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ABSTRACT

A general numerical method previously developed for

analyzing large dynamic two-dimensional deformations of simple

structures (and of large ax4 ;ymmetric dynamic deformations of

plates and shells with rotational symmetry) has been extended

and evaluated through comparisons of predictions with experi-

mental dynamic response and permanent-deformation data from

explosively-loaded beams and circular rings. The method accounts

for elastic, perfectly-plastic, strain hardening, and strain

rate behavior of the structural material, and the experimental

specimens employed were chosen to emphasize one or more of these

characteristics and to provide tests of the adequacy of the theo-

retical prediction method.

The governing finite-difference equations may be in-

terpreted as representing a finite number of concentrated masses

connected by straight extensible elements with bending concen-

trated at the mass locations themselves. The increments in

stress resultants and stress couples are determined by idealiz-

ing the shell thickness as consisting of n (even) concentrated

layers of material separated by a material that cannot carry

norma] stress but has infinite shear rigidity. The influences

of the number of layers in the idealized-thickness model, the

spacing between these layers, the number of masses employed, as

well as the aforementioned types of material behavior are dem-

onstrated and discussed in detail. The present method also per-

mits examining the subsequent partitioning of the initial input

kinetic energy of impulsively-loaded structures into plastic,

elastic, and kinetic forms; this feature iz also illustrated

and discussed.
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Transient response comparisons of the present method,

ri-id-plastic theory, and experiment show that the 
present method

yields considerably better results with essentially no 
greater

labor than required for the very restrictive rigid-plastic 
the-

ory. For cases in which the plastic energy absorption is a

large fraction of the initial energy input to impulsively-loaded

structures, a simple approximate energy method, a rigid-plastic

transient-response theory, and the present method predict 
com-

parable permanent deformations, but not otherwise.

Residual uncertainties in the experimental data and

the theoretical method are discussed, and measures to reduce

these uncertainties are proposed.

PUBLICATION PREVIEW
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FOR THE DIRECTOR
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SECTION I

INTRODUCTION

The prediction of large dynamic and permanent defor-

mations of simple structures usually involves an accounting

for both geometric and material constitutive nonlinearities.

Rigid-plastic analysis together with the assumption of small

displacements has been applied to obtain closed-form solu-

tions to estimate permanent plastic deformations of simple

beams [1, 2]. When large deflections are taken into account,

the rigid-plastic approximation no longer permits closed-form

analytical solutions, and numerical methods must be used.

Furthermore, the rigid-plastic analysis is applicable only

to problems in which the elastic energy of the system is

negligible compared with the plastic energy absorbed by the

structure. In many practical problems, however, this con-

dition is not realized. Therefore, a more realistic method

of analysis is required.

The research reported in Reference 3 was conducted in

order to develop a general numerical method of analysis of

the large-deformation dynamic elastic-plastic behavior of

simple structures for which the region of severe post-elastic

deformation does not remain at a fixed structural station but

propagates. The elastic-plastic analysis developed underwent

preliminary evaluaticn [4] by comparing predictions with

dynamic deformations measured on a few initial structural

specimens from a comprehensive experimental program [5, 6]

designed to provide well-defined data on large dynamic strains

and deformations, impulse loading, and permanent deformations

Manuscript released by the authors June 1964 for publication
as an RTD Technical Documentary Report.
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of impulsively-loaded beams and rings. Now that those ex-

periments have been completed, it is possible to carry out an

extensive detailed evaluatiou of the adequacy of the elastic-

plastic analysis [31; reporting that evaluation and describ-

ing certain modifications of the analysis are the purposes of

the present report.

For purposes of clarity and continuity, a brief descrip-

tion of the subject impulsive-loading and structural-response

experiments is given in Section II; a complete account may be

found in Reference 6. Section III is devoted to a brief de-

scription of the elastic-plastic method of analysis and a

description of the effects on structural response of various

material properties and dynamic-model features. In Section

IV, detailed comparisons of elastic-plastic theory with ex-

periment in terms of dynamic deformation and strain response

and permanent deformations of explosively-loaded clamped and

simply-supported beams (6061-T6 and 2024-0 aluminum alloy and

1010 steel) and 6061-T6 circular rings which are freely sus-

pended and clamp-supported are given. Also, some comparisons

are shown among experiments and predictions from elastic-

plastic theory, rigid-plastic theory, and an approximate

energy method. Summary remarks and conclusions with reference

to the adequacy of the theory and merits of the experiments

are given in Section V.
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SECTION II

BRIEF DESCRIPTION OF EXPURIMENTS

2.1 Scope of Experiments

The experiments discussed in this section of the report

are those which vere designed and conducted expressly within

and to support the present Air Force-sponsored research

program*. The types of experiments needed were designed by

the MIT Aeroelastic and Structures Research Laboratory in con-

junction with AFFDL project personnel and Picatinny Arsenal

personnel. The detail designs of testing fixtures, photo-

graphic arrangements, explosive-loading techniques, static

and dynamic tests of models, etc., were carried out by Pica-

tinny Arsenal personnel under AFFDL sponsorship.

These experiments consisted of explosively loading

clamped rectangular beams, simply-supported beams, free single-

layer rings, and clamped single-layer rings, and measuring

the transient deformations and strains, and the permanent de-

formations of these structures. In support of these experi-

ments, it has been necessary to conduct supplementary experi-

ments to define (a) the explosively-imparted impulse to the

above test specimens and (b) the static and the dynamic stress-

strain properties of coupons of materials from the same mate-

rial lots as those for the beam and ring materials actually

employed in the explosive-loading tests. All of this work

is described briefly in the following subsection.

* Air Force Flight Dynamics Laboratory, Research and Tech-
nology Division, Project No. 6699, 'Nuclear Weapon Effects
on Space Vehicles," Task No. 690601, "Determination of
High Altitude Nuclear Weapon Effects on Space Vehicles,"
Contract No. AF 33(657)-8427.
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2.2 Brief Description of Test Specimens , Arrangement,

Proceares and Response Measurements

Figure 2.1 illustrates schematically the four types of

explosive-leading experiments conducted. Clamped and simply-

supported rectangular beams of 6061-T6 and 2024-0 aluminum

alloy and heat treated* 1010 steel were tested. Also, single-

layer circular rings of 6061-T6 aluminum alloy were tested in

both freely suspended and clamped configurations. As indica-

ted, each test specimen has its entire width and a portion of

its span or periphery covered by a thin layer of high explo-

sive (HE). The test snecimen is separated from the HE layer

by a thin layer of a suitable buffer material (in this case,

polyethylene) which attenuates and lengthens the pressure

pulse so that spall fracture of the test specimen by the

otherwise excessively short-duration and intense pressure

pulse produced by detonation of the thin layer of HE does not

occur.

Through the use of high-8peed streak and framing cameras,

respectively, the deformation time history at the mid-span

or diameter of the specimen and the spanwise and peripheral

deformations at various times throughout the response to th,

permanent-deformation condition were obtained. Baffles were

provided adjacent to the edges of the teat specimen to reduce

and/or prevent obscuration of the test specimen by the

* Normalized at 1650 0F for one hour, then air cooled, next
annealed at 1600OF for one hour, and then furnace cooled at
250°F per hour in a hydrogen atmosphere, as reported in
Krafft, ".M. and Sullivan, A.M., "Effect of Grain Size and
Carbon Content on the Yield Delay Time of Mild Steel,"
Transactions of the American Society for Metals, Vol. 51,
pp. 643-659, 1959.
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detonation products. Strain time histories were measured

using strain gages attached at several locations on certain

beam and ring specimens. Further discussion of these measure-

ments and their comparisons with theory is given in Section

IV.

As shown schematically in Fig. 2.1, the detonation of

the HE layer proceeds uniformly across the width of the test

specimen, thus inducing some dynamic twisting rather than

purely two-dimensional deformation. Hence, the streak camera

deformation measurements inherently contain this effect; the

camera employed has a very limited depth of field and was

focused on the front edge of the specimen. The effect of

this dynamically-induced twisting may be seen by examining

(for example, in Table 4.4) the permanent midspan deflections

at the front edge and the rear edge of several of the clamped-

beam specimens.

2.3 Impulse Calibration Tests

In order to define reliably the explosive impulse im-

parted to the test specimens, Picatinny Arsenal personnel

conducted a series of "impulse calibration" experiments in

which unrestrained "timepiece specimens" of 6061-T6 and

2024-0 aluminum alloy and 1010 steel were explosively loaded

and their resulting velocities measured to determine the im-

pulse imparted to each. In all cases, the timepiece was

separated from intimate contact with the HE layer by a layer

of polyethylene buffer of the same thickness and density as

that used in the beam and ring tests. The HE material em-

ployed was DuPont EL 506D, and was from the same lot of HE

sheet as used in the dynamic loading tests of the beam and

5



ring specimens. Since the beam (and ring) specimens had only

a portion of their spans or peripheries covered by HE, it was

convenient to conduct calibrations for both (a) one-dimensional

behavior and (b) finite-span HE effects or "edge effects."

For the tests to determine imparted impulse under one-

dimensional behavior, a timepiece of nominal dimensions: 0.25

inch thick by 1.2 inches wide by 1.5 inches long was placed in

a test fixture such that it was surrounded on its 1.2 and 1.5-

inch sides by two steel and two aluminum baffle plates. There

was an extremely small gap between the timepiece and the baffle

plates so that the timepiece could fall freely. The polyethyl-

ene and HE layers placed on this configuration extended well

beyond the edges of the timepiece so that explosive edge effects

would not influence the velocity Laparted to the timepiece upon

detonation of the HE layer. This velocity was measured by

photographing the timepiece against a known space grid back-

ground with high-speed cameras operating at a known speed. A

streak camera observed the centerline of the spanwise front

edge of the timepiece while a framing camera viewed the speci-

men in a direction parallel to the direction of detonation wave

propagation across the width direction of the specimen. For

timing scales, 10 kc and 1 kc pips were applied to the film of

the streak camera and the framing camera, respectively.

In these tests, nominal HE-layer uniform thicknesses of

0.010, 0.015, 0.020, and 0.030, and 0.045 inch were employed.

The weight per unit area of each HE layer employed and of

each timepiece was measured carefully. From these values and

the measured timepiece velocities, the total impulse per gram

of explosive (i.e., specific impulse) was determined for a

wide range of ratios W/C, where W is the weight per unit

6



area of timepiece and C is the weight per unit area of explo-

sive. It was found that the specific impulse exhibits no

significant variation for W/C values greater than about 3;
this "limit" was always exceeded by a wide margin in the

structural response experiments of this program. It was found

for the lot of explosive used for these structural and impulse-

calibration experiments that the average effective impulse from

14 tests on 6061-T6 aluminum alloy test timepieces was 18.6 x 104

dyne-sec/gm. HE. Similar experiments performed using 3 samples

of 2024-0 aluminum and 6 samples of 1010 steel gave effective im-

pulses of 18.2 x 104 and 18.5 x l04 dyne-sec/gm. HE, respec-

tively. Hence, 13.6 x 104 dyne-sec/gm. HE was employed in all
calculations involving dynamic response of explosively-loaded

test specimens in this program.

The effect of finite-span of the HE layer on the dis-

tribution of imparted impulse to a test specimen near the

edges of the HE layer was studied experimentally. This was

Wcomplished by dividing a 6061-T6 aluminum timepiece into seg-

ments of l/4-inch span for a total span of 4 inches in some

cases, and by employing a solid central portion of 1.5 inches

span with l/4-inch segments extending on either side for 3/4

inch in other tests; an 0.015-inch thick HE layer covered the

central 2-inch span in all cases, and was separated from the

timepiece segments by a 0.055-inch thick polyethylene sheet.

The velocities imparted to these pellets upon HE detonation

were determined photographically, and revealed that (to the

resolution afforded by 1/4-inch-span segments) the imparted

velocity distribution was very nearly a square wave. A nor-

malized distribution of this imparted impulse is shown in

Fig. 2.2.
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It is seen that this spanwise distribution of imparted

impulse differs somewhat from a square wave. Since in the

explosive-loading experiments on beam and ring specimens, the

HE thicknesses ranged from about 0.015 to 0.030 inch, one can

employ the spanwise distribution data of Fig. 2.2 for all

cases, without appreciable error [7]. Note also that the

total imparted impulse is almost exactly that obtained by

considering only that portion of the specimen covered by the

HE layer, neglectinig HE edge effects. That is, the impulse

deficiency inboard of the edge of the HE layer is compensated

for almost exactly by the impulse increment observed out-

board of that edge.

2.4 Material-Property Measurements

In order to restrict the data uncertainties insofar as

feasible, measurements of the static uniaxial stress-strain

properties of the test-specimen materials used in the present

beam and ring experiments were made. In addition, some limit-

ed measurements of the dynamic stress-strain properties of

most of these materials were also made by the Picatinny

Arsenal. For continuity, these measurements are discussed

herein briefly.

It is useful to recall that the 6061-T6 material was

selected as behaving much like an elastic, perfectly-plastic,

strain-rate insensitive material; the 2 024-0 material was

selected as being similar vzxcept that it exhibits consider-

able strain hardening; finally, the 1010 steel was chosen

for its reputation as being significantly sensitive to strain

rate.

8



2.4.1 Static Properties

Tensile test specimens from each of the same material

lots of 6061-T6 and 2024-0 aluminum and 1010 steel as used

for the impulsively-loaded beam specimens were prepared, in-

strumented with four strain gages, and static tested to frac-

ture in tension. The results of these tests together with

approximate analytical fits to these data are given in Sub-

section 4.2.

For the single-ring specimens of 6061-T6 material, three

types of tests were employed to obtain static stress-strain

data. Two cylindrical specimens from this lot of material

were each instrumented with eight Tatnall HE 141B strain

gages oriented both axially and hoopwise [61, and were sub-

jected to internal hydrostatic pressure such that the cylin-
drical specimen experienced essentially no axial stress until

very large strains occurred. From the known dimensions of the

specimen, internal pressure, and the measured strain, the

hoopwise static stress-strain properties of this material

could be determined. However, during testing of one of these

two cylindrical specimens, the strain-gage bonds to the speci-

men failed; hence, the desired strain information at large

values of strain to check the data obtained from the first

specimen was lost. Because of the pressure of time and funds,

a third hydrostatic cylinder test was not made. Instead, some

supplementary tests were made.

These consisted of tensile-strain tests of axial test

strips cut from a cylindrical specimen of this 6061-T6 materi-

al. The stress-strain results obtained were essentially iden-

tical to those obtained from the 6061-T6 beam samples, whereas

the stress-strain rturve obtained in the hoopwise direction

9



from the hydrostatic cylinder tests fell somewhat below those

data but did not extend to strains much above yield.

The third set of ring-specimen tests consisted of cutting

a 6061-T6 ring Lo produce several hoopwise specimens, rolling

them flat, instrumenting and tensile testing them to fracture.

In spite of the work hardening to which these specimens were

subjected during flattening in preparation for tensile test-

ing, the hoopwise stress-strain data obtained (see Subsection

4.2) were in close agreement with that obtained in the "axial

specimen" tests.

