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ABSTRA CT

Two-dimensional steady-state solutions (suitable for

computer evaluation) are given for moving normal contact

loads (sliding or rolling) on the surface of a semi-in-

finite viscoelastic base, w

profiles (e.g. circular.cylinders) or to tihe simplest

viscoelastic iMedia (e.g. a single relaxation time, same

beha'vor in shear and dilatation).

_-2ýExamples worked out include (a) the rigid cylinder

rolling on a material haveng 5 relaxation times; (b) the

flat punch with corners rounded to eliminate infinite pres-

sures. The results for (a) show that the variation of

rolling resistance over a range of velocities becomes smooth-

er with the greater number of relaxation times. The results

for (b) show the dependence of The pressure .peaks, near the

ends of the contact, on the nature of rounding of the

corners and the tilt of the punch.

Three dimensional solutions are cornidered for the

purely viscous material. It is shown that there is a

steady state for a base of finite thickness, but not for

the semi-infinite base..
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NOTATION

References to the text are given in parentheses.

A load or contact area (Fig. 1.1)

Ajk coefficients in numerical procedure (eqn. 5.8a)

B*(t) creep function in dilatation (similar to Fig. 1.2)

B('r) dimensionless form of B*(t) (eqn. 1.8b)

B(k,.l) incomplete Beta function (p. 78)

Ck,9Dk coefficients in infinite series for displace-
ment (eqns. 2.13, 2.14)

EEP "equivalent elastic problem" (Sections 3.3, 3.4)

Ei(x) exponential integral function (p. 56)

F* resultai.t horizontal force (eqn. 1.47, Fig. 1.8)

F dimensionless form of F* (eqns. 1.49, 1.51)

Fb =K/Kf > 1

F - ýL /4f `> 1

G(x,y) function depending on the elastic surface
displacm.,ent (eqn. 2.4, Fig. 2.1)

Go (y) li; G(x,y)

H(t) unit step function (footnote 2, p. 8)

Io(x), Ii(x) modified Bessel functions of the second kind
J (t) creep function in shear (Fig. 1.2)

J(r) dimensionless form of J*(t) (eqn. 1.8a)

K o(x), Kl(x) modified Bessel functions of the second kind

Ko,Kf initial, final elastic bulk modulus (eqn. l.8b)

K(e) kernel in integral for two-dimensional visco-
"-I elastic surface displacement (eqn. 1.42b)
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N* total vertical load (Fig. 1.8)

N dimensionless form of N* (eqns. 1.48, 1.50)

N' = 2pN, (eqn. 4.2b)

P(x,y,z) potential function of pressure distribution
(eqn. 1.2)

P,Q;P xQx linear differential operators in viscoelastic
stress-strain relations (eqns. l.lOa,b, 3.11)

Q(R,•) dimensionless form of q(x,y) (eqn. 1.29c)

Q() = pQ(J), (eqn. 4.2a)

R radius of rolling cylinder (Fig. 4.1)

So(x) Struve's function

T* retardation time of viscoelastic material (p. 18)

T characteristic time constant of viscoelastic
material (p. 11)

U* vertical partical velocity (eqn. 1.38)

V velocity of moving load or base (Figs. 1.1, 1.8)

Y oX) Weber's Bessel function of the second kind

a radius of circle (Sections 2.3, 2.4)

b distance giving placement of contact surface
(Fig. 3.1)

b i constants in model representation of visco-
elastic material (p. 31)

d length of flat portion of nearly flat punch

(Fig. 5.4)

eij deviator strains (p. 13)

e dilatation (p. 13)

f = f y(C)dC , constant of viscoelastic material
0
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h Chapter !I: thickness of finite layer (Fig. 2.11)

Chapters IV,V: parameter in rolling cylinderproblem (eqn. 4.11)

actual length of contact region

j m ratio of Bessel functions (eqn. 4.16)

In number of divisions of contact region (Chapter V)

q(x,y) pressure distribution normal to surface (Fig. 1.1)

qoQo constants representing magnitude of pressure

s Laplace transform parameter (footnote, p. 17)

I si deviator stresses (p. 13)

t time

u displacement components (j = 1,2,3)

u vertical displacement at surface z - 0

v = uZ/VT , dimensionless form of u

*w(x,y) function giving shape of contact surface
(Section 3.1)

w(W) dimensionless form of w* in two-dimensional

problem (eqn. 3.5b)
w(p) dimensionless elastic surface displacement

in Chapter II (eqn. 2.lOb)

w values obtained from w(e) in numerical pro-
cedure (eqn. 5.8c)

x* y* ,z cartesian coordinates fixed with respect to
the base (Fig. 1.1)

xyz cartesian coordinates fixed with respect to
the load (eqn. 1.1)
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a small angle of tilt of rigid profile (Fig. 5.1)

y Euler's constant = .5772157...

y(() characteristic creep function (eqn. 1.25)

6 = d/VT , dimensionless form of d

6i Kronecker delta (footnote 2, p. 13)

6(t) Delta function (footnote 2, p. 8)

C total strain components (p. 13)

T dimensionless coordinate; Section 5.5: ratio
of rounded corner lengths (eqn. 5.241)

viscosity of purely viscous material (eqn. 2.1)

e akk; angle

ek length of kth segment in numerical procedure

x = KoAL

= I/VT ,dimensionless form of I

P.. 1,f initial, final elastic shear modulus

V ,vf initial, .final Poisson' s ratio
"= x/VT, dimensionless form of x

P - R/VT, dimensionless form of R ; dimension-

less radial cbordinate (eqn. 2.10a)

" ai stress components (p. 13)

-= t/T, dimensionless time (in Chapter II,
defined by eqn. 2.10a)

.=2pa

x coefficient of friction (eqn. 1.53)

W(e),S k(E) functions used in numerical procedure (eqns. 5.4b,d)
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INTRODUCTION AND SUMMARY

Distributed loads moving over the surface of a de-

formable material are of frequent occirrence in engineering.

Many technical operations involve a moving roller or

slider. Impact of a high-speed jet on a moving surface,

and certain cases of explosive loading and oblique impact

equivalent to such jets , provide son- of the less obvious

examples. When the velocity of the load is small compared

with stress-propagation speeds, inertia may be neglected

and the problem treated as quasi-static. In this case, if

the material is elastic the solution is the same as for tine

stationary load problem, but now carried along unchanged

with the load. If, however, the stress depends not only

on strain itself, but also on time derivatives of strain,

j the solution to the movir.g load problem has no such immed-

iate relation to the corresponding statiot iry load

solution.

In this investigation, a steady locali',,ed load moves

at constant velocity in a straight line on the initially

flat surface of a semi-infinite base. The base material

is linearly viscoelastic, isotropic and homogeneous, with

2*11 See, for example, Abrahamson [1]
• 22 Numbers in brackets refer to the Bibliography.
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stress-strain relations expressed in hereditary integral

form (or as differential equations in special cases). It

is free from body force, at constant temperature, and

initially at rest and undisturbed. Inertia effects are

neglected. The problems are considered with the usual

assumptions of linear theory: infinitesimal strains,

boundary conditions applied to the original undeformed

surface.

The principal features of interest are:

(i) the possibility of a steady state when the

load has been moving uniformly for a sufficiently

long time;

(ii) the solution for such a steady state;

(iii) the rate of energy dissipation in the

viscoelastic materlal.

A consequence of energy dissipation is that work is re-

quired to maintain the uniform velocity of a moving body

applying the load, and the moving body encounters a

resistance (e.g., rolling resistance).

The general problem of a moving load on a semi-

infinite base is treated in Chapter I. It is shown that

a steady state is always reached if the base is a solid,

but there is no steady state if the base is a viscoelastic

fluid. General expressions for surface displacement are

leveloped, and some examples given. Moving loads on a

purely viscous material are considered in Chapter II.

2
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Specific results are given for a uniform circular load,

showing the change in surface displacement with time.

Although there is no steady state for a semi-infinite base,

it is shown that for a base of finite thickness there is

a steady state, its character depending on the way in

which the lower boundary of the base is attached to its

support.

The rest of the investigation is concerned with the

steady state moving load problem resulting from the moving

contact of a rigid body of given shape with the surface of

a viscoelastic solid. The general theory of such contacts

is considered in Chapter III. Further detailed analysis

is limited to two-dimensional (plane strain) problems. The

particular problem of a rolling rigid cylinder is considered

iii Chapter IV. Some results available in the literature,

for materials of very restricted behavior, are examined

and their limitations discussed. A numerical method fir

solving two dimensio.ial moving contact problems is devel-

oped in Chapter V. '"he method, suitable for computer

evaluation, can be used for very general contact profiles

and any viscoelastic solid. Solutions are given for sev-

eral rolling cylinder examples, illustrating the results

for various materials over a range of contact times.

Results for a material with five retardation times show

that viscoelastic creep effects are much less pronounced,

and the rolling resistance vs. velocity curve much smoother,t 3



than for a simple material with a single retardation time.

These results indicate that a single retardation time does

not adequately characterize the behavior of actual materials

in moving contact problems. Illustrative solutions are

given also for a flat punch with corners slightly rounded.

The pressure is everywhere finite, but there are sharp

peaks at the ends of the contact. Results indicate how

the pressure peaks depend on the nature of rounding of the

corners and the tilt of the punch.



CHAPTER I

GENERAL FEATURES OF MOVING LOAD PROBLEMS

The quasi-static proble..a of an arbitrary load moving

uniformly on the initially flat surface of a semi-infinite

linear viscoelastic base is considered in this chapter. In

rectangular coordinates x*, y*, z* fixed in the viscoelastic

material, the base is taken as z* > 0 , with the surface

z* = 0 . In this discussion, "load" refers to a pressure

q(x*, y*) applied normal to the surface over an area A.

There are no tangential tractions and no other normal trac-

tions applied to the surface. The load is moving at constant

velocity V in a straight line parallel to the x* axis

(Fig. 1.1). For later convenience are introduced coordi-

nates x, y, z moving with the load:

x = x* -Vt , y=y* * ( = )

where t is the time elapsed from some initial point.

q(x*,y*)

Z**

FIG. ll2
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1.1 Elastic Solution

The problem of a load on the surface of a semi-infinite

elastic solid is the well-known Boussinesq problem, and the

complete solution is readily available (see, for example,

Love [22], p. 192.). For the quasi-static moving load prob-

lem, the results are the same as for the load fixed, but

carried along with the load. The moving load solution is

thus the solution for the fixed load with x* replaced by

x* - Vt, or expressed directly in x, y, z coordinates.

The elastic solution makes use of the potential of the

pressure di-tribution:

P(x,y,z) = A q(x',' dx'dy (1.2)2 f r' d 12

A

where r' = /(X7X') 2+(Yy...y) 2+ z2 is the distance from a

element at (x'I y', 0) to the field point (x, y, z). In

particular, the vertical displacement at the surface is

ue (x, y, 0) - P(x,y,O) (1.3)z •

where ue(x,y,z) is the displacement in the z direction

(the superscript e indicates the elastic solution), v is

Poisson's ratio and . the shear modulus of the elastic

material. All displacements can be expressed in terms of

P(x,y,z) and fP(xy.z) dz . and from these the strains and

stresses can be found.

6
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In the two-dimensional problem of plane strain, the

load does not vary with y, and extends infinitely far in

the y direction. The problem can then be considered in the

(x,z) plane, with a load q(x) (for a unit lenE;th in the y

direction) applied over a segment of the x-axis of length

2. For convenience, this segment is taken as 0 < x < 2.
1

The displacement uz from the initially flat surface is

infinite (because as a three-dimensional problem the load

is infinite), so displacement must be expressed relative

to some arbitrary point on the surface. From (1.2),

P(x,0,0) = 2- 2(-x'+dxydy'

1 Jq(xl)loglx x Idx' + constant

0

Then',

Se 1-v 1u (• = A q(xl)oglxxldx, (l.5a)

0

where A is an arbitrary constant. The displacement rela-

tive to a point x0 on the surface is

u e(c) - ue(xo1 = I ' q(x,)[loglxoxi_ loglxxldx

0 (1.5b)

u will alwaiy- refer to the vertical displacement at

the surface z = 0.
7



1.2 Linear Viscoelastic Materials

The stress-strain relations of viscoelastic materials

are time dependent. At any instant they depend on the past

history as well as the present state of the material. For

any particular material, this time dependence is conveniently

determined by a creEp test. A constant stress is suddenly

applied to an init~i.ally undisturbed specimen , and the re-

sulting strain is measured. The function giving the strain

variation with time for a unit applied stress is called the

creep function, J*(t), of the material, i.e.,

e(t) = J'(t) for2 a(t) = H(t)

J*(t) is necessarily zero for t < 0 , since the material

is initially undisturbed; J*(t) increases monotonically for

t>0.

A linear viscoelastic material has a ratio of stress

to strain that is independent of the magnitude of the stress:

1 Viscoelastic materials will always be considered ini-

tially undisturbed, with the load applied at t = 0; thus,
e(t) = a(t) = 0 for t < 0.

2 H(t) is the unit step function: H(t) = b, t>o
fl, t>0

Its derivative is the delta function, 6(t) = dH(t/dt ,

which has the properties 0+

6(t) = 0 for t $ 0, f6(t)f(t)dt : f(O).

0-

8



e(t) = a0 J*(t) for a(t) 0 o H(t)

Many materials of practical interest can be considered

linearly viscoelastiG, at least for small enough applied

stresses. This has the important consequence that the cumu-

lative effect of several loadings is Just the sum of the

individual effects. The response to arbitrary time-varying

stress is then obtained by superposition, leading to the

hereditary integral stress-strain relation for linear visco-

elastic materials:
] t

EW fJ*( t -r) M-(t) = d (1.6)

0

If there are suddenly applied loads, the stress and

strain histories will not be continuous functions of time,

but will have Jump discontinuities when these loads are

applied. Treated in the classical manner, integrals such

as (1.6) would need to be considered in several parts, with

the effects of the Jumps added as extra terms. It is more

convenient to work with generalized functions--the step

function and its derivatives--which take care of the effects

of jump discontinuities without special consideration. This

approach can be interpreted as the limiting case of rapidly-

changing continuous functions. The use of generalized

"functions can, however, be established on a rigorous

I 9



mathematical basis1 . If the discontinuity occurs at t = O,

the lower, limit in integrals such as (1.6) is taken as 0-,

to include the effects of the jump. In this way, initial

values of stress and strain functions arid derivatives, taken

at t = 0- , are all zero for initially undisturbed materials.

Initial values at t = 0+ due to sudden loads at t = 0 are

then accounted for by the generalized functions. This often

eliminates the need for explicit evaluation of initial values

of unknown functions, thus simplifying the solution of many

viscoelastic problems. The use of generalized functions in

viscoelastic problems is discussed by Corneliussen and Lee

[5].

Viscoelastic materials fall into two general categories--

solids and fluids. A viscoelastic solid has a finite upper

limit to its creep after a long time. This means J*(t)-+l/Ef,

a finite value, as t + . A viscoelastic fluid continues

to creep without limit after a long time; thus J*(t) -•

as t -+ . The characterization of a viscoelastic material

as solid or fluid depends on the extent of time appropriate

to the particular problem. After a long enough time, a

viscoelastic solid acts essentially as an elastic solid.

The material exhibits its final elasticity, with final elas-

tic modulus Ef. Most viscoelastic solids also have initial

1
See Friedman [15] for the use of generalized functions

in mathematical analysis, and for further references on the
theoretical foundations.
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elasticity. A suddenly applied stress produces an instan-

taneous response, then additional creep as t.rme passes. In

this case, J*(O+) =_ l/Eo 0; Eo is the initial elastic
00

moduius. If there is no initial elasticity, J*(O+) 0.

Representative creep curves are sketched in Fig. 1.2.

•• ~ J*(t)l _

solid, initial elasticity

E zo/ -solid, no initial elasticity

FIG. 1.2

It is convenient to express creep functions in non-

dimensional form. An appropriate time parameter, T , is

_.hosen. Viscoelastic materials may exhibit one or more

characteristic retardation times, one of which can be used.

Then, a non-dimensional time variable is taken as "= t/T.

For a viscoelastic solid with initial elasticity, a dimension-

less creep function is conveniently defined by J(¶) = EoJ•rT),

and the final elastic response represented by

F = Eo J*(w) = Eo/Ef. Then, the stress-strain law (1.6)

becomes

J(=1 ,) d( (1.7)
0-

I 0l



'Jith J(O+) 1 1 JW = F T = t/T This non-dimensional

foin based on an initial elastic response will be used in all

that follows., unless otherwise noted.

The discussion so far has considered a one-dimensional

state of stress and strain. In a general three-dimensional

state, the response of a linear isotropic homogeneous visco-

elastic material can be described by two independent creep

functions. This is analogous to an isotropic elastic ma-

terial where two elastic constants are sufficient. The two

functions are conveniently taken as the shear creep function.,

., and the dilatation creep function, B*(t) . For a

material with initial elasticity, these are non-dimension-

alized in t-erms of the initial elastic response and a

common characterisitc time parameter T:

J(T) = 2U J*(TT) J(O+) = 1 (1.8a)0

B(T) = 3KO B*(TT) B(O+) = 1 (1.8b)

where p 0 is the ir.itial elastic shear modulus and K 0

is the initial elastic bulk modulus. If the material is

a solid., with a final elastic response, the shear and

dilatation creep functions will each approach a finite

limit as t -+ co In this case, J*(00) = 1/2p f and

B*(oo) = 1/3Kf , where pf and Kf are the final elastic

moduli. Then,

12
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J(w) = F. ; B(o) = Fb (1.8c)

where Fj = Lo/•f > 1 , and Fb = Ko/Kf > 1.

General three-dimensional stress and strain is described

in standard suffix notation1 , i,j taking on the values 1,2,3

corresponding to the coordinate axes xI = x, x2 y,

X 3 -- z .

Stress components: oiix yjzit) ; e = kk

Stress deviator components 2 : s i(xYjzt) = Cy- 3 06ijij3 ij

Strain components: cij(xYz.t) ; dilatation e =c.

Strain deviator components: eij(xyzt) = ij - e6,
3 i3

Corresponding to (1.7), the stress-strain laws are3

ei(') = - J(L_-) -sj--- dC ; (1. 9a)eij( ) 2po _ '''

0

e(,) = 1 ( -) dC (1.9b)

• e-

1 The summation convention is used, so that repeated
indices mean a sum of terms with index values 1, 2, 3.

2 6ij is the Kronecker delta symbol: 6ij = 0 for i • j ,

6ij = 1 for i = J.

3
The stress-strain com onents are of course functions of

the ace variables (xy.z) as well as time; this is not
explicitly indicated.

13
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For an elastic material the creep functions are Just the

step functions, H(T). In this case, (1.9ab) reduce to the

stress-strain laws for an elastic body:

1 1
ei 2psij ;e = 9 (1.9c)

0 0

Mechanical models, made up of suitable combinations of

springs and dashpots, can be used to represent viscoelastic

materials. The load-deformation behavior of such models

exhibits many of the important features of actual materials.

By taking a large number of elements in a model, a partic-

ular material can often be approximated quite closely. The

springs allow for storage and recovery of energy and the

dashpots allow dissipation of energy that is characteristic

of viscoelastic materials. In fact, molecular theories of

viscoelasticity have been based on this type of model (see,

for example, Bland [3]). For three-dimensional states, two

such models would be necessary in general, to represent

shear and dilatation. The advantage of using models is

that the creep function can then be expressed in a simple

analytic form, as a sum of exponential terms. This permits

mathematical analysis of viscoelastic problems to be carried

much further than would otherwise be possible, bringing to

light significant features of the solution that are charec-

terist*c of actual materials.

14
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Model representation permits a stress-strain law to be

expressed as a l1leal" UiLLLl .. L.. - quattion, ra - t ,•AA

integral equation (1.7). This can be expressed

P(a) = (1.10a)

where P and Q are linear differential operators of the

form

n k m k
P zPk RQ = Z (l.10b)

k=O at k=0

Pk and qk being constants for the particular model. In

three-dimensional problems, two sets of operators are needed.

For shear P(sij) = Q.(eij) (l.lla)

and for dilatation P'(e) = QJ(e) (1.l1b)

More details and further references on viscoelastic models

and their differential equations are given in Lee [20],

Bland [3], and Kelly £18].

A convenient model to use is the general Voigt material.

This is made up of a series of Kelvin elements (spring and

dashpot in parallel), with a separate spring to represent

initial elasticity if it is present (see Fig. 1.3). A

model representing a viscoelastic fluid must also have a

separate dashpot, giving unlimited creep under load, For

each Kelvin element, the stress-strain law is of the form1

1 A dot indicates the derivative with respect to time:

= 6f/6t1
15



S= E(E + TU), where T = i/E is the retardation time of

the element. A Voigt material thus has n characteristic

retardation times, one for each Kelvin element, with an

initial elastic modu2us Eo and a final elastic modulus

n
Ef = Eo + Z E . The simplest model that exhibits the

k=l

initial response, delayed creep, and final elasticity char-

acteristic of a viscoelastic solid is a Voigt solid with a

single retardation time, called the standard linear (or

three parameter) solid (see Fig. 1.3).

