EXTENSION OF THE DOUGLAS NEUMANN PROGRAM TO PROBLEMS OF LIFTING, INFINITE CASCADES

by

JOSEPH P. GIESING

Report No. LB 31653 Revised 2 July 1964

THIS RESEARCH WAS CARRIED OUT UNDER THE BUREAU OF SHIPS FUNDAMENTAL HYDROMECHANICS RESEARCH PROGRAM, NS 715-102 ADMINISTERED BY THE DAVID TAYLOR MODEL BASIN
EXTENSION OF THE DOUGLAS NEUMANN PROGRAM TO PROBLEMS
OF LIFTING, INFINITE CASCADES

by

JOSEPH P. GIESING

Report No. LB 31653

THIS RESEARCH WAS CARRIED OUT UNDER
THE BUREAU OF SHIPS FUNDAMENTAL HYDRO-
MECHANICS RESEARCH PROGRAM, NS 715-102,
ADMINISTERED BY THE DAVID TAYLOR MODEL
BASIN

Contract Nonr 4308(00)

REPRODUCTION IN WHOLE OR IN PART IS
PERMITTED FOR ANY PURPOSE OF THE
UNITED STATES GOVERNMENT.
1.0 SUMMARY

The Two-Dimensional Douglas Neumann Program for calculating the potential flow about bodies of arbitrary shape has been extended to handle lifting, infinite cascades. The resulting very general program allows a wide range of heretofore intractable problems to be solved. Essentially, the program can handle any problem in which the flow pattern repeats indefinitely along an axis. In the Douglas Neumann program this axis is the y-axis. This permits the calculation of the flow about a lifting or nonlifting cascade having any stagger angle and spacing and having arbitrary blade geometry. The program can also calculate the flow about more than one cascade. Thus it can handle the interaction problem of two or more parallel cascades.

The Douglas Cascade Program is compared with other theoretical methods, special analytical cases, and experimental data. Program details, among which are input-output format and FORTRAN listing are given in the appendices.
2.0 TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Summary</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>3.0 List of Figures</td>
<td>3</td>
</tr>
<tr>
<td>4.0 Notation</td>
<td>5</td>
</tr>
<tr>
<td>5.0 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>6.0 Theory</td>
<td>9</td>
</tr>
<tr>
<td>7.0 Examples and Comparisons</td>
<td>16</td>
</tr>
<tr>
<td>7.1 Tandem Circles</td>
<td>16</td>
</tr>
<tr>
<td>7.2 Multiple Cascades</td>
<td>16</td>
</tr>
<tr>
<td>7.3 Analytic Test Cases</td>
<td>18</td>
</tr>
<tr>
<td>7.4 Experimental Comparisons</td>
<td>18</td>
</tr>
<tr>
<td>7.5 Comparison of the Douglas Method with a Method Due to I. E. Garrick</td>
<td>19</td>
</tr>
<tr>
<td>8.0 Acknowledgements</td>
<td>20</td>
</tr>
<tr>
<td>Appendix A</td>
<td>21</td>
</tr>
<tr>
<td>Appendix B</td>
<td>26</td>
</tr>
<tr>
<td>Appendix C</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>41</td>
</tr>
</tbody>
</table>
3.0 LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>A typical straight line element of the body surface.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2:</td>
<td>Arrangement of data cards.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>Vector diagram showing inlet, average, and exit velocities and angles of attack. The cascade parameters, spacing and stagger are also shown.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>Pressure distribution on a circle in tandem with an infinite number of similar circles.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>Pressure distributions on three circles in cascade. The central cascade has circulation. (SP = 6) chord, (\alpha_\text{I} = 43^\circ), (L_1 = 0.08), (C_{\text{D1}} = 1.36), (L_2 = 19.22), (C_{\text{D2}} = -1.44), (L_3 = 3.48), (C_{\text{D3}} = 0.08)</td>
<td>44</td>
</tr>
<tr>
<td>Figure 6:</td>
<td>Pressure distributions on three circles in cascade. The arrangement shown simulates two cascades with a spacing ratio, (SP_1/SP_2 = 2). Both cascades are noncirculatory. (SP = 6), (\alpha_\text{I} = 0), (L_1 = 0), (C_{\text{D1}} = 0.546), (L_2 = 1.31), (C_{\text{D2}} = -0.273), (L_3 = -1.31), (C_{\text{D3}} = -0.273).</td>
<td>45</td>
</tr>
<tr>
<td>Figure 7:</td>
<td>Analytic cascade profile "A".</td>
<td>46</td>
</tr>
<tr>
<td>Figure 8:</td>
<td>Comparison of analytic and calculated pressure distributions on profile "A" in cascade. (a) (C_L = 0), (\theta = 0^\circ), (\alpha_\text{I} = -45^\circ), (SP = 0.538) (b) (C_L = 1.7), (\theta = 0^\circ), (\alpha_\text{I} = 22.8^\circ), (SP = 0.538)</td>
<td>47</td>
</tr>
<tr>
<td>Figure 9:</td>
<td>Comparison of analytic and calculated pressure distribution on profile "C" in cascade. (a) (C_L = 1.125), (\theta = 0^\circ), (\alpha_\text{I} = 28.65^\circ), (SP = 0.795) (b) (C_L = 0), (\theta = 0^\circ), (\alpha_\text{I} = -30^\circ), (SP = 0.795)</td>
<td>49</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Figure 10:</td>
<td>Comparison of calculated and experimental pressure distributions on an NACA 65-010 airfoil in cascade.</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(a) $C_L = -0.135$, $\theta = -33^\circ$, $\alpha_T = 30^\circ$, $SP = 1.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) $C_L = 0.2$, $\theta = -21^\circ$, $\alpha_T = 30^\circ$, $SP = 1.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) $C_L = 0.355$, $\theta = -15^\circ$, $\alpha_T = 30^\circ$, $SP = 1.0$</td>
<td></td>
</tr>
<tr>
<td>Figure 11:</td>
<td>Comparison of calculated and experimental lift coefficient versus "effective" angle of attack for the NACA 65-010 airfoil in cascade.</td>
<td>52</td>
</tr>
<tr>
<td>Figure 12:</td>
<td>Comparison of the pressure distribution, as calculated by I. E. Garrick and by Douglas, of an NACA 4412 airfoil in cascade.</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>(a) $C_L = 1.0$, $\theta = 0^\circ$, $SP = 0.968$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) $C_L = 1.0$, $\theta = 45^\circ$, $SP = 1.096$</td>
<td></td>
</tr>
<tr>
<td>Figure 13:</td>
<td>Example problem control and data input sheets</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>(a) Header card and case control data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Control data and x coordinates for the cascade body</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) y coordinates for cascade body</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Control data and x coordinates for off-body points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) y coordinates for off-body points</td>
<td></td>
</tr>
<tr>
<td>Figure 14:</td>
<td>Program output sheets for example problem</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>(a) Input or Basic data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Solution at 0° angle of attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Solution at 90° angle of attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Circulatory flow solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Combined solutions for cascade body</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) Combined solutions for off-body points</td>
<td></td>
</tr>
<tr>
<td>Figure 15:</td>
<td>FORTRAN listing of the Douglas Cascade Program</td>
<td>62</td>
</tr>
</tbody>
</table>
4.0 NOTATION

A
Kutta-condition matrix defined in appendix A

c
chord length of cascade blade

c₀
complex coordinate of body element midpoint

c₁
complex coordinate of body element first endpoint

c₂
complex coordinate of body element second endpoint

C_L
lift coefficient per cascade blade normalized with \(\frac{2 \Gamma}{U_c} \). If some other normalizing velocity, \(U_\eta \) is used the lift coefficient is \(\frac{2 \Gamma U}{U_\eta^2 c} \). When a set of cascades is considered, \(C_L \) is the lift coefficient for the set.