2.4.2 Dynamic Properties

Since the explosively-loaied test specimens underwent

severe transient responses, the material at various given

locations within each test specimen experienced a range of

strain rates. Should the mechanical stress-strain properties

of the material be significantly affected by the rate of

straining (instantaneous or "cumulative"), the details of

the dynamic response of the structure would be altered;

whether one can detect such strain-rate consequences depends

upon the type and resolution of the dynamic response measure-

ments made for a given experiment, and the design of that

experiment as Yell. For the present structural response ex-

periments, the transient deflections observed are the con-

sequence of cumulative averaged effects of response of many

material elements over a wide spectrum of strain rate in the

structure; therefore, unless the material is extremely sen-

sitive to strain rate, distinctive strain-rate-influenced

structural response should not be expected to be observed.

To some extent this averaging effect will also apply to

10



measurements of dynamic strain itself on the model, but higher

resolution is afforded.

In view of these considerations, some limited measurements

of strain rate effect on the uniaxiPl stress-strain properties

of 1010 steel and of 2024-0 and 6061-T6 aluminum beam samples

were made by the Picatinny Arsenal, using a pneumatic-hydraulic

Hesse-Eastern dynamic tensile loading device (8]. Strain gages

placed on each side of the test specimen were measured simulta-

neously on oscilloscopes operated at calibrated sweep rates.

Oscilloscope-recorded measurements from a load cell mechanically

in a series with the dynamic test beam coupon of material pro-

vided the load time history to which the specimen was subjected.

This arrangement is depicted schematically in Fig. 2.3. The

results obtained are discussed in Subsection 4.2.

These dynamic material property tests have been described

as limited -- in the sense that the feasible range of strain

rates extended up to only about 15 inches per inch per second

which is far below the maximum local strain rates (about 3000/

in/in/sec.) experienced by the explosively-loaded test speci-

mens. C early, more extensive r train rate data are desirable;

however, these experiments together with other similar data in

the literature enable a reasorable appraisal of this effect to

be made with respect to strain and deflection response of

impulsively-loaded structures.
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SECTION III

REVIEW OF PRESENT THEORETICAL METHOD AND

ITS RESPONSE-PREDICTION FEATURES*

3.1 Introduction

This section of the report is devoted to a concise re-

view of the elastic-plastic theory given in References 3 and

4 (and to some recent additions) for predicting elastic-plastic

lar-e dynamic and permanent deformations of two-dimensional

structures such as beams and rings, and of shells of revolu-

tion which are restricted to deform in an axisymmetric fashion.

The casting of this theory into finite-difference form leads

to a dynamic model whose features are discussed and illustra-

ted in detail. The important role of material stress-strain

properties is discussed, and the consequences of employing

various approximate representations for these elastic, plas-

tic, strain-hardening, and strain-rate properties are illus-

Lrated.

Permanent plastic deformations of simple structures

under high-intensity impulsive loadings have been analyzed by

the so-called rigid-plastic analysis. In the case of simpl

beams, close4-form analytical solutions have been obtained

[1, 2]. Applications to rings, curved beams, and circular

plates also have been made [9 -11]. In most cases, however,

the solution of the resulting nonlinear differential equa-

tions still must rely on numerical methods.

* Reference 4 contains an abbreviated version of the contents
of this section.
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The rigid-plastic analysis, strictly speaking, is appli-

cable only to problems for which the initial kinetic energy

is much higher than the elastic energy. This condition, of

course, cannot be realized in most practical problems. Fur-
thermore, recent investigations of beams have indicated ap-

preciable discrepancies between rigid-plastic theory and

experiments [12]. These discrepancies have been attributed

largely to the effects of strain rate on the yield stress of

the structural material. The rigid-plastic analysis is also

in error for materials that exhibit appreciable strain-

hardening in the plastic range. The existing dynamic analy-

ses of rigid-plastic structures also are limited to cases

involving small deflections. When large-deflection effects

are taken into account, a rigid-plastic analysis becanes much

too complicated; as a result, numerical analysis must be

employed.

The present proposed method for dynamic analysis of

shells is a general numerical method. It takes into account

the effects of elastic-plastic or elastic-strain hardening

behavior, strain rate, and large deflections.

Since the prediction of large degrees of dynamic struc-

tural response and permanent deformation is desired, the

theoretical aiialysis must account for large deformations as

well as elastic and inelastic material behavior. The present

analycis, described in detail in Reference 3, accounts for

these effects but neglects the effects of rotary inertia and

transverse shear deformations and is restricted accordingly.

It will be seen that a forcing function of arbitrary dis-

tribution and time history can be accommodated readily.

13



3.2 Review of Theory Employed Herein

3.2.1 Two-Dimensional Structures

Ecquations of Motion

Figure 3.1 illustrates the internal and external forces

acting upon a deformed element of length ds of a two-

dimensional structure. The internal forces consist of mo-

ments, axial forces, and shear forces normal to the centroidal

axis of the structure. The external forces may be considered

to consist of inertia forces and forces externally applied

normal and tangential to the exposed surfaces; these may be

expressed in terms of convenient components.

The differential equations of dynamic equilibrium of this

structural element in the y and z directions, respectively,

are

of the structure - sinL(mrIS) ,(') denotes partial double

differentiation with respect to time, and all other quantities

are defined in Fig. 3.1.

The equation of moment equilibrium about an axis per-

pendicular to the yz plane is

0 (3)

where rotary inertia has been neglected.
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Equations corresponding to Eqs. (1-3) now will be writ-

ten in finite-difference form. To do this it is convenient

to consider the structure to be divided along its length into

segments of initial length Asi.. Let stations along the struc-

ture be designated as ... Si-l, si-1/2' sip si+i/2' Si+l, etc.,

where the segment between stations si-1/2 and si+1/2 is termed

the th segment and has a length Asi. The mass of segment i

is m i = m Asi and remains constant even if the length of the

segment changes during the response due to straining along

the axis of the structure. The dynamic equilibrium equation•th
in the y direction for the i- segment can be written as

Ni+e.2 cosL+I~ NL..Ia cosAL. k/2

(4)
Qj .,tz sin79+,/8- Qj./2i c

.(MOj).: 0
Multiplying through by As i and setting mAsi = Isi, Eq. (4) bp-

comes

NI, acOsT.e N._,, cos'9.i - Q.+,izsin6, w +I(4a)
%QP- "OL- ip. +4yL S - MA 0

Similarly, the dynamic equilibrium equation for the i- seg-

ment in the z direction becomes
Ni.+,, 5in19 +,/ - Nj_V, sinA9~ + %+W2 Cos* !9V ./

1 - b( 5 )

Q.coc + F+ MsL - 0- =

Similar equations could be written for any other segment or

subsegment.
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Corresponding to Eq. (3), the finite-difference moment-

equilibrium equation for the segment between stations i-1/2

and i+1/2 is

M - - QjLsL = 0 (6)

or, for che segment between stations i and i+l,

M *I- M i - Q +/? .6Lv 0 (6a)

This moment equilibrium must hold, of course, for all seg-

ments and subsegments.

An inspection of the terms in Eqs. (4a), (5), and (6a),

all of which must hold at all instants of time, indicates

that these equations may be interpreted as describing a

lumped-parameter model. This model is shown in Fig. 3.2 with

quantities relabeled with whole rather than half indices for

convenience. The model is seen to consist of concentrated

masses connected by massless extensible links that remain

straight between mass points; that is, for example, the axial

forces acting on and between masses i-l and i both are in-

clined at angle 9i with respect to the horizontal. All bend-

ing is concentrated at the mass-point locations. The exter-

nally applied forces may be considered as being concentrated

at each mass point, as shown.

For the relabeled lumped-parameter model shown in Fig.

3.2, the three previously discussed equilibrium equations

are

~16
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NL+, cos , - Ni cos9i - Q , i6n'941 +

Qi s. no +FYj(AS. 4 A L4.)/2_] -mi MI 0 (7)
N +, sin 19 +,- N , sin 9L + Q i+, C-s A , - (8)

ML-.- QjASL 0
In terms of the mass-point coordinates vw, the link lengths

and angles may be written as

AS1 01 flV +(ri-U 2  (10)

A 0Si96= (L -V. (12)

The finite-difference equations (7-9), which approxi-

mate Eqs. (1-3), respectively, may be solved numerically for

each mass point at successive instants of time t Let it

be assumed that, at time tj, the following quantities already

have been determined for all mass points of the structure:

vi, wi, Ni , Mi, and 0i and i) if desired. Thus, Eqs. (10-

12) can be used to calculate Asi, sinOi, and cosO i for all

links. Equation (9) then permits the determination of all
Qi. Then, if the Fy and Fz are given at time tj, Eqs. (7)
and (8) can be used to calculate vi and wi for all mass

points at time t.. Finally, since one may write, in general.,

1

[17



(AiP I X-I + Yi-I t (13)

the mass-point locations vi and w. at time t = t. + At
3.:3 j+l

may be written as

+-1: ; (14)

X -. (15)
L19i .1 I.)

Having vi,j+I and w i,j+ for all points, one then can deter-

mine (1) the increment in strain along the axis of each link,
and (2) the increment in the angles between neighboring links.

From this information, one can determine the increments,

ANi,j+I and AM i,j+l or Ni,j+1 and Mi,j+l for all links, and
the calculation proceeds cyclically. Approximate determina-

tions for these forces and moments are considered next.

Idealized-Thickness Model

Of a number of possibilities for determining the internal

forces and moments in the present numerical method, the method

explored herein consists of idealizing the actual structural

cross section as consisting of n discrete, evenly spaced,

equal-area layers of material that can carry normal stresses.

These layers are considered to be separated by material that

cannot carry normal stresses but that has infinite shear

rigidity. With this simplified model (see Fig. 3.2), the

stress and strain in the structure can be defined by the in-

dividual normal stresses in the n layers, invoking the

18
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assunption that plane sections remain plane throughout the

response.

Considering, for the moment, structural material that is

elastic-perfectly plastic, one might select the spacing be-

tween -he discrete layers or areas and the size of the con-

centra6d areas by requiring that the idealized model exhibit

elastic extensional stiffness Ebh and elastic bending stiff-

ness El equal to those of the actual cross section of the

two-dimenslonal structure. If the actual cross section were

rectangular as shown in Fig. 3.2, requiring equal elastic ex-

tensional stiffness and taking equal Young's modulus leads

to the following area A per "flange":

A=bh/n (16)

Similarly, using equal Young's modulus and requiring equal

elastic bending stiffnesses lead to the following spacings

d between flanges:

d=h/ - (17)

If, on the other hand, one requires that the idealized

model exhibit the same fully plastic pure axial load-carrying

ability and equal fully plastic pure moment-carrying ability j
as the actual structure, the following flange areas and

spacings result: I
A= bk/n (18)

d: h/.(19)

19 1! -  1
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It is seen that these two sets of conditions lead to the same

flange areas, and flange spacings tend to approach each other

as the number of flanges is increased.

Strain-Displacement Relations

The strain in the kth flange located at a distance k

(see Fig. 3.2) above the centroidal axis at mass point i

may be expressed approximately as

S= - -k 4(20)

where Asi is the length of the deformed link i, and Aei is

the angle between the deformed links i and i+l. The index

0 refers to the undeformed position.

The first term in Eq. (20) is the axial strain in the

i-- link, and the second term represents the bending contri-

bution evaluated at the ith mass point. For sufficiently

small angles Ae, one may write

Sin sin =~sinI9 pc o sV, iii(1

thus relating the strains directly to the quantities given

in Eqs. (10-12) which are also used in the subsequent equili-

brium equations.

Strictly speaking, both terms in Eq. (20) should be eval-

uated at the same point. This could be done, for example, by

averaging the axial strain of the links i and i+l. For suf-

ficiently small As, however, it is re&sonable, alternatively,

to use the axial strain in either of the neighboring links.
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Having found the strains in all the flanges at time

tj+l, the strain increments can be determined by

Ae, 1kj+1 - e.kj (22)

and the associated flange stresses can be obtained from appro-

priate stress-strain relations. Once these stresses are

found, the axial force and moment at each mass-point station

may be computed from

n/2

= AT_ Y ,o (23)

where the idealized-thickness model is considered to 'onsist

of n flanges with areas concentrated at distances 'k from

the centroidal axis.

Stress-Strain Relations

In order to describe the mechanical behavior of a given

material adequately, a strain-hardening constitutive relation

should, in general, be employed. A mechanical model describ-

ing such a behavior, has been suggested in Reference 13, pP.

6-8, and may readily be utilized in the present method.

Consider the idealized thickness model described pre-

viously. Each flange element representing part of the beam

or ring element may be regarded as being composed of a number

of perfectly plastic subflange elements with different yield

li.mits successively taking part in the plastic yielding.

These subflenge elanents (arranged in parallel) are all
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subjected to the same longitudinal total strain while the axial

loads carried by them must be added to furnish the axial load

acting on the strain-hardening total flange element. The

flange stress is then

0:2  = = = , . (25)

AA -A
where n is the number of subflanges, A are the subflange

areas, A A, is the total flange area, and O are

the subflange stresses.

If aoz denotes the yield limit of each of the subflange

elements, E is their common Young's modulus, and C their com-

mon strain, Eq. (25) appears, in general, in the following

forms
ECA,+EeA+E- A" cAn

A
:QA,+ Az...A . E)E Ee, (oF-9L.) (26a)

I ¢= %oA, +UA2.4 --" + Ee At,

A
o.A ./ A+A To 1 T"(~E-- I- , ',-E ) (26b)

A E' .E0

0, II4 = +r 6  V e, (2 &X) (26d)

In relation (26a) all subflange elements remain elastic, in

(26b) and (26c), part of the subflange elements yield, and in

(26d) all subflange elements yield. Figure 3.3a shows the

piecewise linear stress-strain diagram corresponding to rela-

tions (26) which describe the mechanical behavior of the

*flange element during the first loading.

22
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Now consider an experimental stress-strain curve, and a

flange element with a given area. In order to determine the

subflange areas and yield limits, the stress-strain curve is

approximated by a polygon defined by the coordinates of its

corners (C., ). Since Eqs. (26) represent the equations

of the polygon segments, the coefficients of e may be set

equal to the corresponding slopes of the given polygonal

stress-strain diagram

E't = _:9 t. 1(27)
i~~ ~- El- IcY ' ' (7

and one obtains

A
A (28)

E3 _A+ -.. EA

E= An EA

En+%= O

Taking the differences of two neighboring expressions in (28)

yields E A

A
E 3- EJ X AE

or in general

E1+1 - _L E (29)
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and hence the subflarge areas

AA- (30)

It can be verified that expressions (30) add up indeed to the

total flange area.

Examining the limits of strain in Eqs. (26) the sub-

flange yield limits are immediately found to be

T = EF (31)

In order to obtain a physically reasonable representation

with this model, the approximate stress-strain diagram must

be upwardly convex with non-negative slopes.

The perfectly plastic and linear strain-hardening con-

stitutive relations employed in Reference 4 may be treated

as special cases. In the case of perfect plasticity, there

is only one subflange and in the case of linear strain-

hardening there are two subflanges whereby the yield limit

of the second subflange is taken sufficiently high so that

the deformation in that subflange remains elastic.