General Voigt Material (fluid)

(A Voigt solid has no free dashpot, i.e., = C •,

"E E E

T1i T2 ?k Tin

Standard linear solid

E

E0

FIG. 1.3

16



More Kelvin elements with different retardation times

can be added to give a more complex model that may in certain

cases satisfactorily approximate a real material. However,

real materials appear to have no discrete retardation times,

so a model with a large number of elements is usually neces-

sary to accurately represent an actual material over a long

time span. The determination of constants to fit such a

model to a test curve can be very tedious, and the result

is still only an approximation. It is frequently more de-

sirable to use the test curve directly in an integral law

such as (1.9), which can be evaluated numerically. The

approximation is then numerical rather than physical, and

the resulting error can be estimated and controlled more.

readily.

The creep function for a model material can be determined

directly from the differential law (1.10) by using the

Laplace transform1 . The linear differential operators P

and Q become polynomials in s , so that (1.10) transforms-

to
P(s) -- Q(s) E (1.12)

where
n m~

P(s) X Z pk sk ' Q(s) =7 qk sk
k=0 ki=O

1 The Laplace transform of function f(t) is:

f(s) =2•f(t)) f0 e-St f(t)dt . It is taken in the general-
0o

ized sense, starting at t = 0- , to include the effects of
discontinuities at t = 0.

17



From the definition of a creep function, E(t) = J*(t) when

a(t) = H(t) , thus i(s) = J*(s) when a(s) = 1/s . Then

from (1.12),

•*s)= _ (1.13)

Fo••- a general Voigt material (Fig. 1.3), the result is

n 1

Zo 'F o o" s ko 2 Y k-1 k k

1 1 1 n fk
j +-o+ z (1.14)

0 sT k=l 1 + sT*

where k/Ek is the retardation time of the kth Kelvin

element, fk = Eo/Ek , and To = no/E . This model is a
k oE 0 0

fluid material,, because of the presence of the free dashpot

with viscosity q 0 In a solid, there is no free dashpot,

and this term in (1.14) is absent (no = 0T = o)" From

(1.14), the creep function is

t + tn -t/T)](Ii5a)
J*(t) = oo 1 +'1* +:Ik(l e- ke]Ht) (1E 0 To k.

This has the initial response J*(0+-) R1,adth og00
Thishastheiniialresons J*Q+)= •-, and the long-

0

time unlimited creep J*(t) - t/n 0  as t -- o. With the

Io term absent, the solid has a final limiting value of

creep J*(0) = 1/Ef = (1/E 0 )(l + z fk)•
1
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In dimensionless form,

J()= [ +T + E fk(l - e/Tk) ]H(¶) (l.15b)
1

where r = t/T , Tk = Tk/T and T is a characteristic time
n

parameter. Then, J(O+) = 1 , and J(00) -F = 1 + k
k=l

For a standard linear solid, n = 1, T = T. Then,

J(¶) = 1 + f(l - e-T) ; J(V) F = 1 + f

Most experimental data on actual viscoelastic materials,

such as high polymers, provide information on the behavior

in shear or simple tension. Very few tests have measured

dilatation alone, so data for the creep curve B(¶) are

frequently not available. In the absence of specific in-

formation, several assumptions of dilatational behavior have

been made. Each may, in certain circumstances, be a good

1
approximation to actual behaviorI. The common assumptions

are:

1) elastic dilatation, B(T) = H(T)

2) incompressible, Ko = O, B(T) = 0

3) sir.Ailar behavior in shear and dilatation, B(T) = J(¶)

In terms of Poisson's ratio, v , which is discussed in the

next section, 2) corresponds to v = 1/2, and 3) corresponds

For further discussion, see Staverman and Schwarzl [29]_,
Section 6d; Ferry [9], Chapter ±3
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-to v = V0 = constant. Even when actual data are available,

use of one of these assumptions may lead to significant

Simplifications in the analysis of a problem, without being

too seriously in error.

1.3 Solution of Viscoelastic Moving Load Problems

Many problems in viscoelasticity can be solved by

-removing the time dependence with a Laplace transform

;Which reduces the viscoelastic problem to an "associated

-elastic problem" (Lee (19, 20]). Taking a Laplace transform

of the viscoelastic stress-strain laws l.9a,b) gives

e s1(s) 1 BS (1.16)
0 0

-These are the same as the transforms of the elastic laws

1(1.9c) if P0 is replaced by po/sJ and Ko by Ko/sB

'If a.Laplace transform of the boundary conditions is pos-

sible, the viscoelastic problem becomes an elastic problem

in the transformed variables, with the elastic constants

now functions of the transform parameter s. This is the

aL-ociated elastic problem, and if its solution can be

found, the viscoelastic solution is obtained by inversion

of the Laplace transform.

1 The Laplace transform is taken with respect to the

dimensionless time T = t/T " The generalized transform,
starting at t =0, 0 wil always be used. In this way,
initial conditions are ail zero for an initi-lly undisturbed
material.

20



For an associated elastic problem to exist, it must be

possible to transform the boundary conditions. There are

two types of boundary conditions: tractions prescribed on

a region R1 of the boundary surface, and displacements pre-

scribed on a region R2 of the surface. If the regions RI

Sand R2 do not change w ith tim e (the quan tities prescrib ed
on them may vary with time, however), then a Laplace trans-

form is possible. If R or R2 change with time, a Laplace

transform of the boundary conditions is not generally pos-

sible, and the above method of solution is not applicable.

A procedure equivalent to solving the associated elas-

tic problem (when it exists) is to solve the original vis-

coelastic problem as an elastic problem(with the same

boundary conditions as the viscoelastic problem), take the

Laplace transform of this solution, and replace the elastic

constants by their appropriate viscoelastic analogues from

(1.16). This is often much easier than solving the asso-

ciated elastic problem directly; use can be made of exist-

ing solutions from the theory of elasticity. Frequently,

the elastic solution is in the form of functions of space

and time multiplied by rational functions of the elastic

constants. The transformed viscoelastic solution is then

a product of the transformed elastic solution and creep

I functfLons, and the inversion is Just a convolution integral.

In replacing the elastic constants according to (1.16), the

21



term sJ (or sB) occurs. This is the transform of

J(¶) dJ(r)/d¶ [or B(') -dB(T)/dr]. The viscoelastic

solution is thus a convolution of appropriate creep function

derivatives with the elastic solution.

As an example, suppose an elastic solution has the form

ge(xZ,'z) = 1i

Taking Laplace transforms gives

g e(x,Y,Z,S) = 1 (x -y -z .s)

Replacing p. by p. /SJ gives the solution of the associated

elastic problem, and inverting gives the viscoelastic solution

g(x~yszr) -_ f a() f(x,y,z,T-C)dC
0

Elastic solutions frequently contain Poisson's ratio,

v = (3K - 2p.)/2(3K + p.) , which depends on both shear and

dilatation properties of the material. In forming a,-, asso-

ciated elastic problem, v is replaced by this same function

of the transformed creep functions:

3K0  2p° 3Ko +o 3KosJ - 24osB
V( + --0) ( 017a)

sB sJ sB sJ 2(3Kosi + oosB)

This can be considered the transform of a viscoelastic

Poisson~s ratio, v(¶), which varies with time, so that
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W1 . PLL

s •(s) E 0 (1.17b)
2(3KosJ + Po.SF)

Then, v is replaced by sv(s) in the associated elastic

problem.

From the initial and final value theorems of Laplace

transforms (see, for example, Thomson [33]),
3K - 2Po

0 0v(O+) - lim sý(s) = ((3K° + o (l.18a)

where v0 is the Poisson's ratio of the initial elastic

response, and

v(0) = lim sý(s) Vf (l.18b)

where vf is the final value of Poisson's ratio. if the

material has a final elastic response, then its Poisson's

ratio is vf = (3Kf - 24f)/2(3Kf + .f). Using (1.8c) this

I becomes

1 3Ko + 2p +2o(Fj-Fb)/FJ
f 2 3 Ko -o +40 (Fj-Fb)/FJ

Thus, vf > V if F > F and vf < vo if F < F
f ban f<0  J<F b

If the material is fluid in shear and solid in dilatation, so

that J(oo) = c while B(co) is finite, then vf = 1/2.!f

An example of a simple model that exhibits features

I similar to more general viscoelastic solids is one with

standard linear solid behavior in shearand elastic dilatation.
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Thenl

J(¶) = [1 + f(l-e-J)fH(l) ; B(T) = H(T)
f f

()= s(s) = I+ ;B(s) = sS(s) = 1

3K [ 1+ f/(1+s)] -

2p0
SV() =2L3Ko1i + f/(.l+s)J+•o

9fKoýo 1

01 + 3K 0-24 )(3K 0 +4OT s + [1 + KU O+L7

) =0[9fK oP 3Ko+4o+3Kof

0 0 ~ 0 0 0 'r]l()v(0) V.11 + (3Ko2)(3Ko+o+3 [-exp(- 3Ko+o )

For example, if K. =(8/3)po, then vo 1/3,

v = (3+4f)./(9+8f)

v(T) = 3{1 + [ 1-exp(- rSf

For additional examples and discussion of Poisson's ratio,

see Kelly [18], Freudenthal et al. [14].

v(')

vf

v
0

FIG. 1.24

The retardation time T* is taken as the time parameter T.
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For the present problem of a given load moving on the

surface of a semi-infinite base, boundary conditions on the

surface z = 0 are

*!

"ax*Vt- y) =-q(x*-Vt,y) under the load
z 0 outside the load (l19a)

r (X*,y*,O0) = t (x*,y*,0) 0 everywhere (l.19b)
xz~ yz

Since the tractions at each point on the surface are known
for all time, a Laplace transform of t' boundary conditions

is possible, and the problem can be solved as an associated

elastic problem. The vertical surface displacement uz

(on z = 0) will be considered in detail. The same procedure

can be used with the known elastic solution to find the

viscoelastic displacements and stresses at all points in the

semi-infinite material.

The elastic solution, as given in (1.2), (1.3), is

e(x*_ Vjty0) l-v P(x*- VTy*O) (1.20)

i A~j• q (x',y')dx'dy'=-. _-_

P(x*- VT¶,Y*,0) =7jV A~(*V~ )2 +(y*~y)

The superscript e indicates the elastic solution. Taking

a Laplace transform gives

I! de (x*,y*,s) = l-v p(x*,y*,s)
z

25
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2

neplaulng 1-lth• e5-las U(, corns tantsU- a ccord,*ring to k .1 1), k I.I a)

gives the associated elastic solution

S1l si(s )[1 - SV(S )] I(x*,y *,s ) (1 21)z ýLo

Inversion then gives the desired viscoelastic surface

displacement.

Although (1.21) could be formally inverted as it stands,

in the form of a convolution integral, the final result is

seen more clearly by proceeding further. Let

J(T) = Cl + I(r)]H(c)

(1.22a)

B(T) = [1 + BI(-)]H(T)

with

J l (O) = BI(O) = 0

Then

s3(s) = 1 + sJl(s) ; sB(s) = 1 + SS (1.22b)

Also, let • K K/ Then (l.18a) becomes

vo = (3x-2)/2(3x+l) (1.2:)

From (1.17b). after simplification,

1 - sv(s) = (l-V)[1 9K 3i 3S Sl+S (1.24)

63+4 3K+ +
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Then, uving (k.22b) and (.L.24),

1l-VO I 9K s' ~ )
1 s (s)[l-s•(s)] - 1 + sj- (l s.

0 o3- 3k+l+3s JI+sB,

Now let &('c) be a new function such that

9sJ, - sB1

7(s) =l - 3s+41 3x1+ + 3KsJT,+sBI (1+s$1) (1.25)

Then (1.21) can be written

1-vo
S: 0 [1 + j(s)] .•(x*,y*,s)z •1.o

Inverting this gives the desired surface displacement

Uz( ) 1 . o P(x*-VTl,y*,O) + - f 0*o

0

Ue(x*_VTr,Y*) + fY(C) ue(x*-VT¶ + VT_, y*)dC
z jz

0

where ue is the disp'lacement due to the initial elasticz

response, given by (1.2,3) for a three-dimensional problem,

and by (1.5b) for a two-dimensional (plane strain) problem.

Expressed in coordinates moving with the load

(x = x* - Vrs, y = y*),

uz(XY,") = ue(xy) +fY(C) ue(x + VTW,y)dC (1.26)

0
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The explicit evaluation of uz requires the function

y(T). If the creep functions J(¶) and B(T) can be ex-

pressed analytically, so that their Laplace transforms can

be found, then direc' inversion of (1.25) gives ",(c). How-

ever, for actual materials, the creep functions cannot

usually be expressed in simple analytic form, but are avail-

able only as curves or tabulated values from tests. Instead

of the several approximations and considera',le labor that

may be needed to fit a curve with an analytic function, take

j.ts transform, then invert (1.25), it is better to obtain

-y(¶) directly from the given data by a numerical procedure.

For this purpose, (1.25) can be written:

3icsJ + ST3
~1 1] 1y(s) 1 +-3-----r+ = + (3,esJl+ sBI) SJl

93+•r3•+T [sl -s + sJ](Sjl-srl)]

9K 3sj31 + 4sFl
si31+4)(3Ki) 1S + 3K+4 sTi

inversion of tbis gives

y )+ f 3KJ +1~~ -- l(O)dr)

(3K+4)(3+-- [ + 3K)+4
_ ~9K-

0

(1.27)
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This is a Volterra integral equation of the second kind for

the unknown function -y•(). It can be solved numerically by

a finite difference method, requiring numerical values of

the derivative of each creep function at intervals from 0

to T. A procedure for solving such integral equations has

been developed and discussed by Lee and Rogers (21]. Using

a slight modification of their procedure, equation (1.27)

can be solved numerically as follows: Let

M(O) = 3K+l [=31Jl() + B1w)
S33l•)4g(l

'r
F(T) = ji(¶) - (3K++)(3K+1)( )+,f 3i.+1

M(C) and F(T) are known or can be found from the given creep

functions J(') and B(T). Then, (1.27) becomes

y(¶) +fM(r-C)-(•)d = F(T)

0

Divide the time into intervals Ti , i = 1,2,.., n+l;

I=0, Tn+l = Let +n1 = Y(= ) -y('). Then,

9K [10

y(o) = F(O) = lO, - (3 +4 )(3 +)-19°

•n+l = 1 + 1/2 M(1n -l-) IF(n+l) -1 (Tn+l-
M(n+l n¶~~nl

n-l1
2 i= +l'i n+li+l (L1n+l '. Jn }1,2, =

29
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In this way, 7(T) can be evaluated in successive steps,

starting from T=O. The time intervals can be varied as

desired; equal intervals in log T may be convenient.

The function 7(T) will be qualitatively similar to

il(T), as can be seen from (1.27). It is a monotonic de-

creasing function, concave upward. If the material is a

solid, the creep functions approach asymptotically a limit-

ing value; thus, Jl(0 ) = •I(Oo) = 0 , so y(OO) = 0 . If

the material is a fluid, the creep functions approach a

linear function of time after a long time, so y(o) = Yf > 0.

For a general Voigt model, from (l,15b),

1 n fk -r/Tk

= + Z T- e
0 1 k

If the material is a solid, To = , and Jl(¶) decreases

exponentially to zero. An actual material will have the

same qualitative behavior for Jl(¶) , and thus for -. (¶).

A representative sketch is shown in Fig. 1.5.

fluid

-solid
T

FIG. 1.5
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If the material is assumed to have constant Poisson's ratio

[B(T) = J(T), or incompressible (v = 1/2)], then y(¶) =

Jl() .If the dilatation is assumed elastic, B1  0 in

(1.27). As an example, for a material with sLandard linear

solid behavior in shear and elastic dilatation,

J(T) = [I + f(l-e-)] H(T) B( B() = H(T) (1.28a)

Jl(T) = f e- ' B() =0

Inversion of (1.25) gives

Y(r) 2(- [v e (3K+1 3-1 +
0 (1. 28b)

3r,-2 2 l+V 0where v0  2(3K+l) ' or K = 3 l-2v0

For any material whose shear and dilatation behavior are

represented by mechanical models, such as the general Voigt

solid, -y(t) will be a sum of exponentials, in the form

-Y(T) = z f ie-_b ir

i

1,r further applications, it is desirable to express

the surface displacement (1.26) in dimensionless forum. This

is most conveniently done by using as a characteristic length

parameter the quantity VT . Then, the following dimension-

less variables are introduced:
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Coordinates: x I y(12a
(moving with the load) -T (l9a

Displacement: v(Mrj uz(~ 0 (1.29b)

1-Vo 1
Pressure: Q( ,TO - q(x.,y) (1.29c)

Using these, the elastic displacement is, from (1.20),

v e(tTl) = ffA (tiT I )detdrj' (1.-30)
A /jJ)2 + (T,_)2

The viscoelastic result (1.26) then becomes:

V9II = v e ( j, 1) + Y(C) Ve( t+C,T)dC (1-31)
0

For a general three-dimensional. problem, using (1.30),

A

+ 1 -y,(C) dC dtjdTl (1.32)

For a plane strain problem, from (1.5a),

v~_'0- V(eo "r) I Q(aj log 1  ,

0

+ 0-yC)log jE-_i dC Idt' (1.33)
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where N - is the dimensionless length of the loadedVT

region.

1.4 Steady State Solution

The stress and deformation patterns in the base change

with time due to the delayed creep and recovery of visco-

elastic materials. After a sufficiently long time, however,

the transient effects may disappear, so that these patterns

are unchanged with further passage of time. In this case,

a steady state exists for an observer moving with the load.

With respect to coordinates fixed in the base, functional

dependence on time then occurs only in the combination

x* -- Vt . In coordinates x,y,z moving with the load, there

is no explicit time dependence. The question of whether and

under what conditions a steady state occurs, and some of its

consequences, will be considered in this section.

The viscoelastic solution (1.31) contains time explicity

only as the upper limit of the integral. If this integral

exists as T -- , a steady state is reached, and is given

by (1.31) wit'- T -r . If the value of the integral in-

creases without limit as T-+ c , no steady state exists.

Consider the integral in equation (1.31):

I(• -F•( .,e(,+•,.,7)dC

0

Irr

o A
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where r '(6+(-6')2 + ( %_ 2 ,

If I(m) exists, there is a steady state. Let T be a

large but finite time. Then,

00

I(C) = I( ) + - 0  A, ' dý (1.35)

!(ro) is finite, so only the second term must be considered.

Since C is always large in this integral, the integrand

can be expanded in terms of C-i.

I -(C V QdgA-j dC r -Y(o[) + + .... dC

I' 0oA (1. 36a)

where No, NI, .... are finite terms depending on (Q,ri) but

not C. If the material is a viscoelastic solid, -y(C) de-

creases monotonically to zero as C +c . In this case,

the integral (1.36a) is finite. Thus, I(o,) exists; a

steady state is always reached when the semi-infinite mate-

rial is a viscoelastic solid. If the material is fluid,

y(P) decreases monotonically to a constant value, yf ,

as C -l . Then, 3() =yf + yl(,) . where 71(C) decreases

monotonically to zero as C -*-c (see Fig. 1.6). The inte-

gral (1.36a) becomes

"No N0l f N 0
[yf + ql(C)][ - + -1C + ... ]d+ fo + + ... ]'d.7 + ..]dj 1 2

oo o C0 (1.36b)
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The second integral is finite, but the first term integrates

to YfNojlog e* , which is unbounded, so I(oo) does not
0 r0

exist. Thus, a steady state is not reached when the material

is a viscoelastic fluid.

If the problem is two-dimensional,

I I(1) . f( G4fQ(•') log i+ , , i C
0 0

For large C , the log term is expanded in powers of

to give

log e++,-I- = log !1 +4- ! - log i1 +

S•- •o• '+ •-e)

as C CO

Following the same procedure as before, an integral of the

same form as (1.36) results. Thus, the concisions are the

same for the two- and three-dimensional cases: There is a

steady state when the material is a solid; there is no

steady state for a fluid.

For a viscoelastic fluid, where -y() = Yf + -1(•),

the displacement (1.31) becomes

vC,,• e(*,T,) + -Yf e(,+•,.~d +i l(C)ve J+C., -)d C
v~.,q -)= vef(vT,~) + i ~

0 0

1 The symbol ~ means "asymptotically approaches"; i.e.,

f(x))fg(x) as x -- a means lim 1 f(x)-g(x)J 0
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The term with yf is due to the unlimited creep of the

material, and this is what fails to reach a steady state.

The fluid behaves after a long time as if it were puiely

viscous, as given by the term with yf. Thus, to decide

if a steady state is reached for a general viscoelastic

fluid, it is necessary to consider only an ideal viscous

fluid. A viscoelastic fluid will have a steady state if

and only if the ideal viscous fluid does.

The failure to reach a steady state when the base is

a fluid has been shown here for a semi-infinite base. In

this case there are no constraints or supports to prevent

the displacement from increasing without limit as the fluid

material undergoes unlimited creep. If the base was not

semi-infinite, but a layer of finite thickness suppcrted

from below, the creep would be constrained and a steady

state might result. This possibility will be considered

in more detail in Chapter II.