C_p
pressure coefficient having the average onset-flow velocity as the normalizing velocity

\(\hat{i}, \hat{j} \)
unit vectors in the x-and y-directions, respectively

i
complex unit, \(\sqrt{-1} \)

j, k
midpoint and element subscripts, respectively

K
complex source strength, \(K = M + i \Gamma \)

M
source strength for point source

\(\hat{n}, \hat{t} \)
unit vectors in the normal and tangential directions, respectively

NC
number of cascades considered

q
surface location of a source

s
surface location of a general point

SP
cascade spacing, the flow pattern repeats with this spacing along a prescribed axis

U
modulus of \(\vec{V} \)

U_I
modulus of \(\vec{V}_I \)

U_\eta
modulus of any normalizing velocity \(\vec{V}_\eta \)
average onset-flow velocity $\vec{V} = \frac{\vec{V}_I + \vec{V}_E}{2}$

velocity at s due to a source at q $\vec{V}(q, s)$

exit velocity, velocity at $x = \infty$ \vec{V}_E

inlet velocity, velocity at $x = -\infty$ \vec{V}_I

influence of element k at point s $\vec{W}(k,s)$

influence of element k at the midpoint of element j, $\vec{W}_{jk} = X_{jk} - iY_{jk}$

coordinates of a general point x,y

$x + iy$, complex coordinate of a general point z

average angle of attack measured in the counterclockwise direction α

exit angle of attack α_E

angle of attack of the kth element α_k

inlet angle of attack α_I

cascade turning angle $\Delta\alpha$

circulation about an individual cascade blade Γ

effect of a uniform onset flow at zero angle of attack on the Kutta condition of the mth cascade in a system of several cascades ΔV_{0m}

effect of a uniform onset flow at 90° angle of attack on the Kutta condition of the mth cascade in a system of several cascades ΔV_{0m}

effect on the Kutta condition of the mth cascade due to circulatory flow about the nth cascade in a system of several cascades ΔV_{mn}

complex coordinate of a source $\zeta + i\eta$

stagger angle (see figure 3), measured clockwise θ

surface source distribution σ

airfoil trailing-edge angle γ
5.0 INTRODUCTION

The Douglas Neumann Program is a powerful tool for determining the potential flow about one or more arbitrary two-dimensional lifting bodies. The Neumann program is rigorous in the sense that the exact solution is approached in the limit as the number of points describing the body goes to infinity. This powerful method has now been extended to calculate the flow about infinite two-dimensional lifting cascades. Cascade data are used to advantage when working with compressor stages, turning vanes, or propeller blades. A. J. Acosta (Calif. Inst. of Tech.) and H. P. Linhardt (reference 1) have concluded that the use of cascade theory to predict propeller characteristics is accurate even when the propeller is extreme in configuration. These authors tested a low-aspect-ratio axial-flow pump propeller. Comparison of the experimental results with three-dimensional vortex and two-dimensional cascade theory showed the simple cascade theory to be superior.

A cascade is defined as simply a series of identical bodies equally spaced and identically oriented. There are no restrictions on the body, shape, spacing, and stagger angle. The cascade of bodies may be lifting or nonlifting. In general, the program can handle any problem in which the flow pattern repeats along an axis from plus to minus infinity. Figure 3 shows a double cascade along with a graphical representation of the cascade parameters.

Shown in figures 4, 5, 6, and 7 are some of the extreme configurations a cascade might take, given the flexibility this program affords. The program can also be used to calculate the flow past a series of cascade stages, i.e., more than one cascade. The stages, however, cannot move relative to each other, since this would be an unsteady-flow problem.

In some cases the effect of boundary-layer displacement thickness on the cascade blade is important. In these cases the displacement thickness can be
added to the blade and the resulting thicker blade can be used in the cascade program. This displacement-thickness technique has been tried successfully on a single isolated airfoil.

The Douglas Newmann program with its cascade modification calculates the velocity and pressure distribution normalized to average velocity and lift coefficient and moment coefficient per cascade blade. Also calculated are the inlet and exit velocities and the cascade turning angle. Appendix C gives the FORTRAN listing and all the details of the input and output of the Douglas Cascade Program.
6.0 THEORY

The technique employed by the Neumann Program to solve the fluid-flow problem is to apply a source distribution of appropriate strength on the surface of the body in such a way that the flow normal to the surface of the body is either zero or prescribed. This technique is described in great detail in references 2, 3, and 4. When the Neumann boundary condition is applied, an integral equation in source strength \(\sigma \) is obtained. This integral equation is

\[
- \vec{V}_\infty \cdot \hat{n} = \sigma(s) + \int_{\text{BODY}} \sigma(q) A(q,s) \, dq
\]

where \(A(q,s) = \hat{n} \cdot \vec{V}(q,s) \) and \(V_\infty \) is the onset flow.

In the unmodified program \(V(q,s) \) is the familiar velocity at \(s \) due to a unit source at \(q \). If \(x,y \) are coordinates associated with \(s \) and \(\xi, \eta \) with \(q \), then

\[
\vec{V}(q,s) = \hat{i} V_x + \hat{j} V_y
\]

where

\[
V_x = \frac{(x - \xi)}{(x - \xi)^2 + (y - \eta)^2}
\]

\[
V_y = \frac{(y - \eta)}{(x - \xi)^2 + (y - \eta)^2}
\]

or, in complex notation,

\[
V_x \cdot i V_y = \frac{1}{Z(s) - \zeta(q)}
\]

To modify the program to handle infinite cascades a new velocity at a point \(s \) due to a unit source at \(q \) in a cascade is used.

This "new" velocity is the sum of the velocities due to a row of sources equally spaced along the \(y \) axis. The sum is the series representation of the hyperbolic cotangent function (see Lamb, reference 5, page 71). Thus the
cascade velocity is
\[V_X = \frac{1}{2SP} \coth \left\{ \frac{\eta'}{SP} \left[Z(s) - \xi (q) \right] \right\} \]
or
\[V_X = \frac{1}{2SP} \coth \left\{ \frac{\eta'}{SP} \left(x - \xi \right) \right\} \frac{\sinh \left[\frac{\eta'}{SP} (x - \xi) \right]}{\sin \left[\frac{\eta'}{SP} (y - \eta) \right]^2 + \sinh \left[\frac{\eta'}{SP} (x - \xi) \right]^2} \]
(3)
\[V_Y = \frac{1}{2SP} \cos \left[\frac{\eta'}{SP} (y - \eta) \right] \frac{\sin \left[\frac{\eta'}{SP} (y - \eta) \right]}{\sin \left[\frac{\eta'}{SP} (x - \xi) \right]^2 + \sinh \left[\frac{\eta'}{SP} (x - \xi) \right]^2} \]
where \(SP \) is the cascade spacing. The cascade vortex velocity is (Lamb, page 244) simply the cascade source velocity rotated \(90^\circ \) clockwise.

The technique employed to solve the integral equation given in (1) is to approximate the body surface by straight-line elements. The source strength is assumed constant along any one element, but it varies from element to element. Now if the Neumann boundary condition is applied at the midpoints of each of these elements, equation (1) can be written as

\[-\vec{V}_\infty \cdot \vec{n}_j = \sigma_j + \sum_{k=1}^{N} \sigma_k \int_{\text{ELEM.}_k} A_j(q) \, dq \]
(4)

Here we note that \(A(q, s) \) is now written \(A_j(q) \) since the positions of the general points are now fixed as the element mid-points. Referring to the definition of \(A(q, s) \) given for (1), we write

\[A_j(q) = \vec{n} \cdot \vec{V}_j(q) \]
(5)

\(\vec{V}_j(q) \) is the velocity at the mid-point of the \(j \)th element due to a unit source at \(q \).
Let the quantity \(\vec{W}_{jk} \) be defined as

\[
\vec{W}_{jk} = \int_{\text{ELEM.} k} V_j(q) \, dq = iX + iY \tag{6}
\]

For convenience the complex form of \(\vec{W}(q,s) \) or \(\vec{W}_j(q) \) and \(\vec{V}(q,s) \) or \(\vec{V}_j(q) \) will be adopted and used henceforth. Substituting the cascade-velocity source function found in (3) into (6), we have the following

\[
W_{jk} = X - iY = \int_{\text{ELEM.} k} V_j(q) \, dq = \int_{\text{ELEM.} k} \frac{i}{2\pi p} \coth \left(\frac{i\pi}{2P} [Z_j - \xi(q)] \right) dq \tag{7}
\]

The kth element over which the integration is to be performed is shown in figure 1. From figure 1 the following relations are evident

\[
\xi(q) = C_0 + q e^{i\alpha_k}
\]

\[
d\xi = dq e^{i\alpha_k} \tag{8}
\]

Figure 1.- A typical straight line element of the body surface.
If the relations of (8) are used, equation (7) may be rewritten as follows:

\[W = e^{-i\alpha_k} \left(\int_{\zeta_1}^{C_{2k}} \frac{1}{2SP} \coth \left[\frac{\pi}{5p} (Z_j - \zeta) \right] d\zeta \right) \]

which upon integration becomes

\[W = X - iY = \frac{e^{-i\alpha_k}}{2\pi} \ln \left\{ \frac{\sinh \left[\frac{\pi}{5p} (Z_j - C_{1k}) \right]}{\sinh \left[\frac{\pi}{5p} (Z_j - C_{2k}) \right]} \right\} \]

Equation (9) is the basic cascade source function used in the Douglas Cascade Program. It represents the complex velocity at the jth element midpoint \(z_j \), due to the kth source element in cascade.