Having established the model for the stress-strain be-

havior, one may proceed to determine the stress in each sub-

flange. Assume that at time t. all subflange stresses

''ikfJ are known, and at time t j+ the strain increments of

all flange elements AE ik,j+l (Eq. (22)) are also known,

then the subflange stresses at time tj+ I can be determined

systematically as follows:

24



(1) Start by taking a trial value (superscript t) of

c ,,J+l computed by assuming an elastic path

T = (32)

(2) Check the sign of ME +1 and proceed to see what

the correct value of J+l must be

- 0 t (33)0 , - j+

For brevity, the subscript-ik and i which refer to the total
flanges and mass point stations, respectively, have been
omitted in the above expressions.

Obviously, by employing th.s step-by-step procedure, the

behavior of the mechanical model described by Eqs. (26) for

the first loading is also valid for subsequent unloading and

reloading.

Once the subflange stresses TikL ,j+l have been com-

puted, the flange stresses 0 -ikj+l are obtained from Eq.

(25), and the axial forces Ni,j+l and bending moments
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Mij+I from Eqs. (23) and (24) respectively. The cyclic time-

wise calculation of the dynamic response of the structure as

described in the paragraph following Eq. (12) may then proceed.

For cases in which the structural material exhibits sig-

nificant strain rate sensitivity, an approximate accounting

for th-s effect may be made. Although numerous strain rate

laws have been proposed and discussed, there appears to be no

universally validated and accepted description. In the case

of a perfectly plastic material, for example, the following

simple expression has been employed previously by Ting [14),

among others.

Here the effect of strain rate is regarded as raising the

yield limit Wy above the static yield limit ro .  D and

p are material constants.

In the case of the present strain-hardening model, Eq.

(34) is now applied to each perfectly plastic subflange ele-

ment. Since the flange strain increment (Eq. (22)) and hence

the strain rate is known at this Ftage of computation, the

rate dependent subflange yield lirnit is readily obtained from

a= + _ (35)

and subsequently replaces the static yield limit in relations

(33).
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The family of stress-strain curves for different con-

stant strain-rates is shown in Fig. 3.3b. The construction

is seen to be very simple: segments belonging to the same

subflange are parallel because the expressions for the slopes

(28) do not contain the yield limits, and corresponding in-

tersections lie on rays going through the origin because, for

a constant strain rate, the corresponding yield limits (Eq.

(35)) and hence the strain limits (Eq. (31)) are raised by the

same ratio.

Energy Distribution in the System

The energy theorem for a mechanical system states that

the increase of the kinetic energy within an arbitrary time

interval is equal to the total work done by the external and

internal forces acting on and in the system during that time

interval. For the present purpose it can be written as

T-T O = We +WL (36)

where T is the kinetic energy at an arbitrary time t of the

dynamic response, To is the initial kinetic energy, 14 is

the work done by the external forces, and W is the work done

by the internal forces.

For an elastic-plastic structure, the work of the inter-

nal forces can be expressed by

wL = -( U+We) (7

where U is the elastic strain energy at time t, and W is the, p
mechanical work dissipated during plastic flow, henceforth

referred to as plastic energy. Substi.tuting Eq. (37) into
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Eq. (36), and rearranging terms gives

T +W = T U WP (38)

For the cases considered in this report, We vanishes because

there are no applied loads and the external reactions do no

work. Thus, one obtains

T = T +U +W1. (39)

which means that the initially imparted kinetic energy is sub-

sequently partitioned among kinetic, elastic, and plastic

components.

The kinetic energy for beams and rings is

L

and the total elastic strain energy appropriate to the strain-

hardening model adopted in this report is obtained as the sum

of the contributions of all the subelements in all the flange

elements at all mass point stations. It can be written as

L

=~2 ir As (41)
L k E , Ewj~

where the summations are taken over the mass points i, flanges

k, and subflanges Z .

At any time of the response, the kinetic energy (40) and

the elastic energy (41) can be evaluated and the plastic

energy W can then readily be obtained from Eq. (39).
p
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Another means to determine Wp is furnished by Eq. (37). But,

because of the plastic deformation present, it would require

a timewise step-by-step evaluation of the work of the internal

forces Wi using the instantaneous stresses and strain incre-

ments along the response.

The plastic energy Wp represents the mechanical work dis-

sipated into heat and, therefore, is lost to the system. Also

lost is that portion of elastic strain energy U which cannot

be recovered as kinetic energy, after the structure has shaken

down to a purely elastic response; this represents trapped

elastic energy.

Boundary Conditions

Since the beams and rings dealt with in this report all

contain an axis of symmetry with respect to both geometry

and loading, and hence with respect to the motion, only one

half-span of the structure need be considered in the calcula-

tion. Referring to Fig. 3.4a, the following appropriate

symmetry conditions for the quantities defined in Fig. 3.2

can be established:
Sin,= 0O42

Osin', = I

As
Note that the first mass point is assumed to be located half

a link length off center.

If the mass point representing the end element of the

half-span is labeled n, the free-end conditions become (see

Fig. 3.4b)
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Nn i = 0

A= 0(3)

The last condition automatically causes the end moment Mn to

be zero*.

The present numerical step-by-step procedure allows

one to treat the kinematic constraints -- such as boundary

conditions -- imposed on the structure in a relatively

simple fashion: the forward positions of all the mass points

are calculated according to the equilibrium equations (7)

and (8). This is done for the sole purpose of being able to

apply the same equations to every mass point, thus pre-

serving the cyclic, time-saving nature of the calculation.
The forward positions of the restrained mass points calcu-

lated in the above manner are naturally meaningless. The

forward positions of these particular restrained points are
thus recalculated on the basis of the appropriate kinematic

constraints. For instance, if a point of a beam is not free
to move, the calculated position of this point is disregarded

and the "new" position which the point occupies is simply its

old position.

For a horizontally clamped end, one may write (see

Fig. 3.4c)

* In the case of the shell of revolution, Mn is equal to
zero, but Aen , in general, is not.
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sinI9,= 0

co o= I
ntl
we0 (44)

The third condition prevents the mass point n, adjacent to

the fixed wall, from moving vertically but not horizontally

(zero deflection and zero slope). The last two conditions

are needed to obtain the axial force at the edge, Nn+1, which

in turn restrains the horizontal motion of the mass point n

by means of the dynamic equilibrium equations. Note that the

shear force, 0n+1' can be given an arbitrary value, since it

influences only the vertical motion which is subsequently

annulled by the third condition. Clamped ends in a slanted

position may be treated similarly.

The ordinary simple-suport condition of a beam (Fig.

3.4d) is obtained by allowing the mass point connected with

the support to move longitudinally but not laterally.

If the defomnation is not too large, it can be expected

that this simple support condition is adequate to simulate the

fixed roller support that is used in the experiments for the

explosiveli-loaded beams (see Fig. 2.1b). A better repre-

sentation should be achieved by allowing the beam to slide

between two pairs of fixed knife edges. Figure 3.4e illus-

trates how the forward position of the link containing the

support is recalculated to simulate a sliding through the knife

edges: in addition to being stretched, the link translates
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parallel to its instantaneous axis and rotates into a position

parallel to the unrestrained forward position. How the de-

flection of the beam is affected by the two different simple-

cupport conditions will be seen in Section IV.

In the case of a ring, a second symmetry condition at

the other end of the half-ring is needed. It can be written

as

= 0~i

l~~ n l'

Initial Conditions

In order to commence the numerical step-by-step pro-

cedure, appropriate initial conditions must be established

first.

An impulsive loading applied to the structures is best

described in terms of an initial velocity distribution. Thus,

with the position of the undeformed structure defined by the

coordinates of the mass points (vio, wio ), and with the velo-

city distribution defined by the velocities of the mass

points (Vio', io) known at time to, the positions of the mass

points at time tI = to + At can be evaluated

Iri = Io . + _ AM: (46)

and the general cyclic procedure may then begin.
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II

If the structure is set in motion by applied loads of

finite value (step function) the acceleration of each mass

point is known, namely

._ F<o(As,+As,+,o)/Q
iM

(47)

where the loads are written in the forms as given in Eqs. (7)

and (8)

Applying Eq. (14) at j = 0 one obtains

VO = ,oQ4+ o- A,, (48)

From the initial velocity condition

iiit follows that vi,.l = vii, and Eq. ('18) becomes i

4, ri. + ro/ (50a)

Similarly,

41F AAj +. ( (50b)

Equations (50) include Lhe case of a forcing function of zero

initial value in which case eio = Wio 0.
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Symmetric Motion of a Free Ring

The symmetric motion of a free ring (or beam) subjected

to applied loads is conveniently referred to a translating

coordinate system whose origin coincides with the center of

mass of the ring at any instant of time. The differential

equations of motion must then be modified to include the ad-

ditional (fictitious) forces of relative motion, namely the

centrifugal force and the Corialis force. The Coriolis force,

in this case, vanishes since the coordinate frame does not

rotate.

If the z axis is the axis of symmetry, the two components

of the centrifugal force acting on each mass point are

(51)

where 0 cm,'* cm ) denotes the acceleration of the center of mass

which is moving with the coordinate frame. The y component

is zero because of symmetry. The acceleration of the center

of mass is related to the external forces by means of the

momentum theorem

FtL&i+S4/?_(52)

and the centrifugal force term which must be added to the left-
hand side of Eq. (8) becomes

F Z %(613;4 (53)

where the summations are taken over the half ring.
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In the case of an impulsively-loaded ring (initial velo-

city distribution), the external forces and with them the cen-

trifugal forces vanish,and the center of mass moves at uniform

velocity w cm equal to: (z component of total impulse)/(total

mass of ring).

The initial conditions given previously must also be

modified to account for the relative motion. If primes refer

to the relative motion, Eqs. (46) are replaced by

I = I

=4Ar 10 +WO o(40 C.MOJ

where

and Eqs. (50) by

2.I I (55)a+

wherev. , w io are given by Eqs. (47), and Wc by (52) applied
at j -0.

The form of the energy equations, (38) and (39), is not

affected by the relative motion. The kinetic energy now con-

tains the relative velocities, and the work of the external

forces the relative displacements. The centrifugal forces

must also be counted as external forces. Their work, however,

vanishes since the reference frame is centered on and moves

with the center of mass of the ring.
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3.2.2 Axisymmetric Shells

Equations of Motion

Figure 3.5a shows a shell of revolution defined by the

curvilinear coordinates s and c . The location cf any point

on the meridian can be determined by the two coordinates r and

z. On the element of the shell shown in Fig. 3.5b, there are

two tangential stress resultants Ne and NT , a transverse

stress resultant Qe' and two stress couples Me and Mq . The

equations of equilibrium for large deflections of shells are

r [ sin&9) -NRV-rv 0 (56)

b-N -sn] + QVCOS,] - rn r 0 57

~JIM~] Mqos'~er:O(58)

where m is the mass of the shell per unit area, and e is the

angle of inclination of the element with respect to the r

direction.

Equations corresponding to Eqs. (56-58) can be writte

in finite-difference form in the same manner as for the two-

dimensional structures. These equations again can be inter-

preted as describing a lumped-parameter model consisting of

rings connected by weightless frustums. The thickness of the

shell also isidealized by n discrete layers of material that

can carry normal stresses in the planes parallel to the tan-

gential plane of the shell surface, whereas the material con-

necting these layers cannot carry normal stress but has in-

finite shear rigidity.
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Yield Condition and Flow Rule

The strain-hardening model, previously outlined for uni-

axial stress can readily be extended [15) to include plane

stress used in shell theory: each layer element representing

part of the shell element may be regarded as being composed

of a number of perfectly plastic sublayer elements successively

taking part in the plastic yielding. These subelements obey,

for example, the Mises-Hencky yield condition with different

yield limits, and are all subjected to the same total strain.

Written for the Zlh sublayer, the yield condition reads

2. ~2 2. (9

where UTZ and T" are the principal stresses, and U'. is

the sublayer yield stress in simple tension obtained from a

polygonal approximate stress-strain curve as described earlier.

The numerical procedtre for solving the response of thin

shells is similar to that for the two-dimensional structures.

The increments in principal curvatures and midplane strains

are expressed first in terms of the deflections in the r and

z directions. The increments of total strains 6F-T and L IE&

in each layer then can be determined by imposing the Kirchhoff's

assumption that normals to the midsurface of the shell remain

normal to the midsurface of the deformed shell. In the plastic

range, these increments in strain must be resolved into their

elastic and plastic components, i.e.,

(60)

0 e~GA G
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where the elastic strain increments are given by

(61)

and the plastic strain increments can be written according to

the incremental strain theory of plasticity, as follows:

C ? 1 (2"- -
IP9 4?f(62)

Z: L o(~e-of-%)LA

where A is a measure of the plastic deformation. Equations

(60) thus contain three unknown quantities: iO, 60-& , and

AXX . A third equation required for the solution is the

yield condition:

~~4 (u-4czX4yl + (63)

3.3 Effects of Dynamic Model Features and Material Properties

on Predicted Structural Reponse

3.3.1 Effects of Calculation-Model Parameters

In the present finite-difference method for calculating

the elastic-plastic response of transiently-loaded simple struc-

tures, there are a nurr'-r of calculation-model parameters which

may be aried. Incluaed among these parameters are space-mesh

size, finiLe-difference time increment, number of flanges of the

idealized thickness model, spacing of these flanges, etc. What

values these parameters should be assigned in order to produce
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reliable structural response predictions with a minimum of com-

putational effort is the question to be examined in the follow-

ing.

Effect of Space-Mesh Size (or the Number of Masses)

It is desirable to employ the largest space-mesh size

feasible when calculating the dynamic elastic-plastic response

of a given simple transiently-loaded structure, consistent with

the prediction accuracy sought; this is desired in order to

minimize computation time, other factors being equal. Since the

response of the structure is critically dependent upon the in-

tensity, distribution, and time history of the forcing function,

space-mesh size selection for a given desired prediction accuracy

depends also upon these factors. However, in the following, dis-

cussion will be limited to only one type of loading condition

(a reasonably severe one), and one corresponding closely to

certain experiments noted in Section II.

To illustrate the effects of space-mesh size on predicted

structural response, consider two elastic, perfectly plastic

beams: a beam clamped at each end, and a simply-supported beam,

each with a 10-inch span between supports and each loaded im-

pulsively over a spenwise segment centered at the midspan. The

geometry and impulsive loading of the clamped and simply-suppor-

ted beams are depicted schematically in Figs. 3.6 and 3.8, re-

spectively. In each case a 4-flange calculation model with

flange spacing d = h/4 taken to correspond with the fully-

plastic equivalence rule has been used to represent the beam

cross section.
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Referring to the clamped beam, 5, 10, 30, and 60 space

meshes (or lumped masses) have been taken to occupy the region

from the midspan to the support point; for these cases the

ratio of calculation time interval to the critical time inter-

val (see page 42) was kept constant. Figure 3.6 shows the cor-

responding time histories of the midspan deflection (mass

point closest to the center) and Fig. 3.7 sho ts the spanwise

deflection profiles at two instants of time. It is seen that

there is not much difference in the deflection as the number

of masses is increased from 10 to 60. Note that even the

very coarse mesh of 5* masses per semispan yields good results

as long as the plastic hinge at the clamped edge has not de-

veloped yet. At a later stage (500 microseconds) with the ro-

tation taking place at the last mass point, there are bound

to be some differences since this point is constrained to

stay on the horizontal (see boundary conditions). For this

reason, and also for providing an adequate representation of

the abrupt change of the initial velocity distribution at the

edge of the explosive, 30 mass points have been chosen in the

correlation calculations.