When the material is a viscoelastic solid, the steady

state solution is given by (1.31) with T =

v(•rj) = ve(qT) +IfY(C) ve( +C,,)dC (1.37)

0

The steady state is evident only to an observer moving with

the load at velocity V; the coordinates (t,rj) are also

moving with the load. It is convenient to think instead
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of a fixed load and coordinate system, with the semi-infinite

base moving uniformly under the load, in the negative e

direction (Fig, 1.6). A particle of the base comes from the

right (e = oo) and has been traveling horizontally for a long

time. It continues to mcve with constant horizontal velocity

V , but it also acquires a vertical velocity as it comes under

the influence of the load. The path of the particle is de-

formed in the vicinity of the load, but the particle is

eventually moving horizontally again far downstream. Parti-

cles initially on the surface remain on the surface, and

undergo the vertical displacement u z(X*-Vt,y*) = U z(Xy)o

The vertical velocity of surfa-ie particles is

3-- =-v -- zv(-- (1.38)

Thus, the vertical velocity of a particle on the surface is

prooortional to the slope of the deformed surface.

qdxi,y)IVI
A-T

FIG. 1.6
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When a steady state doe- exis-;, the rcsuitl.ng expressions

.)r surface displacement (or any other diplacement or

stresses) can be found directly, without the necessity of

co,.nIsider-in Utim- z, explicitly. Consider the load and coordinate

system (x,yz) fixed, and the viscoelastic base moving at

constant velocity V in the negative x direction. For simplic-

ity, a one-dimensional state of' stress is considerod. The

argument is easily extended to shear components and dilatation

in a general three-dimensional state.
1

An element A in the base, now at coordinate x, moves

on the pathline A'A (Fi6. 1.6). Suppose while at x' it re-

ceived a stress increment da = [a(x')/ýx'] dx'. This has

influenced the eltment for a time (x'-x)/V, and the resulting

strain increment is

dE(x) : •- J(ly ) da
0

Adding up all such increments from the initial position of

the element at x = o to its present position a x = x

gIves the total strain

x

C(x) = o J dxJ (1.39)

1
Deformations due tc the applied Load are infinitesimal

and can be neglected, so the orilly motion is in t.ie negative
x-direction at velocity V.

38

INI



The elements are coming from an undisturbed state, so that

a(m) = 0 . Thus, integrating (1.39) by parts, and letting

(x'-x)/VT,

00

E(X) = fJ(1) (1.40)E(x !(-VC Eo~

0

This is the steady state equivalent of the stress-strain law

(1.7). SJmilar laws, analogous to (1.9a,b), for shear and

dilatation can be obtained in the same was, The stress-strain

law (1.40) can be considered an operational extension of the

elastic law E(x) = l/E0 a(x) , with l/E0  replaced by

J(C)/Eo and the integration carried out as indicated in

(1.40). In the same way, (l-v/o [6(C) + -y(C)] replaces

(l-vo)/4 0 in the elastic surl> ce displacement (1.3), which

leads to the viscoelastic steady state displacement 1

1-v W

"U(X,y) 0 6(r)+-y(C) ]P(x+VTr,y)dC

0

or, 00
" (XY) e(x,y) + _,(C)ue( .V~yd

Uz(X~y) = uI z+

0

In dimensionless terms:

v(E,r!) = vCC(,•,-) +. fY(C)ve( -+CJn)d,

0

which is identical to the previous result (1.37).

This operation can be justified more rigorously using

Fourier transforms in a way similar to the use of Laplace
transforms n the preceding section.
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The steady state solution for the surface displacement

of a semi-infinite base is given by (1.32) or (1.33), with

= 00. The result for the three-dimensional problem can be

written

v(Mr) = A IQ('q')K*(t-1,,T-1 )dedqI (l.41a)

A

-where TI) _ 1 1 + 2 0 (i .41b )

For a two-dimensional probiem,

V(W)-V(ec) j= Q(e')[K(ý 0-•-K -)]' (1.42a)

0

where K(t) =_ 1og!el +j (:'1g•• dC; (1.42b)

0

These results are for a visccelastic solid with initial

elasticity. The dimensionless terms eq,v,Q are defined

in (1.29), while -y(C) is obtained from the creep functions

of the material by (1.25) or (1.27).

It is of interest to examine the surface displacement

far away from the load. The loaded area will be taken to

include the origin of the coordinate system. In the three-

dimensional case, let p2 = 2 + q2 be very large; p is

the (dimensionless) distance of a point on the surface from

the origin. Then, as p o ,
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00 00

(1 + rC-d]- y~(C)dC +
0 2p2 I

0 0
Thus, when t2 + rj2 .0

00

V(t.-'JTO ff' l TI -•Q(C.' dý dr +

A• 0

Using (1.25) and the final value theorem of Laplace trans-

forms, it can be shown that

00' lira + 0 1-Vf

1- 0 f- lv0 ,,()• = lio [1 + .j(s)] = To -1.F
0

Then, 1 1-Vf iýVd 1(Then, v • q) V_+-.•q f 2--.r• ,)•d

The total load, N*, applied to the surface is

N* =ffq(xt,yt)dxtdy' = (VT)2ff ",1l)dadj

A A

Thus, far away from the load,

_____ N* l-vf

2r22 ( )2 4f or

i ~ N* 1-vf
Uz(XY) x2+y2 2, (1.)

This is the same displacement that would result from a

concentrated load of magnitude N* applied at the origin.
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The result is that far from a localized pressure distribution

mo1 / on the surface of a viscoelastic solid, the surface

di ,placement is the same as that for a concentrated load of

the same total magnitude, acting at the origin on the surface

of an elastic solid with the final elastic moduli of the

viscoelastic material. This is true in any direction, whether

ahead of or behind the moving load. The initially flat sur-

face is deformed in the vicinity of the load, but gradually

returns to its initial level after the load passes. Far

enough away from the load, the actual pressure distribution

has no effect; only the total load is significant.

In a two-dimensional problem, as I0 -+ C ,

1-vf. N*

v(W) - v(o1) , [logleol - loglaI] (1.45)

Here the :esult is the same as for a line load of the same
I

total magnitude, N* = f q(x')dxl , per unit length in the
0

y-direction. Again the base exhibits the final elastic

behavior of the viscoelastic material. The surface levels

far ahead of and behind the load are the same, and thj slopes

tend to zero as 1H1 -+ . For any two-dimensional (planr

strain) problem, elastic or viscoelastic, the load is dis-

tributed on an area unbounded in the y-dlrection, and thus

the total load is infinite. There is no lower boundary to

the base to restrict the resulting deformation. so the dis-

placement far from the load is infinite relative to points
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neair the load. The displacement isit thus be expressed

relative to an arbitrary point t 0 near the load.

For the extremes of very large or very small velocity,

the viscoelastic solution approaches as a limiting case the

corresponding elastic solution. For V = 0 , the viscoelastic

material exhibits its final elastic response when a steady

state is reached, and the result is the same as if it were

an elastic solid with the final elastic behavior. For very

large V , the load passes so fast that there is time only

for the initial elastic response. Thus, as V-.c , the

result is the same as if it were an elastic solid with the

initial elastic behavior 1 . These results 3re confirmed from

the limiting values of the surface displacement. Written

out completely, the steady state solution is, from (1.41a,b)

1-V 1 1Uz(X'Y) = 21 fJ 'xJI)
A x0 27) 2+(y_y,)2

O0

SVf + -x)2+(yy dxdy (11.6)

For V = 0 , (1.46) becomes

1-v 0Yf
0 [1 +f.y()dC] P(x,y,O) l P(x,y,O)

0

1 The solution in this case is no longer physically mean-
ingful, because the problem cannot be treated as quasi-static.
The limiting case may be approached, however, for relatively
large velocities still within the restrictions of the quasi-
static assumýtion.

43



This is the elastic solution (1.3), with elastic constants

Pf I Vf of the final elastic response. For V-. 0 , the

inner integral in (1.46) vanishes, so

1-vo
Uz(XjY)=1-- P(x,y,o)

z 40

which is the elastic solution for the initial elastic

response.

1.5 Energy Dissipation

When a perfectly elastic material is loaded, work done

on the body as it deforms is stored internally as strain

energy. If the body is subsequently unloaded, recovery takes

place instantaneously. The strain energy is released and

there is no net work done in a complete cycle. In a visco-

elastic body, however, recovery takes place gradually after

unloading, and not all of the stored energy is released.

Energy is dissipated within the material during the loading

and unloading process. Thus, net work must be done on a

viscoelastic body, even though it may eventually return to

its initial shape. The amount of work depends not only on the

initi.al and final states, but on the history and rate of load-

ing during the process. In a mechanical model of a visco-

elastic material, the dashpot elements account for internal

energy dissipation, while the springs provide for storage of

free energy. The dissipation in actual materials is often

attributed to "internal friction" or "elastic hysteresis losses."
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Consider a moving load applied to some body in contact

with the surface of base material. The contact is perfectly

lubricated (or "frictionless") so there are no tangential

surface tractions. The body would move at constant velocity

with no resistance if the base were perfectly elastic. How-

ever, resistance is encountered with actual base materials,

and a force is needed to maintain constant velocity. A

common example is the resistance to rolling of a cylinder

or sphere. Experimental evidence 1 indicates that rolling

resistance is nearly independent of the roller material and

of the lubrication between roller and base. Also, when the

surface is well lubricated, resistance is nearly the same

for rolling and sliding. This indicates the resistance is

due to bulk properties of the base material and not to sur-

face phenomena. Energy dissipation in the base material as

it is deformed is the primary factor. Work must be done by

the moving body to provide the energy dissipated in the base,

and this accounts for the resistance to motion. In the al-

ternate view adopted here, the base moves under a fixed load,

and external work must be done on the base.

Since a viscoelastic material dissipates energy, the

problem of a moving load on a viscoelastic base being con-

sidered in this chapter is one way to account for and pre-

dict resistance to moving loads. The initially flat surface

i Bowden and Tabor [14], Tabor [30,31], Tabor and Atack

[32], Flom [10,11].
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of the baoe is deformed by the load q(x,y). Because there

are no tangential stresses on the surface, the load must

remain normal to the deformed surface. Consistent with

other assumptions of the linear theory, the effect of the

infinitesimal horizontal components of the load can be neg-

lected compared to the vertical components. Thus, in

solving the problem for stress and displacements, the load

is considered to remain vertical and applied to the unde-

formed surface. To evaluate the energy dissipation, however,

the horizontal component of the load and deformation of the

surface must be considered.

At each point on the surface under the load there is a

vertical component qv = q c'ýso and a horizontal component

qh q sino, where tano = - Ouz/6x is the slope of the

deformed surface (Fig. 1.7). With the restriction to small

Sqv •q

qh

FIG. 1.7

46



slopes, the total vertical load isj N q f(x.3 y) dx dy
NA

The resultant horizontal force at the contact is

S•Uz(X.,y) uF q(x,y) 3x dx dy (1.47)

A

It is convenient to introduce dimensionless forces N and F,

given in terms of the quantities of (1.29) by

l-Vo 1 N* f
N _ 1-v0  1 2 =ffQ(erI)de dri (1.48)

I o (7T ()2 Ai

I F 1- 1= -

Po0 r (VT)2 A Q-4±'ae d (l.49)A
In a two-dimensional problem, the body is an infinite cylin-

der (not necessarily circular), with axis in the y direction.

Then, N and F are forces per unit length, given by

Sl~~~-Vo * f
N o 1 Tf Q(e)de (1.50)

Sl~~~-Vo1N
i F = iJo 1" N•= Q()de (1.51)

00
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The force F* is entirely a consequence of the visco-

elastic behavior of the basc. The deformation wil: not be

symmetric, even for a symmetric load distribution, because

the viscoelastic material experiences delayed recovery as it

moves under the load. There will always be a horizontal re-

sultant of the contact pressure, acting on the moving base

(or body) opposite to the direction of motion. This will be

shown in the two-dimensional case for simplicity (the three-

dimensional case is similar). From (l.42a,b),

0

0 0

Substituting this in (1.51) gives:

00 00 0

The first tei'm is the contribution from the Initial elastic

response:

F =11 Q(d),(d) j ; interchanging e and •' gives

00

0 =(•)Q(•Z) - ffQ()Q(W ) _ = Fo
00 00
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Thus, F = 0 ; there is no contribution from the elastic

response. Then,

F =ff Q(e)Q(Qt) f dedt (1.52)
00 0

The horizontal force depends directly on the function y(•)

which characterizes the viscoelastic behavior of the material.

For an elastic material, y(C) = 0 , so F = 0.

At the contact, the force F* acts to resist the motion,

and can be referred to as a "resistance" or "friction" force.

A convenient dimensionless measure of F* is the coefficient

of friction X, givan by

F = = F (1.53)

This coefficient varies with the velocity, total load, and

load distrIbution. With the restriction to small slopes,

6uz/ýx = 'v/3e << 1 , ana thus F* << N* (x<< 1). This

agrees with observed evidence; for example, resistance to

rolling on hard surfaces is usually found to be very small.

For equilibrium, there must be resultant horizot.tal

forces equal to F* acting on the body and on the remote

boundaries of the base (Fig. 1.8). These forces are needed

to move the b3se and hold the body .fixed (or, alternately,

to move the body and hold the base fixed). Work is done

49

[



)

F* •_Vz Base

FIG. 1.8

on the base at its remote boundaries, at a rate

W = VF* = - V q(x,dy)(ýUz/ýx) xdy (1.54)

This equals the rate of energy dissipation within the visco-

elastic base. No work is done at the contact, since particles

are moving under the load at right angles to the direction

of the load.

In the limiting cases of very fast or very slow velocity

(V-+ 0 or V-* c) it was shown in Section 1.4 that a viscoelastic

solid behaves like an elastic solid, and the viscoelastic solu-

tion is the same as the elastic solution. As these limits

are approached, it is a plausible expectation that energy
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dissipation and resistance to motion will decrease to zero,

since they are zero in the elastic problem. This is now

shown to be the case. From (1.52),

202

F = 1o 1 q(x)q(x') .x' x (1•55)
00 0

For V =0 ,this becomes

l-Vo i0 f dxdx'•o •= y(C)dC q(x)q(x') xx

400 00

The double integral has been shown previously to be zero, so

F* = 0 . For V = o , the integr'and vanishes, so again

F* = 0 . The resistance increases from zero as V increases

from zero, and decreases to zero as V gets very large. It

will have at least one maximum at some intermediate velocity.

For a given load, N* is fixed, so x = F*/N* has the same

behavior as F*. The resistance to a given load, due to

energy dissipation as the velocity varies can be seen best

by plotting X vs F; Fig. 1.9 3hows how this might appear.

x

V
FIG. 1.9
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There is an alternate view of the way in which work is

done on the moving viscoelastic base. The load q(x,y) is

taken as strictly vertical on the deformed 6urface. Particles

under the load -have a vertical velocity U* = - V Uz /ýx

(1.38) in the direction of the load. Thus, a load element

qdA does work at a rmte

auz

dW = U* q(xy)dA = - V (•-•-) q(x,y)dA

The total rate of work done is then

S=- V ff ( -) q(x,y) dxd;
A

Ihis is (in the linear theory) the same result as before

(1.54). But here the work is done at the contact of load

and base; no work is done at the remote boundaries. Thus,

the source of energy is quite different from before. This

alternate view gives rise to difficulties in physical inter-

pretation. The vertical pressure is not normal to the de-

formed surface, so there are tangential stresses. This con-

tradicts the assumption of a perfectly frictionless contact,

since the base and load are in relative motion.

].6 Examples of Moving Loads

The results given so far in this chapter apply to any

load distribution and any linear viscoelastic material. Some
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examples of particular loads are now considered. The material

used will be a general Voigt solid. This adequately repre-

sents characteristics of actual materials such as polymersI,

while allowing results to be expressed in analytical form.

For such a material,

m
5 i = f e f ie (1.56)

The steady state surface displa.cement (1.37) is thenIm

00
v(•,1) = ve( n) +i=z fi j e-i ve T+')dC (1.57)

I Integrating by parts gives

m f e m fi
M'1,) = (1 + z 5i ) ve( ,n) + Z b vV(av;bi)

i=l bi1 i-

(1. 58a)

j where

SThe elastic part of the displacement gives no contribution

to the resisting force. Thus,

F V( i (1.59a)
Im fi- FV(bi)
I i b i

4 Ferry [9] and Tobolsky [34] give creep or relaxation
data for many polymers, with discussions of their properties
and references to original literature.
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where

Fv(b) = Q.( TO k inii dtdrj (1.59b)
A

The results (1.58), (1.59) are sums of terms which are

identical except for the value of the constants fi and bi;

there is one term for each exponential in (1.56). In -h,;

examples to follow, only a single term is indicated, and tb-

functions vv(trI;b,) and Fv(bi) are evaluated for an arbi-

trary value of b. The results thus presented correspond to

a single term in (1.56), If., y(() = fe-b. A more

general model is then easily treated as a sum of terms, as

indicated in (1.58), (1.59).

Even when the material behavior is expressed in the

simple analytic form (1.56), the surface displacement in a

general three-dimensional problem cannot usually be given

in simple terms. This is evident even in the most elemen-

tary case, that of a concentrated load at the origin (Example

A). Therefore, the other examples will be two-dimensional

(plane strain) prob.ems, for which results can be given in

relatively simple expressions.

A) Three Dimensions Concentrated Load

q(•,1) - 26(•)6(T) 5

Ve(v/) 2+'i~2 A'
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The integral in (1.60) has no simple evaluation inIthe gSneral case; some special cases are given.

Iv(•,o) = - e• El(b) , >o

== , <

For 0 =0:

v = n- + f e (Son- YoJbil]

asis Weber's Bessel function of the second
okind, order zero.

0S is Struve"s function of order zero.

a It- o, v(oj) ~ - f " log IbntI

as I'l -'0, v(or) T (1 + f 1

a sr 00' "MT (bl ~ +(f)

The surface displzement is infinite at the origin and

all along the negative • axis; at all other points it

is finite. Some typical surface profiles are sketched

in Fig. 1.10.
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0=0
"Surface 0
Profiles

Parallel to e-axis Parallel to I-axis

FIG. 1.10

B) Two Dimensions Concentrated Load

Q(W) = 6(V)

ve(•) - ve(•o)= log to arbitrary

v() - V(MO)= (1+ ) lo+ [eb (-bt)-eb i(-bec)]

(1.61)j -t

Ej(-x) - - -- dt is the Exponential Integral.

x

as 0 , v() - v(o) log

as ItJ I VW~ M ( 0  (1 +f£ log 0

A surface profile is sketched in Fig. 1.11.
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v(•)

Example B Kelvin solid

FIG. 1. 11

A concentrated load is an idealized case which is use-

ful for some considerations, and the results can serve as a

fundamental solution to be integrated for more general prob-

lems. At distances far from the load, the results for any

distributed load are nearly the same as those for a concen-

trated load. Near the load, however, the actual distribution

is significant. A concentrated load is a singularity which

has an infinite displacement at the point of application.

The elastic displacement under a concentrated load is also

infinite. Thus all points of the viscoelastic surface that

-have passed under the load retain infinite displacement. In

the two-dimensional problem, the concentrated load is actually

a line load; the singularity is not quite as pronounced. The

displacement immediately under the load is infinite, due en-

tirely to the initial elastic response. However, points that

have passed under the load have recovered to a finite dis-

placement. If there is no initial elasticity, the displace-

ment in the two-dimensional problem is finite even under the
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load. For example, a model with a single Kelvin element

gives:

v(W) - V(to) = log + ebg Ei(-bt)- eb oEi(bto);

for e=0 v(O) - V(Eo) = -y + log to -eb O Ei(-beo)

A sketch of this displacement profile is shown in Fig. 1.11.

A distributed load can be considered an integral of a

concentrated load. The singularity is no longer present,

and displacement under the load is finite. Two simple cases

of distributed loads are given in examples C) and D) as two-

dimensional problems. The resisting force and coefficient

of friction are evaluated in -se examples, along with the

surface displacement.

C) Two Dimensions Uniform Load

Q(W =Qo0 0 o< < X

N=Qo N

IF•1 /
ve(e) ve(O) -Qo [(-•-)logj - Floglel + N log ?d

00
1 [v•) -v 0)] = (l + f)[(-?)logJe-NI - elogltI + N log N]

(1.62)

+ [log(bLe-I) --e(- i{-b'-X) - log bljI
b

+ ebeEi((-b) - log bN + e-b' Ei(bX) - -y
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! , v(•)
I

Sketch of displacement

The low point (where av/ae 0) always occurs for

0 < < The slope Gv/•3 is infinite at =0

and X.

F =o - Q de Q0(v(0) -()

0

F 2fx = =Q -2 hl(bA) (1.63)

where hl(x) [2-y +2 log x-eXEi(-x)-e-XE1 (x)]

as x-0, h1hi-2-y -logx+x+ .

11 6 0

as x-co, hx ~ - -Yx • . -
as x-® , l(X) ~•(log x+• x - -

x x

See Fig. 1.12.

-Y= .577216.. , Euler's constant
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D) Two Dimensions Elliptical Load

8 N
Q•, = 0 ,,•x• < •,< X

22•F [ve(•) - ve(°)] = - + x• , o

22

Fcosh- 11<-

TN [vW V(O)] (l + F) (_2 + Xt)

f--[-• k -bX/2 be-'

+b2 + Xe (eb _l)K(b-)] 0< J K
b 12

(1.64)

(1 +(-)(-2+x + I- / --A

- •- cosh -1

-b?/2 (bbX)

+--f [-2e + Xe-b/ (e be - 1)KI(bl)

2e/X-1

_-1 b? eb( -!2) f vu2- 1 ebU/2 du]

r+ 1 for t
lower limit of integral is - 1 for t < 0

- 1 for 6 < 0
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Slopes are finite at

0,(?)

