

632 W. 125th Streét

‘New York 25, New York

Prof. Lloyd Donnell

Deépt., ¢f Mechanics
Illinois Institute df -Tech.
Technology Center

Chiéago 16, Illinois

Prof, D. C. Drucker

Div. of Engineéring

Brown Unlversity
Providence 12, Rhode Island

Prof, A. C. Eringen

Dept. of Aeronauticéal Eng.
Purdue Unlversity
Lafsyette, Indiana

Prof, W. Fllgge

Div., of Engineering Mech.
Stanford Uniuerslty
Stanford, Califcrnia

Mr. Martin Goland

Scouthwest Research Institute

8500 Culebra Road
San Antonlo 6, Texas

Prof. J. N. Coodler
Div. of Engineering Mech.
Stanford University
Stanford, Cslifornia

Prof. L. E. Goodmen
Eng. Experiment Station
University of Minnesota
Minneapolis, Minnescta

Prof. W. J. Hall

Dept. of Civil Englineering
University of Illinois
Urbana, Illinois

Prof. M. Hetenyi

Div. of Engineering Mech.

Stanford Univers.ty
tanford, Cslifornla

Prof. P. G. Hodge

Illinols Institute of Tech.

Technology Center
Chicago 16, Illinois

£, Contract Nonr 225(29), Project NR-064-2i1

(1) pProf. N. J. Hoff
Dept. of Aercongutical Eng.

Stanford University
Stanford, Californie

(1) Prof. W. H. Hoppmenn

Dept. of Mech, Eng,
Johng Hopkins Univ,
Baltimore, Maryland

(1) Prof. Bruce G. Johnston

University of Michigan
Ann Arbor, Michigan

(1) Prof. J. Kempﬁer\

Dept, of Aero. Eng. and Appl.

. Mech: . R

Polytechnic Tnstitute of
Brookliyn

333 Jay Stréet

BrooKlyn 2, Néw Yoérk

(1) Prof. H. L. Langhsar

Dept. of Theoretical and Appl

Mech, .
University of Illinois
Urbana, Illinois

(3) Prof. B. J. Lazsn, -Dir.

Eng. Experinment .Station-
University of:Minnesotea
Minnéapoiis "14, Minn.

(1) Prof. E. H. Lee

Div. of Enginééring Mech,
Stanford University
Stanford, Czlifornia

(1)Prof. George H. Lee
Dir, of Researcth
Rénsselaer Polytechnic Inst
Troy, New York

{1)Mr. ¥. M. Lemcoe
Southwest Research Iast,
8500 Culetra Rosd
San Antonio 6, Texas

{1)Prof. Paul Lieber
“Geology Dept.

Rensselaer Polytechnic Inst.

Troy, New York

(1)Midwest Research Institute

LO4g Pennsylvania Avehue
Kansas City 2, Missouri
i.ttn: Library

1)Prof. Hsu Lo
School of Engineering
Purdue University
Lafayette, Indiane

(1)Prof. R. D. Mindiin
Dept. of Civil Eng.
Columbia Univeérsity
632 W. IPSth Street
New York 25, New York

{(1)Dr, A. Nada!
136 Cherry Valley Road
Pittsburgh 21, Pa. d

(1)Proi’. Paul M. Naghdi
College of Englneering
University of California
Berkeley 4, Calilfl.

{1)Prof. William A. Nash
Dept. of Eng., Mech.
University of Florida
Gainesville, Florida

ONR 29 - 1 -




A3 L et gy 13 ok

o gt
1

e

ety u g gt

e

T

e FVR | W ES brg 213 ta
4

B

[Ty

TR g B Lo 3

T

oy
/

LD

zen

PR TR

- -(1)Prof. N. M. Newmark

: Dept. of Civil Eng.

B -Unlversity of Illinois
Urbana, Illinols

-~ .-- 7 (1)Prof. Aris Phillips

- Dept: of Civil Eng.
e - 15 Prospect Street
R Yale University
= .New Haven, Conn.

- * (1)Prof. W. Prager
T ‘Physical Sicences Council
S Brown Uaivergity
T T Providence 12, R. I.

{1)Prof. E: Reissner

© Dept, of Math,
HMassachusetts Inst. of Tech.
Cambridge 39, Mass.