In the case of the simply-supported beam, calculations

with 7.5, 12.5, 17.5, ..., 42.5, and 52.5 meshes between mid-

span and support have been made. Figure 3.8 depicts the cor-

responding time histories of the deflection of the mass point

located one inch** away from the midspan, and Fig. 3.9 depicts

the deflection profiles at two instants of time. The results are

practically identical between 12.5 and 22.5 masses but deviat-

ing not only with decreasing but also with increasing number of

* This is the smallest number of masses that can be used
to represent the beam-loading conditions of this example
properly.

** This is the shortest distance from midspan for which the
above mesh series yields identical spanwise mass point
positions.

40



masses. The first deviation is probably due to the error that

is introduced by the finite-difference approximation of the

differential equation, while it is surmised that the second

deviation is mainly due to the accumulation of round-off errors

caused by the huge amount of numerical operations inherent ir

the present method. In order to substantiate this surmise,

some of the calculations have also been carried out with double

preciLion carrying 16 figures instead of 8. Figure 3.10 shows

the deflection of a selected mass point (one inch from midspan)

versus the number of masses at three instants of time. The

deflections are plotted using two scales, one corresponding to

Figs. 3.8 and 3.9, and the other 29 times larger. As expected,

double precision does not alter the results as long as either

the nmber of masses or the response time is kept small, both

cases involving only a restricted amount of numerical opera-

tions. For higher number of masses and longer response times,

the double precision points show the expected tendency to stay

on the horizontal while the single precision points gradually

deviate. The number of masses chosen for the correlation

calculations is 22.5.

Effects of Calculation Time Interval

The time interval At appearing in the numerical step-by-

seep procedure cannot be chosen arbitrarily. By means of

numerical experiments, it has been demonstrated that the present

large-deflection finite-difference equations for beams and rings

are subject to two stability criteria. One pertains to the

longitudinal vibration equation (simple wave equation), and

the other to the lateral vibration equation for beams (16].

They can be combined as follows:
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- must be :!1

If

~ (. ) ' must be W (/tSf6

(h/As)* = if flange spacing corresponds to elastic
equivalence

(h/As)* = ' if flange spacing corresponds to fully-
piastic equivalence

where n is the number of flanges and p is the mass density.

There exists a thickness-to-mesh-size ratio, (h/As)*,

below which the longitudinal, and above which the lateral vi-

bration criterion yields a smaller critical time interval.

Figure 3.11 shows the dynamic responses of a simply-supported

beam applying different time intervals to a fixed mesh size.

It clearly demonstrates immediate divergence if the stability

condition (in this particular case the longitudinal) is only

slightly violated. Note also the deviation at a later stage

of the response if the time interval is taken relatively small

(r = .50). This obviously means a loss of accuracy, and has

also been observed on finite-difference solutions of the simple

wave equation [16]. The time interval, therefore, should be

kept as close as possible to the critical one.

Effect of the Number of Flanges of the Idealized-Thickness
Model

Recall that the present analysis idealizes the thickness

of the two-dimensional structure as consisting of concentrated

equal-area discrete layers of material, or flanges, carrying
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only normal stresses, separated at equal fixed distances by

material which is infinitely rigid in shear, but incapable of

carrying normal stresses. This model is consistant with the

neglect of shear deformation and rotary inertia in the analysis,

and is also convenient for applications in which the effects of

a variety of stress-strain relations are to be employed. Alter-

natively, one could, in a similar fashion, evaluate the stresses

at a number of points through the thickness and integrate these

numerically through the thickness to obtain the necessary force

and moment resultants.

To illustrate the effects of the number of flanges em-

ployed in this model, calculations of response of a clamped and

a simply-supported beam subjected to impulse loading over a

portion of the span of each have been conducted using 2-, 4-,

6-, and 10-flange models. The results for most of these cal-

culations are shown in Figs. 3.12 and 3.13 in terms of midspan

deflection time history. In all cases, the material was con-

sidered to be elastic, perfectly-plastic, and flange spacings

according to the fully-plastic equivalence rule d = h/n were

employed, where n is the number of flanges. Thirty masses per

semispan were used for the clamped beam, and 22.5 for the

simply-supported beam.

It is seen that there are fairly distinct differences

between the responses for the 2-flange and 4-flange cases, but

insignificant response differences between 4-flange cases and

those with a greater number of flanges. Similar degrees of

comparison were noted at other spanwise stations.

For reliable calculations, it is believed that at least

four flanges should be used, bi . more than six will usually be

unnecessary.
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Effect of Flange Spacing

It has been pointed out that the selection of flange

spacing (d) in the idealized-thickness model may be made in a

number of ways. For example, one may choose the spacing of

the equal-area flanges to be such as to provide the same elastic

bending stiffness as the actual structure in which case d =

h/\/ n-1 . or such that the fully-plastic moment-carrying

ability of the model equals that of the actual elastic, per-

fectly-plastic structure in which case d = h/n. If one expects

essentially purely elastic response, the former spacing provides

a model most nearly agreeing with the effective behavior of the

structure. On the other hand, for a case in which the applied

loading or impulse produces a very substantial amount of plastic

response, the latter spacing is more appropriate. For inter-

mediate degrees of response, an intermediate spacing may yield

improved results compared with those obtained by the above

extremes.

To illustrate flange-spacing effects on structural res-

ponse, an impulsively-loaded, simply-supported beam made of

elastic, perfectly-plastic material has been analyzed. A 4-

flange (the smallest number of flanges which previous studio

have shown to provide reliable results) and a 10-flange cal

cuLction model have been employed using the above spacings.

The results are shown in Fig. 3 .14 in terms of midspan deflec-

tion as a function of time. As one would expect, the deflec-

tions and the period of oscillation are larger for the model

with the smaller elastic stiffness or spacing, d = h/n, which

corresponds to that for fully-plastic equivalence. The responses

of the two 10-flange models approach each other very closely.

These models can therefore be regarded as correctly simulating

the actual rectangular cross sectiop. For this particular



loading which causes considerable plastic deformations, the 4-

flange plastic equivalence model yields better results than

the 4-flange elastic equivalence model.

Also shown in Fig. 3.14 is the corresponding purely

elastic response of the beam. Here, of course, the elastic

equivalence model, by definition, represents the actual cross

section, independent of the number of flanges taken, and hence

the smallest possible number (2) may be used. The response

clearly demonstrates the presence of higher modes superposed

on the fundamental, whereas plastic behavior (dissipation)

appears essentially to eliminate the higher modes. Note also

the complete reversal of the deflection to the negative side.

3.3.2 Effects of Stress-Strain Approximations

Since structural materials differ in their stress-strain

properties, exhibiting various degrees of strain-hardening and

strain-rate sensitivicy, it is instructive to examine the

effects of these features on the large-deformation dynamic

response of simple structures. Further, various degrees of

approximation can be used in accounting for these stress-

strain properties in an analysis, and it is desirable to as-

certain the response-prediction consequences of several typical

approximations of this type.

To illustrate these effects, the responses of impulsively-

loaded simply-supported and clamped beams of a significantly

strain-hardening material, 2024-0 aluminum alloy, are shown in

the following, using various approximations for the stress-

strain properties of this material. In all of these cases,

deflection-time histories and structural-deformation profiles

are compared. Figures 4.2 and 4.3 depict the uniaxial static
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tensile stress-strain properties of this material, as well as

several approximate analytical fits. For convenience, these

fits are designated fits, 4, 5, 6, and 9.

In all calculations, the stress-strain curve of the 2024-0

material was represented by an elastic segment having E - 10.9

x 106 psi and one or more of the segments shown in Figs. 4.2

and 4.3. Fit 5 represents a fairly close fit of the true curve

for the region just beyond the initial linear portion of the

stress-strain curve; thus, for responses extending only slightly

beyond the elastic range, the use of this approximation would

be expected to produce good response results. For large: re-

sponses, the use of fit 4 would be expected to be more appro-

priate. Also, an elastic, perfectly-plastic approximation,

fit 6, the simplest possible representation, is given. Table

4.2 gives the pertinent segment fit data.

The usefulness of each of the above approximations is

limited, and the bounds of applicability ar3 only vaguely

defined. Because of the ease with which still closer stress-

strain fits can be handled with a digital computer, and through

the use of the previously-discussed subflange concept, the

stress-strain curve of the 2024-0 material was fitted by a total

of 5 segments as shown in Fig. 4.3. The pertinent data for the

5 segments of fit 9 are given in Table 4.3.

To illustrate the influence of these four types of fits,

the elastic-plastic responses of example impulsively-loaded,

simply-supported and clamped beams have been calculated; these

two types of structures were chosen to illustrate the importance

of these stress-strain fits when widely different boundary con-

ditions are employed. For the clamped beam, the midspan de-

flection as a function of time and the spanwise deflection at
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the instant of maximum midspan deflection are shown in Fig.

3.15 for all four sLress-strain fits. Similar data are shown

in Fig. 3.16 for the simply-supported beam example. It is seen

from these two figures that the response pertaining to fit 4

and that pertaining to the more realistic fit 9, approach each

other very closely. Accordingly, fit 4, which is a linear

strain-hardening approximation averaged over the range of strain

occurring, can be expected to represent adequately the actual

stress-strain curve of 2024-0 aluminum alloy and may be employed

in the correlation calculations of Section IV in those cases

for which the plastic strains are not too large. Considering

the time history of the midspan deflection only, even the

averaged perfectly-plastic fit 6 yields good results. With

respect to the deflection profile, however, there is a signifi-

cant difference between the perfectly-plastic fit on one side

and the three strain-hardening fits on the other. The perfectly-

plastic idealization shows a pronounced plastic hinge located

at the center of the simply-supported beam, and at both the

center and the clamped edge for the clamped 2024-0 beam, where-

as the strain-hardening idealization exhibits a gradual bend.

A similar deflection-profile difference has been noted in Ref-

erence 17 where measured permanent deformation profiles of

impulsively-loaded aluminum alloy 1100-0 clamped circular plates

have been compared with EL-PP and EL-SH five-segment fit cal-

culations; the deflection-profile results from the complete

EL-SH fit agree well with experiment.

An inspection of Figs. 4.1 and 4.4 indicates that the two

other beam materials, 6061-T6 aluminum alloy and 1010 steel

permit an even better linear strain-hardening approximation than

2024-0. Similar comparisons of the kind just outlined have,

therefore, been omitted for these materials.
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The manner of including approximate strain-rate effects in

the present elastic-plastic dynamic response analysis has been

discussed previously. Comparisons with rate independent pre-

dictions and experiments are shown in Section IV.

3.3.3 Effects on Energy Distribution in the System

A convenient means to gain some insight into a complicated

structural response such as that of an elastic-plastic material

is the timewise evaluation of the different energies occurring

in the system, namely kinetic, elastic, and plastic energies.

It also supplies some necessary checks of the analysis, for

example, the fact that the plastic energy is not allowed to

decrease.

It is emphasized at this point that the present analysis

does not include any other damping mechanism than that due to

plastic flow. Once the structure has shaken down to a purely

elastic response, no further damping occurs.

For an impulsively-loaded, elastic, perfectly-plastic, simply-

supported beam, the ratios of the different energies to the

initially imparted kinetic energy, together with the midspan

deflection are shown as functions of the time in Fig. 3.17.

Figure 3.17a pertains to a 2-flange, and Fig. 3.17b to a 4-

flange calculation model. A significant difference between

the responses of these two models can be observed. In the case

of 2 flanges, the plastic energy remains constant once the first

deflection peak has been reached, that is, the beam has shaken

down already at this point. The midspan deflection periodically

approaches the height of its first peak, and the remaining

energy alternates between the elastic and kinetic forms; note

that the fundamental vibration mod prevails after the higher
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modes have been essentially eliminated by dissipation. In

the case of 4 flanges, additional damping develops just before

maximum spring-back time, thus reducing the deflection maxima

and the remaining elastic-kinetic energy. Note also that the

minima of the elastic energy do not touch the zero line which

means that a small portion is not recovered as kinetic energy.

This nonrecoverable or trapped elastic energy is obviously

due to residual stresses caused by the internal kinematic con-

straints "plane cross sections remain plane" if the number of

flanges is increased from two to four or more.

For highly strain-hardening materials such as 2024-0

aluminum alloy, the trapped elastic energy can represent a

larger portion of the total energy (order of magnitude 10 per

cent). Here, it is attributed Mainly to a microscopic effect

inside the material structure which, in the present method, is

simulated by the strain-hardening model. A demonstration of

this effect on the response of clamped beams is given in Fig.

3.18, where Fig. 3.18a belongs to a perfectly plastic, and

Fig. 3.18b to a typical strain-hardening material. Note in

case b the considerable amount of elastic energy remaining at

the cost of plastic energy.

Redundant structures like the above clamped beams give rise

to a third, although minor, source of trapped elastic energy,

even for the simple 2-flange perfectly-plastic calculation model.

This results from ;:he constraints on the system and may be

visualized readily by observing that, for example, upon release

of the clamped ends of a permanently deformed beam, some elastic

energy of the system will be released and the structure will

assume a different permanently-deformed shape.
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SECTION IV

CORRELATION OF THEORY W4ITH EXPERIMENT

4.1 Introductory Comments

This section is devoted to comparing the predictions of

the present elastic-plastic dynamic response theory with a

typical experimental result from each of 12 groups of experi-

ments conducted in support of the present study by Picatinny

Arsenal personnel under AFFDL-RTD sponsorship. In each of

these groups, several experiments were performed to examine

and demonstrate repeatability; these additional experimental

results may be found in Reference 6*. In addition, some com-

parisons between simplified theories and some experimental

results are included in the present report.

Certain motivations for including these 12 groups of ex-

periments should be cited, and were as follows. It was desired

to obtain large dynamic response and permanent deformaf.ion data

on well-defined simple models under accurately-known inputs so

that a definitive evaluation of the prediction methods could be

made; according]y, explosively-loaded simple beams were chosen

for use. In ordei" to examine the influence of predominant

bending or predominant stretching behavior, simple and clamped

supports, respectively, were employed; to contrast this effect

further, specimens of 1/8- and 1/4-inch thickness were used.

In addition to these considerations, it was desired to study

the effects of elastic, strain-hardening, and strain-rate prop-

erties of material upon the large dynamic response behavior;

* For numerous additional details of this extensive experimen-
tal program, the reader is also refeired to Reference 6.
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accordingly, (1) 6061-T6 aluminum alloy was chosen as behaving

essentially in an elastic, perfectly plastic fashion, (2)

2024-0 as elastic, strain hardening, and (3) 1010 steel as an

elastic, highly strain-rate sensitive material. Finally, ex-

plosively-loaded free and clamp-supported circular rings of

6061-T6 material were included as being a somewhat more rep-

resentative structural element of aerospace vehicle interest.

