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PREFACE AND SUMIARY

This Memorandum is one in a continuing series of RAND

publications dealing with theoretical and computational

questions which have arisen in connection with the RAND

program of research oa rocket fuels and propellents and

in biology and physiology. It details a method by which

a multi- or single-phase chemical equilibrium problem with

a large number of different chemical species can be re-

placed by one with relatively few species. The purpose

of this research is to find methods for transforming com-

plex problems into problems which are more amenable to

numerical solution.

This Memorandum is concerned with a technique first

developed in an earlier Paper, On the Reduction of Certain

Multiplicative Chemical Equilibrium Systems to Mathematically

Equivalent Additive Systems, P-2419, by G. B. Dantzig and

J. C. DeHaven. The present Memorandum generalizes the

technique to systems more complex than those to which the

technique of the earlier paper is rcadily applicable. The

basic approach of the previous paper is described briefly,

For example, see Refs. 2-8.
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but the reader should be familiar with P-2419 for certain
explanatory and illustrative material which has not been
included in the present paper.
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A GENERALIZED TECHNIQUE FOR ELIMINATING SPECIES IN

COMPLEX EQUILIBRIUM CALCULATIONS

I. INTRODUCTION

We will consider multi- or single-phase chemical

equilibrium problems, showing that, under certain circum-

stances, a problem involving a very large number of dif-

ferent chemical species may be replaced by one involving

relatively few species. The new problem will then be

much more amenable to numerical solution than the original

problem. We will use the same approach in formulating

complex chemical equilibrium problems as was used in [1].

It is briefly described here primarily in order to intro-

ducb our notation and terminology.

Consider a problem involving certain chemical species,

XI,.. .,XI,.. .,X in one or more phases. It is no loss

of generality to assume that no species can occur in more

than one phase. For example, if H20 occurs in both a

liquid phase and a gaseous phase, we assume, as is fre-

quently done, that we are dealing with two distinct species,

H20-liquid and H20-vapor, and we formulate the mass balance
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equations (see below) in such a way that H20-1iquid is

transferable into or from H20 -vapor. Thus, we assume that

species in distinct phases are distinct.

In [1] it was shown that any chemical equilibrium

could be formulated from the following three types of

information:

I. A specification of which species occur in which

phases.

II. Certain constants aI' For a

discussion of the meanings and the various interpretations

of these constants, as well as the methods by which they

may be obtained, see [2]. Because one way of looking at

the t's depends on the Gibbs free energy function, we

will call a the free energy Larameter associated with

0
AF 0

X V. In fact, a = RT

III. A set of N linear equations of the form

L

Z s n x = o n N ()

t=I

where x is the (unknown) number of moles of X¢. Con-

straints of the type (1) may represent, for example, mass

balance constraints, or may, for example, express the

condition that a certain phase be electrically neutral
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Thus, if n of Eq. (1) is a mass balance constraint,

3 might be the number of atoms of some chemical element

in each molecule of X, and s would be the total numberO,n

of atoms (measured in moles) of that element in the 3ystem

under consideration. In practice, of course, it is ordin-

arily more convenient to base the mass balance equations

on various radicals rather than on indivicual atoms. In

any case, all the mass balance constraints are of the

form (1); that is, they are linear equations in the xt's.

If equation n of (1) is an electro-neutrality con-

dition on some phase, then st,n would be zero, except for

those 4. for which X occurs in that phase, and X is an

ion. In that case, st is the valence of X,, with the

appropriate sign.

If, for each k, 0 t 5 L, we define a vector, S,

whose components are s 1 ' n s N, then Eq. () may be

written as

L

0 It (1')

Notice then, that S is essentially the "empirical formula"

for X

We will call S the constraint vector associated with X;.
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Repeating, a chemical equilibrium problem may be

completely specified by the following three types of in-

formation:

I. The specification of which species occur in

which phases.