If we now use the definition given in equation (6), equation (4) can be rewritten thus:

\[-\vec{\nu}_{\infty} \cdot \vec{n}_j = \sum_{k=1}^{N} \vec{W}_{jk} \cdot \vec{n}_j \sigma_k = \sum_{k=1}^{N} A_{jk} \sigma_k \]

Equation (10) is then solved using equation (9) for the unknown \(\sigma_k \). Once the \(\sigma_k \) values are known, the velocity and pressure anywhere in the flow field can be calculated.

To solve the general case of a lifting cascade at any angle of attack,
"basic" flows are calculated and superimposed in such a way that the correct angle of attack is obtained and the Kutta condition is satisfied. These "basic" flows are the following:

1) Flow at zero angle of attack.
2) Flow at 90° angle of attack.
3) Circulatory flow for each cascade.
Equation (10) is solved for each one of the basic onset flows; here V_∞ is the onset flow in the equation. Superposition of solutions is possible because the potential equation is linear and the boundary condition on the cascade blades is homogeneous. The details of the superposition technique are given in Appendix A.

In a cascade there is an infinite number of airfoils or blades, each having a circulation. Therefore since the cascade runs along the y-axis, there exists an upwash an infinite distance upstream of the lifting cascade and a downwash an infinite distance downstream. At these distances, the lifting airfoils act like a row of equally spaced vortices. The magnitude of the upwash and downwash due to this row of vortices can be deduced from Lamb (reference 5) as

$$V_{up} = -V_{down} = \frac{\Gamma}{2SP} = \frac{U_\eta^2 C_L \eta C}{4USP}$$

where Γ is the circulation per cascade body and SP is the cascade spacing. U_η is any convenient normalizing velocity. In the Douglas program U_η is just U. (When more than one cascade is involved, Γ is replaced by $\sum_{m=1}^{NC} \Gamma_m$; NC is the number of cascades. Also C_L is the lift coefficient for the set of cascades.) The cascade therefore turns the flow. The upwash and downwash and the cascade turning angle are shown in figure 3. For a cascade, the lift vector is normal to the average onset-flow velocity vector. The inlet and exit velocities can be determined by using (11) for V_{up} and by referring to the vector diagram of figure 3. All velocities will be normalized with the modulus of the average velocity. The inlet and exit velocities are written as follows:
\[\vec{V}_I = \frac{\vec{V}}{U} + j \frac{\Gamma}{2SPU} = \frac{\vec{V}}{U} + j \frac{C_L C}{4SP} \]

\[\vec{V}_E = \frac{\vec{V}}{U} - j \frac{\Gamma}{2SPU} = \frac{\vec{V}}{U} - j \frac{C_L C}{4SP} \]

The inlet and exit angles of attack (see figure 2) can be written as

\[\alpha_I = \tan^{-1} \left[\frac{\sin \alpha + \frac{\Gamma}{2SP}}{\cos \alpha} \right] = \tan^{-1} \left[\frac{\sin \alpha + \frac{C_L C}{4SP}}{\cos \alpha} \right] \]

\[\alpha_E = \tan^{-1} \left[\frac{\sin \alpha - \frac{\Gamma}{2SP}}{\cos \alpha} \right] \]

Thus the turning angle is

\[\Delta \alpha = \alpha_I - \alpha_E = \tan^{-1} \left[\frac{\frac{\Gamma}{SP} \cos \alpha}{1 - \left(\frac{\Gamma}{2SP}\right)^2} \right] = \tan^{-1} \left[\frac{\frac{C_L C}{2SP} \cos \alpha}{1 - \left(\frac{C_L C}{4SP}\right)^2} \right] \]

The average onset flow modulus U is used in the definition of all of the hydrodynamic coefficients and variables in the Douglas Cascade Program. In some cases it may be desirable to normalize the velocities involved with the inlet velocity modulus, U_I. In that case we write
The exit angle of attack can be obtained from the exit velocity vector. Also the turning angle can be calculated, since the inlet and exit angle of attack are known. To convert from the system normalized with the average velocity to the one using the inlet velocity as the normalizing factor, the following set of conversions can be used:

\[
\frac{V_{up}}{U_I} = \left(\frac{C_{L_I} \frac{c}{4sP}}{2U_I} \right) \left(\frac{U_I}{U} \right)
\]

\[
C_{L_I} = \frac{2U\Gamma}{U^2 c}
\]

\[
\text{MOD.} \left(\frac{V_I}{U_I} \right) = 1
\]

\[
\frac{V_E}{U_I} = \frac{V_I}{U_I} - j \left(\frac{C_{L_I} \frac{c}{4sP}}{2sP} \right) \left(\frac{U_I}{U} \right)
\]

\[
\frac{U_I}{U} = \left(\tan \alpha_I - \tan \alpha_E \right) \left(\frac{2sP \cos \alpha_I}{c} \right) \left(\frac{C_{L_I}}{C_{L}} \right)
\]

(15)

(16)
7.0 EXAMPLES AND COMPARISONS

In order to give an idea of the wide class of problems the Program can handle, several cases have been calculated. Figures 3, 4, 5, 6, and 7 present a range of configurations and geometries that can be handled with ease.

To show the accuracy of the Program, comparisons with exact solutions and experimental data are presented. Figures 8, 9, 10, and 11 give these comparisons.

Figure 12 compares the Douglas Cascade Program with a theory developed by Garrick, reference 7.

These figures are now described in detail.

7.1 TANDEM CIRCLES

To illustrate the fact that the Cascade Program can be used for problems not necessarily associated with the usual lifting cascade, the flow about an infinite number of nonlifting bodies in tandem was calculated (see figure 4). In this particular case the bodies are circles; however, any body can be used.

This tandem arrangement can be recognised as simply a cascade at 90° angle of attack rotated 90° so that the axis of repetition, the y-axis, becomes the x-axis. Recall that any problem where the flow pattern repeats indefinitely in one direction can be handled by the Douglas Program.

7.2 MULTIPLE-CASCADES

Figures 5 and 6 are included to illustrate the multiple-cascade capability.

Shown in figure 5 are three parallel cascades. The central cascade has circulation, while the other two do not. It would be a mistake to say that
because they have no circulation the two outside cascades are nonlifting. The resultant forces in an interaction problem are not determined by the circulation alone.

It is true that the total lift of the entire set is proportional to the total circulation of the set and that the net drag of the set is zero. However, this is a gross effect for the set and does not hold for the individual members. As is noted in figure 5 the total drag coefficient of the first and last cascade is the negative of the drag coefficient on the second cascade. The total lift coefficient of the cascade set is 22.7.

The trailing edge of the central circle is at .300 from the horizontal and the inlet angle of attack for the cascade set is 43°.

For multiple cascades several limitations must be kept in mind. First, the cascades must be parallel. Second, there can be only one spacing associated with all of the cascades. In general, all the cascades of a set must have the same spacing; however, certain exceptions to this can be made. One of these exceptions is illustrated in figure 6. In this case the spacing of the second cascade is exactly half the spacing of the first. This effect was obtained by putting two cascade bodies in the second cascade. The two bodies of the second cascade are placed one above the other and spaced at exactly one-half the spacing of the first cascade. This process can easily be generalized to many cascades, and the result is that the spacing ratio of two or more cascades will be a rational number. It is noted that there is still only one spacing associated with both cascades of figure 6. This spacing is shown in the figure.