In order to permit a definitive evaluation of the large

dynamic-response prediction methods, not only must the input to

and the geometric characteristics of the structure be clearly

defined but also the mechanical properties of the specific

materials comprising those structures must be known accurately.

Thus, a series of static and dynamic stress-strain tests was

conducted on specimens from each lot of material employed. The

static tests were of adequate scope but the dynamic test con-

ditions available were less extensive than desirable. Neverthe-

less, much useful stress-strain data were obtained and were

subsequently employed in the present correlation studies by

devising certain approximate analytical fits to these data.

In Subsection 4.2, therefore, the static and dynamic

stress-strain experimental results and approximate fits to those

results are discussed (see Tables 4.1-4.3). Subsections 4.3

through 4.6 are devoted to comparing experimental with theo-

retical dynamic deflection and strain data from the present

elastic-plastic analysis for, respeccively, 6061-T6 beams,

2024-0 beams, 1010 steel beams, and 6061-T6 circular rings;

Table 4.4 identifies these specimens, their dimensions, and the

pertinent HE loading data for each. In addition, Table 4.5

summarizes the features and parameters employed in the theo-

retical dynamic response predictions carried out to compare with

each of these test specimens. Comparisons of some experimental
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deformation data with the results of certain simplified theories

are given in Subsection 4.7. Finally, Subsection 4.8 gives con-

cis( .mmaries of comparisons of predictions from the present

elastic-plastic theory with the present experimental dynamic-

response data.

4.2 I iterial Stress-Strain Descriptions

Table 4.1 identifies (a) the seven lots (I, II, ... VII)

of material comprising the beam and ring models (b) specific

specimens of each material lot used in the static and dynamic

stress-strain tests, and (c) the associated explosively-loaded

beam and ring models whose results are correlated herein with

theory. For use in the theoretical analysis, it is convenient

to represent the static and dynamic stress-strain properties

of these materials by analytical approximations. Accordingly,

the measured stress-strain properties of these materials are

now examined and the analytical fits selected are discussed.

4.2.1 Static Data

6061-T6 BEAM MATERIAL

The 6061-T6 aluminum alloy beam material consists of

material lots I, II, and III. Figure 4.1 shows the static

tensile stress-strain results for two s.amples of each lot of

material. For analytical purposes, it is convenient to approxi-

mate these characteristics by a bi-linear fit. Such fits: 1,

2, and 3 for material lots I, II, and III, respectively, are

indicated by the dashed lines in Fig. 4.1, and the associated

constants are listed in Table 4.2. It is seen that these bi-

linear fits closely approximate these stress-strain properties

except for a small region near the yield points. The
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consequences of this discrepancy will be discussed later when

the pertinent correlation calculation results are examined.

2024-0 BEAM MATERIAL

The 2024-0 aluminum alloy beam material consists of ma-

terial lots IV and V. Figure 4.2 shows the static tensile

stress-strain results for samples of each lot of material. It

is seen that the results from these two material lots are not

significantly different from each other, and that the 202'-0

material exhibits a considerable degree of strain hardening.

For this material, a simple bi-linear fit does not provide a

good approximation of the data over the strain range of inter-

est: 0 to about 3 percent _ more. However, depending upon

the average strain experienced by an explosively-loaded model

in reaching its final deformation condition, one or another

type of bi-linear approximation might be adequate to permit

reasonably accurate dynamic and permanent deflection predictions.

Therefore, three bi-linear fits: 4, 5, and 6 to these data have

been made and ,,re shown in Fig. 4.2; the associated constants

are listed in Table 4.2. Fit 6, for example, might be an ade-

quate approximation if large average strains were involved in a

dynamic case. On the other hand, if only small postelastic

average strains were involved, fit 5 might be better. For in-

termediate average strains, fit 4 might be more appropriate.

Through the use of the subflange model discussed in Sub-

section 3.2, one may approximate the stress-strain properties

of the 2024-0 material as closely as one pleases by employing

an adequate number of subflanges. Figure 4.3 demonstrates the

fit (termed fit 9) achieved by using 4 subflanges; the appro-

priate fit data are listed in Table 4.3. It is seen that this

five-segment (4 subflange) fit very closely approximates the
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static stress-straii, properties of the 2024-0 material.

1010-STEEL BEAM MATERIAL

Material lot VI comprises the 1010-steel beam material.

Its measured static tensile stress-strain properties are show.

in Fig. 4.4. It is seen that the 1010 steel displays a degree

of strain hardening lying between those of the 6061-T6 and the

2024-0 materials. Also, its strain hardening is nearly linear,

much like that of the 6061-T6 material. Thus, a bi-linear fit

(fit 7) to these data has been made and is shown in Fig. 4.4;

the associated constants are listed in Table 4.2.

6061-T6 RING MATERIAL

The explosively-loaded free and clamped ring specimens

were taken from material lot VII. Since the stress-strain

properties of interest are in the hoopwise direction, two

cylindrical specimens (CYL I and CYL 2 of Fig. 4.5) were in-

strumented with strain gages, internally pressurized hydro-

statically, and tested to failure; because of strain-gage bond

failures at relatively small postelastic strains, the data from

these tests were very limited, but are shown in Fig. 4.5. To

supplement these results, axial specimens were cut from this

cylindrical stock (lot VII), instrumented, and static tested;

the results of this work are shown in Fig. 4.5 as specimens

A, D, and E. These data closely resemble the 6061-T6 beam data

of Fig. 4.1. In addition, ring specimens of material lot VII

were cut, straightened, instrumented, and tensile static-tested

in the "Loop" direction; these results are given as specimens

K, L, and M in Fig. 4.5. With the exception of two (high) points

associated with specimen M, all of these data group fairly



closely, and have been fitted by a bi-linear approximation

given as fit 8 in Fig. 4.5; the associated constants are

listed in Table 4.2. One should note, however, that the

work hardening incurred in flattening these hoop specimens

may have altered the stress-strain curve somewhat compared

with the unflattened material.

4.2.2 Dynamic Data

6061-T6 BEAM MATERIAL

Two specimens, G and J, of lot II of the 6061-T6 material

were instrumented and loaded dynamically as discussed in Sub-

section 2.4.2. The time histories of (1) the stress a deduced

from the measured load histories and the known cross-sectional

areas of these specimens and (2) the measured strain

histories are given in part (a) of Fig. 4.6. Strain rates

deduced from the measured strain histories are also shown in

that figure. It is seen that the strain rates in these tests

increase with time over the strain range of interest (up to

roughly 4 to 5 percent), but are less than about 12 in/in per

seco;d. The outputs from the two pairs of strain gages sep-

arated axially by 3/4 inch gave similar but not identical his-

tories. Since the load was sensed at only one location in the

system, the strain data shown in part (a) of Fig. 4.6 consist

of the average strain at a given instant from these two pairs

of strain gages.

In part (b) of Fig. 4.6 the instantaneous dynamic stress-

strain values are plotted as a vs.6 , and are compared with the

previously-discussed static stress-strain data measured for this

lot of material. For the strain rates experie..ed in these

tests, there is no large increase in the stress level above the

static-test results at a given value of strain.
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Despite the lack of significant strain-rate sensitivity

in these dynamic stress-strain data, it is interesting to ex-

amine whether or not a consistent set of material constants D

and p are obtained for the simple strain-rate effect approxi-

mated by Eq. (34) and depicted in Fig. 3.3b. Accordingly,

various pairs of points including strains from 0.2 to about 4

percent have been assessed to determine the implied values of D

and p using data separately from both specimens G and J in con-

junction with bi-linear fit number 2. Unfortunately, the values

of D and p obtained varied rather widely. However, "average"

values which permitted reasonably good data fits for dynamic

specimens G and J are: D = 7,000 sec- I and p = 2.13; values

cited for aluminum alloy in Reference 14 are D = 6,500 s r- I

and p = 4. The stresses predicted employing these two sets of
"material constants" at several values of time (strain and

strain rate) for specimen J are also shown in part (a) of Fig.

4.6. It is seen that the "predicted" stresses using D = 7,000

sec - 1 and p = 2.13 compare somewhat better with this experi-

mental stress history than by using D = 6,500 sec -1 and p = 4.

Note also that expanded scales have been used in these plots.

However, the present experimental data do not cover a

large enough strain-rate range to include the maximum strain-

rate conditions experienced by the explosively-loaded models

included in the present test program. Therefore, it is pres-

ently possible to demonstrate strain-rate effects on dynamic

structural response for this 6061 material only on an illus-

trative rather than on a definitive basis. This is discussed

further in Subsection 4.3
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2024-0 BEAM MATERIAL

Dynamic stress-strain tests were conducted on specimens

3B and 5B from lot IV, 2024-0 aluminum alloy, in a manner

similar to the previously-discussed tests on the 6061-T6 ma-

terial. Part (a) of Fig. 4.7 illustrates the stress, strain,

and strain-rate histories for these two specimens, where again

the strain and strain-rate data shown consist of the average

data from the two pairs of strain gages spaced 3/4-inch apart

along the specimen. In these tests, the data includes strains

ranging up to about 3.5 percent, with strain rate increasing

with increasing strain up to rates of about 8 in/in per second,

which are still rather small compared with those of interest

in the present impulsive-loading experiment-.

Part (b) of Fig. 4.7 compares the static stress-strain

data for this lot of material with instantaneous o,E pairs

for dynamic specimens 3B and 5B from part (a) of Fig., 4.7. It

is seen that the "dynamic o,E data" do not differ perceptibly

from the static results fcrthese small strain rates.

As a matter of curiosity, the "strain rate constants"

D = 6,500 sec "1 and b = 4 reported in reference 14 for aluminum

alloy were employed in Eq. (35) together with the present static

five-segment fit 9 to compute predicted stress for specimens 3B

and 5B at various instants (or combinations of E and 6 ).

These "predictions" are compared in part (a) of Fig. 4.7 with

the measured stress history for specimens 3B and 5B. It appears

that the assumed rate sensitivity is somewhat too large. The

rate constants D = 7,000 sec - and p = 2.13 found herein for

6061-T6 material were also used to predict the stress histories

for specimens 3B and 5B in conjunction with the five-segment

fit 9; these results are also shown in Part (a) of Fig. 4.7,

and are seen to agree somewhat better with these experimental

results than do the former predictions.
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1010 STEEL BEAM MATERIAL

Because of its reportedly high sensitivity to strain-

rate, the 1010 steel is of much greater strain-rate interest

than are the aluminum alloy materials. Accordingly, the Pica-

tinny dynamic stress-strain measurements for this material are

discussed in greater detail.

Several dynamic test specimens of 1010 steel were tested.

The records of "measured stress" and measured strain for speci-

men 6 are shown in Fig. 4.8a, covering an extensive time period;

subsequent figures of this type will be restricted to the early

stress-strain and the "high" strain-race portion of the records.

Such "measured stress", measured strain, and computed strain-

rate histories are shown in Figs. 4.8b and 4.8c for specimens

6 and 10, respectively. Again, it was observed that the strain

histories from strain-gage pairs* spaced 3/4-inch apart axially

were somewhat different. The data shown in Figs. 4.8b and 4.8c

for specimens 6 and 10, respectively, depict the average time

histories of strain from the pairs of gages on each specimen.

For these two cases also, the two strain traces from each

specimen were somewhat different at a given instant.

Instantaneous stress-strain pairs from Figs. 4.8b and

4.8c are shown in Fig. 4.9 and are compared with the static

stress-strain cui.e for this 1010 steel material.

By using dar', for each specimen at a variety of pairs of

time, very extensive calculations were made to see whether or

not material constants D and p could be deduced in conjunction

* At a given axial station of the specimen, axially oriented
strain gages were placed or opposite sides of the specimen.
These gages were connected to cancel out any bending con-
tributions and to give average axial strain histories.
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with bi-linear fit 7 for the 1010 steel material. Although

these deduced values for D and p covered a wide range of values,

the choice D = 40.4 sec -I and p = 5 appear to give the best over-

all compromise; however, the resulting data fit is not very good.

A more comprehensive fitting expression needs to be developed;

to make this worthwhile, however, better quality data covering

a wider strain-rate range would be needed.

In Fig. 4.9 the stresses predicted using these rate con-

stants are compared with the measured time histories of stress

for specimens 6 and 10, res--ctively. It is seen that the re-

sults using bi-linear fit 7 and the present pair of "constants":

D = 40.4 sec -I and p = 5 leads to rather unsatisfactory agree-

ment with the measured strain histories.

Figure 4.10 depicts the present bi-linear static and

dynamic stress-strain idealization for this 1010 steel, and

also compares it with an example point from the present experi-

mental data.

Finally, Fig. 4.11 shows the ratio of dynamic yield stress

to static yield stress as a function of strain rate for the

present 1010 steel and 6061-T6 aluminum alloy as well as similar

data reported in References 14 and 18 for "mild" steel and 24ST

aluminum alloy, respectively. After the dynamic a, 6 data from

the present study were analyzed to deduce "unbiased" strain rate

constants,the strain-rate data uf Reference 18 were analyzed in

the present program and were found to be fitted very well over

strains ranging from 2 to 14 percent and strain rates ranging

up to 10,000 sec -I with the strain-rate constants D = 12,000

sec 1 and p = 3.23, using a static stress-strain curve defined

by E = 10.5 x 106 psi, ao = 11,000 psi, and hp = 16,100 psi.

It is seen from Fig. 4.11 that the aluminum alloys are all very

similar in their behavior. Since the Reference 18 data appear
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to be essentially the best strain-rate data available and

since the present 6061-T6 data fall reasonably close to the

former data, some measure of added confidence in the present

rate fits for the 6061-T6 data is afforded.

Thus, on the basis of these comparisons, it appears rea-

sonable to use the results of the present simple strain-rate

fitting procedure to account approximately for strain-rate

effects in the present experiments on explosively-loaded beams.

However, the present dynamic stress-strain measurements do not

include large enough strain rates to cover those of interest

for these impulsively-loaded beams. The "extrapolation" to

higher strain rates, therefore, in the calculation of bedm

dynamic response is made with distinct reservations, although

the favorable agreement with the Reference 18 data in Fig. 4.11

provides a reasonable degree of confidence.

4.3 Beams of 6061-T6 Material

In order to avoid needless repetition duiing Subsections

4.3 to 4.6 of discussion of experimental-theoretical correlatico

of explosively-loaded beams and rings, some abbreviated termi-

nology and discussion of certain features which are common ,

many of the experimental cases involved are given now.

As a matter of convenience for the saving of computer time,

all experimental beam and ring cases were treated as symmetrical

problems. Thus, only the beam semispan or ring semiperiphery

and symmetrical loading were employed, with attendant symmetri-

cal structural response. As noted in Subsection 3.3.1, the use

of about 20 to 30 lutped masses per semispan permits a reason-

ably accurate accounting for the spanwise distribution of im-

parted velocity (and hence both impulse and initial kinetic
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energy) to each specimen for the types and spanwise extents of

impulsive loading employed in these experiments. Hence, in the

interests of both accuracy and the saving of computer time, the

number of lumped masses employed per semispan were: 22.5* for

all of the simply-supported beams, 30 for the clamped beams,

and 30 or 31 for the ring models.