II. An energy parameter, cx, for each species, X¢.

III. A constraint vector, S, for each species, XV,

and a vector SO .
,

Note that the concentration [X I of each species
Xt0 can be calculated by dividing x 0 by the sum of all

's for which Xt occurs in the same phase as X (this

sum, of course, includes x 0 itself). Thus, the [XI's

are functions of the x 's (although each [X ] does not

depend only on the corresponding x).

It was shown in [2] and [3] that the x 's may be

efficiently determined, numerically, by minimizing the

function

L

F = Z x. (c + [x 1)

Throughout this paper, we measure concentration in
mole fractions.
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subject to the constraints that

L

tt= 10

Before stating and proving our results, we give an

example of a typical and relatively simple situation to

which they apply.

Consider a chemical equilibrium problem involving one

or more phases. Consider some particular liquid phase,

which we will arbitrarily call the first phase. Suppose

that a certain chemical species, X, occurs in the first

phase. Suppose also that X can combine with oxygen to

form new species XO2 and X04 Suppose that X has 50

distinct sites at which hydrogen ionization can occur,

that XO2 has 75 distinct sites at which hydrogen ioniza-

tion can occur, and that XO4 has 100 distinct sites at

which hydrogen ionization can occur.

Suppose that all these sites are independent, in the

same sense that ionization at one site does not influence

the ease or difficulty of ionization at any other site

on the same molecule. (Note: This assumption of complete

independence is not necessary in order to apply the methods



of this paper. They would also be applicable if various

types of systematic dependence were assumed.)

Suppose also that all these sites are of two distinct

classes--sites of the first class being easier to ionize

than sites of the second class. But, suppose that all

sites of the first class are equally easy to ionize and

that all sites of the second class are equally easy to

ionize. Thus, each molecule of X might have 20 sites of

the first class and 30 sites of the second class; each

X02 molecule might have 30 sites of the first class and

45 sites of the second class. Each X04 molecule might

have 50 sites of the first class and 50 sites of the

second class.

Notice that two molecules ionized in different ways

represent different species; hence, we are dealing with

a total of 250 different varieties of X, 275 different
100

varieties of XO 2 and 2 different varieties of XO 4--

or a total of approximately 1030 distinct chemical species.

It will turn out that we will be able to formulate a new

problem which will be equivalent to the first problem,

but one in which all these approximately 1.030 species will

*e replaced by only seven species. Of course, the first

phase may iLself contain additional species and there may



-7-

be other phases. But we will have attained a significant

reduction in problem complexity.

We will now leave this special example and proceed

to state and prove our general results. Although we will

not again refer to this example, the reader may wish to

refer back to it from time to time in order to understand

the applicability of the general and rather abstract dis-

cussion which follows. It should be emphasized that the

example is not representative of either the complexity or

the variety of the situations to which our results may be

applied. The only purpose of the e.,.ample is to enable

the reader to more readily understand the statement of

our results.
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II. RESULTS

Let 0 be some subset (or the entire set) of species

in one of the phases (which we will arbitrarily call the

first phase) of a multi- or single-phase equilibrium

problem in the sense of [1]. Let be partitioned into

various sets of species, @l,...,)0.* That is, every

species 0 of 0 is in exactly one of the sets, i"

Let AI;...,JAk,..,AK be classes of sites (these sites

are actually abstract entities, and need not--but may--

correspond to actual chemical sites). Suppose that a site

in the class A can have Jk possible states: Bkl,...,

B kj.,.,B k. (For example, a class of sites might be

the class of all oxylabile sites which are affected in a

given manner by the presence of 02; the possible states

of a site in this class might then be an ionized state

and an un-ionized state.)

Suppose further that for each i and k, every species,

0, in the set 6. has exactly the same number of sites,1

Pik' in the class Ak. That is, the classification of the

sites of a species, 0, depends only on which of the sets,

Oi, that 0 belongs to.
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Suppose also, that any species, 9, of 0 is completely

identified by stating the Oi of which it is a member and

the states of each of its sites.