Since neither cascade has circulation, the set has no net lift. However, bodies 2 and 3, of the second cascade, have lift equal but opposite in sign thus the total lift is zero. The drag of the first cascade is equal to the thrust of the second. The drag coefficient is 0.546.
7.3 ANALYTIC TEST CASES

The Douglas Neumann Program with its cascade modification can calculate the flow about any cascade profile. To test this claim, the flow was calculated about the blade section, profile "A", shown in figure 7. This extreme shape was generated from a circle by using a series of conformal transformations. Appendix B gives the details of these transformations. The pressure coefficients obtained from the transformation method are exact. Figures 8a and 8b give the exact and calculated pressure distributions over the blade in a cascade at two different angles of attack. Generally the agreement is good for such an extreme blade shape; however, if greater accuracy were desired, more coordinate points describing the body would be needed. To prevent crowding, not all of the points calculated by the program are shown in these figures. For an example where all of the points are plotted see figures 12a and 12b.

The blade section shown, profile "C" in figure 9, was obtained through a series of conformal transformations in the same manner as the blade of figure 7 (see Appendix B). Also, figures 9a and 9b show the exact and calculated pressure distributions over the blade in cascade at two angles of attack. Agreement between analytic and calculated pressure distributions is better than that of figures 8a and 8b as is to be expected, since the shape is less extreme.

7.4 EXPERIMENTAL COMPARISONS

Shown in figures 10a, 10b and 10c are calculated and experimentally obtained pressure distributions for an NACA 65-010 cascade blade at three values of lift coefficient. The experimental data were taken from reference 6. Figure 11 shows the experimental and calculated lift coefficients as functions of the "effective" angle-of-attack for the cascade.

The "effective" angle of attack is simply the stagger angle plus the inlet angle of attack.
The calculated and experimental pressure distributions agree quite well except for a small region near the trailing edge. The discrepancies near the trailing edge are probably due to boundary-layer-thickness effects.

7.5 COMPARISON OF THE DOUGLAS METHOD WITH A METHOD DUE TO I. E. GARRICK

I. E. Garrick (reference 7) applied a straight-line cascade transformation in series with a Theodorsen-type transformation to map an airfoil in cascade onto a single circle. Once the transformation was obtained, the pressure distribution over the cascade airfoil could be found. Accuracy can easily be lost in the process of carrying out the operations involved, because of the peculiar nature of the straight-line cascade transformation. This may explain some of the discrepancies between the two methods.

Garrick calculated the flow over an NACA 4412 airfoil in cascade. Shown in figures 12a and 12b are pressure distributions calculated by Garrick and Douglas for the 4412 cascade at two lift coefficients. In figures 12a and 12b all points at which the Program executed a calculation are shown. This will serve as an indication of the number of coordinates used by the Program in the solution of the problem.
8.0 ACKNOWLEDGEMENTS

I wish to acknowledge the contribution made by Mr. Thomas Clissold who constructed the computer program for the Cascade Method and wrote the program input, output description found in Appendix C.
APPENDIX A

Basic Solutions

Each "basic solution" is a solution of the potential-fluid-flow problem for a cascade of bodies with a given onset flow. Once determined, these "basic solutions" are combined in such a way that the desired flow at infinity is obtained and the Kutta condition on each cascade is satisfied. The "basic solutions" needed for this combination procedure are:

1) Flow about the several cascades at zero angle of attack,
2) Flow about the several cascades at 90° angle of attack,
3) Flow about the cascades due to the presence of circulation in the first cascade,
4) Flow about the cascades due to the presence of circulation in the second cascade, and so forth.

To obtain circulation about a cascade profile, a unit vortex is placed within the profile. This vortex serves as the onset flow for the circulatory "basic solution".

In a cascade the flow pattern repeats indefinitely along one axis, in this case the y-axis. Therefore it is only necessary to deal with one of the cascade blades. If the Kutta condition holds for one blade of a cascade, it holds for all of them. Thus, in dealing with the cascade, only one blade will be considered.

Each basic solution violates the Kutta condition. A measure of this violation is the difference ΔV of the tangential velocities above and below the trailing edge. The ΔV's of the basic solutions are denoted: ΔV_0, ΔV_{90}, and ΔV_{mn}; where $m = 1, 2 \ldots NC$ and $n = 1, 2 \ldots NC$. Here ΔV_{mn} is the effect on the Kutta condition of the mth cascade due to circulation in the nth cascade. NC is the number of cascades. Added together, the basic solutions
must satisfy the Kutta condition on each cascade and also give the desired flow at infinity.

COMBINATION OF BASIC SOLUTIONS

For a set of isolated airfoils the following set of linear equations in the unknown circulation strengths satisfies the Kutta conditions on each airfoil. The uniform onset flow at infinity is of speed U and angle of attack α.

The set of linear equations with the unknown Γ_m is

$$
\begin{align*}
\Delta V_{01} \cos \alpha + \Delta V_{01} \sin \alpha + \Delta V_{11} \Gamma_1 + \Delta V_{12} \Gamma_2 + \cdots &= 0 \\
\Delta V_{02} \cos \alpha + \Delta V_{02} \sin \alpha + \Delta V_{21} \Gamma_1 + \Delta V_{22} \Gamma_2 + \cdots &= 0 \\
\vdots & \quad \vdots \\
\Delta V_{0N} \cos \alpha + \Delta V_{0N} \sin \alpha + \Delta V_{N1} \Gamma_1 + \Delta V_{N2} \Gamma_2 + \cdots &= 0
\end{align*}
$$

or, in matrix form,

$$
\begin{bmatrix}
\Delta V_{11} & \Delta V_{12} & \cdots \\
\Delta V_{21} \\
\vdots \\
\Delta V_{N1}
\end{bmatrix} \begin{bmatrix}
\Gamma_1 \\
\Gamma_2 \\
\vdots \\
\Gamma_N
\end{bmatrix} = \begin{bmatrix}
\Delta V_{01} \cos \alpha + \Delta V_{01} \sin \alpha \\
\Delta V_{02} \cos \alpha + \Delta V_{02} \sin \alpha \\
\vdots \\
\Delta V_{0N} \cos \alpha + \Delta V_{0N} \sin \alpha
\end{bmatrix}
$$

where

$$\begin{align*}
\alpha &= \text{angle of attack of the set of airfoils} \\
\Gamma &= \text{circulation strength per airfoil}
\end{align*}
$$

For a set of cascades there is a complicating factor, and (A1) cannot be used directly. The angle α, the average angle of attack, is not necessarily known.

What is known is any one of the following:

1) Cascade or set of cascades at a prescribed average angle of attack (α).
2) Cascade or set of cascades at a prescribed inlet angle of attack (α_I).
3) Cascade or set of cascades at a prescribed lift coefficient (C_L).
4) Cascade or set of cascades with a prescribed turning angle ($\Delta \alpha$).
These cases are mutually exclusive. For example: if α_I is prescribed the other three cannot be prescribed.

For case (1) equation (A1) can be used directly. For cases (2), (3), and (4) there is an additional unknown, namely, α. Thus an additional equation must be found for these cases. The additional equations needed for cases (2), (3), and (4), respectively, are:

$$\cos \alpha \tan \alpha_I - \sin \alpha - \frac{1}{2SP} \sum_{m=1}^{NC} \Gamma_m = 0$$ \hspace{1cm} (A2-2)

$$\frac{2}{U_C} \sum_{m=1}^{NC} \Gamma_m - C_L = 0$$ \hspace{1cm} (A2-3)

$$\tan (\Delta \alpha) = \frac{\cos \alpha \sum_{m=1}^{NC} \Gamma_m}{1 - \left(\frac{1}{2SP} \sum_{m=1}^{NC} \Gamma_m \right)^2} = 0$$ \hspace{1cm} (A2-4)

With some rearranging of the linear equations, (A2-2) and (A2-3) can be incorporated into the set of linear equations (A1). However, (A2-4) cannot be incorporated and must be solved iteratively together with (A1).