< (1)Prof. M. A. SadowsKy

- ‘Dépt. of Mechanics
Rénsselaér Polytechnic Inst.
“Proy, New York

.~ {1)Di;.-Bethafd W. Shaffer
© - 7 Dépt. of Mech. Eng.
:Néw-York University

_ University Heights

" N&éw York 53, New YoTk

-(1)Prof. C..Bs Smith
“College-of Arts and Sciencés
‘Dept: of Math., Walker Hall

- yrivereity of Florida

- :Gainésville, Florida

{1)Prof. J. Stallméyér
E t. of Civil Engilneering
-University -of Iilinois
. 'Urbana; I11linols

‘(1)Prof. Eii Stefnberg

© "Div. of Mathematics

‘Brown University
Providence 12, R. I. ~—

~{1)prof. S. P. Timoshenko
>Séhool of Engineering
.Stanfod University
Stanford, Csiilf.

(i)prar. A, §. Veletsod
Dept. of Civil Eng.
Univérsity of Illinois

Tl I Urbdns, I11indis

. 7 i{a’ordf. Enrico Volterra
Sl e T University of Texas
L :Austin 12, Texas

.- . {1)Prof. Dana Young
' Yale University
New Heven, Conn.

Chief of Naval Research
) - Dept. of the Navy -
C- wWashington 25, D.C.
(2)aten: Code 438

=7 {1)Commanding Offlcer
Office of Neval Research
Branch 0ffice
John firerar Lib. Bullding
86 E. Randolph Street
Chicago 11, Illinois

© (1)Commanding Officer
) Office of Naval Research
Branch Office
T 346 Broadway
New York 13. New York

{1)Commanding Officer
. Orfice of Naval Research
. Branch Of{lce
1030 E. Green Street
Pasadena, Callfornia

(1)commanding Officer
Office of Navezi Research
Branch Of{fice
1000 Geary Street
San Francisco, Callf,

(2)Commanding Officer
Office of Naval Research
Navy Bo., 100, c¢/o Fleet P.O.
New York, New York

Director .
Naval Research Lab.
Washipngton 25, D.C.

6)Attn: Tech. Info. Officer
1 Code 6200

1 Code 6205
31 Code 6250

1 Code 6200

Offlce of the Chief of Oid.
Dept. of the Army
Washington 25, D.C.

{1)attn: Res, and Mat. Br.

{ovd. R and D. Div.)

Off. of the Chlef Sig, Off,
Dept. of the Army
Washington 26, D C.

{(1)Attn: Eng, and Tech., Div.

Commanding Officer
Watertown Arsenal
Watertown, Mass.

{1)attn: Lab. Div.

Commanding Officer
Frankford Arsenal
Bridesburg Station
Philadelphia 37, Pa.

(5)ASTIA Document Service Center (1)Attn: Lab. Div.

Ariington Hall Station
Arlington 12, Virginia

(1)0ff. of Technical Servies
Dept. of Commerce
Washingtonr 25, D.C.

Leg. Ref. Service

Lib. of Congress

Washington 25, D.C.
{1)Attn: Dr. E. Wenk

Off, of the Sec. of Def.
Research and Davelopment Div.
The Pentagon
Washington 25, D.C.

{I)atth: Téchnicdl Library

Chief i
Armed Forces Special Weipons
The FPentagon
wWashington 25, D.C.
52 Attn: Technical Inf, Div,
2 Weapons Effects Div.
2 Special Fileld Proj.

Chief

Def. Atomic Suppori Agency

Washington 25, D.C.
{1)Attn: Document Lib. Br.

Off, of the Sec. of the Amy
The Pentagon
Washing- 25, D.C.

(1)Attn: A.my Librery

Chief of Staff
Dept. of the Amny
Washingron 25, D.C.

(1)Attn: Devel. Branch {Rand D
Div.,

(1} Rez. Br. {Rand D Div.)

{1) Spec. Weapons Br,

(Rand D Div.}

Off. of the Chief of Eng.
Asst. Chler for Mil. Constr.
Dept. of the Army
Bidg. T-7, Gravelly Point
Washington 25, D C
1gaztn: Library Branch
1 Structural Br. ‘Eng.
Div.)
g Planning and Dav. Div.
Eng. Div. (P , Eng.,
. and Contracts)
} Prot. Conctr. Br. (P.,
Eng., and Contracts)
1} Strue. Br, (P., Eng.,
and Contracts)

{
(
i
(1
(

(1)} Commanding Orficer

Office of Ord. Res.
2127 Myrtle Drlve
Duke Station
Durham, N.C
{1)attn: Div. of Eng. Seci.