Suppose also, that for each Oi, all logically possible

assignments of states to sites (within the limitation that

if a site is in the class Ak then its state must be one of

Bkl,...,Bkj,..,B kJk) actually occur among the species of

it

Suppose, finally, that the free energy parameter, a.,

and mass constraint vectors, S9, for each 9 of 0 depend

only on which of the 0i 's that 9 belongs to and on the

states of the sites of 9; and, that this dependence is an

additive dependence. To state this assumption more pre-

cisely, for each species 9 of 0, and for each site class

Ak, and for each j, 1 s j : J k let h(9,k,j) be the number

of sites of 9 of class Ak which are in the state Bkj. Our

assumption then states that for each set Oi of species

there is a vector T. and a number Pi) and that for each1

site class Ak and each j, 1 : j : JkM there is a vector

Tkj and a number Akj such that

K

S =T. + X h(9'k'j)Tkj , for all 90i (2)

k=l j=l
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and

K k

0@ +  Z h(@'k'J) kj ' for all EOi " (3)

k=l j=l

We may now state our results.

Theorem 1. Let x be the number of moles of species

0 present in the first phase at equilibrium. For each set

Oi of species let

Y i xg (4)

and for each state Bk j let

k = h(,k,j)x (5)Ykj = , ' * 5

(Note that yi is then the total number of moles of species

in li and that Ykj is the total number of sites in the

state B kj--measured in moles--regardless of the species on

which these sites occur.)

Then, the following relationships hold:

I

P(6
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kI

z Ykj= p ik y i 
(7)

j=l i-1

for all site cIsses, Ak;

K Jk h(Q,kjj)

x y (Y-7) (8)

k=l j=l

for all sets Oi and all species 90i;

J k

where k denotes Z Ykj

j=l

Theorem 2. If we replace the original problem by 
a

new problem, as follows:

a) Eliminate all the species 9 of 0 from 
the first

phase;

b) For each Oi, add to the first phase a 
new species

i with constraint vector T.I and energy parameter

f3.. Let y. then be the number of moles 
of species

i in the new problem;

c) For each k, I s k 5 K, introduce a new phase whose

species will be the states Bkj, the constraint
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vector and energy parameter associLced with Bkj

being Tkj and Pkj' respectively. Let Ykj then

be the number of moles of species Bkj in the new

problem;

d) All the species of the original problem (except

those in 0) will be retained in the new problem

with their original constraint vectors and energy

parameters;

e) For each Ak, a new constraint, Eq. '7), is intro-

duced;

then, the two problems will be equivalent in the following

senses:

I. The minimum free energy of the original problem

is the same as the minimum free energy for the new problem.

II. The number of moles of all the species (and

their concentrations), except for those species in 0

which do not occur in the new problem, will be the same

at equilibrium in the two problems.

III. If x 0 is the amount of species 0 in the first

problem at equilibrium, and if yi and Ykj are the amounts

of species i and Bk., respectively, in the new problem at

equilibrium, then these quantities are related by Eqs.

(4)-(8). (Equation (7) holds, o ' course, simply because
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it was imposed as a constraint on the new problem.)

Note: It should be observed that having replaced the

old problem by the new problem and having solved the new

problem, we may recover the originai x9 's by direct sub-

stitution in Eq. (8).
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III. PROOFS

Throughout this section we will assume that each T.

and each TkJ is a given vector and that the S 's are given

by Eq. (2). We will also assume that each Ai and each

Pkj is a given number and that the a 9's are given by Eq. (3).

We will allow the Yi's, Ykj s, and x9 's to be vari-

ables. We will make explicit various different assumptions

about the manner in which they are related to each other

in the various lemmas. Thus, at times we will assume that

the y's are defined in terms of the x's by Eqs. (4) and

(5); and, at times we will assume that the x's are defined

in terms of the y's by Eq. (8).