Based upon the studies discussed in Subsection 3.3.1 of

the influence of the number of lumped area layers used in the

idealized-thickness model, six layers or flanges were used in

correlation calculation with but one illustrative exception

(see Table 4.5). The smallest number o' flanges that can be

used meaningfully in this model is two, but the spacing of

these flanges must be chosen in a~cordaice with some rational

rule such as: wholly-elastic or fully-plastic equivalence.

Using these two extreme rules, thE asso'Aated flange spacings

approach each other as the number of flanges is increased.

Increasing the number of flanges from two to four leads to

distinct response differences, but increasing the number of

flanges from four to six to ten leads to very little change in

the results. In the interests of accuracy, conservatism, and

minimum computer time, a six-flange representation has been

employed in the main correlation calculations.

The inclusion of material stress-strain characteristics

has been accomplished by using the bi-linear approximate fits

to the present experimental stress-strain data; these bi-linear

fits are listed in Table 4.2. However, the specific fit or

fits used in correlation calculations for a given explosively-

* For the portion of the beam from the midspan to one support;
4.5 additional masses represented the portion of the beam
extending beyond the support.
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loaded model are listed in Table 4.5. In nearly all cases,

correlation calculations have been carried out in which the ma-

terial has been treated as (a) elastic, strain-hardening (EL-SH)

with the Table 4.2 and 4.3 fits and (b) elastic, strain-harden-

ing, strain-rate sensitive (EL-SH-SR). Hereinafter, these

abbreviations will be used in discussing the results.

Boundary conditions which can be employed in the present

finite-difference method to analyze the explosively-loaded beams

have been discussed in Subsection 3.2.1. For the clamped beams,

the proper procedure is well-defined. However, for the "simply-

supported" beams (see Fig. 2.1(b)), the actual beam-support con-

dition appears to lie between the rolling simple support, Fig.

3.4(d), and the sliding simple support, Fig. 3.4(e). The for-

mer support condition is clear and unambiguous, and has been

ased for all of the simply-supported beam cases. For the latter

type of support representation (i.e., SS-sliding), a reasonable

scheme has been devised to approximate this; however, time has

not permitted this scheme to be studied exhaustively to verify

its reliability. Therefore, the SS-sliding boundary condition

has been included only on a tentative illustrative basis as

noted in Table 4.5.

In the following, therefore, the above motivezion is not

repeated when discussing each of the groups of exl,eriments.

Instead, attention will be called to the specific calculation

parameters listed for each case in Table 4.5.

Returning specifically to the explosively-loaded beam

specimens of 6061-T6 aluminum alloy, this material was chosen

as one which behaves essentially in an elastic, perfectly-

plastic manner. To produce predominant bending and predominant

stvr'ching behavior, simply-supported (SS) and clamped (C)
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beams, respectively, were employed. These two types of cases

are discussed separately in the following.

4.3.1 Predominant Bending Cases: SS Beams

In this category two typical explosively-loaded 6061-T6

beams, 121 and 131, are examined.* Their dimensions, weights,

extent of HE coverage, and imparted impulse are given in Table

4.4. Dynamic response calculations have been carried out using:

22.5 masses per semispan, a six-flange and a two-flange thick-

ness model, and the stress-strain properties shown in Table

4.5.

Figure 4.12 demonstrates comparisons between the time

history of measured midspan front-edge beam deflection and theo-

retical two-dimensional deflection predictions for specimen 121.

The measured deflection is represented by the circle symbols.

Deflection predictions for the following cases are included:

(a) 6-flange, EL-SH Rolling: ---

(b) 6-flange, EL-SH-SR, Rolling, D = 6500 sec - , p = 4:_

(c) 6-flange, EL-SH-SR, Rolling, D = 7000 sec -1 p = 2.13:

X

(d) 6-flange, EL-SH-SR, Sliding, D = 6500 sec " , p = 4:

(e) 2-flange, EL-PP, Rolling:

Case (a) represents response predicted neglecting strain-rate

effects. Cases (b) and (c) show responses including strain-rate

effects using constants from Reference 14 and the present studies,

Hereinafter, the test specimens are referred to by the last

number of the Picatinny identification code for each (see
Tables 4.1 and 4.4).
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respectively. It is seen that the inclusion of strain-rate

effects leads to an effectively "stiffer" structure: the peak

response is reduced and the response period is shortened. Also,

the present rate fits, Case (c), lead to somewhat better re-

suits than do those of Case (b).

The influence of including a sliding support versus a

rolling support may be seen by comparing Case (b) with Case (d).

The sliding support condition leads to increased deflection

compared with the rolling-support prediction. It is expected

that the sliding support condition together with the rate con-

stants of Case (c) would comprise the most realistic calcula-

tion at present and would produce a first-peak response about

as large as that of Case (a). Finally, Case (e) represents the

least refined calculation of this entire group -- using the

minimum number of flanges (2) and treating the material as

EL-PP with no rate sensitivity; however, while Case (e) is in

best agreement with measured peak midspan deflection, it dis-

agrees with experiment in the later stages of response.

From physical considerations, one would expect to ob-

serve best theoretical-experimental agreement with the 22.5m,

6f, EL-SH-SR, SS-sliding case where strain-rate constants ob-

tained from the present (limited) tests are used. Whereas

there is general agreement with respect to the time-history

features of the midspan deflection response, the predicted am-

plitude is too small. The principal reasons for this discrep-

ancy may include:

(a) Too small an imparted impulse. Data from impulse

calibration tests revealed mean deviations of about

3.5 percent and extreme deviations of -8 and +5.6

percent from the mean value: 18.6 x 104 (dyne-sec)/gm.
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(b) The assumed strain rate effect may be too large.

Since aluminum alloy is knc (18, 19, 20J to be

relatively rate insensitive and because of the limited

scope and resolution of the present dynamic stress-

strain tests, it is perhaps reasonable to neglect

strain-rate effects for this material.

Figure 4.13 illustrates the beam deflection versus span-

wise station at several instants of time: approximately 550,

1750, and 4425 microseconds after HE detonation for the 1/4-

inch thick simply-supported 6061-T6 beam 121; predicted results

are plotted for the print-out times which fell closest to the

measurements reported. Front-edge deflection data measured from

framing camera records are compared with two-dimensional defor-

mation results preclcted with a 22.5-mass, 6-flange, rolling-

support model with (a) EL-SH and (b) EL-SH-SR (D = 6500 sec
I

p = 4) material behavior. At 550 microseconds, there is good

deflection profile shape and magnitude agreement between ex-

periment and both calculations. At 1750 microseconds, the

experimental midspan deflection exceeds the EL-SH result by

about 8 percent and the EL-SH-SR result by about 20 percent;

the measured profile shape agrees slightly better with the EL-

SH prediction. At 4425 microseconds, again good agreement

exists between theory and experiment; in this case the measured

profile shape (although exhibiting some asymnetry) is in some-

what better agreement with EL-SH-SR calculations.

The front-edge midspan deflection history of a similar

but thinner (1/8-inch thick) simply-supported beam (131) is

given in Fig. 4.14. Those measurements are compared with 22.5-

mass, 6-flange, roller-support, EL-SH and EL-SH-SR predictions.

Although the peak response predicted by EL-SH theory agrees

better with experiment (i.e., 12 percent vs. 19 percent smaller)
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the character of the deflection-time history and the time to

peak response given by the EL-SH-SR calculation agrees better

with experiment. Again, dynamic twisting of uncertain amount

is present in the experimental data whereas the present cal-

culations exclude this behavior. Note also in Fig. 4.14 the

results of an illustrative 22.5-mass, 6f, EL-SH-SR, sliding-

support calculation in which an imparted impulse 10 percent

greater, than that listed in Table 4.4 and the strain rate fits

D = 7000 sec -I and p = 2.13 are used. In this case, there is

better agreement between prediction and experiment with re-

spect to peak amplitude, but the time to peak remains too

great; the higher input, the latter strain-rate constants, and

the slLding-support all tend to increa-t the peak response and

the time to peak response. One can see also some mode-phasing

difference,, between these two EL-SH-SR response results.

4.3.2 redominant Stretching Cases: Clamped Beams

Beams with fully-clamped ends experience predominant

stretching compared with bending when the deflection exceeds a

very small value; such cases are considered now. Beam specimens

of 6061-T6 ("non-strain-hardening") material of 1/4- and 1/8-inch

thicL-ness ---re tested and anaJysed. Midspan deflection time

histories are shown in Fig. 4.15 and 4,17 for 1/4-inch beam I1

and 118-inch beam 95, while spanwise deflection at various in-

stants of time are shown in Fig. 4.16 for 1/4-inch thick beam

112. Finally, measurements and predictions cf dynamic strain

at several locations on 1/8-inch thick beams specimens 3 and 2

are shown in Figs. 4.18 and 4.19, respectively. It would have

been desirable to compare simultaneous measurements of midspar.

deflection history, deflection profiles, and dynamic strain for

' ross-checking; however, suc' data are not available.
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Nevertheless, it will be seen that reasonably good experimental-
theoretical agreement has been achieved.

Figures 4.15 and 4.17 show that the peak value of the

midspan deflection history predicted by EL-SH theory in each

case agrees better with experiment than does the EL-SH-SR cal-

clation. However, the details of the deflection (i.e., time

to peak and shape) for the latter calculation show closer

similarity to experiment than do those for the EL-SH case. Al-

though the presence of dynamic twisting in the experiment may

produce certain "peculiar distortions" of that Lime history,

it is interesting to inquire whether an EL-SH-SR calculation

modified to include the present rate fits D = 7000 sec " and

p = 2.13 and an impulse increase of 10 percent will lead to

ne-.r duplication of the measured midspan deflection history,

as previous inquiries and arguments suggest. The results of

these "modified EL-SH-SR calculations" are also shown in Fig.

4.15 where it is seen that very close theoretical-experimental

agreement is achieved except for some phase difference which

might be due to the presence of some dynamic twisting in the

experiment.

Figure 4.16 compares measured spanwise deflection pro-

files for beam 112 at three instants of time with EL-SH and

EL-SH-SR predictions. Note that there are certain distinctive

di':erences between the profiles predicted by EL-SH and EL-SH-SR

calculations. Also note that the measured deflections are those

of the front edge of the beam (rather than tl'.e ideal two-

dimensional value), and that these measured profiles, unfor-

tunately, do not extend completely to the clamped ends. At

1:0 microseconds, the influence of the impulse explosively im-

parted to about the central 2-inch portion of the beam has not

yet reached the clamped ends -- baving traveled only to a 3tation
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about 3.5 inches from midspan; observe also that the EL-SH and

EL-SH-SR profiles cross each other. At the two later times

shown, these two profiles no longer cross, but the EL-SH de-

tiection is larger than the EL-SH-SR deflection, as is to be

expected on the basis of the Fig. 4.15 results. Because the

data on the experimental profiies are incomplete, it is not

possible to make an incisive appraisal of the EL-SH result

versus the EL-SH-SR calculation frcr Fig. 4.16.

A better comparison is possibl- *, wever, through the use

of a more sensitive indicator; namely, dynamic strain measure-

ments at specific locationson a specimen, which is an "uninte-

grated quantity". Figure 4.18 shows comparisons between strains

measured at several locations on both the top and bottom sur-

faces of beam 3 and results predicted by EL-SH and EL-SH-SR

calculations (see Table 4.5). Similar results are shown in

Fig. 4.19 for beam 2 which has undergone significantly larger

strain than has beam 3. In essentially every case, it is seen that

the EL-SH-SR theory is in best amplitude and shape agreement

with measurements; there is, however, some phase difference

(predicted peaks are too early) which could be accounted for

largely by the use of strain-rate (D,p) pairs 7000,2.13 ratl 3r

than 6500,4 and a small increase in the imparted impulse.

superiority of the EL-SH-SR results compared with the EL-SH

results is perhaps most evident in the large-strain case, Fig.

4.19, where strain rate effects would be expected to be the most

pronounced.

4.4 Beams of 2024-0 Material

The 2024-0 material was selected to provide dynaic large-

response data on a material which exhibits a considerable amount

of strain hardening, and to permit evaluating piediction methods

designed to account for this effect. As before, predomixnant
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bending (SS) and predominant stretching (clamped) cases were

included. Only midspan deflection measurements are available

for comparing with predictions.

4.4.1 Predominant Bending Cases: SS Beams

In this category, two typical explosively-loaded 2024-0

beams, 119 and 134, are examined. Their dimensions, weights,

extent of HE coverage, and imparted impulse are given in Table

4.4. Dynamic response calculations have been carried out using:

22.5 masses for the portion of the beam from midspan to one

support, a 6-flange thickness model, and bi-linear stress-strain

fit 4 (see Tables 4.2 and 4.5).

Figure 4.20 shows comparisons, for 1/4-inch thick beam

119, between the measured front-edge midspan deflection history

and two-dimensional midspan deflections predicted from EL-SH

and EL-SH-SR theory, where strain rate constants for the latter

were assumed, for illustration, to be D = 6500 sec -1 and p = 4.

While these rredicted deflection histoiies are similar to that

which was measured, the predicted amplitudes are considerably

below experiment. Certain reasons for this are discussed after

Fig. 4.21 has been examined.

Figure 4.21 shows midspan deflection-history results for

experiment and theory for 1/8-inch thick beam 131t which has

undergone much larger deformations than beam 119. The theo-

retical calculations made use of a 6-flange thickness model,

22.5 masses per semispan, and stress-strain fit 4; in addition,

the features included (a) EL-SH with rolling support, (b) EL-SH-

SR with rolling support, and (c) EL-SH-SR with the beam allowed

to slide freely cver a fixed support. These three predicted

results are show;n in Fig. 4.21. As usual, it is seen that the

inclusion of scrain rate leads to a reduced deflection amplitude.
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Note that the sliding-support condition, which corresponds more

closely to the actual conditions present in the experiment,

leads to a response which agrees considerably better with ex-

periment both with respect to amplitule and response period

than does the rolling-support EL-SH and EL-SH-SR calculations.

There remains, however, some undesirable time history discrep-

ancy between theory and experiment prior to the first peak;

clear-cut reasons for this have not been established.

Returning to Fig. 4.20, one may now speculate reasonably

that the discrepancy between EL-SH-SR theory and experiment may

be explained largely by the fact that a rolling rather than the

more-realistic sliding support condition was employed. Extrap-

olating roughly from the Fig. 4.21 results, it is estimated

that the use of the sliding support for an EL-SH-SR calculation

for beam 119 would result in a peak response of about 1.35

inches compared with the observed 1.6-i.ach value. Note also

t.dt the initial slope of the experimental midspan deflection

versus time curve is steeper than every theoretical result.

This feature suggests that the impart 1 impulse may have been

greater than that estimated fcr these beams on the basis of

the separate impulse-calibration experiments. This residual

discrepancy is unresolved.

4.4.2 Predominant Stretching Cases: Clamped Beams

The midspan deflection-history measurements for clamped

beams 88 and 100 which were of 1/4- and 1/8-inch thickness,

respectively, are given in Figs. 4.22 and 4.24, respectively.