Low point occurs for

0 < Sketch of displacement

I = : N 8~ (1 2K,(b)I b,] r h )i ~ ~~~~~~(bX)• •- •r,•r 2

I where h2(x) 1 - 2KI(X) I(x)]

as x 0 h x (.6159 - log x) -. 0

!ii x-o, h2(x)s~_l(i 0
h2(x) X(1 x1

} ~.6.

S.5 i(X)

.3-

.2 h2(
I

.01 .i.1 10 100

x (log scale)

FIG. 1.12l1



Some results of examples C) and D) indicate general

conclusions that apply to other distributed loads. The dis-

placement relative to j = 0, v(t) - v(0) , is everywhere

finite in the vicinity of the load, and increases like

-logjtj as I.l * • Example C) has a discontinuity in the

pressure, a sudden Jump from zero to Qo , at each end of

the loaded area. This results in an infinite slope )v/ýe

at each end where the Jump occurs. This is a general result;

if there is a finite Jump in the load at e = e 0 .he slope

will contain a term logle-tol , and will thus be infinite

at to " In example D), the pressure is continuous and goes

to zero at the ends; the slope is finite everywhere. In each

example, the pressure distribution is symmetric about the

center of the loaded area = /2) . However, the displace-

ment is not symmetric because of delayed recovery in the mov-

ing viscoelastic base. The low point in the surface profile

will always be displaced downstream from the center of the

load. The velocity is conveniently representea in dimension-

less form by VT/A = l/?A . The variation of resistance with

velocity for a given load is then shown by a plot of X vs

1/X . For the two examples, this variation is indicated by

the plots of hl(x) and h 2 (x) in Fig. 1.12. Each example

ohows that x increases from zero, reaches a single maxi-

mum, and then decreases to zero again, as the velocity goes

from 0 to co
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CHAPTER II

MOVING LOADS ON A PURELY VISCOUS MATERIAL

The problem of a load moving on the surface of a purely

viscous material is considered in this chapter. By "viscous

material" is meant an ideal incompressible viscous fluid, in

which stress is linearly related to strain rate. This is a

special case of the general viscoelastic fluid considered in

Chapter I. Such materials as dough or road asphalt may some-

times be treated as purely viscous. Even metals may be con-

sidcred viscous fluids when subject to high speed impact

(Abrahamson (1)). The problem is treated as one of slow

steady motion of a very viscous fluid, so that inertia forces

are negligible and linear theory can be used. As in Chapter

I, the load q(x,y) will be normal pressure on the initially

flat surface z = 0 of a base of infinite extent (see Fig.

1.1).

The principal interest will again be the surface defor-

mation as tha load moves with constant velocity V in the x

direction. The base is undisturbed for t < 0 , and the

load is applied at t = 0. The resulting deformation will

vary with time due to both the motion of he load and the

viscous nature of the base. The relative simplicity of the

purely viscous material allows solution of some three-

dimensional problems. These give some idea of the much
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greater difficulties encountered in the same problems with

a general viscoelastic material. In Section 1.4 it was

shown that the question of a steady state for a general vis-

coelastic fluid can be answered by considering the same prob-

lem for a purely viscous material. In particular, since

there is no steady state for a semi-infinite base, the pos-

sibility of a steady, when the base is a viscous layer of

finite thickness is considered.

2.1 General Solution for Viscous Base

For an Incompress~le viscous fluid with viscosity r*,

the relations between stress and strain are

s = 21* eij = 0 (2.1)

For an incompressible elastic solid, with v =

siJ = 2• ei , e = 0 (2.2)

In a quasi-static problem with prescribed tractions on the

boundaries, equilibrium and boundary conditions are the same

for elastic and viscous materialsat any instant of time.

Also, for an elastiu material Euj = 1/2(u ,j + uj,i), while

for a viscous material iJ = i/2(Ci,J + aJ,i). Comparison

of these relations makes evident the "visco.us analogy" for

slow motion of a viscous fluid: the viscous solution is the

64



I

same as the incompressible elastic solution with t replaced

by 11 , v = 1/2 , and strains replaced by strain rates.

In particular, elastic displacements become viscous veloci-

ties. This viscous analogy corresponds to the use of the

associated elastic problem for general viscoelastic materials.

In moving load problems, the surface displacement for

an incompressible elastic material is ue(x*-Vt,y*) in

coordinates (x*,y*) fixed with the base, where ue(x*,y*) =

(1/2pL) P(x*,y*) is the displacement for the same load at

rest. Thus, from the viscous analogy

u iX.Yt Y7P(x*-Vt, y*)

Since the surface is undeformed at t = 0, u z(x*,y*,o) 0.

The viscous displacement is then

t

u (x*., y*,It) = f P(x*-Vt' ,y*)dt'

0

Changing to coordinates (1.1) mcving with the load

t
1 f P(x+ Vt - Vt") lt'

= 2TI* JV
0

x+Vt

1 J P(x,,y) dx, (2.3)Uz(X''t) =2T*V

x
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In hleoe cooi-dirates, it will be more convenient to think of'

the load at rest (with the origin included inside the loaded

area), and the oase moving under it with velocity V in the

negative x-direction. The base may be either semi-infinite

or a layer of finite thickness.

The general solution for surface displacement is given

by equation (2.3). This can be expressed in terms of a

function G(x,y), defined by

x

1 0J P(x, y) dx' (2.4)
0

Since P(xl,y) is (except for a constant factor) the elas-

tic displacement for the given load distribution, G(x,y)

represents the area between the initial and deformed sur-

faces of an elastic base, from x' = 0 to x' x , in a

slice parallel to the x-axis at the given value of y (see

Fig. 2.1). Then

uz(X,y,t) = G(x+Vty) - G(x,y) (2.5)

The term G(x+Vt,y) represents a "wave" moving with the

base. The other term G'x,y) is a displacement of the same

shape, fixed relative to the load. The difference of these

terms gives the net displacement, which varies with time as

the "wave" is carried downstream (see Fig. 2.2). If the

area under the complete elastic curve is finite, so that
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ing value as t -* , and there is a steady state, If

G(.,y) is infinite, there is no steady state.

When the elastic displacement is always positive (this

is the case for a semi-infinite base), G(x,y) is a monotonic

increasing function as shown in Fig. 2.2. When the base is

a layer of finite thickness, the elastic displacement may be

negative (rise above the initial surface) at some distance

from the load. Then, G(xy) will have the form shown in

Fig. 2.3. Let Gl(y) = G(x,y); there is a steady state

if this limit exists. If G > 0 , the steady state dis-

placement is u (x,y) . The result is a

depression of finite depth extending infinitely far down-

stream from the load, and zero displacement far upstream

from the load (Fig. 2.4a). In the case shown in Fig. 2.3,

it is possible to have G = 0. Then, the steady state is
00

uz -G(xy). The displacement is zero far from the load

in any direction, and a definite localized hump is left near

the load (Fig. 2.4b).

When the load is symmetric with respect to the y-axis,

so that q(x,y) = q(-x,y), the elastic displacement will be

symmetric (thnE even in x): P(x,y) = P(-x,y). Ti en, the

function G will be antisymmetric (odd in x): G(x,y) =

-G(-x,y). In this case,
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uz(-x-Vty) = G(-x,y) -G(-x-Vt,y)

= -G(x,y) + G(x+Vt,y)

- u (x,y)