When α_I is the desired input, equation (A2-2) can be incorporated into (A1). The resulting matrix equation is

$$\begin{bmatrix}
\Delta V_{v01} & \Delta V_{11} & \Delta V_{12} & \cdots & \Delta V_{1 NC} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\Delta V_{v0NC} & \Delta V_{NC1} & \Delta V_{NC2} & \cdots & \Delta V_{NC NC} \\
1 & \frac{1}{2SP} & \frac{1}{2SP} & \cdots & \frac{1}{2SP}
\end{bmatrix}
\begin{bmatrix}
-tan \alpha_i \\
\Gamma_{1/cos \alpha} \\
\Gamma_{2/cos \alpha} \\
\vdots \\
\Gamma_{NC/cos \alpha}
\end{bmatrix}
=
\begin{bmatrix}
-U_{v01} \\
0 \\
0 \\
0 \\
-U_{v0NC}
\end{bmatrix}$$ \hspace{1cm} (A3)

When the lift coefficient C_L is input, equation (2-3) can be used with (A1) in the following manner. First we may write
In the above set of linear equations notice that \(\cos \alpha \), with \(\alpha \) an unknown, still appears on the right-hand side of the equation. To solve this set of equations, define \(A \) as

\[
A = \begin{bmatrix}
\Delta V_{01} & \Delta V_{11} & \Delta V_{12} & \cdots & \Delta V_{1NC} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Delta V_{NC1} & \Delta V_{NC2} & \Delta V_{NC2} & \ddots & \Delta V_{NCNC} \\
0 & \frac{2}{c} & \frac{2}{c} & \cdots & \frac{2}{c}
\end{bmatrix}
\]

Let \(A^{-1} \), the inverse of \(A \), be defined as

\[
A^{-1} = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1NC} \\
a_{21} & \vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & a_{NCNC}
\end{bmatrix}
\]

Then (A4) becomes

\[
\begin{bmatrix}
\tan \alpha \\
\Gamma_{1/\cos \alpha} \\
\vdots \\
\Gamma_{NC/\cos \alpha}
\end{bmatrix} = A^{-1} \begin{bmatrix}
-U\Delta V_{01} \\
-U\Delta V_{02} \\
\vdots \\
-U\Delta V_{0NC}
\end{bmatrix}
\]

and therefore

\[
\tan \alpha = \Delta V_{01} a_{11} + \Delta V_{02} a_{12} + \cdots \left(C_{L/\cos \alpha}\right) a_{1NC}
\]

(A5)
Equation (A5) can then be used to solve for \(\cos \alpha \). Equations (A4) and (A5) represent the solution when \(C_L \) is input.

As has been stated before, (A1) and (A2-4) must be solved iteratively when the turning angle \(\Delta \alpha \) is desired.

When dealing with the usual case of a single cascade, the equations become very simple. Equation (A1) reduces to one equation and the matrix of (A3) is of order two and its solution is trivial.
APPENDIX B

Analytic Cascade Test Cases

In order to check the Douglas Cascade Program, several exact cascade solutions were generated by conformal transformation methods. Specifically, a circle was mapped by a series of transformation functions into a profile in cascade. The final shape could not be determined exactly ahead of time but certain characteristics could be controlled.

The first in the series of mapping functions was the Karman-Trefftz transformation. This function maps a circle in the complex S-plane onto an airfoil shape in the complex Q-plane. The transformation is

\[
\frac{Q - rd}{Q + rd} = \left(\frac{S - d}{S + d} \right)^r
\]

The real constant \(r \) determines \(\gamma \), the trailing-edge angle, by the relation

\[
\gamma = \pi (2 - r)
\]

The final airfoil shape is determined by the location of the circle with reference to the S coordinate system. The real constant \(d \) is the distance from the origin to the intersection of the circle with the real S axis. This intersection maps to the trailing edge of the airfoil. This mapping is very similar to the Joukowski transformation, in that a displacement of the circle toward the negative real S-axis produces thickness and a displacement toward the positive imaginary S-axis produces positive camber. Thus these three parameters determine the Karman-Trefftz airfoil: (1) the trailing-edge-angle constant, \(r \); (2) the radius of the circle, \(a \); and (3) the location of the center of the circle in the S coordinate system. For profile "A" \(r = 1.8\),
\(a = 1.0 \) and the center location is \((-0.1, 1/\sqrt{2} \, i)\). For profile "C" \(r = 1.85 \), \(a = 1.0 \), and the center location is \((-0.02, 0.5i)\).

The second and last transformation takes the Karman-Trefftz airfoil in the \(Q \)-plane into some profile in a cascade in the final \(z \)-plane by using the following transformation:

\[
z = \ln \left(\frac{Q - A}{Q - B} \right) \quad (B3)
\]

The spacing of the resulting cascade is always \(2\pi \), and \(A \) and \(B \) are complex quantities. The singular points at \(A \) and \(B \) must be outside of the airfoil and must not touch its surface. Essentially, the points \(A \) and \(B \) in the \(w \)-plane go to plus and minus infinity, respectively, in the \(z \)-plane. The closer the points are to the airfoil surface, the longer the cascade profile. For convenience of computation, the points \(A \) and \(B \) are not selected in the airfoil plane but in the circle plane. In the circle plane they are called \(A' \) and \(B' \).

For profile "A"

\(A' = 0.57 + 0i \), \(B' = -1.1 + 0.5i \). For profile "C"

\(A' = 1.0960 + 0i \), \(B' = -1.0850 + 0i \). To determine the coordinates of \(A \) and \(B \) the transformation of \((B6) \) is used with \(A' \) and \(B' \) in place of \(S \) and \(A \) and \(B \) in place of \(Q \).

To obtain the flow field in the \(z \)-plane, the complex potential must be differentiated.

If \(F \) is this complex potential and \(w \) the complex velocity,

\[
w(z) = \frac{dF(z)}{dz} = \frac{dF(S)}{dS} \frac{dS}{dQ} \frac{dz}{dz} \quad (B4)
\]

The term \(\frac{dS}{dQ} \) can be obtained from \((B1) \)

\[
\frac{dS}{dQ} = \frac{S^2 - d^2}{Q^2 - r^2d^2} \quad (B5)
\]
The term \(\frac{dQ}{dz} \) can be obtained from (B3)

\[
\frac{dQ}{dz} = \frac{Q^2 - Q(A + B) + AB}{A - B} \quad \text{(B3)}
\]

The derivative \(\frac{dF(S)}{dS} \) is the complex velocity in the circle plane; i.e., it represents the flow field about the circle. The question to consider is: in what flow field is the circle immersed? The answer lies in the transformation (B3), i.e., the mapping function that takes the Karman-Trefftz airfoil to a profile in cascade. It can be shown that a source at B and a sink at A in the airfoil plane give a uniform flow from minus to plus infinity in the cascade plane. It can also be shown that a vortex at each of these points gives a vertical component to the uniform flow in the cascade plane. Therefore the following relations hold:

\[
\begin{align*}
U \cos \alpha_1 &= \text{source strength, } V, \text{ at } B \\
U \sin \alpha_1 &= \text{vortex strength, } \Gamma, \text{ at } B \\
U \cos \alpha_2 &= \text{sink strength, } M, \text{ at } A \\
-U \sin \alpha_2 &= \text{vortex strength, } \Gamma, \text{ at } A
\end{align*}
\]

To preserve continuity of mass in the cascade plane, the source strength at B must be equal to the sink strength at A. The flow in which the cylinder is immersed is then generated by a source and vortex at B and a sink and vortex at A.