Four theoretical results are shown for comparison with

the beam-88 data in Fig. 4.22. Two EL-SH calculatior. results

using fits 4 and 9, respectively, are shown as dash-dash and
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dash-dot-dash curves; only an insignificant difference arises

between these two predictions because of the relatively small

average strain level involved. Similarly, two EL-SH-SR cal-

culations result for strain rate (D,p) pairs of 6500,4 and

7000,2.13 are shown by the solid curve and the "x" symbol dis-

play, respectively. The latter result which makes use of

strain-rate constants deduced from the present experiments

demonstrates slightly better agreement with experiment than

does the former EL-SH-SR result. In fact, the details of the

midspan deflection response for the EL-SH-SR (7000, 2.13) case

agree best with experiment; this may be fortuitous in part

since the influence of dynamic twisting remains undefined. If

one compares the initial slopes (velocities) of the experimental

and predicted curves, one might suspect that the actual im-

parted impulse was larger than that obtained by calibration

Results obtained by using an Ldjusted 25 percent higher impulse

are shown in Fig. 4.23. The theoretical curves are seen to

follow the experimental points not only during the early phase,

but also fairly well at later stages of the response.

Similar theoretical-experimental comparisons may be noted

in Fig. 4.24 for 2024-0 beam 100. Here again, the details of

the EL-SH-SR result compare better with experiment than does

the EL-SH case, where fit 4 is just as valid as fit 9 because

of the relatively low level of plastic Ptrain involved. Pre-

dicted peak responses for both cases are within 12 percent of

the observed peak midspan deflection.
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4.5 Beams of 1010 Steel Material

Explosively-loaded 1010 steel beams have been included to

provide large dynamic-deformation data on specimens having a

relatively high strain-rate sensitivity, and to evaluate pre-

diction methods which are designed to include this effect.

Both simply supported and clamped beam tests have been carried

out and compared with predictions; however, only midspan de-

flection time histories are available for comparing with theory.

4.5.1 Predominant Bending Case: SS Beam

A typical experimental result is afforded by the SS-beam

129 midspan deflection history as shown in Fig. 4.25. To com-

pare with the measured midspan deflection, three tLeoretical

calculations were carried out:

(a) EL-SH, bi-linear a,e fit 7, with rolling support

(b) EL-SH-SR with rolling support

(c) EL-SH-SR with the beam permitted to slide freely

over a fixed support.

In all cases, a model with 22.5 masses per semispan and a 6-

flange thickness representation was used.

It is seen that the EL-SH response is much larger than

either of the EL-SH-SR results, and all three predictions indi-

cate peak deflections considerably greater than the observed

value. As before, the influence of the sliding versus the

rolling-support condition is to increase the peak deflection;

the very early part of the response remains essentially un-

affected by the type of simple support assumed. Observe that

the smallest peak response predicted (EL-SH-SR, rolling) is

24 percent greater than the experimental value. Among the
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reasons for this discrepancy, the following may be noted. The

simple strain-rate approximation employed is not an accurate

representation for steel. Also, the end fixture which served

to keep the beam in contact with its simple support has a non-

negligible mass moment of inertia about the "knife-edge" support

upon which the beam rests, and undergoes angular acceleration

when the slope of the beam at the support becomes large enough;

the instant at which this occurs depends upon the clearance be-

tween the beam and the guide pins of the subject end fixture,

and is difficult to establish reliably. Howevcr, the effect of

this end fixture, which has not been accounted for in the pre-

dictions, would be to retard the response of the beam so as to

lead to a smaller peak response than would occur in the absence

of this effect. In view of these uncertainties, further dis-

cussion of the beam 129 results appears not to be worthwhile.

4.5.2 Predominant Stretching Case: Clamped Beam

The support condition for the clamped 1010 steel beam ex-

periments is well defined. Hence, this case should permit a

clearer assessment of the accuracy and reliability of the pre-

diction methods and the strain rate approximation employed for

steel.

Figure 4.26 compares the measured midspan ueflection time

history with EL-SH and EL-SH-SR predictions using a 6-flange 30-

mass model. These calculations show clearly that strain rate

is very important for this material. Agreement between experi-

ment and EL-SH-SR theory at and prior to the first peak is very

good. There is a discrepancy between these two repponses after

the first peak has been reached; however, it is not a major one.

This may he due in part to the presence of dynamic twisting but

this can not presently be confirmed.
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Observe also that the experimental and theoretical re-
sponses quickly subside after the first peak deflection has

been reached, with somewhat greater residual oscillation present

in the experiment. Clearly, very good petmanent-deflection

agreement between EL-SH-SR theory and experiment is achieved:

EL-SH-SR theory gives .60 inch versus .55 inch to about an

estimated .62 inch for the front and rear edges of beam 89,

respectively.

It is interesting to compare the character of spanwise

deflection profiles at various instants as predicted by EL-SH

and EL-SH-SR theory. Such comparisons are shown in Fig. 4.27.

Strain rate influence, as herein included, serves to "stiffen"

the structure and reduces the curvature achieved by the speci-

men. The propagation of the beading wave is also evident. For

this material, therefore, accurate spanwise deflection profile

data would be a reasonably definitive means of assessing the

importance of strain rate effects in structural response prob-

lems of this type. A more sensitive indicator, however, would

be dynamic strain measurements. Unfortunately, neither of

these two types of data is available for these 1010 steel beam

experiments.

4.6 Circular Rings
4.6.1 Free Circular Rings

The results from two typical explosive-loading tests of

1/8-inch thick 6061-T6 circular rings are examined next; one

case, specimen F4, involves moderate and the other specimen

F15, a rather severe degree of response. Each specimen has

been explosively loaded over a sector totaling 120 degrees.

Figure 4.28 compares the measured ring centerline mid-

plane separation time-history with results predicted from EL-SH

and EL-SH-SR calculations (see Table 4.5). During the period
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for which me:aurements exist, there is excellent agreement

between e'periment and EL-SH-SR theory. As expected, a some-

what larger response is predicted by EL-SH theory.

Au,.ther interesting comparison is shown in Fig. 4.29,

where the predicted* midplane permanent deformation profiles

are compared with a tracing of the inner and outer surfaces of

the permanently-deformed ring. Both the EL-SH and the EL-SH-SR

predictions are in reasonably good agreement with experiment,

with the EL-SH-SR result being somewhat better.

A somewhat more sensitive comparison between experiment

and theory is afforded by dynamic strain measurements made at 6

locations pn the ring during the experiment; these results are

shown in Fig. 4.30. In view of the earlier comparisons of

strain histories among experiment, EL-SH theory, and EL-SH-SR

theory, only the results from the latter calculation merit

comparison here. Thus, these EL-SH-SR results are compared

with experiment in Fig. 4.30. Strains were measured at posi-

tions 1, 2, 7, and 8 to check response symmetry, which is seen

from Figs. 4.30 and 4.31 to be very good. An inspection of the

results given on Fig. 4.30 shows that there is reasonably good

agreement between theory and experiment during an initial period

of about 700 microseconds. Beyond that time, there remains ex-

cellent phase agreement between experiment and theory even to

seemingly anomalous details, but the predicted strain amplitudes

are too large. This trend, of course, is consistent with the

* These perminament deformation profiles are estimated by ex--
amining the ring centerline responses after the plastic
energy absorption has ceased and by selectlng as a
"permanent-deformation profile" that which has an ampli-
t.ude midway between the maximum and miniiun responses
in this residual elastic post-plastic response region.

7 C



deformation-response results of Fig. 4.29.

Since the mass-point locations in the theoretical model

do not coincide with the strain-gage locations, this could be

an added source of discrepancy; hence, plots of predicted

strain on the outer and inner surfaces as a function of angular

position are given in Fig. 4.31 for two instants: 1080 and

2580 microseconds. Plotted also are the measured strain at

these instants. Note in Fig. 4.31 that for the portion beyond

e greater than about 70 degrees, the ring is in a state of

essentially pure bending; whereas, for -70°o e < +700, the

ring experiences both considerable compression and bending

strain. Also a rapid strain reversal, as expected, occurs near

9 = 600 where the edge of the HE layer was located.

The F-15 ring results, involving more severe response,

are given in Figs. 4.32-4.35. Figure 4..32 compares the measured

ring centerline midplane separation time-history with results

predicted from EL-SH and EL-SH-SR calculations (see Table 4.5).

In this more severe response case where one expects strain-rate

effects to become more important, it is seen that the EL-SH re-

sponse is much greater than the EL-SH-SR response, with the EL-

SH-SR response peak being about 10 percent larger than expe iment.

Also, the overall EL-SH-SR response history is in good agree, nt

with experiment.

It is also interesting to compare measured and predicted

deflection profiles at a sequence of times to assess the faith-

fulness of the theory in predicting the rezponse details through-

out the ring. This is done in Fig. 4.33 at t 510, 11.60, 1976,

and 2584 microseconds and for the permanent deflection con--

dition . Te EL-SH and the EL-SH-SR results shown are those for

the Closest printout time in tha calculations. Note that the
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experimental deformation profiles are almost but not quite

symmetrical, whereas the computer deformation was treated (by

choice, not by necessity) as being symmetrical.

At 510 microseconds, there is already a very considerable

difference between the measured profile and that given by EL-SH

theory, although the difference at the centerline is not very

great. On the other hand, the EL-SH-SR deformation profile is

still in good overall agreement with experiment. This same

trend is seen at 1160, 1976, and 2584 microseconds and at the

permanent-deformation condition, where the EL-SH result is

consistently poor and the EL-SH-SR result falls reasonably

close to experiment. Also note that the experimental deformed

profile appears to exhibit some waviness* but this is not clear

enough for more explicit identification. However, note that

this waviness is not apparent in the final deformed specimen.

Figure 4.34 compares measured strain histor.es with those

predicted by EL-SH-SR theory. Good amplitude and phase agree-

ment is observed for about the first 600 microsecoids. After

this time, excellent phase agreement remains but the predicted

amplitudes are too large (peaks being about 30 percent too high).

This also is consistent with Fig. 4.32 and 4.33 results. Note

that peak measured strains ranging froi about 2.5 Io 4.5 per-

cent occur. Also, if the experimental results at positions 1

and 3 were interchanged, they would be consistent with pre-

dictions.

* This effect suggests some similarity to waviness observed

in similar experiments repoyted in references 21 and 22.
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Strain profiles predicted by EL-SH-SR theory have been

plotted in Fig. 4.35 at t = 1380 and 3000 microseconds and are

compared with measurements at these instants. At t = 1380,

fairly good agreement between theory and experiment is noted;

.-t t = 3000, the measured and predicted trends are consistent

but the strains are overestimated. Again, note that the ring

undergoes essentially pure bending beyond e = 700; whereas, for

-70'-< 0 < 70°  the ring experiences both considerable com-

pressive strain and bending behavior. Rapid strain reversal

again occurs at about 60 degrees.

4.6.2 Clamped Ring

Figures 4.36-4.39 show the deformation and strain re-

sponse histories for a typical explosively-loaded clamped cir-

cular rirg of 6061-T6 material (see Tables 4.4 and 4.5). Be-

cause the clamped-ring tests could be carried out with less

measurement difficulty than the free-ring tests and were thus

expected to yield higher quality data, clamped-ring tests were

conducted. Also, these tests provide data to test the adequacy

of the analysis to treat a structure which has fully clamped

ends but does not undergo dominant stretching (membrane) behavior

as in the case of the clamped beams.

Figure 4.36 compares the time history of the measured

central deflection of the ring (C4) with EL-SH and EL-SH-SR

predictions. The Latter prediction is seen to be in good agree-

ment with experiment both in amplitude and in phase; whereas

the EL-SH prediction vastly overestimates the response.

To assess the accuracy of the deformation predictions

throughout the ring, experimental and predicted (EL-SH and EL-SH-

SR) deformation profiles are compared in Fig. 4.37 at 785, 2854,
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and 5495 microseconds after HE detonation and at the permanent-

deformation condition. At 785 microseconds, the ring is ob-

served to be deforming in an almost but not exactly symmetrical

fashion; at this time, both predictions are in reasonably close

agreement with experiment, with the EL-SH-SR being the better.

At 2854 microseconds, EL-SH-SR theory still is in reasonable

agreement with experiment but the EL-SH result vastly over-

estimates the deformation; now, however, the actual deformation

is exhibiting a definite asymmetry. Near maximum springback,

5495 microseconds, a similar comparison is observed between

theory and experiment; some degree of deformation asymmetry

exists. Also, there appears to be a certain degree of waviness

of the observed shape. However, with the present mass spacing,

the possible presence of waviness in the predicted profiles is

not observable. Finally, note that the measured permanent-

deformation profile continues tu exhibit some asymmetry and that

the EL-SH-SR prediction remains in reasonably good agreement

with experiment while the EL-SH calculation vastly overestimates

the deformation.

A more sensitive comparison between theory and experiment

is afforded Dy measurements of str-in versus time at several

positions on the inner and ovter surfaces of the ring. t is

already clear that the L-S!H 2iiction greatly overestimates

the deformation and thus the strain as well. Hence, Fig. 4-38

compares measured histories with those of EL-SH-SR theory.

Consistent wita the deformation results seen earlier, after an

early perio' of close agreement with experiment, the strain

histories ')redicted with the EL-SH-.[ calculation exceed those

of experiment; however, excellent phase agreement of theory

with experiment remains.
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Some of the discrepancy between EL-SH-SR theory and ex-

periment may arise from the fact that the peripheral locations

of the strain gages do not coincide with the mass-p:int loca-

tions of the theoretical model. Thus, computed strain dis-

tributions around the periphery of the ring are shown in Fig.

4.39 at three instants: 780, 1980, and 2880 microseconds; the

measured strains at these instants are also plotted. It is

observed that the predicted and measured distributions and

amplitudes of strain are in good agreement. Again, abrupt re-

versal of strain occurs at 0 = 60 degrees which was the loca-

tion of the edge of the HE layer. As in the case of the free

rings, nearly pure bending strain is observed for 0 greater

than about 70 degrees for the clamped ring; considerable com-

pression strain plus bending strain is seen to exist for

smaller 9 angles.

4.7 Comparisons with Rigid Plastic Theory

It has been pointed out earlier that the clamped beams

have been chosen as producing predominant stretching behavior,

and the simply-supported beams as producing predominant bending
behavior. Permanent deformations for these cases can be esti-
mated with a simple approximate energy method in which the

material is treated as rigid, perfectly-plastic. It is assumed

that in the case of a clamped beam, the entire beam deforms by

stretching at the constant axial yield force throughout the

response or, in the case of the simply-supported beam, deforma-

tion occurs entirely by bending at the constant bending yield

moment. By taking - plausible deflection mode, the energy

absorbed during plascic flow is obtained as a function of the

midspan deflection by a simple spanwise integration. The fact

that the total plastic work done along the entire response is
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assumed to be equal to the initially imparted kinetic energy

permits the calculation of the permanent midspan deflection.