Thus, the viscous displacement will be sylmmetric with respect

to a line parallel to the y-axis, halfway between the fixed

origin (x=o) and the point on the base originally at the

origin (x = -Vt). Thl.: line of symmetry, to be called-the

trough line, is then x = - Vt/2 . It moves downstream at

half the velocity of the base material. The displacement

along the trough line is

u t4s) 2G(T t.Y (2.6)•z( ½Vt,y,t) -- 2½vt,y) .6

If G(x,y) io a monotonic function, this is the maximum

displacement for given y Fnd t (see Fig. 2.5).

~~~~~ -Vi -Zit 42 #-___

viscous displacement
(fixed y,t)

FIG. 2.5
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For a pressure, q(x,y) on a semi-infinite base, the dis-

placement function is

1x) [ q(7" ,y') dx'dy'P(x,y) = •- •/(x-x,)2+(Y-Y')2

A

The displacement is always positive [for q(x,y) > 0], with

a maximum near the load, and approaches zero far from the

load (see Fig. 2.1 for typical profile). Vor large

r = v/X2y2 , P(x,y) is nearly the same as for a concen-N

trated load, i.e., P(r) N as r-a , where

N = ff q(x,y)dxdy. Thus, the function G(x,y) is nearly
A I

the same far from any distributed load as for a concentrated

load N at the origin. It is useful, therefore, to consider

the case of a concentrated load in some detail.

For a load N at the origin,

P(x,y) =N 1 N 1

2w r2+y

Then, from (2.4)

xN '1dx1 N [x +/x-+V1
G(x,y) = [Irw*V fk.*N log[ ...Sx 72+y2 0L lyl
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I

From (2.5),

4rT V u (x,y,t)= log x+Vt + V(x+Vt)-'J Y_.

For a given y, G(•,y) is infinite, confirming the conclusion

in Chapter I that there is no steady state. At any point on

the surface, as t

4rlN*V uzx-2-o x x+

N (xyt) log Vt - log(x x/+Y2 + log 2 + 2t +

(2.8)

Thus, the displacement increases without limit as t-+ w.

It can be shown that the vertical velocity au z/t of the

surface approaches zero, and the surface slopes (u z/ax,

auz!3y) approach finite values a- t-* o .

For a given finite time, the displacement (2.7) is

positive everywhere; it approaches zero far from the load,

as lxi or lyl " . Thus, appreciable srface deformation

occurs only in the vicinity of those points on the surface

that have passed under or near the load. The displacement

is symmetric about a trough line at x = - Vt/2 , as dis-

cussed in ecztion 2.2. The maximum displacement at any given

y and t is, from (2.6)

! ~Uzlm = N•r. logi,- t .21yI 1= 2lr•i*V tan lhFI•
mix 27v'V ~ +( 2y/Vt )

] (2.9)
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Because the load is concentrated at a point, the elastic dis-

placement is infinite at that point. The viscous displace-

ment is thus infinite at all points that have passed directly

under the load, i.e., for y = 0 , -Vt < x < 0. The contour

lines of constant displacement at a given time are ellipses,

with common foci at the initial and present load positions:

y = 0; x = 0, -Vt. The contour ellipse for (4ri1*V/N)uz = D

has a constant eccentricity E =(eD-lVeD+l), and an expanding

major axis Vt/2e. Figure 2.6 shows typical profiles and a

plan view of the surface for a concentraced load.

Except near points that have passed under the load.. the

results for a distributed load (symmetric about the y-axis)

are qualitatively similar to those for the concentrated load.

The general shape of the surface is like a shallow bowl, with

displacements decreasing monotonically in any direction from

the low point at y = 0, x = - Vt/2. The surface approaches

its initial flat position far away from the loaded regions.

As time goes on, the displacement increases without limit,

but at a continua]Ly slower rate. For the semi-infinite base,

there is no localized "hump" formed near the load, but rather

a downstream depression that is continually deepening and

moving away from the load. The contours of constant dis-

placement will be simple closed curves, symmetric about the

trough line. To demonstrate these results for a specific dis-

tributed load, an example will be considered in the next section.
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FIG. 2.be

Surface displacement., fixed t. (eqn. 2.7)
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2.3 Uniform Pressure on a Circular Area

As a three-dimensional example of a distributed load,

a uniform pressure qo acts on a circle of radius a.

Then, q(x,y) = q(r) = qo 0 < r < a

where r = . The viscous base is semi-infinite.

The following dimensionless quantities are used:

e x= 1 = [ r E /,2+2 Vt (2.lOa)
a a a +=•a

w(p)=- u(r) (2. lOb)

g n = 2.fl.V u(x.,yt) (2.10c)
q, a

qoa 2 
"

The elastic displacement can be expressed in several

ways. The most convenient form for use here is derived using

the Hankel Transform (Sneddon [28], p. 469), and gives

00

oop) f J1(u du (2.11)w(P) = I lU o( U) -

0

This integral is a srecial case of the Weber-Schaftheitlin

discontinuous integral (Watson [35], P. 398), and haz the

series form
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100duF 1 12jil(u) Jo(pu) u 2F1  p

0
- 2F (½,- ~; 2 ; p2)' p <1

BO
2

2 J P 1  
(2.12)

where
i ~~ 0F ab ;x r a+k) r(b+k) r(c) x k

2F, (a,b; c; x) 1 + k=l ta) r(b) r(c+k) k!

is the hypergeometric function. Thus,

w(P) = 1 - C Ck o2k , _< ij k=l

_ ~ C 1+ D -(2k+l) >1
k=l

22 , p:l (2.13)

where 1 [F(k4)] 2  1 [(k4)1 2  2k-I

Ck = (k') 2 (2k-l) -k 2 (k') 2 (k+l) 2(k+l) Ck

(2.14)

(Numericalivalues of C and

Dk are given in Table 2.1 at q r

the end -f the chapter.) A pro-

file of the elastic displace-

ment is sketched in Fig. 2.7. FIG. 2.7

75



Since P(x,y) = 2" ue(r) qoa w(p) , (2.4) and (2.10c) give

g(,) =n f w( 7 -2+2) d C (2.15)

0

and (2.5) and (2.10&; give

v(er) = g(e-+r,'q) - g(Mr7) (2.16)

The function g(ý,rn) is independent of any physical paran-

eters, so the numerical values need be determined only once

for all problems of uniform circular load. Then, the viscous

displacement at any point on the surface for any time is

Uz2(X,y,t) -oa2.[ g(X+Vt ,.) -g(K ,

a aa a)

Because there are two different expressions (2.13) for

w(p), one for p < 1 and one for p >_ 1 , there is more

than one form of g(e,q) evaluated from (2.15). Since

g(e,Tl) = - g(-J,Tj) and g(g,rj) = g(•,-r), it is sufficient

to evaluate g(t,q) for (e,71) in the first quadrant only.

There are three forms for g(j,rI) , one for each of the

three regions shown in Fig. 2.8.

Numerical values of g(er) can ' (2) ,

be determined from the expres-

sions which follow. Some (3)

values are given in Fig. 2.9,

and contour lines are sketched FIG. 2.8
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(i) L.•. , 0 < r<_ , o0 < <_

g E gl(k,(l)=- zdC
k=1

00

f(C2+n2)k d•

1
0

Let 2) k k 2#
Lt ik(,n) =) d = e2k z (k) (a)

0 
J=o

(2.17a)

ik(e,= ) e2k+l (2.17b)

Then 00

z= - 0 Ck IC(•,T) (2.18a)k=l1

g1(t0) 2-k C (2.18b)

i (~2) p••_ , T>

r - ~~~00 2 2'.~~g2(t' 1) = 12 J k(C-+T)

lgTI z f k (C2+TI2) ( d4)k= 0
0

Let 2+Ik. •n (2•2 dC (TI >__ 1) (2.1l9a)

0
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With the Zubstitution T = cot ¢ , this becomes

r/2
2 (i = - Js2k-1 de (2.19b)

where e = tan- -1 (see Fig.. 2.8).

For numerical evaluation, this can be expressed

in terms of the incomplete Beta function Bx(a,b).

With x = sin2e (0 < e <e _•),
e

sin 2k- € do = Bx (k,5)
2I

0

Then, (2.19b) becomes

1 2 1 TI-2k [Bl(k,l) 1Bx(k,)] (2.19c)zk 2•q =_

Values of B (k,l) are tabulated in Pearson [28] for
X 2

x= O(.O1)l..0, k 1(1)50.

As e 1, I2(e,,) 1Q2k -~,! 1 E-2k + 2k+l T12 (2k+2)S2 ½2 2k 4(k+l) ...

As a- 0, 1k2(ýT,) e ,-(2k+l) 2k+l I-(2k+3) 3 +

Using (2.19a,c),
00

g, = e. log + Z D Ik (,TI) (2.20a)
k=l
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3.0. .

.2.0

1.o0U

/ "- .6

0-
1.0 2.0 3.0 4.0 5.0

Lines of constant g(ý,r)

for uniform circular load

g(-=,n) ; g(e,- ) - g(e,n)

FIG. 2.9
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o r) 1 -2kI I III
g2( 1 logtan g + E Dkri- [BI(k,-g)Bx~kpgJ

(2.20b)
where x = sin2e.

For a given e, as p g log tan 0+ 1 C P-2

2 sin

g-in g !n ,)Cw vC

3I

0I

3 1 -22 2k (k1-2

As%•- , (Ik( , T) +I f D (k I+ "'"

1=1
Let 13eT)(C 2 +,r)k+.2) _C _i 11

k!

1-2k11
- I I.r B,2(k, 1) -bs2(k,.!)J (2.21a)

21

where s 111p

I13 MO) 1 1-e-2k (2.21b)

k]
As e 1D P ~.fQ I 2kB 2 I _ j_ e-2k +

S3oS i i i i i i -( k-



nThen, g3 +; = +(vr -,r, ) - , . ( +. .

Z • D I, (ari (2.22a)k=l k

0 Ck D00 k -2k
71 - - + I og~g3 - 2k+1 2k -2Sk=iL k=l

(2 . 22b)

As -o for a given n, both g2 and g3 behave like

1/2 log • and increase without limit. This again confirms

that there is no steady state.

There are several regions of Lhe surface, each having

a different expression for the displacement v(],q,¶) =I

g( )- g(•j) ,because of the different forms of g.

These regions are shown in Fig. 2.10a for 0 < T < 2 ,

and Fig. 2.10b for T > 2. Displacements are symmetric

about the • axis and the trough line •=-t/2, so only the
4I

quadrant Tj > 0, > - T/2 is considered.

IV

FIG. 2.10a FIG. 2.10b
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I. Po-ts always urider the load (beginning at -v 0).

V(eT,-r) - gl(et,T) - 1l 71

II. Points never under' the load.

v, g2 (•-trn) - g2 (•,r) for r1 > 1

= g 3 (e+¶',T) - g3 (e,,r) for r K 1

(Both cases give the same analytic expression.) 4

III. Points originally outside the load which have moved

under it.

vr,') =g 3 (e+¶,r) -g(,)

IV. Point originally outside the load which then moved

under it and are now outside again.

=g 3(e+¶,r'r) + g3 '(jej,'l)

Displacements and slopes are continuous across the

boundaries of these regions. The me:imum displacement

occurs at • = -'/2, j = 0:

[ 0k 2r2 k i

Vmax= 2g(Z,O) = I - Z -- () O <2) 2

- C D DD
2[1 _(?-(k 2k _, I o (k - lo-g
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Tile resulting deform-ed surface is smooth, Withl fj~n.te

displacement everywhere for finite T. As T-
1.

v(e,•,1) • • log T at all points on the surface. The

general description in the last paragraph of Section 2.2

applies in particular to this problem, and conclusions given

there can be verified directly from this section. At any

finite time, the displacement far from the load is nearly

2the same as for a concentrated load N = qoVa!0

2.4 Base of Finite Thickness

When the base is semi-infinite, the viscous material

flows without limit due to the vertical velocity resulting

from the load on the surface. There is no lower boundary

to the base, so the vertical displacements continue to in-

crease with time and no steady state is reached. If, however,

the base had a lower boundary, so that flow is constrained at

some depth below the surface, vertical displacements would

not increase indefinitely. It seems quite likely on physi-

cal grounds that this situation would lead to a steady state

when the base is moving horizontally under the load. The

base of finite thickness does of course represent a real

situation more closely than does the semi-infinite base.

The thickness of the base is thus a critical factor for

estabiisb'rent of a steady state in problems of this type,

when the base is a fluid material
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To investigate this situation more closely, the base

will be considered as a layer of constant finite thickness

h , but extending infinitely far in the x and y directions.

As before, the load q(x,y)

is applied to the otherwise q(x,y)

free surface z = 0 , and the

viscous layer moves with velo- iý '7 7777727-7-77 -,--//-/' i

city V in the negative x direc- Iz

tion (Fig. 2.11). The bottom F 2.11

of the layer, z = h , rests

on a rigid support, so that vertical velocity and displace-

ment are prevented. One condition is thus

az (x,y,h) = 0 on z = h (2.23)

The way in which the layer is supported at the lower boun6dry

is quite important. The two extrzenmes are considered here;

other possibilities will fall in between. One extreme is

rigid attachment so that tangential displacemients are pre-

vented. This gives the conditions (fo.o a moving base)

y(x ,y,t) = -V, Uy(X,y, h) 0 on z = h (2.24a)

The other extreke is no attachment (i.e., frictionless

support), so there will be no tangential stresses. Then,

z xyh) = z(xz3yh) = 0 on z = h (2.24b)
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The problem of an axisymmetric load will be considered

in more detail. The results for other distributed loads

would be qualitatively similar. The load is q(r) on a

circle of radius a. The dimensionless quantities (2.10a-d)
are used. Also, let q(r) = qo Q(p) , where Q(p) is di-

mensionless and q is some measure of' the load magnitude.

Following the analysis of Sneddon [28], the incompressible

elastic solution is determined using Hankel Transforms. The

2 resulting surface displacement is

w(p) =fQ(u) J(pu) F(Xu) du (2.25)

0

h
where - h anda 1

-(u) JQ(p) Jo(pu) P dp (2.26)

0

Jl(U)

For a uniform load qo, Q(p) = 1 and q(u) -

The function F(?,u) depend-3 on the method of support. For

rigid attachm(!nt (2.24a)

F(x) cosh x sinh x .. x (2.27)
x2 + cosh-x

2 x3 9 x2 +) ... as x--0

L-'kl+2x+2x )e -2x+. sx 0
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For frictionless support (2.24b)

F(x) 2 sinh 2x (2.28)

1 x ( -1
2F 7;l- x +.) a s x -9.O

1- 2(l + 2x)e- 2x +... as x -1.0

In both cases, F(x) increases monotonically from zero and

approaches 1 asymptotically as x gocs from 0 to .

For a semi-infinite base, ?ý = co and F()Au) = 1 in each

case. Then, for a uniform, load, (2.25) reduces to (2.11).

From the elastic displacement (2.225), equation (2.15)

gives I

g(~,r ( I f ý J(u) F(?\u) Jo( u) du dC (2.29)

0 0

The possible st-eady state depends on g (rj) =_lrn~,7)

Letting co in (2.29), and using

= J(~ J0 ~)+ 2 Z

Jow T 0 ~k=l e jk T

fJk(uE)de
0

the integration in (2.29) can be ca.-ried out. This gives

g,(r, = 4J(u) F(?\u)[J (url) + 2 Z1(2.30)
0 ~~k=1 uT
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The integrand of (2.30) is finite, continuous, and behaves

like u-(m+I/2) (m > 1) as u-o . Although (2.30) cannot

be evaluated analytically, it can be verified that g(r,)

has a finite value. Thus, the base of finite thickness does

reach a steady state.

The nature of the steady state depends on the value of

9 (TI), as discussed in Section 2.1. This would require a

numerical ev'luation of the integral (2.30), or of the sur-

face displacement and the area it encloses. For frictionless

support, F(?,u) of equation (2.28) can be approximated by

exponential terms (Sneddon [28]), and the resulting integrals

can be evaluated. This gives g,(71) > 0 for any 71 , thus

indicating a steady state with a finite depression downstream

(Fig. 2.4a).

The two-dimensional problem can be treated in the same

way. The elastic displacement can be determined using Fourier

transforms. The result is similar to the axisymmetric prob-

lem; for a layer of finite thickness, the expression for dis-

placement (corresponding to equation 2.25) is the same as

for a semi-infinite base (corresponding to equation 2.11) with

I the additional function F(?ýu) . For the same support con-

ditions (2.24a,b), F(Au) is the same as for the axisymmetric

problem (2.27, 2.28). Thus it is reasonable to expect that

the effect of the kind nf support at the lower boundary(z = h)

on the nature of the steady state will be similar for two-
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dimensional and three-dimensional problems. The two-dimen-

-sional problem of a uniform load on a base of finite thick-

ness, rigidly attached, has been solved by Abrahamson and

Goodier [2]. This solution gives g = 0 , and the

reSult ing steady state is a localized hump near the load

(similar to Fig. 2.4b).

These examples suggest general conclusions about the

-steady state displacement for any load distribution on a

base of finite thickness. When the base is rigidly attached

-at- the lower boundary, g (•) = 0. The deformation would

-be loca-lized, forming a hump at the load (Fig. 2.ta). When

the lower boundary is not attached (i.e., frictionless

-support), g (0) > O. There Would be general deformation

-.downstream from the load, forming a depression of finite

-depth (Fig. 2.4b). The overall form of the steady state

dispiacement is thus determined by the way in which the

base is supported at the lower boundary. Regardless of the

-kind of support, a purely viscous (and thus any viscoelas-

tic fluid) material of finite thickness will always reach

a steady state.
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CHAPTER III

MOVING CONTACT PROBLEMS

When a moving body of given shape is pressed into another

(stationary) body, the problem is one of "movi-ig contact."

There is some load distribution within an area of contact

where the deformed surfaces of the two bodies must match.

If one or both bodies is viscoelastic, dissipation of energy

-- . -will produce rei"tace to the moving body, and in general

the contact conditions will change with time.

In this and following chapters, a particular viscoelas-

tic moving contact problem will be considered. A rigid body

moves with constant velocity V in the x-direction over the

initially flat surface (z=O) of a semi-infinite viScoelastic

solid. It is held in contact by a constant normal force N*,

which produces a contact area A of unknown shape, extent,and

placement. The surfaces are "frictionless" (i.e., no tangen-

tial stresses) and non-adhesive, so the load distribution is

normal pressure q(x,y) > 0 within A. The moving contact is

thus a Moving load problem as discussed in Chapter I, although

in the contact problem the load q is initially unknown. It

was shown in Section 1.4 that a steady state is always possi-

ble; only these will be considered. Then, the contact area

and pressure do not change with time. Once they are deter-

mined, the "friction" force F* (which resists the motion)

can be found as in Section 1.5.
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3.1 Formulation of the Steady State -Problem-

It is again convenient to consider the rigid body stac;-

tionary (in x,yz coordinates), with the base moving in the

negative x-direction at velocity V (see Fig. 3.l). For some e"

fixed orientation of the body, its lower surface has a knho-wnr-

shape given by z = constant-+ w*(x-b,y-c) , wherea (ibc) are

the coordinates of a fixed (but arbitrary) reference point. :P-

in the body. The body is held in contact with the moving

base by a load N* normal to the initially flat surface of

the base (i.e., vertical) and any horizontal load F* (the-

resisting or "frictiOnil force) that may be necessary. F

a given N*, the size, shape, and placement Of the contact

area A is initially unknown, except that it must of course

coincide with some part of the surface of -th-e rigid` b0d y.

In the actual analysis, it wll be convenient to allow the6-

rigid body to rotate through a small angle about the horri-

zontal axis, from the orientation implied by the funti-on

i ~Nrigid •

I c(ontact
e• rea A- ]

Z+

FIG. 3.1
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w*(x,y). The anioun', and axis of this slight tilt is also

initially unknown.

To formulate a definite problem, the conditiýons of con-

tact must be further specified. There is nc adhesion between

the contact surfaces so q(x,y) > 0 inside A. If the sur-

face were sufficiently uneven, breaks in contact would occur

within the overall area whenever complete contact required

negative pressure (adhesion). It is postulated here that

the surface is such as to maintain contact over the f'ull area.

This means the area A will be a simply connected region,

bounded by a simple closed curve called the "edge" of the

contact.

To insure a unique solution to a given contact problem,

only smooth contacts will be considered. For a "smooth" con-

tact, by definition, the displacement uz and its derivatives

U ,Uz/x and 3u/iay are continuous across the edge of the

contact. This requires the pressure q(x,y) to be zero all

along the edgeI. The alternative to smooth contact is a

sharp corner at the edge, with infinite pressure there. If

the rigid body had such a sharp corner, any vertical load N*

(above a certain minimum) would give proper contact. This

possibility is excluded by requiring smcoth contact.

1 A finiLe non-ze-Vo pressure at the edge wou'- produce a

continuous but vertical slope (see example C, Stction 1.6),
which would not in general fit the lower' surface of the
rigid body.
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The moving contact is a mixed boundary value problem,

since normal displacement is prescribed over part of the sur-

face, and normal stress is prescribed elsewhere. For the

quasi-static, steady state problem, the equilibrium and

strain-displacement relations to be satisfied are

j, O 0 = 0C (ui + uj i) (3.a)

and the stress-strain relations can be written (from Section

002•oe(X,Yy,Z) =d ( sej(x+VTC,yz)dC (3.1b)

0

OD

3K e(x,y,z) r/ dBC e (x+VTC, y, z)d C (3.1c)

The boundary conditions on z = 0 are

T xz(x,y..O) = ryz(x,y,0) = 0 for all x,y (3-2a)

*z (x,y,0) = 0 outside A

U (x,y,0) = 6 + a x + Py + w*(x-b,y-c) inside A
zo

where al,6 are constants initially unknown (a and p are

components of the possible small angle of tilt), and A is

the initially unknown contact area. The unknown contact

pressure inside A is q(x,y) = - az(x,y,O) > 0.
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For smooth contact, uz and its derivatives are continuous,

and q(x,y) = 0 on the edge of the contact. The load com-

ponents, from Section 1.5, are

N* t", uz
N= q(xy)dA ; F* jjq(x,y) --- dA

A A

it is evident from the mixed boixndary conditions and

the other conditions to be met that solution of a moving prob-

lem will in general be very difficult. It seems likely on

-physical grounds that a solution will exist, provided the

lower L-urface given by w*(x,y) is sufficiently smooth.

This means, for example, that for a given load N*, there will

be a definite area., q, a, , and 6 which allow all the -on-

ditiona to be satisfied. However, to attempt to find a solu-

tion there must be some knowledge or assumption about the

contact area. In a general three-dimensional problem, the

area Is a two-dimensional region,, thus encompassing an infi-

nite number of possible shapes, as well as the other unknown

parameters of size and placement. The motion of the base in-

troduces an asy.,mmetry not present in stationary contact prob-

lems, so that the methods of the Hertz theory for elastic

contact problems are not useful here. In view of these

difficulties, a solution for even the simplest three-

dimensional problems is out of reach at this time.
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A considerable simplification results if the problem

is two-dimensional, i.e., the rigid body is an infinite

cylinder (with arbitrary cross-sectlon). Taking the cylinder

axis to be in the y-direction, the problem can be considered

in the xz plane. The area of contact is then simply a line

segment, specified by two parameters: its length I, and a

distance b fixing its placement on the rigid body surface.

The surface is now given by z = 6 + w*(x-b). For conven-

ience (as in Chapter I) the contact will t e taken from x = 0

to x = i. The boundary conditions (3.2a,b) become

V xz(XO)=o, -_< xo3 (<3.31)

az(x,O)= 0, x < o , x >I

(3. 3b)
u, (x,O) = 6 + ax + w*(x-b) , 0 < x <_

The unknown pressure is q(x) -oz(xO) for 0 < x < 2.

Other conditions to be satisfied are

q(x) > 0 , 0 < x < 2 ; q(1) = q(O) = 0 (3.3c)

uz and ýuz/6x continuous and finiteI at x=O, x=2

(3 3d)

and from (1.45),

U ) W 1-Vf 1 N* log lxi as jxj l- (333e)z f r

The displacement uz must be measured relative to some point
near the load (see Section 1.1). This point will usually be
taken as x=O, z=O.
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The load components (per unit axial length) are

N= q(x)dx F*=f q-x) z (3.4)

0 0

Further discussion of moving contacts will be restricted to

t-wo-dimensional problems.

3.2 Outline of the Two-Dimensional Solution

For a typical material element at the surface, neither

stress nor displacement -s known for all time, so the bound-

ary conditions cannot be transformed to give an associated

elastic problem. To obtain a solution, the unknown pressure

distribution is treated as if it were known. The analysis

is carried out to satisfy the prescribed conditions, which

then determine the pressure. With given pressure the prob-

lem is one of a moving load, and the expressions for steady

state displacement given in Chapter I will apply. The

following dimensionless quantities (most of them introduced

in Chapter I) will be used:

xb (3.5a)

v0 w(1) w*(x)/VT (3.5b)

1-V q(x)l-o 0 ) (395c)
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N o 1 N*N o vr T=--Q•d (3.5d)

0 0

1-Vo 1 F. 'F = l F -F* 6 (3.-5e)

0

Given properties of the viscoelastic base include -(•)

(related to the creep functions, equation 1.27), the time

parameter and velocity in the combination VT, and the initial

elastic response (l-vo)/po. Also given is the shape of the

rigid body surface w*(x). In an actual problem, the verti*-

cal load N* and the tilt a might be specified, with the ex-

tent and placement of the contact to be determined. However,

in the analysis it is advantageous to proceed otherwise.

Because b enters the problem in a complicated way in the

function w*, it is much easier to solve for a, which occurs

only as a linear factor (equation 3.3b). Thus, the extent

and placement of the contact region are specified by regard-

ing I and b as known. The tilt a and pressure Q(t) are then

unknown quantities. After solving for these, the necessary

load components 4 and F can be determiped.

Conditions to be satisfied are