It can be shown that the circulation about the cascade profile is the negative difference of the strengths of the vortexes located at A and B. Thus all circulations add up to zero. The onset flow has now been determined and therefore the flow about a circle in this onset flow can be determined. The complex potential function for this flow is
\[F = K_1 \ln(S-A) + \overline{K}_1 \ln(S - \frac{a^2}{A}) + K_2 \ln(S-B) + \overline{K}_2 \ln(S - \frac{a^2}{B}) \quad (B8) \]

where \(a \) is the circle radius and \(K \) is the complex source strength \(M + \Gamma i \). \(M \) is the source mass flow and \(\Gamma \) is the circulation. The complex velocity is just the derivative of \(F \) and is

\[
\frac{dF}{dS} = \frac{K_1}{S - A} + \frac{\overline{K}_1}{S - \frac{a^2}{A}} + \frac{K_2}{S - B} + \frac{\overline{K}_2}{S - \frac{a^2}{B}} \quad (B9)
\]

\[K_1 = U_1(\cos \alpha_I + i \sin \alpha_I), \quad K_2 = -U_1(\cos \alpha_I + i \frac{U_E}{U_I} \sin \alpha_E) \]

If the expressions for the derivatives of (B7), (B6) and (B9) are substituted into equation (A9) and if \(S \) takes the values of the coordinates of the circle the velocity over the surface of the cascade body in the \(z \)-plane can be determined. In these formulas the velocities are normalized with the inlet velocity modulus \(U_I \).
APPENDIX C

Program Input and Output

A summary of the Program input is presented before the detailed explanation is given.

As is stated in the text, one or more cascade bodies of arbitrary shape can be handled by the Program. However, there are three practical restrictions on the input, as follows:

(1) The cascade body or bodies must be of finite thickness.
(2) The maximum number of bodies with circulation is 8.
(3) The maximum number of points describing all of the bodies and off-body points is 500.

Each body considered is a lifting body with a stagnation point at the trailing edge, unless otherwise specified in the input. It is assumed in the program that the first coordinate point input is the trailing edge. The surface coordinates are input, starting from the trailing edge and progressing around the body in the clockwise direction. The last point of a body must be the first point repeated. However, if the body is non-closed and non-lifting the last point is not the first point repeated.

In addition to calculating the flow on the cascade-body surface, the Program can calculate the flow at points in the flow field. The coordinates of these off-body points are input in the same manner as the coordinates of the cascade body.

All coordinates, whether body-surface or off-body coordinates, may be scaled, rotated, and translated. The Program executes these operations in the order named.
For diagnostic purposes the two matrices \(A_{jk} = \hat{W}_{jk} \cdot \hat{n} \) and \(B_{jk} = \hat{W}_{jk} \cdot \hat{t} \) can be printed out.

Input Data

Each case must consist of a header card, case control data, body control data, and coordinate data. The header card contains the description of the case, control flags, and case number. The case control data specify certain constants used in the computation. The body control data specify the amount of coordinate data being input and constants used to modify the coordinate data. The coordinate data describe either the two-dimensional cross section of the body or off-body points. All data cards must contain sequence numbers in card columns 77 through 80, so that the data may be sorted. If any data cards are found to be out of sequence, the program will discontinue execution.

The data must be arranged in the following order (see figure 2):

1. Header Card (1 card)
2. Case Control Card (1 card)
3. Body Control Cards (2 cards)
4. Coordinate Data Cards (Variable number of cards)

Items 3 and 4 are repeated for each body (if more than one body is being considered) and for off-body points, if any. The \(Y \) coordinates for each body, or off-body points, must always start on a new card, and must always follow the \(X \) coordinates. Additional cases may be run by placing additional sets (items 1 through 4) one after another.

If additional cases are to be run using some or all of the previous untransformed coordinate data, the "Subcase" capability is used. All that
need be input are the body control cards, with the "Subcase" flag marked, that will transform the coordinates of the previous case in a manner desired for the present case.

If additional bodies are to be added their coordinates are input in the normal manner, without the "Subcase" flag, following the body control cards mentioned above. If, in additional cases, bodies are to be deleted or replaced these bodies must appear last in the sequence of bodies in the original case. To delete body coordinates simply omit the body control cards for that body.

When replacing a body for a subcase simply introduce the new body control cards and coordinates in the place of the replaced body.

As an illustration, if it is desired to run two Cascades, call them A and B, and then to delete B and run A alone, or with a new body C, the following procedure is followed.

Input A as the first body and B as the second as shown in figure 2. Then write new header and case control cards for the second case, placing them in back of the y cards for body B. The body control cards for A are written with the "Subcase" flag marked. To omit body B simply omit the body control cards for body B. If a new body C is to be input in place of B, its body control cards followed by its coordinate cards would be input following the body control cards for A.

A second type of subcase capability exists. If only the case control data is to be changed for a second case simply mark the flag in card column 8 and write out the new case control data. For example, if the calculation is desired at a second value of C_L simply write an additional header card and case control card with the new value of C_L. This may be repeated indefinitely.
Figure 2. - Arrangement of data cards

Every complete job must be followed by an end-of-file-card (7-8 punch in card column 1) and a $IBSYS card ($IBSYS in card columns 1-6). Another case may be run by placing a header card, case control card, etc., after the last Y coordinates of the first case. Although not part of the data, an end-of-file-card must always follow the program deck, so that the data for any job are always preceded by and followed by end-of-file cards.

Header Card:

Card column 1 must always be filled with any nonzero integer that indicates the number of bodies being input. This integer must not be larger than 8.
Card columns 2-12, when punched with any nonzero integer, activate flags that indicate the following:

Card column:

2 Flow is to be determined at points off the body.
3 \(\alpha \) is input for use in the combination equations for airfoils.
4 \(\Delta \alpha \) is input for use in the combination equations for airfoils.
5 Inlet \(\alpha \) is input for use in the combination equations for airfoils.
6 \(C_L \) is input for use in the combination equations for airfoils.
7 The matrix of influence coefficients is to be printed out.
8 Go directly to combination solution using basic velocity solutions of the previous case.
9-12 Not used.
13-60 This description of the case will be printed on each section of output.
63-68 This case number will be printed at the beginning of the output.
77-80 A sequence number must appear in these columns.

Case Control Data:

All of the input items defined in this section, with the exception of CHORD, are assumed to be zero if no value is input.

CHORD The chord length to be used in computations for this case. It will be assumed to be 1.0 if no value is input. Any value input must appear with a decimal point.

SPACING The spacing between the bodies of the infinite cascade. A decimal point must be specified.
The lift coefficient to be used in the combination equations for airfoils. A decimal point must be specified.

The angle of attack (in degrees) to be used in the combination equations for airfoils. A decimal point must be specified.

The inlet angle (in degrees) to be used in the combination equations for airfoils. A decimal point must be specified.

The cascade turning angle (in degrees) to be used in the combination equations for cascades. A decimal point must be specified.

The number of points on the body being input. The sum of all the NN for all bodies in a case must not be greater than 500. This number must not specify a decimal point, and it must be punched at the far right of its field (right-justified).

The factor used to multiply all x coordinates. It is assumed to be 1.0 if no value is input. A decimal point must be specified.

The factor used to multiply all y coordinates. Otherwise, same as MX.

The angle (in degrees) through which all points are to be rotated about the origin in the clockwise direction (stagger angle). A decimal point must be specified.
ADDX The constant to be added to all x coordinates. A decimal point must be specified.

ADDY The constant to be added to all y coordinates. A decimal point must be specified.

Body Control Card 2

BDN The body sequence number. This number must be a nonzero integer if body coordinates follow; it is zero only if off-body coordinates follow.

MLF This is a flag that must be any nonzero integer only if the body whose coordinates follow is to be considered a nonlifting or noncirculatory body.

SUBCASE This is a flag that directs the program to use the unmodified coordinates of the body of the previous case. It must be any nonzero integer.

XMC The coordinates of the moment center to be used when the combination equations for airfoils are used. A decimal point must be specified.

YMC

Coordinate Data:

In inputting the body coordinates, it is essential that the coordinate data start at the body trailing edge, progress around the body in the clockwise direction and that the last point input be the first point repeated for a closed body only. The example problem illustrates this procedure in figure 13b and 13c.

X The x coordinates of the points defining the body. (The x coordinates of the off-body points if BDN is zero). A
The y coordinates of the points defining the body. (The y coordinates of the off-body points if BDW is zero). A decimal point must be specified.

The x coordinates must precede the y coordinates in the deck arrangement. There must be NN x coordinates and NN y coordinates.

Output:

All sections of output, with the exception of the matrix printout, is preceded by the following header:

DOUGLAS AIRCRAFT COMPANY
LONG BEACH DIVISION

The information contained on the header card and the case control card is printed on the first page of output. On this page, FLAG 2 corresponds to card column 2 on the header card, FLAG 3 to card column 3, and so on.