However, we will always regard ak as being defined by

Jk

k Ykj

j=l

Lemma 1. jh(,k,j) = pik' for all 9 in the set 0i

j=l

and for all k.

Proof. This is simply a restatement of the assumption that

a species in 0i has Pik sites in the class A of sites.

We will find it convenient to introduce a polynomial

in several variables, R(z), where the components of z are



-15-

zi, for i=l,...,l, and Zkj, for k=l,...,K and j=l,...,Jk;

K

thus, z has a total of I + x Jk components. We define:

k=l

I K k

R(z) = i  17 zkjh(0k'J)
i=l 19(o k=l j=1

Lemma 2.

I K k
z_ Z h(,k,j) p ]Fz(,k)k k i=l i  k=l - i

Proof. By calculation from 9.

Lemma 3.

R(z) = x z'i k Zkj

i=l k=l j =i

Proof. Note that we have assumed that all the O's in

the same Oi have the same classification of sites. Imagine

that for each 0 of Oi and for each site of 0 we write

(with a very small pen!) the sum
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Zkj

j=l

if the site is in the class Ak. Note that we will have

written each sum Pik times on each 0 of Oi. Let us then

develop the product

K k(X kjPi) (10)
k=l j =i

as follows.

For each 0 of Oi' write a product of z's over the

sites of 9 by choosing at each site that term Zkj cor-

responding to the state Bkj that the site is in. Let us

then add the resulting products for all 9 of i. On the

one hand it is clear, from the definition of h(Q,k,j), that

the resulting sum will be:

K Jk

I FR v z kh(9,k, j)
GCOi k=l j=1

On the other hand, since we have assumed that as 9 varies

over 0i all possible permissible assignments of sites to

states occur exactly once, it is not bard to see that the

I I I I l ll I II ' l I' i - il , , , • , , , = -



-17-

process has also evaluated the product, (10). Thus, the

quantities (10) and (11) are equal.

If (10) and (11) are set equal and multiplied by zi,

and the result is added over i, we arrive at the identity

asserted in Lemma 3.

Lemma 4. If the relationships of Eqs. (4) and (5)

hold, then:

I K k

Y. Ti + z YkjTkj I xkSj .
i=l k=l j=1 9C

Proof. This follows by expanding S., using Eq. (2), and

from Eqs. (4) and (5).

Lemma 5. If the relationships of Eqs. (4) and (5)

hold, then

I K k

X Yipi + Z X Ykjpkj ZX9 0 "

.=I k=l j=1 o(O

Proof. From (3), (4), and (5).

Recall that as 9 varies over 0., each possible

assignment of states to sites is attained exactly once.
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Lemma 6. If Eqs. (4) and (5) hold, then so does

Eq. (7).

Proof. Lemma 1.

Lemma 7. If Eq. (4) holds, then so does Eq. (6).

Lemma 8. If the x 's are the quantities associated

with the original problem and if the y's are defined by

Eqs. (4) and (5), then Eq. (8) holds.

Proof. We know that for an appropriate Lagrangian vector, V,

X9

Ce + log -- = 1T. S for all GQ .9a 9

Here, a denotes the total number of moles at equilibrium

in compartment one of the first problem.

Hence, using Eqs. (2) and (3) (and letting 9 be in i):

K k

log XQ= IfS- Of (IT T.- + Yh(Q,k,j)(V7TT..)a 9 g Tkj-kj
k=l j=l

or, letting

V.=e >0
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and letting

v k e VTkj kj>0

we get

K k
x=:av" 7 Vkj h(g,k,j) for @ .i(12)

x 0 viVkj fo "(O

k=l j=1

Let Ck) 1 < k K, be arbitrary positive numbers and

set wkj = Ckj. Also, set

K

w. = a I7C ik

k=1

then, using Lemma 1, Eq. (12) becomes

K Jk

x T Wk h(9,k,j) , for 90. (13)xg -- w I  1Wkj,.

k=l j=1

Now, by taking

Jkc jx vk
(j-1
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we have

Jk

X Wkj i (14)

j=l

From Eq. (14) and from Lemma 3 we get

I

R(w) = 1w. (15)

i=l

6R(w) = 1 (16)
bw.