S~QM• > 0 ,0 _• _Z Q(O) =Q() 0 (3.6a)

I v(e) and 6v/ba continuous at e = 0 (3.6b)4 and • =?'an
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The displacement v(t) is measured from • = 0 , so that

here v(t) represents what was written v(t)-v(O) in Chapter

I. Then v(O) = 0 , so that (3.3b) becomes

v(t) = at + w(e-p) - w(-P) , 0 <_ <_ (3.7)

The relation between pressure and displacement is given

by (l.42a,b) with 0 = 0. Thus, (3.7) becomes
00

JQ(v,}tlog I +f (C logj jd] d=

0 o

at + w(E•-) - w(-O) , 0< e _ (3.8)

This is a Fredholm integral equation of the first kind for

the unknown pressure Q(J). The solution gives Q(e) in terms

of a, and a is then determined from the conditions of smooth

contact (3.6a). The load components are then given by (3.5d,e).

Once Q(t) is known, the surface displacement outside the

contact region is found from (1.42).

To summarize tie general analytic procedure for a two-

dimensional moving contact problem: given -y(c) , w(W)

a) Choose values of ? ,

b) Solve the integral equation (3.8) for Q(e)

c) Determine a from (3.6a)

d) Find the required N and F from (3.5d,e)
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To get numerical values of the actual physical quantities

([, b, q(x), N*, F*], VT and (l-Vo)/o must be given also.

The integral equation (3,8) can be written

Q(tf)([K(-t) - K(t-t )]d It at + w(-) , 0 < t K

0

where 00

K(t) logI + f y(C) logjt+C dC (3.9)
0

The kernel K(-.')-K(•-•) is the displacement at • due to a

unit concentrated loa'd at •'. If real material properties

are used, the creep functions will be available as curves or

tabulated data. Then, y(C) is evaluated numerically as out"

lined in Section 1.3, and K(t) would also have to be evalu-

ated numerically. If the material is represented by a

mechanical model (general Voigt solid),

Y(O) = f e-bj(I\) from Section 1.3. Then, (3.9) gives

JJ

I jj

K(•) = (1 + 7. b) log l• - J. ebJ• -e) (.0

i The general behavior of K(J) is similar to that shown in

Fig. 1.13. The function is logarithmically infinite as

I lji "0 and as t
With an analytic form for the icernel, there is some hope

of obtaining an analytic solution to the integral equation

(3.8) for a given w(e). The stress-strain laws for materials
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represented by mechanical models can be given in differential

form as well as the integral form (3.1b,c). This differen-

tial form makes it possible to reduce certain viscoelastic

problems to "equivalent elastic problems" (abbreviated "EEP")

(not to be confused with the "associated elastic problems

of Chapter I).

If the EEP can be solved, the viscoelastic problem is

reduced to the integration of ordinary differential equations.

In moving contact problems, this procedure (called the "EEP

method") can be carried out only for very restricted material

properties. In these cases, the result is equivalent to

analytic solution of (3.8). The results are useful in spite

of the restrictions, and indicate what can be expected in

more general cases. The next sections will consider the EEP

method for steady state moving load and moving contact

problems.

3.3 The Equivalent Elastic Problem for a Moving Load f
(Steady State)

When the stress-strain laws can be given in differential

form, such as equations (l.lla,b), an EEP can be formed from

the viscoelastic problem. The method will be described here

for the steady state moving load problems of Chapter I.

Since time appears only in the term x*-Vt H x , 6/6t be-

comes -V 6/6x , and the differential operators (l.lOb)

become
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k 6km k Ok
P , Q = Z q (V) ~

x =O Pk(-v)k = k x=O k(-vOk

(311)

The stress-strain laws (l.lla,b) become 1

P L [s (xy,z)] = 2;1 QL[eij(xYz)] (3.12a)Sx ij 0xi

Px[e(x,y,z)] = 3Ko Qx[e(x,y,z)] (3.12b)

From the actual stresses and strains are obtained

"derived stresses and strains," denoted by '-", and defined

by
iJ- EP(8ij) ; ( = Px(0) (3.13a)

ej- Qx(eij) ; Z = (e) (3.13b)

Then, the stress-strain laws (3.12) become

SiJ 2oiJ ; = 3Ko e (3.14)

which are the same as the elastic stress-strain laws. The

total derived stresses and strains are defined by

S= J P( 3 1 iJ(P-P)(e)

i1 i Qx(3 ii 61(E )x-Q
Cij - •l + i = i 1(Q-x)(e)

1 For convenience, the initial moduli are introduced as

indicated. Then, the P and Q operators are all dimnsionless.
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SApply, th .p.r.t.. ?-- to .he equilibrium equations gives

P 0 =P-Px)()

Thus, a = 0 in general only if Px = P x Similarly,

the derived strains satisfy the compatibility equations in

general only if =QX x

If Px = Px and Q= x the viscoelastic material

has identical behavior in shear and dilatation, which corre-

spcnds to a constant Poisson's ratio v. This behavior is a

considerable restriction on even the idealization of a

mechanical model, and is not usually found in real materials

such as polymers. However, by making this restriction re-

sults can be obtained approximating more realistic behavior,

and indicating general features of interest.

It will be assumed in what follows that v is constant.
-Then. = Px(ai) and = x(ij) . The derived

ij x ij i aikE)

stresses satisfy the equilibrium equation = 0 , and

the derived strains are compatible. Derived displacements

are defined by uj = Qx(uj) and then i = 1/2(ui,J+u3J )

Thus, the derived stresses and strains satisfy the same

relations as an elastic problem. The viscoelastic problem

is reduced to its "equivalent elastic problem" in the de-

rived quantities, with boundary conditions derived by apply-

ing Px to prescribed tractions and Qx to displacements. The
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EEP is a problem in the theory of elasticity, and if it can

be solved the derived quantities lJ, UjP etc., will be

known explicitly.

Since Px and Q are differential operators, each visco-

elastic quantity is related by a differential equation (in

x, with constant coefficients) to the corresponding derivedn

quantity. For example, Qx(Uz) = Z qk(-V) kuz,/zxk - z(X).k=1

Solution of these differential equations admits certain

arbitrary functions of y and z, which must be determined to

complete the viscoelastic solution. This requires consider-

aticn of stated or implied conditions of the viscoelastic

solution, such as continuity or behavior at infinity, and

the boundary conditions. Every viscoelastic problem will

yield only one EEP. But a given EEP may lead to many visco-

elastic problems, and the additional conditions are needed

to distinguish the proper solution.

It is necessary to be very careful in formulating the

EEP from the given viscoelastic boundary conditions. Dis-

continuities in the x-directicn in prescribed boundary

functions or their derivatives will become singularities in

the EEP boundary conditions after applying the differential

operators Px' Qx" These singularities must be included in

obtaining the elastic solution of the EEP. For example, if

a prescribed boundary traction has a finite jump, its first
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derivatiJve becomes a concentrated load in the EEP tseon

derivative a concentrated c'oiple., and so on.

The EEP method or solving viscoelastic pi-oblems is use-

ful prf.ncipaLly when 1t 'Leads to a closed form analytic solu-

tion. This effectively limits consideration to low order

differential operators. i.e., a mechanical modelof few

elements. Otherwise, the elastic solution of the EEP would

be complicated by the presence of high order singularities,

and solution of the differential equations would be diffi-

cult. Thus., in addition to the requirement of' constant v,

the material behavior is further restricted to a model with

a small number of discrete retardation t-imes. Even with

these severe restrictions, an analytic solution is useful

in studying significant features of the problem and identi-

fying characteriatic quantities. This is particularly true

for moving Oontaet problems, which will be discussed in the

next sec.:1_co.

To demonstrate the method, a simple moving load example

will be considered. The two-dimersional problem of a constant

load q0 on a length i is treated for the standard Linear

solid (Fig. 1.4). In dimensionless tirme.E with

xI i

tvWl

instdyngsiniicntfetuesofth pobemanLieni



the viscoela stic operators q_

are

P viscoelastic problem

P•=I1+-)

The load can be written 'f EEP

q(e) = q 0 [H(e) -

FIG. 3.2
The boundary condition is th i

(e) =_ Pý(q) = qo(l+f)[H(e)-H(-?0)] - qo[6(e) -

The discontinuity in the load gives rise to the concentrated

forces (Fig. 3 n). For this load, the elastic solution is,

with v(e) = u,.'x)/VT ,

1--v(•)=(l+f)[A - e loglj - (>-•) log +--L] + Ieog I-log e-.?j

where A is arbitrary. The viscoelastic solution is deter-

mined from

v =Q(v) = v - av = e (ee

Integrating this with the v given above yields

1 v(A) = Aee + A + (l+f)[je-xjlogje-kI - e logjll]qo

+ f[logj\-oeA-X Ei(?\-t) - loglel + eaEi(-•)]
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where A is the arbitrary constant of integration As WIl-•o,

v(•) ~ - qo; (!+f) logjt, must be satisfied. This will be

true only if A = 0. The final result agrees with (1.62) of

example C), Section 1.6, with A such that v(0) = 0.

3.4 EEP Method for Moving Contact Problems

In this section the EEP method is applied to the two-

dimensional steady state moving contact problem of Section 3.2.

As before, the method is restricted to materials with differ-

ential stres.:-strain laws and constant v. The differential

operators (3.11) expressed in dimensionless form are

F n k k m k ak
P z1 Pk(-1)k k 1 + kz qk(-l) k

k=l atk=l a
(3.15)

Within the contact the displacement (3.7) is prescribed,
I

while the pressure Q(t) is unknown.

Differentiation does not alter the contact region, so

the EEP is again a contact problem. Applying the operator

Q to the prescribed displacement (3.7) gives the EEP boundary

condition

m k akw(t-_)
V(e) = Q,[v(*)] = v(t) - a + E qk(-l) ý 0 < t <Nk=l •

(3.16)

Solution of this elastic contact problem gives the pressure

S) Then,
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Q p rC[(•t ] = FjQ + IZ pk(-l) k (31)
- ~k=l pkI W-

is the differential e4uation for the actual viscoelastic

pressure Q(t).

Part of the viscoelastic displacement is purely elastic

(see equation 1.58a), while the rest is an integral of the

elastic displacement. So the viscoelastic displacement afnd

derivatives will have the same (and no worse) discontinuities

as the elastic. By limiting the problem to smooth contact,

the viscoelastic displacement and slope will be continuous.

However, the second derivative of the displacement, 2 v/BF2

has a discontinuity of unknown magnitude at each end of the

contact (e=o and e=N), and all higher derivatives have singu-

larities there. This means a Q of second order (or higher)

will give singularities in displacement of unknown magnitude

at 0 = 0 and 9 = N in the EEP. Problems with such dis-

plac-ement singularities could be formulated mathematically

in elasticity theory, but they would have nc direct physical

interpretation. It is unlikely that elastic solutions to

such problems are available or could be readily obtained.

Thus, to be able to apply the EEP method with any hope

of significant results, the material must be further re-

stricted to a model with differential operators no higher

than first order. Then, because of the conditions of smooth

contact, the displacement in the EEP is continuous, and the
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possibility of a concentrated load at the ends of the contact

region is eliminated. If smooth contact were not required,

the EEP would have infinite jumps in displacement and con-

centrated loads of infinite magnitude at each end of the

contact region.

Consideration is thus limited to a Kelvin solid (no

initial elasticity), for which P 1 , or a standard linear

solid, for which P l+f - / , where l+f = initial

elastic modulus/final elastic modulus. For both solids,

Q = 1 - 6/8a . Even though limited to these two simple

models, the EEP method gives results that are useful. The

standard linear solid exhibits some significant characteristics

of more general viscoelastic solids, so its behavior indicates

What might be expected in more general moving contact problems.

From (3.16), the displacement in the EEP is

V(e) = ae + w(l-p) - w(-P) - a - 0 < e _

(3.-18)

and 'v is continuous across the ends of he contact region.

This is a contact problem in the plane theory of elasticity,

for which general methods of solution are well known. The

solution gives the pressure Q(•) and the complete displace-

menit v•() except for an arbitrary constant. Thus, Q(•)

includes a "flat punch" term of arbitrary magnitude
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Qfp = 0 /vT(C), o < <_ (3.19)

which gives constant displacement in the contact region.

For the Kelvin solid, Q(•) = since P 1. For

the standard linear solid, from (3.17)

( - (1 + f) Q -•

and thus d

Q(t) Ae + e(l+f)Q r -(i+f)• Q(•)d• (3.20)

where A and d are arbitrary constants. The constants, Qo.

and the unknown tilt a , are determined by the smooth con-

tact conditions (3.6a,b) and the asymptotic form of the dis-

placement (from equation 3.3e)

v(t) '_ (1+f) N log tI as t co (3.21)

Once Q'(t) and a have been found, the solution is essentially

complete, and other quantities of '.nterest can be determined.

Application of this method to a particular problem, the roll-

ing cylinder,. is given in the next chapter.
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CHAPTER IV

THE ROLLING CYLINDER PROBLEM

One of the principal problems of moving contact in

viscoelasticity is the rolling of a circular cylinder (or

sphere) on a flat surface. Osborne Reynolds made an exten-

sive study of the problem in 1876, and since then several

other attempts to explain and predict rolling resistance

have been made 1 . The most significant recent developments

have resulted from the work of Ta-bor and his colleagues

([14. ], [16], [30h [31], [32]) since about 1950. The ex-

perimental work showed that rolling resistance is nearly

independent of surface lubrication, and arises principally

from energy dissipation within the rolled material. This

has led to two general theories attempting to explain roll-

tng resistance. One, developed chiefly by the Tabor group,

makes use of measurements of hysteresis loss in simple

loading-unloading cycles, together with the solution for

rolling on an elastic base. A similar procedure has been

suggested by Drutowski [7 ]. A second possibility is to

consider materials which can, at least approximately, be

regarded as linearly viscoelastic. As already explained in

Section 1.5, viscoelastic materials dissipate energy,which

1
Discussion and additional references in Bowden and

Tabor [4 ], Kelly [18], Drutowski [6].
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gives rise to resistance to moving loads. Flom ([10], 111],

[12]) has sought to connect rolling friction with simple

energy loss measurements on viscoelastic materials. His

tests of hard spheres rolling on several viscoelastic poly-

mers show that the variation of coefficient of friction with

velocity of rolling is qualitatively similar to the descrip-

tion of Section 1.5 (Fig. 1. 9). There are few other ex-

perimental results available for spheres or cylinders roll-

ing on materials of viscoelastic character. Some tests of

Tabor [16] on rubber indicate that for cylinders longer than

several times the diameter, the behavior is essentially two-

dimensional.

This chapter considers in detail the two-dimensional

problem of a rigid circular cylinder rolling on a semi-

infinite viscoelastic solid. The contact is supposed per-

fectly lubricated, so there are no tangential forces at the

contact surface and there is no distinction between rolling

and sliding. This is treated as an example of the general

moving contact problem of Chapter III. Several published

treatments of the problem are examined. Each involves spe-

cific limitations which prevent more general application.

A different, less limited, method is proposed and illustrated

in the next chapter.
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4.1 Formulation of the Rolling Cylinder Problem

The rigid cylinder, of radius R, is considered fixed,

and the viscoelastic base moves under it with velocity V.

The contact region extends

from x = 0 to x = 2, and the

downstream end x = 0 is a

distance b from the center of

the cylinder (Fig. 4.1). De--

formations are assumed small

(i.e., 2 << R), so that within

the contact region the surface FIG. 4.1i

of the cylinder can be approxi-

mated by a parabolal2

S: -p 2

In this pzoblem w(R-•) contains a term linear in • with

unknown magnitude 8, so there is no need to introduce the

additional tilt a. But now 8 is to be found, and not,

as in Section 3.2, assigned initially. For a given 2,vari-

ation of b in this special case amounts to a tilt of the

contact surface.

The displacement within the contact region is, from (3-7)

VW ()1 _ _ (4.1)
- zt ) 1 0 <K2

1 Using quantities defined by (3.5a-e) and p = R/VT.
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It is convenient to introduce new dimensionless quantities

R 1-V0
S l- o - Q( q(x) (4.2a)

Sl-v n M.e. rA

N' 2p N = " U VT: 2 JQ'(ý)dý (4.2b)

0

The integral equation (3.8) then becomes

fQ(')[K(-) - K(@-')]d' = 1- �12 ,0 _< _<

0 (4 -3)

I Proceeding as in Chapter III, the creep function y(•)

is given, and a value of the contact length X is chosen.

The solution of (4.3), along with the smooth contact condi-

tions (3.6a,b), gives the pressure Qt (•) and the parameter

3. The total load N' is then found from (4.2b). Rolling

resistance is conveniently represented by the coefficient

of friction X. Using (3.5d,e), (4.1), and (4.2a,b),
IZ

F 1 1
x OP

0

and thus

2 f 1o×- r J • •d -1 ••
0

The actual physical and geometrical quantities can be

conveniently represented by dimensionless combinations in-

volving only the radius R, actual total load N*, and initial

113

S i i• In I ! n ! ! !4



elastic constants (l-vo)/Ao. These combinations, given on

the left-hand sides of (4.5a-d), are formed as follows (the

-quantities on the right-hand sides having been found in the

-solution for a given X):

velocity 0- (4.5a)ao r"

0 _ T
qa)0 '() ('.5b)

pressure a o

Coefficient of friction R. VT PX (.5c)ao X "-= ao o×( . )
00

placement (.5d)
0 0

where a0  2 ]2.
a R N* (4.6)

is one-half the contact length for an elastic solid. It is
then possible to exhibit; the variation with velocity of q(x),

X, or b, for a given total load and radius. For example, a

plot of RX/a v- VT/a shows the variation of coef.-
0 0

ficient of friction (rolling resistance) with velocity.

In Section 1.4 it was shown that the limiting cases

V 0 (N --o-) and V--o (o - O) are elastic. This can be

used to find t.he corresponding limiting values of certain

quantities in the rolling cylinder problem. For V

the material exhibits its initial elastic behavior. The

solution for given displacement (4.1) is
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2
b = ; q(x) = /x-R-Wff/ T -xT N= 0

For V- O, the material exhibits its final elastic behavior.

The solution is the same as for V.-+ o , except that P /l-vo

is replaced by pf/(l-vf) = l/(l+f).%o/(l-vo) , where

f= f "y(C)dC . Some limiting values are given in Table 4.1.
0

Table 4.1

Quantity Limiting Value
A - 0 A '-.+ CO
V-00 V "*0

N' 2 l-vo R N* 1 1
2= •- 2 2 T' 4'(1+f)

b1
72 2

RX VTSao ao PX 00
0 0

2 VT~L = -•-. •2 2 ,V"11+
a 0 2

1v 1-Vo 1 1 1
•- 0 q (max) 1= .15915...

QVT ao01

Q oo = q (max) 1 = .31831... 11
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a

4.2 -Analytic Solution by the EEP Method

The rolling cylinder problem can be solved by use of

the EEP method outlined in Section 3.3. The viscoelastic

material must be a swandard linear (or Kelvin) solid with

constant v. This is a severe restriction on the material

behavior, but it allows 4 complete analytic solution. The

same solution has beenpreviously obtained by Hunter 17.,

The EEP method makes more evident the underlying assumptions

and conditions of the problem, and is clearer and more direct

than the somewhat different procedure of Hunter. The final

results of the EEP method are the same as those of Hunter.

Details of the procedure for a standard linear solid

are now given. The differential operators are

Applying Q to the displacement (4.1) gives

1 2p '(•) = D + (l+•) • 12g o < __< (".7)

where D is an arbitrary constant. The elastic contact prob-
1

lem with prescribed displacement (4.7) has a pressure

V A+B('- =) + + , 0OK_ a < e (4.8)

Muskhelishvili [25], Section 116a.

116



where A is arbitrary and B = i + • - . Frcm (3.20) and

(4.2a), the viscoelastic solution is

,( e(l+f) ef -+ V"A(-) Id'

S~(4.9)

The upper limit on the integral is here chosen so the con-

dition Q'(W) = 0 is satisfied. The condition Q1 (O) = 0

must also be satisfied. Setting • = 0 in (4.9), the inte-

gral can be evaluated1  it must vanish identically, giving

the relation

iW il!(h)1
SA =(B -)(4..l0)

where I,, Io aie modifiad Bessel functions of the first

kind, and

h =(1 + f) N 4.1

Another relation is needed between A and B. To obtain

fi this, the displacement must be considered. Outside the con-

tact region, the elastic displacement due to the pressure

(4.8) isI
i~.^2

p V(•) D + (l+P)t- - -(A + -- )cosh- I - 11

i- - 2 ]I0<0 or > N
(4.12)

1 Erdelyi [81, equation 7.12(10).
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II •\ = . I v -. v/.A , the ...... v-lsueiastlc diSp.acement

is
pv(•) e•J• e-E['•(•C)] dC + Cet

whdre C is an arbitrary constant (which may have different

values inside and outside the contact region) and the upper

limit is chosen for convenience. As oo -- , this expres-

sion gives

pv(V) -• ) + Cle• = C]et - (A + log 10 + constant +

This will have the proper asymptotic form (3.21) only if

C1 = 0. Then, substituting for pv from (4.7) or (4.12),

and choosing D = - • gives

PV(W e 2 - ee I(e) , e < 0 or t X_ (4.13a)

where
21

IW~ Ef (A + g-) cosh j 1

+ (B ~ . ~I VCC-T Je~ (41.13b)

(for • < 0, the upper limit is 0 rather than c)

Inside the contact region, the displacement is

e12 e[C

pv(e) = -e + 2 - I(X)
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To meet the condition of continuous displacement at • =

requires, on comparing (4.1) and (4.13a), that I(N) = 0.

EvaluationI of the integral I(N) leads to the relation

l K(_/2)
A (I --B) 4.14)

where Ko, K1 are modified Bessel functions of the second

kind. From the two relations (4.10) at,( (4.14) A and B

can be determined, and then 8 = B-1 + 2

Continuity of v(ý) at • = N has been guaranteed, and

from (4.13a,b) this is true at 0 = C also. Since

V= v - ýv/e and both v and v are continuous,- the slope

ýv/i is also continuous. From (3.5d), and since

= (l+f)

the total load is given by

(l+f) N =(1+f) fQ(e)dj * d(g + Q(-A) Q-O)
0 0

Thus, using (4.8), with Q(Z) = Q(0) = 0

jA+B( e-•-)A

(l+f) pN=1 [+ e de A +
0

S1. Erdelyi [8], equation 7.3(15).
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The asymptotic form of the displacement (4.13a,b) as !I1 co

is v(e) ,- -_ (A + log li - - (1+f) N log W

(4.15)

whi,*h satisfies the condition (3.21). All the conditions

of the problem are now satisfied.

This completes the solution for a rolling cy.linder on

a standard linear solid base. Numerical results are obtained

most directly by specifying N (with a given value of f),

then proceeding with evaluation, ,'!-ng the following formulas:

1) h = (l+f) (4.11)

Ko(N/2)I (h)

2) m K /2)i(h) [0 < m < 1] (4.16)

Kl(A/2) m
3) A -2 1 l~ 2 I--r (4.17a)

21I-f mo7/) +

4) B =1 f lm (4.17b)l+f l+m

)A f
5) l+f lm [• < ](4.18)

6) -1 e(l+f)e-/2 f eht[A+ .Bt + t22 ]dt

(4.19)
where ic = 2 •!A- I

7) N' =2p N = 1 +• A + (4.21)
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Evaluation of the coefficient of friction from (4.4) leads

to
2 -l

px - Br[ + ](421)

The surface displacement for the rolling cintact is given by

pv(R) = 12 X- g(t) e1\/2 t dt , • < 0

('4.22a)

Iý e2 0 < e N -(4.22b)- 1 2 - - -

1 e2 2 eg(t) e-"/2 t dt , X _

(4.22c)

where

g(t) = (A + ~-cosh-litl + •. (B - • t)V~

(4,.23)

To obtain the pressure distribution over the contact region-

a numerical evaluation in step 5) is necessary. Hunter [17]

gives a plot of Q'(e) for the one case f = 1, 2 = 1.6. A

sketch of the general case is given in Fig. 4.2, along with

an elastic contact for comparison. The effect of viscoelas-

ticity is seen in the non-synu. y of contact region and

pressure distribution, and the resultant horizontal force.

"The variation of rolling resistance with velocity is
I

best presented by plotting Rx/ao vs VT/a 0 , as suggested
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ii 4h w ytcedn sscton - o a~ .. e - n , slt-A 'Lri for

different velocities are obtained by varying 7. The result

is a curve of the form of Fig. 1.9, with a single maximum.
Typical curves are given by Hunter for f = 1 and f = 9.

In an actual rolling cylinder problem, the physical

quantities f,V,T,N*,R, might be specified. To determine the
@4

contact region and pressure, a plot of ; vs VT/a (for a

given f) is useful. The given data determines VT/a , and

the appropriate X can be found from the plot. Then the

other quantities can be determined by the procedure Just

-given.

Elastic Viscoelastic

Forces on (x)

Cylinder
JI

' I42 [

Contact
Pressure no ir iai

FIG. 4.2

1 Note that Hunter's a is Vl/ times the a used

here.