The next section of output consists of basic data, i.e., control and coordinate data, for each body. The body control data are printed out first; the column headers follow:

X Y DELTA S SUMDS D ALPHA

The X and Y columns list the modified x and y coordinates and the midpoints of the element formed by two consecutive body points. A modified coordinate is one that has been scaled, rotated and translated according to the input. The column headed by DELTA S specified the length of the element formed by two consecutive body points, SUMDS shows a running sum of the DELTA S column, and D ALPHA shows the angle between two consecutive elements.
If off-body points are input, the following column headers are printed out after the basic data for all of the bodies:

X-OFF Y-OFF

These columns merely list the modified off-body points.

If FLAG 7 is punched (card column 7 on the header card), the \(A_{jk} \) and \(B_{jk} \) matrices are printed out after the basic data. Both matrices are printed out in row order across the page.

If off-body points are being run, \(A_{jk} \) and \(B_{jk} \) off-body matrices are formed and are printed out after the on-body matrices.

The next section of output consists of the original x and y coordinates and the midpoints of the elements formed by these coordinates, the velocities at the midpoints of the elements (\(V \)), and the corresponding pressure coefficients (\(CP \)) and source densities (\(SIGMA \)). This output is repeated for each onset flow i.e., basic solution.

The combination solution follows the basic solutions. The combination solution is a suitable combination of the basic solutions in such a way that the Kutta condition is met and the other input requirements satisfied. The format is exactly the same as that of the preceding solutions for one onset flow, except that the \(SIGMA \) column is replaced by a \(DELTA \ S \) column, which specifies the lengths of the original, unmodified elements. Also shown are computed and input constants that apply to the combination solution: spacing, \(\alpha \), \(X_{mc} \), \(Y_{mc} \), inlet \(\alpha \), exit \(\alpha \), inlet velocity, exit velocity, and \(\delta \alpha \).

The last section of output shows the solution at the points off the body. The column header for this section is simply:
where the X and Y columns list the off-body points and the VXL and VYL columns list the X and Y components of velocity at the specified off-body point.

Example Problem

To illustrate the input procedure and to show an example of computed output, an example problem is presented. The problem consists of a cascade of circles of unit radius, spaced three radii apart. The cascade is at an average angle of attack of 10°. The only coordinate modification is a rotation of 180° to place the first coordinate point at the desired trailing-edge position which, in this problem, is on the x-axis. (see figure 13a) The circle is composed of thirty coordinate points spaced equally around the perimeter. The input coordinates (see figure 13b and 13c) progress in the clockwise direction.

The example problem also shows the input and output for four off-body points. The coordinates of these points are input in the same manner as the circle coordinates (see figures 13d and 13e) except that the flag BDN is marked 0.

The output for the example problem is shown in figures 14a through f. Figure 14a shows the basic data, i.e., the input data and the transformed coordinates. The basic data are given on the first three pages of output. Figures 14b, c, and d show the output sheets that give the three basic flow solutions: the solution at 0° angle of attack, the solution at 90° angle of attack, and the solution due to a circulatory flow. Figure 14e shows the
output sheet that gives the combination solution for an average angle of attack of 10°. Also shown on the output of figure 14e are the following:

(1) Inlet and exit velocity and angle of attack

(2) Cascade lift and moment coefficient and the x and y force coefficients

(3) Spacing

(4) Cascade turning angle

Figure 14f shows the output sheet for the off-body point velocities.

Figure 15 gives a complete FORTRAN IV listing of the Douglas Cascade Program. Ten tape units are needed on the computer for this program.
REFERENCES

Figure 3. - Vector diagram showing inlet, average, and exit velocities and angles of attack. The cascade parameters, spacing and stagger are also shown.
Figure 4 - Pressure distribution on a circle in tandem with an infinite number of similar circles.
Figure 5. Pressure distributions on three circles in cascade. The central cascade has circulation.
SP = 6 chord, \(\theta_1 = 43^\circ \), \(C_{L_1} = -0.08 \), \(C_{D_1} = 1.36 \), \(C_{L_2} = 19.22 \), \(C_{D_2} = -1.44 \), \(C_{L_3} = 3.48 \), \(C_{D_3} = 0.08 \).
Figure 6. Pressure distributions on three circles in cascade. The arrangement shown simulates two cascades with a spacing ratio, $SP_1/SP_2 = 2$. Both cascades are non-circulatory. $SP = \dot{\omega}$, $a_1 = 0$, $C_{L,1} = 0$, $C_{D,1} = 0.546$, $C_{L,2} = 1.31$, $C_{D,2} = -0.273$, $C_{L,3} = -1.31$, $C_{D,3} = -0.273$.

45
Figure 7. Analytic cascade profile “A.”
Figure 8. Comparison of analytic and calculated pressure distributions on profile "A" in cascade. (a) $C_L = 0$, $\theta = 0^\circ$, $\alpha_1 = -45^\circ$, SP = 0.538
Figure 8. - Continued

(b) $C_L = 1.7$, $t^* = 0^\circ$, $\alpha = 22.8^\circ$, SP = 0.538
Figure 9. Comparison of analytic and calculated pressure distribution on profile "C" in cascade. (a) $C_L = 1.125$, $\theta = 0^\circ$, $\alpha_1 = 28.65^\circ$, $SP = 0.795$
Figure 9. - Continued
(b) \(C_L = 0, \theta = 0^\circ, \alpha_1 = -30^\circ, SP = 0.795 \)
Figure 10. Comparison of calculated and experimental pressure distributions on an NACA 65-010 airfoil in cascade. (a) $C_L = -0.135$, $\theta = -33^\circ$, $\alpha = 30^\circ$, $SP = 1.0$. (b) $C_L = 0.2$, $\theta = -21^\circ$, $\alpha = 30^\circ$, $SP = 1.0$
Figure 10. - Continued

(c) $C_L = 0.355$, $\theta = -15^\circ$, $\alpha_1 = 30^\circ$, $SP = 1.0$

Figure 11. Comparison of calculated and experimental lift coefficient versus "effective" angle of attack for the NACA 65-010 airfoil in cascade.
This Document Contains Missing Page/s That Are Unavailable In The Original Document

OR ARE
Blank pg. that have Been Removed

BEST AVAILABLE COPY
Figure 12. Comparison of the pressure distribution, as calculated by I. E. Garrick and by Douglas, of an NACA 4412 airfoil in cascade. (a) $C_L = 1.0$, $\theta = 0^\circ$, SP = 0.968
(b) $C_L = 1.0$, $\theta = 45^\circ$, SP = 1.096
Figure 13. - Example problem control and data input sheets. (a) Header card and case control data. (b) Control data and x coordinates for the cascade body. (c) y coordinates for cascade body.
Figure 13. - Continued
(d) Control data and x coordinates for off body points.
(e) y coordinates for off-body points.
Figure 14. - Program output sheets for example problem. (a) Input or basic data.
This Document Contains Missing Page/s That Are Unavailable In The Original Document