Predicted permanent midspan deflections of the simply-

supported and clamped beams (listed in Table 4.4) are now com-

pared in Table 4.6 with the corresponding experimental deflec-

tions. The pertinent dimension and loading data can also be

found in Table 4.4. The following average "perfectly plastic"

yield limits have been chosen:

6061-T6: 42,000; 43,500; 45,000 psi (compare Fig.
4.1)

2024-0: 18,000 psi (compare Fig. 4.2)

1010 steel: 16,000 psi (compare Fig. 4.4)

Note that the values pertaining to the considerably strain-

hardening materials, 2024-0 and 1010 steel, must be considered

as rough estimates. For these calculations, the assumed de-

formation shapes chosen* were:

for the simply-supported beam and

for the clamped beam, where the midspan deflection 6 is de-

termined from the assumption that the entire initially imparted

kinetic energy is absorbed by plastic work.

* The effects of various assumed deformation shapes are shown
in Reference 23.

81



Compered with the simply-supported beams, the clamped

beams exhibit a reasonable degree of agreement between theory

and experiment. The rigid-plastic approximation which allows

no elastic defurmation is obviously more appropriate for clamped

beams with axial constraults where the variations in deflection

remain small once the first peak has been attained (see for

example, Fig. 4.17); in this case essentially all of the input

energy is absorbed by plastic work, whereas a much smaller

fraction of the input energy is absorbed by direct plastic work

for these simply-supported beam cases.

For a given beam, the permanent deflection obtained by

the above energy method is solely dependent upon the assumed

deformation shape and the initially imparted kinetic energy,

but does not depend upon the details of the initial velocity

distribution; also, this method does not provide the transient

response. Although the exact rigid-plastic transient-response

theory does not have these deficiencies, it is nevertheless in-

adequate if the transient response becomes important as in thp

case of simply-supported beams. This is demonstrated in Fig.

4.40 where the present elastic-plasti.c theory and rigid-plastic

theory are compared with experiment.

4.8 Summary Comments on the Present Comparisons

It is useful at this point to restate concisely the

primary factors and features which the present experiments and

correlation studies were designed to scrutinize and evaluate.

This is done in the following tabular summary.
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Here are cited the types of models employed, the primary be-

havior for which model geometry is responsible, the intended

primary behavior due to different mechanical properties of the

material, and the types of data available for comparing with

pradictions.

It has been shown that, for all of the above cases, the

present elastic-plastic prediction method for two-dimensional

structural response permits predictions which are in excellent

qualitative agreement and generally good quantitative agree-

ment with experiment. Clear evidence of the listed types of

behavior arising from specimen geometry as listed in the first

column was seen both in the experimental and in the theoretical

results; the only geometric factor not precisely definable

in these experiments as conducted concerned the "restraint of

the end fixture" for the simply-supported beams. The histories

and instantaneous profiles of strain and deflection permitted

making a reasonably thorough appraisal of the adequacy and

accuracy of the present prediction method, despite the presence

of some uncertainties.

Among the uncertainties present are the following:

(a) The Impulsive Input. Although considerable effort

was devoted to impulse calibration, the impulsive

inputs to the dynamic-response models remains some-

what uncertain, as explained in Section V.

(b) Dynamic Twisting. This arose since thp HE detona-

tion front traveled across the width direction of

each specimen. The present predictions, however,

apply strictly to two-di.,tensional structural re-

sponse.
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(c) Static Stress-Strain rroperties. Tensile tests on

representative samples from each material lot were

made, and exhibited some scatter due probably to

both experimental measurement uncertainty and to

material variations. Also, compressive streus-str"'-

measurements should be made since many materials ex-

hibit distinct differences in tensile and compressive

behaviors.

(d) Dynamic Stress-Strain Properties. Tensile tests of

this type were conducted on the materials employed.

However, the strain rate range covered was very re-

stricted (less than 15 in/in/sec) and the experimental

measurement and interpretation uncertainties were

larger than desired, whereas, strain rates ranging up

to about 3000 in/in/sec occurred in the dynamic re-

sponse cases studied. Further work on this aspect

of the problem is clearly required, including com-

pressive tests.

The present method can accommodate different stress-strain

behavior in tension and compression.

Despite these uncertainties, the present correlation

studies of experimental strain and deflection histories and

prcfiles compared with predictions permit one to conclude

that the present elastic-plastic prediction method for two-

dimensional large dynamic deformations is reliable. The in-

clusion of an approximate accounting for strain-rate behavior

of the material is shown to have a significant effect on the

maxium elastic-plastic response, the reponse phasing, and the

(estimated) permanent deformation. Further improvement in

e ,erimental-theoretical agreement for cases such as the rings

and clamped beams is believed to depend upon (1) the measure-

went and use of more accurate mechanical property data for

the material, especially strain-rate data over a wider strain-

rate range, (2) the extension of the method to three-
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dimensinal deformations in order to account for dynamic
twisting, and (3) more refined impulsive-input and initial-

model-geometry data. The latter should permit predicting

the asymmetrical response noted in certain ring experiments.

Dynamic deformation histories can be computed for cer-

tain simple structures from rigid-plastic theory, but are

laborious and provide results which are significantly differ-

ent from both experiment and elastic-plastic theory, giving

too small a peak response. Also, permanent deformations for

simply-supported beams computed from rigid-plastic transient

response theory and from a simple approximate energy method

applicable to rigid-plastic materials are found to be in

rather poor agreement with experimental results from the

present beam experiments. However, for the clamped-beam

cases studied, the permanent deformations predicted by the

approximate energy method which ignores strain hardening and

strain-rate effects are overestimated by only about 25 per

cent on the average, except for the 1010 steel-beam example.

Since these simplified methods employ the assumption that all

of the input energy is absorbed plastically, reasonable pre-

dictions cannot be expected in cases for which a substantial

fraction of energy input "remains" ir. elaotic and kinetic

forms.
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SECTION V

SUMMARY AND CONCLUSIONS

5.1 Theory and Correlation

The matter of principal interest in the present study

is the prediction of large dynamic elastic and post-elastic

responses and permanent deformations of simple structures.

The present formulation is restricted to two-dimensional

and/or axisymmetric responses, neglecting the effects of

shear deformn -ion and rotary inertia, and employing the

Kirchoff assumption; thus, within this framework, the present

analysis applies to multi-layer hard-bonded structures of

various similar or dissimilar materials. Approximate repre-

sentations: EL-PP, EL-SH, and EL-SH-SR, of the stress-strain

properties of the material lead to reasonable theoretical-

experimental agreement with peak deflection response and

permanent deformation, with the EL-SH-SR results being con-

sistently the better. Strain history comparisons served to

emphasize the importance of accounting for strain-rate ef-

fects even for the relatively strain-rate-insensitive

materials such as aluminum alloy. Improvements in predic-

tions are expected to be realized mainly from the use of

more accurate material property or constitutive data and

more complete and faithful representations of these prop-

erties in the analysis.

Several sources of remaining discrepancy between the

present theory and experiment may be cited in addition to

the constitutive-relation question. The applied loading

was such that a certain (but undefined) amount of dynamic

twisting was induced in the specimens whereas the theory

presently pertains strictly to two-dimensional response.

Despite the fact that the impulse input in the present ex-
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periments has been defined at least as and perhaps more

accurately than in any other transient loading cases re-

ported in the literature, some distinct uncertainties in
these inputs remain, particularly with respect to 2024-0
beam results where apparent impulse-response discrepancies

ranging up to about 25 per cent are implied; for the re-

maining cases, the impulse uncertainty appears to be con-

siderably less. Although the boundary conditions for the

free rings, clamped rings, and clamped beams are well de-

fined, the support restraint for the "simply-supported"
beams remains somewhat uncertain, particularly the dynamic

interaction between the beam and the (rotatable) end fitting

which depends critically upon the clearance between beam

and support and the moment of inertia of the subject end

fixture; this end-fixture effect has not been well defined

or treated in the analysis.

The method of analysis employed is simple and straight-
forward principally because the displacements and strains are

extrapolated ahead so that one solves in sequence the dis-

placement-strain, the strain-stress, and the equilibrium

equations using a very short time interval. Because of this

process it is very easy to incorporate suitable constitutive

relations since the strains, strain increments, and strain

rates are known at each step of the computation.

The present two-dimensional axisymmetric formulation

requires the use of a small space mesh to permit reliable

predictions of details cf large dynamic response and perma-

nent deformation, with the required space-mesh size depending

upon the intensity, distribution, and time history of the

forcing function. The resulting number of mass points and

the calculation time interval require considerable computing

time even on an IBM 7094 computer; for many of the cases

calculated end discussed in Section IV, from about 3 to 7
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minutes of IBM 7094 time were required for the response

durations shown. In view of this and the fact that the

present analysis enables one to follow in detail the tran-

sient strains and deflections and their distributions as well

as the partitioning of the energy of the system among kinetic,

elastic, and plastic forms,* it is desirable to use the

present formulation as a learning tool for studying large
dynamic elastic-plasiic response in order to obtain guidance

for the formulation of simpler, less time-consuming predic-

tions and to define realistically the conditions under which

these (or other) simpler methods yield reliable predictions.

The thickness idealization employed in the present
calculation model has been found to be particularly conven-

ient for studying the influence of various constitutive rela-

tion approximations. Also, the use of more than four

idealized-thickness flanges alters the resulting dynamic
response for a given problem very little compared with the

use of additional idealized-thickness flanges; the least

number of flanges that can be employed meaningfully in this

analysis is two, but at least four and preferably six are

recommended. The use of more than six idealized-thickness

flanges does not sensibly change the predicted response,

and requires an unnecessary expenditure of computer time.

Through the use of a simple mechanical sub-flange

model [131, it has been found feasible to account for strain

hardening behavior very faithfully. I. certain cases ir.-

volving materials which exhibit considerable strain hardening

such as 1100-0 aluminum alloy, a bi-linear stress-strain fit
is inadequate and a careful accounting for strain hardening

is essential [17].

Note that damping other than plastic work is not provided
for in the present analysis; thus, the computed response
exhibits undiminished oscillations indefinitely after plastic
work has ceased.
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For some beam cases studied in the present program, the

use of a simple energy method together with rigid-plastic ma-

terial behavior enables one to make fairly goo, estimates of

beam permanent midspan deflection, but no transient informa-

tion is obtained; with this method, no reliable rules for ac-

counting reasonably for strain rate effects are available. A

rigid-plastic dynamic response analysis can be carried out for

simple cases, but the transient response differs significantly

from the experimental and the elastic-plastic responses. How-

ever, an approximate accounting for strain rate and large de-

flections in rigid-plastic calculations (12,14] have lead to

significantly improved permanent-deformation agreement with

experimert, but there are still significant differences in

dynamic response details.

Finally, there are several obvious desirable extensions

of the present formulation which can be cited and which cur-

rently are being carried out. One of the most important is

the lifting of the two-dimensional and axisymmetric response

restrictions; a more realistic theoretical-experimental

comparison for the several types of experiments discussed

herein can then be made. This step should be of particular

importance in improving predictions of permanent deformations

of projectile-impacted hemispherical shells and the incipient-

buckling threshold for blast-loaded spherical shells [24].

Another interesting extension pertains to treating several

geometric configurations of multi-layer shells of similar or

dissimilar material which are soft bonded or unbonded be-

tween layers. Further extensions to include ring-, frame-,

and longeron-stiffened single- and multi-layer shells of

various geometries would be useful; a rather straightforward

extension can be made, but the number of mass points involved

and the computer time required to carry out a given response

calculation would be forn,,dable. Simplified, less time-
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consuming methods retaining the essential features of the

problem should be sought; these will likely differ, for a

given structure, depending upon the distribution, intensity,

and time history of the forcing function.

5.2 Experiment

The experimental techniques employed for measuring

transient strains and deflections in the present beam and

ring experiments afford high accuracy and excellent time

resolution.

In view of the fact ,that in the correlation studies

where the model has been represented by an adequate nvtmler

of masses and a six-flange thickness idealization has been

used together with a consistent usage of the EL-SH-SR data

presently available, the following trend concerning impulse

input level is implied;

(a) impulse consistently low for all beam specimens

of 6061-T6 and 2024-0 material by from about

10 to 25 per cent,

(b) impulse toohighfor the simply-supported 1010

steel beams and essentially "correct" for the

clamped 1010 steel beams, and

(c) impulse only slightly high for the 6061-T6 rings.

It appears that further work tL reduce the input uncertainty

is warranted. Particularly valuable would be the use of a

technique to determine the impulsive input in each dynamic

response test, rather than relying upon separate calibration

tests upon which to estimate the subject input. While other

factors may be mainly responsible for the above "discrepancies,"

the suggested procedure should serve to minimizi the input un-

certainty.
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Among the other factors which may be responsible for

the aforementioned discrepancies are the static and dynamic

stress-strain properties of the material and the approxima-

tions involved in the analytical fits used to represent these

properties. It appears that the present knowledge of the

rate-dependent material properties constitutes the source of

greatest uncertainty in the present work. In particular, the

need for precise measurements of stress-strain properties:

first under uniaxial stress conditions covering a strain rate

range up to at least 3000 in/in/sec is needed to cover the

conditions of interest for the present experiments; then

secondly, similar determinations are needed under biaxial

stress states. Subsequently, material behavior should be

determined under more general conditions. With respect to

analytical fits used to approximate the stress-strain

Troperties, these can be made to represent the material

properties essentially as accurate as one's knowledge of

those properties warrants; hence, the importance of this

factor is presently (and for future cases can be made)

negligible.
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TABLE 4.6
C -iparison Between Experimental and Predicted Permanent

Hidspan Beam Deflections Obtained by an Approximate
______________Energy Method

TEST SPECIMEN MATERIAL PERM4ANENT MIDSPAN DEFLECTION

8theor 8expt 8tbeor'expt

___ ___ ___ __ __ ___ ___ __ (in) (in) _ _ _ _ _ _ _

Simvly-Supported Beams

B-20-25-121 6061-T6 1.48 0.78 1.90

B-20-25-123 6061-T6 1.29 0.55 2.35
B-15-125-131 6061-T6 2.62 1.00 2.62

B-15-125-134 2r'24-0 6.89 1.87 3.68
B-15-25-119 2024-0 1.81 1.06 1.71

B-15-125-129 1010 Steel 6.25 1.84 3.40

Clamped Beams

P-15-125-95 6061-T6 0.73 0.64 1.14

P-30-125-2 6061-T6 1.34 0.99 1.35

P-15-125-3 6061-T6 0.65 0.46 1.41.

P-25-25-11. 6061-T6 0.67 0.51 1.31

P-25-25-112 6061-T6 0.67 0.56 1.20

P-15-125-100 2024-0 1.14 0.93 1.23

P-20-25-88 2024-0 0.67 0.57 1.18

P-20-125-89 1010 Steel 0.84 0.55 1.53

Simply-supported beam: 6 -ho 0.159(Toi/M0 )

Clamped beam: 8 tho 0.612 V%/l7W

where A - length between supports

No - axial yield force
M0 m yield moment

To-initially imparted kinetic energy
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HE LAYER DETONATION

(0) CLAMPED BEAM

(b) SIMPLY SUPPORTED BEAM

(C) CLAMPED SINGLE-LAYER RING

Id) FREELY-SUSPENDED SINGLE-LAYER RING

FIG. 2.1. SCHEMATICS OF EXPLOSIVELY-LOADED SIMPLE STRUCTURES
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