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Teso.L tion for a Kelvi-1 solid can be barG

same way as for the standard linear solid. There is no

M initial elasticity so the final elastic response is used.

For this material, f = 1 and = 1 - 3/• . Only X

need be specified to obtain a solution. The results are

summarized below:

K (V2) -1 1) B = [1 + K(A/2) (4.24)

S2) =B + ýý - 1 (4. 25)
2)2

l~f
3) p q(B)(4.B6)

l-Vf 1 N* N N,7• 4) 1f 1N*= (B + •)(4.27)

g|5) PX 6B+,\ 3 +3:

-5 P Xy 'f B X4

The Kelvin solid is of interest as the limiting case of a

standard linear solid with the initial elastic response much

smaller than the final response (i.e., very large f). In

this limiting case, the pressure is infinite at the upstream

end, • = N (see Fig. 4.2).

1II
I
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Starting from the fundamental field equations (3.la)

and the general stress-strain law in integral form (i.9a,b),

viscoelastic problems can be treated directly as boundary

value (space) and initial value (time) problems. Morland

[24] has investigated the rolling cylinder problem in this

way. Conditions to be satisfied are given by (3.3a-e). The

general procedure is outlined be'.ev, and some details. of

Morland's solution are given.

At first, the analysis applies to the general two-

dimensional problem of a normal load moving on the surface

of a semi-infinite base (as in Chapter I). Morland takes

a Fourier transform with respect to Lime. The transformed

problem is then essentially an elastic problem, and the

solution is expressed as Fourier integrals (in x*). At this

stage the condition of steady state is introduced, and after

considerable manipulation the time variable is replaced by

the steady state variable x = x* - Vt. The result is then1

(in the notation of equation 1.29)

=1 [ [fl(s) cos sa + f 2 (s) sin sý] ds (4.29a)

The whole analysis to this point could be done more
directly and simply by considering a moving load, steady
state problem from the beginning, including the appropriate
stress-strain laws (3.lb,c). Then, a Fourier trA.nsform with
respect to ý(=x/VT) gives an elastic problem which leads
directly to equatiors(4.29a,b).
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I

vW~ =f0(s) {[fl1(s) + *~(s)f 2(s)](cos se 1)
0

+ [f 2 (s) - *(s)fl(s)] sin s•}

(4.29b)

where fl(s) = fl(-S) and f 2 (s) = - f2(-s). The functions

0(s) and ip(s) are related to the creep functions and are

defined by

0(s)[l - i't(s)] = 1 + -(is) (4.3Q).

where y(s) is the Laplace transform of -y(C) and

i =.v/T . For a given moving load, fl and- f are known, and
1 2

(4.29b) gives the resulting deflection.

The moving contact problem is considered, as before,

by assuming some length of contact, and finding the neces-

sary total load. Then, fl(s) an; f 2 (s) are unknown functions.

Once they have been found, the complete solution can be

obtained. It is convenient

here to take • 0 at the

center of the contact region.

This region is then I AI /2

(see Fig. 4.3). The boundary

conditions (3.3) become

FIG. 4.3
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0(~ > 0 (.31a)

1 12

v(t) = ý. < ,N (4.31b)

"It is necessary to add an additional flat punch pressure,

e _2]-/2] to Q(e) given by (4.29a). The re-

sulting displacement is found by the method of Chapter I,

and is added to (4,29b). For this, Morland assumes

(•fe= • ie -- i.e., a mechanical model--for the visco-

elastic behavior. The additional displacement is then

v( W 'r% z .0i K(bj ý)(if ebit) < (4.32)

With this assumption for y({),

fib f
O(s) 1 i O(s) 1P(s)= s 2.2

i b2+s 2  i b+s2

Satisfying the boundary conditions (4.31a,b) leads to the

equations

[ff(s) cos s• + f 2 (s) sin st] ds = 0 , (4- >_ Q.34a)
0

r ds +fi b~(eb~J1[(fl+%f~(cos s•-l) + (f 2 -wfl)sin s•]l-+ rQo Y f, Ko(bo 1-ebit)

0i

1~ 12]>
2 2 (4.34b)
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I

These are dual integral equations for the unknown functions
f l(s), f2(s). Morland procedes by splitting each of (4.34a,b)

into odd and even parts. Then, a solution is assumed in the

form of series of Bessel functions

mfll 2m 2 m(2 s); f 2 (s) = wQo a 2 m- 1  (f s)

which satisfy (4.34a) identically. Introducing these into

the odd and even parts of (4.34b) leads eventually to two

infinite sets of equations, which are combined into one

infinite set of linear equations for the unknown constants

I am. The coefficients of am in the set are integrals of

¢ and 7p with Bessel functions, a typical integral being

jf sn
O(S (. 0ýs) Jn (ý2. s)0

I The solution of this infinite set of equations, with the

additional conditions N/(+ 2/2) = 0 , gives the am, Q'

and 3. This formally solves the contact problem, giving

f and f2 as an infinite series. The contact pressure is

then given by

S2 Qo 000
- cos e [ 1 + 2m cos(2me) + Z a2m-1 sin((2m-!)e)]
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where N = ?/2 sin e. From this it follows that

N = ,Q ' p= [l - 2 + a1

Thus, for a given N, the coefficients of am must be determined

and an infinite set of linear equations solved. Then the

pressure, total load, friction coefficient and other quantities

of interest can be found. The whole process must be repeated

for each value of N.

To carry out the calculations, Morland makes some simpli-

fying approximations. The material behavior is approximated

by assuming 0 = constant and 4 = constant in the integral

parc of (4.34b). The coefficient integrals can then be

evaluated in closed form. For the "flat punch" displacement

0.32), a different approximation is used by taking a single

term in the sum (i.e., standard linear solid with constant v).

The solution is further approximated by using a 9x9 block

instead of the infin:ite set of equations. Even with these approxi-

mations, much numerical work is needed to get results for

a single value of N. Morland gives one numerical example

and the resulting curve of pressure distribution over the

contact region. The results are given below for this exam-

ple, in which N = i, f = .5. Also given are the corres-

ponding results by the method of Section 4.2 (Hunter) fcr

comparison.

)28



Quantity Method

Hunter Morland
i VT

T 2.40 2.21Ia1 0

S.446 .490

PX .067 .072

4.4 Other Treatments of Rolling Contact Problems; Comments

Although each of the methods of Sections 4.2 and 4.3

I can be applied only with certain restrictions and approxi-

mations, each starts from an "exact" formulation of the roll-

ing contact problem in the sense that the viscoelastic base

is treated as a continuum, and the mutual effect of adjacent

elements is taken into account. However, only two-dimensional

problems can be satisfactorily treated, and analytic solutions

aze possible only for limited kinds of viscoelastic behavior.

Rolling contact problems have also been discussed by

adopting a representation of material behavior which is more

widely applicable, but much more approximate. The visco-

elastic base is assumed to be made up of independent verti-

cal columns, like a Winkler foundation. Each column is a

one-dimensional viscoelastic rod with regard to vertical

stress and strain, and the deformation of any one column

1129



h•as no effect on and is not affected by any other columns.

Thus, some of the features of viscoelasticity are present,

including delayed recovery and energy dissipation, but the

overall behavior of the base as a continuous material is

only appiroximately represented.

With this simplified representation, both three and

two-dimensional rolling contact problems can be treated.

The base has a finite thickness h, and the vertical dis-

placement of any column is thus he , where e is the

strain. The stress-strain law can be written

4-

a(t) EfG(t-T) e,() d¶ (4.35)

0

-where G(t) is the relaxation function. If the surface dis-

placement is prescribed, (4.35) gives the necessary contact

-pressure. By prescribing a spherical or cylindrical dis-

placement, the rolling contact problem is essentially solved.

Due to the delayed recovery behin" the roller, the contact

region and pressure are not symrn-.tric. This gives a resist-

ing force and a corresponding coefficient of friction, and

thus provides some qualitative description of rolling

resistance.

Applications of this simplified treatment of rolling

contact problems include: Flom and Bueche [13], 9phere on

a Kelvin solid; May, Morris and Atack [23], cylinder on
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Maxwell fluid, standard linear arnd - ore general sol4d4;

Norman [26], cylinder on a Kelvin solid. Results are quaii-

tatively similar to those of the more "exact" methods of

Hunter and Morland. In particular, the coefficient of

friction varies with velocity in the manner previously dis-

cussed, increasing with velocity to a single maximum, then

decreasing to zero. When a mechanical model is used for the

material behavior, G(t) is a sum of negative exponentials.

Then the results can be expressed in analytic form, in

terms of elementary functions.

In summary, this simplified treatment gives some use-

ful results of a qualitative nature for the rolling contact

problem, and involves only straightforward (although perhaps

tedious) integrations. However, it is a somewhat crude

representation of the actual behavior of the base. For the

more accurate representation of the base as a continuum,

analytic solutions (such as Hunter, Section 4.2, and Morland,

Section 4.3) are available only in limited cases of two-

dimensional problems. The direct method (Morland) applies

in principle for general viscoelastic behavior, but in

practice approximations are needed. Even then, an infinite

set of equations must be solved, which requires further

approximation and much numerical work for each particular

example. The EEP method gives a complete closed-form ana-

lytic solution, with no approximation in the analysis, and
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numerical work is needed only to get the detailed pressure

distribution. However, this method can be used only for

simple models (standard linear or Kelvin solids, with con-

stant v) that in some respects represent the behavior of

viscoelastic materials. Thus there are significant limita-

tions to each of these methods of obtaining an analytic solu-

tion of the rolling contact problem.
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CHAPTER V

A NUMERICAL METHOD FOR TWO-DIMENSIONAL

MOVING CONTACT PROBLEMS

There is no complete analytic solution of the moving

contact problem available for a general viscoelastic material.

The EEP method discussed in Chapters III and IV can be used

only for a material of very restricted type, represented by

a simple model with constant v. For a rolling cylinder this

method allows a complete analytic solution, but for other

shapes of contact surface the analysis is much more compli-

cated and does not in general yield closed-form expressions.

The direct analytical method discussed in Section 4.3 can in

principle be applied to any contact surface on any viscoelas-

tic material. But involved analysis is required, and then

much approximation and numerical work is needed to obtain, a

definite result.

For the general moving contact problem, with arbitrary

contact surface on any viscoelastic solid, it is evident

that the solution must be obtained numerically. This can

best be achieved by using numerical procedures from the be-

ginning, thus avoiding lengthy .nd elaborate analytical

procedures. Creep functions available only as numerical

data can be used directly, eliminating the laborious task

of trying to represent the data analytically. This chapter

presents a numerical method for solving the two-dimensional
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steady state moving contact problem (as formulated in Chapter

III). The procedure, restricted only by the requirement of

smooth contact, is simple and direct, and readily adapted

for digital computer. The method is illustrated with the

specific problems of a rolling cylinder and a "nearly flat

punch".

5.1 Numerical Evaluation of Surface Displacement
I

The steady state surface displacement due to a two- j
dimensional pressure distribution Q(•) (0 < N K ?) moving

on a semi-infinite viscoelastic base, given by (l.42ab),

is

v(W) - V(a) (5.1)

0

where

K(e) = log Ije + -y(t) log (e+C), dC (5.2-)

0

4 and •a is an arbitrary point on the surface (Fig. 5.1). The

dimensionless quantities given by (3.5a-e) are used. It is

supposed that the pressure is everywhere finite, and that

Q(O) = Q(N) = 0. This is the case, for example, when Q(e)

arises from a "smooth" moving contact (defined in Section 3.1).

To evaluate numerically the integral in (5.1), a smooth

pressure distribution Q(e) on 0 < e < N is replaced by n

trapezoidal load elements (Fig. 5.1). Within a typical

segment k-i e e k (k = 1,2,...,n) the pressure is repre-

sented by
134
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N

IP

I QW

QQ (53

IW Ie [I~ k-)kl~-k
L~ ekItk-I

whr Io 0 e Th ;ipaiýh (5-1Ik I~k ni

wher Q(e) , e= 0) , K~ Te(5)

k=l~

Substituting for Qk(e) from (5.3) arW- for K(e) from (5.2),

and with Q0= Qn= 0 , this can be reduced to

VW~ -v(ea) Y--, Qk Slk( e)-Sk( ea) (5.4ia)
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! (k -ek+ 1  a k ) - 1 1k-1(ý ek+1

r (5. 4b)

Kk(•) W(ý-•k) ;k =k - ek-I (5.4c)

2 2

0

The integral in (5.1) is thus replaced by a finite sum. For

a given choice of the division points ' the functions

Sk(e) depend only on the creep function y(C), and may be

regarded as evaluated once for all, for some given viscoelas-

tic material. Then (5.4a) gives the displacement for any

pressure distribution in terms of its Qk values.

The trapezoidal pressure is continuous, but has dis-

continuous slope dQ/de at each k" The resulting displace-

ment is consequently continuous with finite slope dv/dý

everywhere. But, as may be verified from (5.4a), d2 v/dý 2

will be infinite at each ek The pressure could be better

approximated by polynomials of higher degree, which would

give smoother pressure and displacement. But the added

smoothness does not justify the increased complexity in-

volved. It is better to use the simple representation

given by (5.3), taking more divisions if increased accuracy

is desired.
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When the pr-essu-tr-e Q is known, the tOtal load is

given by

N fQ(•) dý

Substituting from (5.3) for Q(e), this becomes

1 n-i n-1
N" Qk( k+l+(k)55)2kl'Qk(tk+l -1k) Z -k("~lk

2k~l k=l

The displacement at any point on the surface can be

determined from (5.4a,b) for any viscoelastic solid. The

elastic solid is covered by y(C) = 0. If -y(C) is in

nun.erical form, determined from measured creep functions

(as described in Section 1.3), then the integral in (5.4d)

would have to be evaluated numerically. If y(C) has an

appropriate analytical form, w(e) can be expressed analyti-

cally. For example, if the viscoelastic material can be
m

represented by a general Voigt solid, so that y(O) Z fie-biC,
i=l

then

m f 2 m fi
(•) =(l+ + m ) +2 loglej + ý(.+2 -ogl2l) m --

i=l i"i=i bi
bie E n 2f i

+ [logljI - ebi• Ei(-bie)] z (5.6)
i=l bi

where Ei(-x) is the Exponential Integral.
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5.2 Numerical Procedure for Moving Contact Problems

The moving contact problem was described in Chapter III,

and the general procedure for obtaining a solution was out-

lined in Section 3.2. Values of 0 and ?ý (Fig. 5.1) are

chosen, and the unknown pressure is found from the integral

equation (3.8). Since 0 and X are not independent in a

particular smooth contact, it is necessary to include an

unknown angle of tilt a along with the prescribed contact

surface w(e-p). Then, reasonable values of p and X can be

chosen independently, and the solution will give the neces-

sary tilt for this to be a possible smooth contact.

For a numerical solution, the unknown smooth pressure

-is approximated by n trapezoidal elements. The number

and -spacing of the division points k will be governed

by The accuracy desired and the character of the specific

problem. Following the procedure of Section 5.1, the integral

equation (3.8) becomes

n-l
Z Qk[,nk(t)-nk(-aa)] (ý-ta)a + w(ý-p) -W(a-)

k=l

0 <_ (5.7)

where Ok(e) is given by (5.4b-d) and •a is arbitrary.

There are n unknown quantities, the n-l pressure ordi-

nae Q ~ k 1, l2.y ,n-l,8 and the tilt a.
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To solve for these unknowns, the method of collocation

is used. If (5.7) is satisfied at each of n points • =

0 < <_ X (j = 1,2,...,n), there will be n equations for

the n unknowns. Lich of the unknowns occurs as a linear

factor , so the problem is reduced to solving a set of simul-

taneous linear algebraic equations. For given divisions of

the contact region (Pk) and given points of collocation (•)

there will be a unique solution for the Qk and a. With this

solution the left side of (5.7) will exactly equal the right

side only at the points , but agreement will be close

throughout the contact region if these points are suitably

chosen.

It is convenient to choose one of the division points

Sas the reference point a' and the remaining tk as the

collocation points . The collocation procedure then in-

sures the prescribed displacement at each end of the contact

region and at the n-1 intermediate points at which the

pressure is determined. Let

Ajk -k(ej) - ( ; k = i,2o...,n-1 (5.8a)

Ajn ea - 1( 5-

i wj -w(j - - a (5.8c)
j a

1 This is the principal reason why the small tilt a is in-
troduced as an unknown -- tecause it is a linear term. If the
tilt were prescribed or implicit in the function w(l-p). p
could not be prescribed, but would have to be found in the so-
lution. Since P is not a linear factor in general, the whole
procedure would be greatly complicated.

139
I

I



where j = O,l,...,n except j = a. Then, (5.7) becomes

1 n-l
.-- i Qk Ajk + a Ajn = wj j = O,l,...,n except j = a

k=l k kn j
(5.9)

This is the set of n equations to be solved for the n

unknowns Qk(k = 1,2,...,n-l) and a, which gives an approxi-

mate solution of the integral equation (3.8). The smooth

contact conditions (3.6a,b) are automatically satisfied in

this formulation of the problem.

Once the Qk are known, the total load N is given by

(5.5). The coefficient of friction is

F 1f v n k k wNF _ 1 fQ(,) 'vde a - k=Z Qk(e) ýj- de

0 ýk-l (5.10)

The complete numerical procedure for solution of a two-

dimensional moving contact problem is summarized below:

Given: z(O)-a creep function of the base material
(see Section 1.3)

w(e)-prescribed shape of contact surface

1) Choose values of N, p.

2) Divide the contact region into n segments at the

points ýo = 0, -1..,k,.. n - ?. Choose one

Ek as reference point Ea"

3) Determine Ajk and w from (5.8a-c),(5.4b,c), using

(5.4d) for a general viscoelastic material, or (5.6)

for a Voigt solid.
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4) Solve the set of n simultaneous linear equations
(5.9) for a and Qk (k = 1,2,...,n-l). The pressure

distribution is then given by (5.3)--straight lines
connecting the ordinates Q at the points ek

5) Find the total load N from (5.5), the coefficient

of friction from (5.10).

6) Displacements at any points on the surface are found

from (5.4a).I

For each pair of values of P and ?ý this procedure gives
one solution, with particular values of N and a If

either the actual load N* or the velocity V is then speci-

fied, the other is determined by this solution. This means-

that if certain values of V, N *, and a are wanted, trial

solutions must be made with various values of P and -A until

the desired results are obtained.

The actual numerical calculations are straightforward,

and can be programmed for a digital computer. Evaluation

of the coefficients A will depend on the form in whichjk
y(O) is expressed. For a Voigt solid, the general analytic

form (5.6) can be used. If the creep functions are given

numerically, y(•) can be found as described in Section -. 3.

Then, the integral in (5.4d) is evaluated numerically. Com-

puter library routines for solving simultaneous linear

equations are usually available.

To summarize, this numerical procedure yields a solu-

tion to the moving contacts problem by representing the unknown
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pr ure str•i•butLon as n trapezoidal elements. The pre-

scribed displacement is then satisfied at certain points in

the contact region, leading to n simultaneous equations to

be solved for the unknown pressure ordinates. The principal

advantages of the method are its simplicity and flexibility,

and that it can be used for any viscoelastic (or elastic)

solid and for any shape of contact surface subject to the

conditions of smooth contact. In the next sections, numeri-

cal results are obtained in some specific applications.

5.3 Numerical Solution of the Rolling Cylinder Problem

The numerical method of Section 5.2 will be applied to

the rolling cylinder problem as formulated in Section 4.1,

where it was indicated that P is to be found and it is not

necessary to introduce a . The physical quantities are shown

in Fig. I (at the end of the chapter), and the dimensionless

quantities are defined there. It is convenient to choose

a = ao =0. Then, using (4.1) and with Qk' Q(ak) I

(5.7) becomes

n-i ln-l Qk a k(e) - ik = (- 2 0 _ - e 0 (5.11)

k=l

Collocating at the points ak , k = l,2,...,n , the set of

equations corresponding to (5.9) is

n-l 2
Qk A4 k + 2(-) = - j j = 1,2,...,n (5.12)

k=l
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where Ajk is given by (5.8a) with •a = 0. Once the solu-

tion has been obtained, the total load is (from 5.5)

n-1I!
N = n kl (Ek+l-ýk-1) (5.13)

k=l

and the coefficient of friction is (from 4.4, 4.2a,b, and

5.3)

1 n-l ,k+l + ek + ýk-IP N( Z Qk' (k+l-ýk-l) 3 - (5.14)
k=l

From the elastic solution and the existing solutions

for standard linear solids (Section 4.2, Fig. 4.2), it is

expected that the pressure distribution will be smooth for

a general viscoelastic solid. This suggests division of the

contact region into equal segments. Then, k ke , where

e- - = n = 1,2,...,n (5.15)

The set of equations (5.12) becomes

n-l
z QA - 2Gj = - , J = 1,2,...n (5.16)

"k=1 J

where now

jk= k(j) - fk(O) (5.17a)

( = .l2w(%j-ek) - (ej-ýk-l) - w(ýj-k+l)] (I.17b)
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and cd() is given by (5.4d) or (5.6). The total load (5.13)

becomes
N' -2e z (5.18)

k=l

and the coefficient of friction (5.14) becomes

k tk
Z× = - •(5.19)

PX ~Qk
I

Division into equal segments is used for all rolling cylin-

der examples given in this chapter. 1
A particular problem for a given material [given y(•)]

is fixed by choosing the number of divisions n and the

length e of each segment (or ? = ne). The coefficients

Aik are determined from (5.17a,b), and the set of n simul-

taneous equations (5.16) is solved. This determines

Qk (k= 1,2,...,n-l) and •. From (5.18), (5.19) N' and

pX are found. The results are most conveniently expressed

in terms of the quantities defined by (4.5a-d). Each value I
of ?ý (or e) corresponds to a certain V, if N* is specified, |
or to a certain N*, if V is specified. To illustrate the

procedure, some specific examples are given in this and the

next sections. The numerical work was performed on a digi-

1tal computerI, using an existing library routine for solving

the simultaneous equations.
The IBM 7090 at the Stanford University Computation

Center (using eight significant figures).
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A good check on the numerical procedure is provided by

the clastic base, for which y(L) = 0. The known analytic

solution is

= _ (5.20)

IT

~ 2

Iand the pressure distribution is symmetric about -A/2.

Numerical results for n 10 and n = 40 are given in

Table 5.1. Tn each case =72 exactly (to eight signifi-

cant figures), and symmetrically located values of are
IIidentical to at least six significant figures. Values of

Q for n = 10 are about 2%, those for n = 40 about .5%,

I lower than the exact solution. Values of N are less than

the exact value of 4.8% for n = 10, 1.2% for n = 40.

When the material is a standard linear solid with con-

stant v [i.e., y(() = fe-C, results of the numerical method,--

can be compared with the complete analytic solution given in-

Section 4.2. A few such examples are given in this section

to indicate the accuracy of the method. Increasing n

beyond a certain value will not necessarily mean more accur-

ate results. When the segments are very short (e small,

n large), increased precision (more significant figures) is

necessary, requiring careful attention to the details of

calculation, and perhaps more sophisticated numerical
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techniaues. Trial solutions for sevýmr1 xlniH I

enable selection of a suitable value of n for a particular

class of problems.

Two rolling cylinder problems are solved with n = 10,

20, and 40. In each, ?ý = 1 and y(C) = fe-C , with f = 1

in one example, f = 10 in the other. Results are given in

Table 5.2, and pressure distributions are shown in Fig. II.

Numerical values are consistently improved with larger n,

the error being roughly halved when n is doubled. Except

near the ends, the pressure distributions for all three

values of n are nearly the same. On the basis of such

examples, n = 20 was chosen for use in all subsequent roll-

ing cylinder examples. Comparison with the analytic solu-

tion indicates errors of 2 to 5%. The computer time needed