Commanding Cr{icer

Squier Signai Lab,

Po:t Monmouth, N. J.
{2)attn: Comp. and Mat. Br.

Chief of Naval Operations

Dept. #f the Navy

‘Warhington 25, D.C.
(1)attn: op 37

(1)Commandant, Marine Corps
Headquarters, U. S. M C.
Wasnington 25, D.C

Chief, Bvreau of Ships
Dept. of the Navy
Washington 25, D C
l?gﬂttn: Code 327
2} Code 1420
22 Code 423
2 i Code 1‘;‘22
Chief, Bureau of Naval Weap.
Dept. of the Navy
Washington 25, D.C
{3)Attn: DLI-31

Chief, Bur. of Yards and Docks
Dept. of the Navy
Washington 25, D.C.
1}Attn: Code D-210
Code D-213
-; Ccde D-220
§
i

-
e

Ccde D-222
g Code D 410
Code D-#10C
} Code D-UiG
} Code D-LCD

bbb ot b b

Commanding Officer and Dir.
David Taylor Mcodel Basin
Waczhington 7, D.C.

0

1)Attn: Code 1h

1 Coue 600
i Code 700
i} Code (20
1) Cude 724
1) Code 721
2{ Code 740

Commander

. S Nev. Onrd. Lab.
White Qak, Maryland
22) ttn: Tech. Lib.
1) Tech, Eval. Dept.

Eng, Research and Devel. Lab.

Fort Belvoir, Va.

{1)Director
Muterials Lab,
New York Nuv. Shipyard
Brooklyn 1. New York

yr—"

LN

[ e

e

i

s

[E————




P

Bt

(2) orfice-in-Charge Divector of Intelligence
Nav. Civ. Eng., Res., & Eval. Headguarters, USAF
Lab. Washiagton 25, D C,
U, S. Nav, Constr, Batt. (1) Attn: P.V, Br, (Air Targets
Center {Div,)
Fort Hueneme, Calif.

Bt 5

Commander
Director Alr Res. and Dev. Command
Nav. Air Exper. Staticn P. 0. Box 1395
Nav. Air Mat. Center Baltimore 3, Maryland
Naval Base {1) Attn: RDMPE
Philadelphia 12, Pa.
glz Attn: Mat. Lab.
1)

L sy s bt et v
Sps it

LN

Structures Lab,

3 ¢fficer-in-Charge
Underwater Expl, Res. Div,
Norfolk Naval Shipyard
Portsmouth, Va,

{2} #ttn: Dr. A. H. Keil

{

5 Lo

1) . omrander
U 8. Nav. Pioving Grounds
Dahlgren, Va.

ot 32y 13 14 0

"

{1) Superintendent . :
. Naval Gun Factory .

Wwashington 25, D.C.

Commander
Haval Ord. Tect Station
Inyokern; China Lake, Calif.

SIS R O ittt g R R S

4o

¢
A
AR

75, 1

gl} A:tn: Physics Div. -
1 Mech. Br.

Commander .
Nav. Ord. Test Statlon
YUnderwater Ord. Div.
3202 E Toothill Boul.
Pasadena 8, Calif.
{1) At¥n: Structures Div.

YR A e

grizaled 14l iy

{1) Commanding Officer & Dir. 2
Nav. Eng. Exper. Station
Annapolis, Maryland

SifHEdae

{:

et

Superintendent
Nav, Post Grad. School
Monterey, Calif,

e n s gt st anad Lobs s dost wnd v b a0 ts e

WLl

Prke

Ao Hgho arfe

Commandant -

Marine Corps Schools

Quantlico, Va.

Attn: Dir., Marine Corps N
Develop. Center

o~
p
f

Commanding General
G. S. Air Force R 3
kashington 25, D.C. .
{1) Attn: Res. & Dev. Div. ; =

Commander -

Air M3atl. Command . =

Wright-Patterson Air Force
Base

Dayton, Ohlo

(1} Attn: NMCREX-B
(1 Structures Div,
Commander :
Y. S. Alr Force Tnst. of
Tech,
W:light-Patierson Air Force
Base

Dayton, Ohlo
{1) Attn: Chief, Appl. Mech. Gr.

Commander

Wright Air Dev. Center

Wright-Patterson AFB

Dayton, Ghio

Atin: Dyn. Br,
Ar.craft Lib,
WCLSY

-
Sease ot

-3 - ONR 29