-w= W (17)
aWkj i

From Eqs. (4) and (13) it follows that

K Jk

Y ki VIlkj
90$i k=l j=l
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= (From the definition of R) wi aRw)
i aw.

= (From (16)) w.. (18)

Next, by using Eqs. (5) and (13), we get

I K Jk

Ykj W, h(g,k,j) F1 f7 w h(' ,')

i=1 GEi k=1 j=i

= (By Lemma 2) Wkj (19)

Combining (17), (18), and Lemma 6

Jk

aR(w) -kj :ak (20)
bWkj ]=i

Combining (20) and (19)

Wkj = ;ki (21)

then, (18), (21), and (13) yield (8). QLQ
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Lemma 9. If Eqs. (7) and (8) hold, so do Eqs. (4)

and (5).

Proof. Let Yj - and let w. = yi ThenProo___f. et kj = a k "

k

X Wkj = 1 (22)

j=l

and Eq. (8) becomes

K Jk

=Sv (wk for all GC. o, (23)

k=l j=l

Next

I K Ji

Z h( O k,j)x = w " h(g,kj) [. '

Lem j" (24)
(By Lemma 2) Wk. kj .

By Lemma 3 and Eq. (22)

I Ik

aW kj PikWi = PikYi = (By Lenmia 6) Ykj = k"
i=l i=l j=l
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This and Eq. (24) yield (5).

Finally, from (23),

K JkZx0 = w i wkj
QEi GCOi k=l j=l

= (From the definition of R) w i 6R(w)
1 aW.

II

But, Lemma 3 and Eq. (22) yield 6R(w) = 1. This andbw.

the fact that w. = yi yield (4).

Lenmma 10. (A) If Eqs. (4) and (5) hold and if the

x are those associated with the equilibrium solution in

the original problem; or (B) if Eqs. (7) and (8) hold,

then:

I K k

Zx0S@= Z yiTi + X YkNTj (25)

O4 i=l k=l j=l

and

Z ±t log 4-) 0i + log Lx9 ( 0 +lga Yi a-

+ XA + log i) (26)

k=l j=i
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where by "a" we mean the sum of all amounts of all species

in the first compartment of the original problem.

Note 1: By Lemmas 6 and 8, (A) implies (B). Hence,

we need only prove that (B) implies (25) and (26). But,

by Lemma 9, (B) implies Eqs. (4) and (5) and by Leima 7

Eqs. (4) and (5) imply Eq. (6). Hence, in proving Lemma

10 we may assume Eqs. (4), (5), (6), (7), and (8).

Note 2: By Eq. (6), a is also the sum of all the

amounts of all the species in the first phase in the new

problem.

Equation (25) follows at once from Lemma 4.

To prove Eq. (26), observe that by employing Lemma 5

and Eq. (26) we need only prove that

I

x log x 9 = log Yi

GE4 i=l

K k

+ Y log y k I  (27)
x L kj logk
k=1 j=l

To prove Eq. (27), note that from Eq. (8) we get

K k
log x= log Yi +  h(Q,k,j) log

k=l j=l k
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for G in Oi' and hence

1I

x9 log x9  ( og yj Q

K k

+ i og k h(~kj)x,)

k=1 j=l

I K

= yi log yi + Y logkj

i=l k=l j=l

which is Eq. (27). QED.

Theorem I follows from Lemmas 7, 6, and 8.

To prove Theorem 2, observe that, given a solution

of the old problem, we may define the y's by means of

Eqs. (4) and (5) to obtain a solution to the new problem.

Conversely, by means of Eq. (8) we may obtain a solution

to the old problem given a solution to the new problem.

Lemmas 4, 6, 8, 9, and 10 assure the validity of this

process and of the various assertions of Theorem 2.
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