for a typical solution with n = 20 was .1 to .5 minutes.

For a given base material [given y(C)], the complete

range of rolling cylinder problems is covered by varying -A

from 0 to o. To illustrate typical results, numerical solu-

tions for some representative values of ? are given in

Table 5.3, along with the analytic solution for comparison.

In these examples, -(•) = e-C (f=l). Numerical values com-

pare with the exact solution as follows: B - very close

agreement; N' -numerical solution consistently 2 to 3% low;

P- error of 5% or less. The limiting cases ? = 0 and

Figures h-beled with Roman numerals are at the end of
the chapter.
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=(- the -ame q the ePIqt r Ic siotion (Table hI.

Section 4.1). These limits are closely approached for

.01 and 1, 100 respectively. The pressure distri-

butions are shown in Fig. IV. For ? = .01 and 1 = 100 the

pressure is very nearly symmetric, while for 1 1 it is

noticeably non-symmetric. For large and small pA, /

approaches .5, while the lowest value of p/,\ occurs for

1= . The variation of coefficient of friction with veloc-

ity is shown in Fig. Vi, where RX/a 0 is plottea against

VT/a 0 (log scale). The friction curve has a pronounced peak,

with the maximum occurring for VT/ao = 1.42 (• = 1.6).

The results of this set of examples indicate some fea-

tures which are characteristic of any viscoelastic rolling

cylinder problem. The elastic solution is symmetric and

gives no resisting force. A viscoelastic material, due to

its delayed recovery and energy dissipation, gives rise to

asymmetry in the solution and a resisting force (indicated

by X). The asymmetry is evident in two respects (see Fig.

4.2): 1) the contact region is displaced upstream, so that

its center ( 1 = 22) does not lie directly below the center

of the cylinder (p = •); this means p/N is less than 1/2

(the elastic value), the difference indicating the amount

of asymmetry; 2) the pressure distribution is not symmetric

in the contact region; the maximum pressure occurs upstream

from the center of contact. These features are clearly shown

1
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in the example-s just gezn_ pertc.lr, fo h "- Ao th e

velocity goes from 0 to o, the resistance (for a given total

load) increases from zero, reaches a maximum for . near I,

then decreases to zero. This confirms the predictions made

in Section 1.5 about the variation of X with velocity.

The examples give consistently low values of n (about

2 to 3% for n = 20). This error is due principally to an

inaccuracy inherent in the approximate representation of the

pressure distribution. The pressure elements on each end

are triangular (Fig. 5.2), with finite slope at • 0 and

S= ?. The exact pressure distribution, however, will have

a vertical slope at the ends . To compensate for this, the

numerical solution tends to give

Q IarrQ.1' about 2% larger, and QW, Qý ( I

the other Q' slightly smaller, 3

than their exact values. This

tendency can be seen in Table

5.1. Even with this correc- 0 3-

`-ion, the total load (area n n n

under the pressure curve) FIG. 5.2

found in the numerical solut-on is smaller than the exact

value. The difference is indicated by the shaded regions

in Fig. 5.2. With smaller segments (l arger n), a steeper

This is true for the elastic solution (5.20), and is

also true for viscoelastic solids with initial elastic
response.
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the exact pressure distribution. This is evident in Fig.

III, where the same problem is solved for different values

of n. The numerical procedure could be improved somewhat

by using unequal divisions of the contact region. Smalle'

segments could be used near the ends, since that is where

the pressure changes rapidly.

Comparison of the numerical and analytic solutions for

these examples shows that the numerical method with n = 20I
gives res'ilts within a few per cent of the exact values.

This suggests that the same procedure could give equally

satisfactory results in problems for which no analytic solu-

tion can be eound. An analytic solution is available only

for a standard linear solid with constant v. Two principal

restrictions of this model ari 1) similar behavior in shear

and dilatation [B(C) = J(C), thus v = constant], and 2) a

Ssingle retardation time. Although some general features of

rolling cylinder problems are exhibited with this model,

other important aspects are not adequatE.ly represented. In

the next section some examples will be given for which the

material behavior is not so restricted.

5.4 Examples of Rolling Cylinder Solutions

More general and realistic viscoelastic behavior is

illustrated by simple Voigt solids, each having several

retardation times and not restricted to constant v. Then,
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m
Y(O Z f bi e , with m > 2, and c(e) is again given by

i=l
(5.6). The numerical procedure of Section 5.3 is used, with

the contact region divided into 20 equal segments.

The dilatation behavior of certain viscoelastic materials

can sometimes be considered as elastic. In this case, B(C)= 1

and v varies in time, with v, > v0 . The simplest such. 0

material behaves in shear as a standard linear solid, with

= 1 + fl(l-e-); this will be used for illustration.

In addition to fl, the initial Poisson's ratio v. must be

specified. For this set of examples, fl = 1 and v0 = 1/3,

and the final Poisson's ratio is vf = .412. Then, from

(1.28b)

Y(C) = .750 e-C + .027778 e- 1.8889C (5.22)

Results for representative values of ?\ are given in Table

5.4. The limiting cases ? = 0 and c\ - are found from

Table 4.1 (f - .765 in these examples). The pressure dis-

tribution for 1 = i is plotted in Fig. V. The variation of

friction coefficient with velocity is shown in Fig. Vi.

Some corresponding results for the material having the

same behavior in shear, but constant v, are shown in Table

5.3., and Figs. V, V-I. Comparison shows the results for the

two materials (differing only in dilatational behavior) to

be nearly the same. This indicates that in rolling cylinder

problems the exact nature of the behavior in dilatation is

not a critical feature. With elastic dilatation, the effects
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of' viscoelasticity (minimum P/^, maximum RX/ao) are again

most pronounced for ?\ in the neighborhood of 1, but the mag-

nitude of these effects is somewhat less than for the material

%ith constant v.

In all the examples considered thus far, the viscoelas-

tic material has been a model with a single retardation time

in shear. For such a material, most of the transition from

initial to final elasticity takes place in a short time span

(on a log scale), about one decade on each side of the re-

tardation time 1. This means most of the viscoelastic be-

havior is concentrated in this short time span. In the roll-

ing cylinder problem, \ is the dimensionless time needed for

a given element of material to traverse the contact region.

When ?ý is near 1, the element undergoes most of its transi-

tion from initial to final behavior during the time of con-

tact, and the viscoelastic effects are very pronounced.

This is somewhat analogous to resonance in damped vibrations.

When k is less than about .1, the contact time is troo short

for little more than the initial elastic behavior to be

effective, Likewise, when X is larger than about 10, the

contact time is long enough that the final elastic behavior

predominates. Thus, the asymmetry of the solution is most

pronounced for ? in the neighborhood of l and ,the friction-

velocity curve has a definite peak in thia neighborhood.

This retardation time is used to form the dimension-

less time variable r = t/i, so it has the value T 1.
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These aspects 6f the results indicate that the model

with a single constant retardation time is very artificial.

Rather than discrete retardation times, actual materials

appear to have a continuous distribution over a large time

span. The behavior of an actual material over the full

range of contact times I/V can be adequately represented by

a single model of discrete 1,etardation times only if there

is a broad spectrum of such times. The viscoelastic effects

will be significant over a much wider range o2 ?\, but the

magnitudes of these effects will be considerably decreased.

This will be illustrated by a simple model with constant

v and five redardation times, T = .01, .1, 1, 10, and 100.

The retardation times have equal weight in the creep be-

havior, and the final elasticity is the same as for the

set of examples of the last section (f=l). Thus,

J(r) = 2 - .2(e-'Oi + e-'l +e- + e- 10+ e-i00)

(C) = .2(.Ole- Olr+ -le-*1 C+ e-C+ l0e- lO+ lO0e-lO00)

(5.23)

The results for X = 1 are given in Table 5.5, and the pres-

sure distribution shown in Fit;. V. For comparison, these

include also results previously given for two materials with

a single retardation time in shear. A few points on the

friction-velocity curve are shown in Fig. VI. Although

only five discrete timos were used, the results are in
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striking contrast to the single time model. For N = 1,

the 5-time model gives a much more symmetric solution, with

P/N much closer to .5. The friction curve is broad and

smooth, with no pronounced peak. The maximum again occurs

near N = 1, but the curve is relatively flat over the five

decades covering the retardation times. The maximum value

of the coefficient of friction is considerably reduced,

being only about 1/3 of the peak for the single time model

with constant v.

These results and other examples lead to the general

conclusion that a single-retardation-time model is not ade-

quate for describing quantitatively the behavior of actual

materials when subject to rolling contact over a wide range

of contact times. Actual materials with a broad spectrum of

retardation times will not produce the pronounced viscoelas-

tic effects of a single-time model. Instead, these examples

indicate that the effects will be much reduced in magnitude

an. spread over a broader range of contact times. This is

evident also in the example with elastic dilatation. The

difference in shear and dilatation behavior introduces a

secondary retardation Aime of relatively small weight (see

5.22). But even this produces a noticeable decrease in the

friction and a more symmetric solution (see Table 5.5).

For a given final elasticity f and contact time ?., a model

with several retardation times will have a more symmetric

i
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solution and lower friction than the corresponding single-

time model. There are definite computational advantages in

using a model. to represent an actual material, but the model

must have at least several retardation times for the results

to be at all realistic.

The discussion so far has been concerned principally

with those aspects of viscoelastic behavior which are influ-

enced by the retardation times. But also important is the

magnitude of the change from initial to final behavior.

This is most conveniently indicated by the ratio of final

to initial. deformation in a creep test. In particular, for

moving load or contact problems this ratio is given by 1 + f,

where f = yCd . Small values of f indicate nearly elas-

tic behavior. Large values of f mean that the final response

is much greater than the initial response. The limiting

case as f h co is a material wcth no initial elavticity.

This means no free spring in a mechanical model (Fig. 1.3).

The simplest such model is a Kelvin solid, consisting of a

spring and dashpot in parallel and having one retardation

time.

To illustrate the effects of the value of' fb, a standard

linear solid with constant v is used, thus efeC.

Fig. III shows the pressure f istribution for f bh10,o 1.

There is a sio g eficant peak in the pressure very close to

the upstream enr 'f the contact region. The results for
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various values of f, with the same contact time • = 1, are

given in Table 5.6, and the corresponding pressure distri-

butions in Fig. VII. The case f = 0 is the elastic solution

which is symmetric. As f is increased, the viscoelastic

effects become more and more pronounced: • decreases, indi-

cating the contact region is displaced more and more upstream;

the maximum pressure increases and the peak shifts closer to

the upstream end; the friction increases (although the veloc-

ity remains nearly constant). For the limiting case as

f -+ o , the Kelvin solid, there is an exact analytic soLu-

tion given in Section 4.2 (4.24,-28). In this limiting case,

the pressure peak is infinite and is at the front end of the

contact region. Since the Kelvin solid has no initial elas-

ticity, the results in Table 5.6 and Fig. VII are based on

the final elastic constants (1-vf)/ýLf to allow comparison.

These results indicate that for large f the viscoelastic

effects (asymmetry, friction coefficient) will be much in-

creased over the effects for small f. In particular, there

will be a significant peak in the pressure distribution near

the upstream end. The presence of this peak is due to the

small initial response relative to the final response when

f is large. The deformation near the front of the contact

is produced principally by the initial elastic response,

while farther downstream the longer time of contact pro-

duces a much greater response. Thus, a very high pressure
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comparable in magnitude to the deformation in the rest of

the contact region. As f gets larger, a greater pressure is

needed, so the peak increases. In the limit f -+ , there

is no initial response, so an infinite pressure is needed.

The example used here is a situation most favorable to pro-

ducing a peak. The time of contact (?\=l) coincides with the

single retardation time of the material, so the viscoelastic

effects are exaggerated as explained earlier. With this

same material, if N >> 1, the contact time is long enough

so the final elastic response is effective over nearly all

the contact region. In this case the results are nearly the I

same as the elastic solution for all values of f. For

N << 1 ,the short contact time means only the initial elas-

tic response is effective over most of the region. The solu-

tions are thus close to elastic again when f is not too

large. However, for very large f the initial response is

very small and not significant, so the solution approaches

that of the Kelvin solid.

The significance of several rather than just one retar-

dation time in the material behavior has already been dis-

cussed. This is particularly evident when f is large. As

an example, the results for the 5-retardation-time model used

previously, this time with f = 100 and N = 1, are given in

Table 5.6. The solution is considerably more symmetric and
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tne friction coefficient much less than for the corresponding

single-time model. The pressure distribution is very nearly

the same shape as the f = 1 curve in Fig. VII (with slightly

greater ordinates) and there is no pronounced peak.

Actual materials, such as polymers, may have values of

f as high as 10 4. However, when f is very large there are

difficulties in the numerical calculations due to the sharp

peak. Many divisions of short length are needed in the

vicinity of the peak. This is evident in Fig. III, where

results for different values of n can be compared. But, as

mentioned in Section 5.3, other difficulties arise when very

short segments are used. Attempts were made to estimate the

peak by further theoretical considerations, and so remove

it from the numerical calculations, but without success.

5.5 Numerical Solution of the Nearly Flat Punch Problem

As an illustration of another application of the numeri-

cal method for moving contacts, the problem of moving "nearly

flat" punch is considered in this section. A "flat punch"

is a rigid (two-dimensional)

body with a plane surface at

some angle a pressed into the
Sase a

viscoelastic base (Fig. 5.3) ý

by a force N If the punch

is perfectly flat, the-contact
FIG. 5.3

will be a straight line with'
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sharp-L corners atteens flt Ldea"L-zed 100oilm, th-e pi~es-

sure will be infinite and the slope of the deformed surface

will be discontinuous at one or both ends of the contact.

Real corners, however, will be slightly rounded, not perfectly

sharp. The pressure at the corners may be high, but finite,

and the contact will be smooth. The important question is

how the peak pressures depend on the shape of the rounded

corners. Such a "nearly flat punch" may score or gouge

the base surface if peak pressures are too high. Avoidance

of such damage is a practical problem of frequent occurrence.

Some aspects of the moving contact of a nearly flat

punch will be investigated The corners will be assumed to

be circular arcs (radius R), with the length of the rounded

portion very small relative to the total length of contact

(Fig. 5.4). The problem is then treated as one of smooth
4

contact. The length d of the flat portion is fixed. Then,

the length of the rounded corner in contact on the left end

is b, and for a total contact length I the length of the

rounded corner on the right end is i-d-b - b, with

b << . In general 1 • 1 because the contact is not

symmetric.

The elastic solution for smooth contact of a nearly

flat punch (reported elsewhere) shows that, while the

pressure is everywhere finite and is zero at the ends, very

sharp peaks occur just inside the ends of contact. As the

158

I ' I II I ,



length of the corners becomes

smaller (i.e., b/d -0), the

peak gets sharper, and in the

limit the solution becomes that d

for a perfectly flat punch.

This suggests that the visco-

elastic solution may also have

sharp peaks in the pressure FIG. 5.4

distribution near the ends.

The viscoelastic problem is treated as outlined i.n

Section 5.2. Lengths are expressed as dimensionless ratios

to VT:

Rd
VT= 

(6-6-•)/• (5.24)

The other dimensionless quantities given by (3.5a-0) are

used. The shape of the contact surface (with the circular

arcs approximated by parabolas) is given by

1 2

2p , • + 6K < K ?,

The n collocation points are c sen, and, taking •a =

(Fig. 5.1), W(a -) = 0. Then, from (5.9),
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n-1-

Z QkAjk+ Ain =+ w Aj = Ol,...,n, except j-=a
k=l

(5.25)

where , n-1
Qk = PQk ' kN=l qk.('k+l+"k),

k=!

¢ 2pa ,and

So<j < 6 + (5.26)

S-(•--)2, + + 6 K< <j _ ?
3 -

The Ajk are given by (5.8a,b) and (5.4b-d) with a =

For a particular problem, values of P and 'A are chosen, thus

determining rj (6 is a given quantity). The solution then

gives the pressures Qk and the tilt 0. To obtain a partic-

ular value of 0, for example, several trials with different

Sand/or P may be necessary

For illustration, the results of one set of examples

are given. A standard linear solid with constant v is used,

so y(C) e . In these examples, 6 = .99 and ý = .005;

the only variation is in 71 (thus A varies slightly). The

division of the contact region and the choice of n is based

on the expectation of sharp peaks near. the ends and rela-

tively little variation near rohe center. After some pre-

liminary trials, n = 22 was chosen. A typical division is

shown schematically for T ] 1.67:
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The results for several values of il are given in Table

5.7, and some pressure distributions are shown in Fig. VITII.

The sharp peaks in the pressure are present as anticipated,

and the expected asymmetry is shown by the greater height

of the upstream peak. Another expectation is verified by

the regular change in tilt as the upstream corner is lenghened,

other factors being constant. The tilt is nearly zero when

S= 1.67, and the body rotates clockwise as • is increased.

The pressure distribution is very little changed near the

downstream end, but there is significant change near the

upstream end as rq is varied. The peak pressure and total

load N' increase with TI, and the line of action of the verti-

cal resultant moves upstream. For the zero tilt example

(I = 1.67), the line of action of N' is at e = .60.

These examples indicate the general suitability of the

numerical method for viscoelastic moving cortact problems

of this type. Even with a relatively small n, the important

features are evident in the solution. The method can of

course b3 applied for more general viscoelastic materials

if desired. The shapes of the rounded corners can also be

easily changed. For example, the stress peaks could perhaps

be made more nearly equal by using different radii at the
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two ends. It is interesting to note that (within the

limitations of small displacements and smooth contact) the

radius of the rounded corner enters only as a scale factor

in the pr, ;sure and load ey-pressions. Thus, if b, d, and -qb

(Fig. 5.4) are kept the same, the pressure distribution

expressed by

S= R !-Vn 1
1 1 q(x)VT 0o v qx

remains unchanged if the radius R is changed. However,

the total load changes in proportion to R , so the actual

magnitude of the pressure q(x) changes similarly.
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X)

a 1 /-o 2 R N*

= half-length of contact on elastic base (P0 vo0 )

Material Properties:

o' v 0 - infitial elastic constants

T - caaracteristic time parameter

y(•) - a creep function, defined by eqn. 1.27

Dimensionless Quantities

x B b R

- VT VT'o T

1-v 2 R

Nt 0 7- RNa

P, V 7T =(0o)2
0

1-v 2 R F* F* F'

0

FIG. I THE ROLLING CYLINDER PROBLEM
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TABLE 5.1

ROLLING CYLINDER ON ELASTIC BASE,
NUMERICAL AND ANALYTIC SOLUTIONS

Values of Qk for ?ý=10

Numerical Analytic

40o/?\ n=10 n=4O

1 .508 .497
2 .675 .693
3 .825 .839
4 .977 .942 .955
6 1.125 1.134
8 1.234 1.263 1.271
10 1.368 1.379
12 1.429 1.449 1.460
14 1.509 1.518
16 1.529 1.550 1.560
18 1.575 1. 584
20 1.561 1.583 1.590

N' 23.80 24.71 25.00
p/\ .5000 .5000 .5000
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TABLE 5.2

ROLLING CYLINDER RESULTS FOR VARIOUS n

-y(C)-fe ý; xý=l

Numerical Analytic

n=iO n=20 n=40

.4025 .4014 .4008 .4003
N' .2048 .2097 .2121 .2144 f
pX .1213 .1231 .1239 .1249
Q'max. .1350 .1359 .13641

.1981 .1965 .1958 .1952
N' .0697 .0712 .0718 .0724 f=10
pX .4257 .4291 .4308 .4322
Q'max. .0835 .0719 .0665

Corresponding pressure distributions are shown
Figures I and II.
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TABLE 5.3

ROLLING CYLINDER RESULTS FOR VARIOUS N

\ PA N/i\2  PX VT/a 0  RX/a 0 (a 0 /2N*)q max

0 .5000 .2500 0 2/? 0 .3183 *

.Ol .4932 .2500 .0000670 200.0 .01340 A
.4934 .244o .0000692 202.4 .01402 .3186 N

.1 .4612 .2491 .00380 20.0 .0760 A
.4620 .2430 .00410 20.28 .0832 .3180 N

. 4003 .2144 .1249 2.16 .270 A

.4o14 .2097 .1231 2.184 .2688 .2967 N

10 .4768 .1377 .4292 .270 .116 A
.4768 .1343 .4276 .2729 .1167 .2273 N

100 .4975 .1263 .4925 .0281 .0138 A
.4975 .1227 .4828 .0285 .01378 .2254 N

S.5000 .1250 .5000 2.828/N 0 .2250 *

A - analytic solution, Section 4.2
N - numerical solution, Section 5.3
* - limiting case, exact solution

Pressure distributions are shown in Figure III.
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TABLE 5.4

NUMERICAL RESULTS FOR ROLLING CYLINDERS

Standard linear solid in shiear, elastic dilatation

yU() =.750e-e + .02778e-1"
8 8 9C

Vo =.333 , vf =.412 , f =.765

S I 2 VT/a_0  R o/a0  (i2N*)q ax

0 .500 .250 w 0 0 .318 (exact)
.01 .495 .244 202 .000054 .0109 .319
.1 .471 .243 20.3 .00317 .0643 .318
.5 .430 .233 4.14 .0403 .167 .312
.75 .423 .225 2.81 .0692 .195 .306
1.0 .422 .217 2.15 .0976 .210 .301
1.6 .427 .200 1.40 .157 .219 .289
2.0 .433 .192 1.14 .189 .215 .282
5.0 .464 .162 .496 .308 .153 .250
10 .480 .150 .258 .364 .0940 .242
100 .498 .139 .0268 .413 .0111 .240
1000 .500 .138 .0027 .415 .0011 .240

.•500 .142 0 .432 0 .240 (exact)
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ROLLING CYLINDER RESULTS FOR VARIOUS MATERIALS

S= I

a) Standard linear solid, J(,) = I + (i - e
constant v e-p

b) Standard linear solid J(C) = I + (i - eB(; I(• I
in shear, elastic
dilatation (vo =,333) y(ý) = .750e-ý + .02778e6-!.889

c) Five retardation times J(.)I see equation (5.23)
in shear, constant v

_- a /2N-)q max

a) .4014 .2097 .1231 2.184 2269 .297°

b) .4215 .2171 .0976 2.146 .210 .301

c) .4694 .1738 402 2.399 .096 .268
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TABLE 5.6

ROLLING CYLINDER RESULTS FOR VARIOUS f

= 1 in all cases

Results are based on the final elqszic response: af.=aoV/+f

f P/?ý (1+f)N' P w VTf/a RX/af I(f/2N*)%ax

Single retardation time

0 .500 .250 0 2.000 0 .318 (exact)
1 .401 .419 .123 1.546 .190 . 20

10 .197 •790 .429 1.129 .434 .892
100 .149 .872 .524 i.o6r .559 3.08

S.143 .893 .538 1 .0 58 .569 o (exact )

Five retardation times

1 .469 .348 .040 1.696 .068 .379
100 .401 .576 .133 1.319 .175 .515

TABLE 5.7

NUMERICAL AESULTS FOR NEARLY FLAT PUNCH

P =.005, 6 =.99, y(C) = e
q'x 101

qxl X14 ___ N'xlO4 left max right max min

-2.52 1.0 1.000 2.52 11.9 12.C .71
- .32 1.6 1.003 3.56 12.0 19.1 .91

.05 1.67 1.00335 3.74 12.0 20.1 .93

.53 1.8 1.004 3.97 11.9 21.5 .96
1.3ý 2.0 1.005 4.36 12.0 23.6 .99
6.13 3.0 1.010 6.66 11.9 35.7 1.23
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