Or are Blank-pgs that have Been Removed

BEST AVAILABLE COPY
2-D CASCADE TEST PROBLEM

CASE ONE

STREAMFLOW SOLUTION

UNTRANSFORMED COORDINATES

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>V</th>
<th>CP</th>
<th>SIGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -0.99999999</td>
<td>-0.00000001</td>
<td>-0.27628037</td>
<td>0.92366915</td>
<td>-3.13563100</td>
</tr>
<tr>
<td>2 -0.98714759</td>
<td>0.20791168</td>
<td>-0.82911973</td>
<td>0.31256047</td>
<td>-3.05742222</td>
</tr>
<tr>
<td>3 -0.91354544</td>
<td>0.40673663</td>
<td>-1.38354529</td>
<td>-0.91419758</td>
<td>-2.89666861</td>
</tr>
<tr>
<td>4 -0.86128122</td>
<td>0.49726093</td>
<td>-0.94094250</td>
<td>-2.76725584</td>
<td>-2.63964686</td>
</tr>
<tr>
<td>5 -0.79073799</td>
<td>0.66566501</td>
<td>-1.94094200</td>
<td>-2.76725584</td>
<td>-2.63964686</td>
</tr>
<tr>
<td>6 -0.69130599</td>
<td>0.74314480</td>
<td>-2.49449351</td>
<td>-5.22494930</td>
<td>-2.25522227</td>
</tr>
<tr>
<td>7 -0.58456529</td>
<td>0.80458509</td>
<td>-3.00859588</td>
<td>-8.05164909</td>
<td>-1.69504222</td>
</tr>
<tr>
<td>8 -0.40508499</td>
<td>0.90854969</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>9 -0.30901699</td>
<td>0.95105650</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>10 0.30901699</td>
<td>0.95105650</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>11 0.40508499</td>
<td>0.90854969</td>
<td>-3.00859588</td>
<td>-8.05164909</td>
<td>-1.69504222</td>
</tr>
<tr>
<td>12 0.58456529</td>
<td>0.80458509</td>
<td>-2.49449351</td>
<td>-5.22494930</td>
<td>-2.25522227</td>
</tr>
<tr>
<td>13 0.40508499</td>
<td>0.90854969</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>14 0.30901699</td>
<td>0.95105650</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>15 0.497814760</td>
<td>0.20791169</td>
<td>-0.27628082</td>
<td>0.92366891</td>
<td>3.13563150</td>
</tr>
<tr>
<td>16 0.497814760</td>
<td>0.20791169</td>
<td>-0.27628082</td>
<td>0.92366891</td>
<td>3.13563150</td>
</tr>
<tr>
<td>17 0.40508499</td>
<td>0.90854969</td>
<td>-3.00859588</td>
<td>-8.05164909</td>
<td>-1.69504222</td>
</tr>
<tr>
<td>18 0.58456529</td>
<td>0.80458509</td>
<td>-2.49449351</td>
<td>-5.22494930</td>
<td>-2.25522227</td>
</tr>
<tr>
<td>19 0.40508499</td>
<td>0.90854969</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>20 0.30901699</td>
<td>0.95105650</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>21 0.50000000</td>
<td>0.86602540</td>
<td>-1.94094250</td>
<td>-2.76725577</td>
<td>2.63964698</td>
</tr>
<tr>
<td>22 0.40508499</td>
<td>0.90854969</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>23 0.30901699</td>
<td>0.95105650</td>
<td>-3.97356663</td>
<td>-10.54203200</td>
<td>-0.92603669</td>
</tr>
<tr>
<td>24 0.50000000</td>
<td>0.86602540</td>
<td>-1.94094250</td>
<td>-2.76725577</td>
<td>2.63964698</td>
</tr>
<tr>
<td>25 0.50000000</td>
<td>0.86602540</td>
<td>-1.94094250</td>
<td>-2.76725577</td>
<td>2.63964698</td>
</tr>
</tbody>
</table>

Figure 14. - Continued
(b) Solution at 0° angle of attack
2-D CASCADE TEST PROBLEM

CASE ONE
90-DEGREE FLOW SOLUTION
UNTRANSFORMED COORDINATES

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>V</th>
<th>CP</th>
<th>SIGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.99999999</td>
<td>-0.00000001</td>
<td>-1.53488527</td>
<td>-1.35587279</td>
<td>0.18791410</td>
</tr>
<tr>
<td>-0.98907378</td>
<td>0.10395853</td>
<td>-1.44404635</td>
<td>-1.08526984</td>
<td>0.54974247</td>
</tr>
<tr>
<td>-0.94584651</td>
<td>0.40573663</td>
<td>-1.27005473</td>
<td>-0.61303900</td>
<td>0.86980452</td>
</tr>
<tr>
<td>-0.86128122</td>
<td>0.49726099</td>
<td>-1.02985202</td>
<td>-0.06059173</td>
<td>1.1226495</td>
</tr>
<tr>
<td>-0.73907379</td>
<td>0.66546501</td>
<td>-0.77778012</td>
<td>1.36378153</td>
<td></td>
</tr>
<tr>
<td>-0.69130599</td>
<td>0.74314480</td>
<td>-0.95146379</td>
<td>1.37810113</td>
<td></td>
</tr>
<tr>
<td>-0.58456529</td>
<td>0.80658509</td>
<td>-0.95146379</td>
<td>1.37810113</td>
<td></td>
</tr>
<tr>
<td>-0.40508469</td>
<td>0.90854094</td>
<td>-0.47140204</td>
<td>0.43530724</td>
<td>1.2872852</td>
</tr>
<tr>
<td>-0.30901000</td>
<td>0.95105650</td>
<td>-0.22030935</td>
<td>0.95146409</td>
<td>1.3781013</td>
</tr>
<tr>
<td>-0.20677272</td>
<td>0.97278191</td>
<td>-0.00000036</td>
<td>0.99999999</td>
<td>1.37502626</td>
</tr>
<tr>
<td>-0.10452846</td>
<td>0.99452189</td>
<td>0.22030935</td>
<td>0.95146409</td>
<td>1.3781013</td>
</tr>
</tbody>
</table>

Figure 14.- Continued

(c) Solution at 90° angle of attack
2-D CASCADE TEST PROBLEM

CASE ONE
NON-UNIFORM OMSFT FLOW SOLUTION NO. 1
UNTRANSFORMED COORDINATES

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>V</th>
<th>CP</th>
<th>SIGMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.999999</td>
<td>-0.000000</td>
<td>0.2533745</td>
<td>0.93580144</td>
</tr>
<tr>
<td>2</td>
<td>-0.9807378</td>
<td>0.1039583</td>
<td>0.23853764</td>
<td>0.94309979</td>
</tr>
<tr>
<td>3</td>
<td>-0.9135644</td>
<td>0.4073663</td>
<td>0.21024562</td>
<td>0.95579678</td>
</tr>
<tr>
<td>4</td>
<td>0.8090170</td>
<td>0.5878753</td>
<td>0.17160053</td>
<td>0.97055326</td>
</tr>
<tr>
<td>5</td>
<td>0.6910359</td>
<td>0.7431448</td>
<td>0.12796326</td>
<td>0.98362540</td>
</tr>
<tr>
<td>6</td>
<td>0.49999999</td>
<td>0.86602539</td>
<td>0.08709732</td>
<td>0.99241406</td>
</tr>
<tr>
<td>7</td>
<td>0.30901699</td>
<td>0.95105650</td>
<td>0.08709731</td>
<td>0.99241406</td>
</tr>
<tr>
<td>8</td>
<td>0.21024564</td>
<td>0.9952189</td>
<td>0.04723441</td>
<td>0.9976891</td>
</tr>
<tr>
<td>9</td>
<td>0.1052846</td>
<td>0.99452189</td>
<td>0.05785099</td>
<td>0.99665326</td>
</tr>
<tr>
<td>10</td>
<td>0.00000000</td>
<td>0.86602540</td>
<td>0.12796327</td>
<td>0.98362540</td>
</tr>
<tr>
<td>11</td>
<td>0.69103661</td>
<td>0.74314483</td>
<td>0.17160054</td>
<td>0.97055326</td>
</tr>
<tr>
<td>12</td>
<td>0.91356444</td>
<td>0.40736631</td>
<td>0.21024559</td>
<td>0.95579679</td>
</tr>
<tr>
<td>13</td>
<td>0.92016999</td>
<td>0.95105650</td>
<td>0.08709731</td>
<td>0.99241406</td>
</tr>
<tr>
<td>14</td>
<td>0.98073797</td>
<td>0.10395584</td>
<td>0.25337438</td>
<td>0.93580142</td>
</tr>
<tr>
<td>15</td>
<td>0.97814760</td>
<td>0.20791169</td>
<td>0.23853766</td>
<td>0.94309978</td>
</tr>
<tr>
<td>16</td>
<td>0.99999999</td>
<td>0.00000001</td>
<td>0.25337438</td>
<td>0.93580142</td>
</tr>
<tr>
<td>17</td>
<td>0.98073797</td>
<td>0.10395584</td>
<td>0.25337438</td>
<td>0.93580142</td>
</tr>
<tr>
<td>18</td>
<td>0.91356444</td>
<td>0.40736631</td>
<td>0.21024559</td>
<td>0.95579679</td>
</tr>
<tr>
<td>19</td>
<td>0.80901699</td>
<td>0.58787524</td>
<td>0.17160054</td>
<td>0.97055326</td>
</tr>
<tr>
<td>20</td>
<td>0.6910359</td>
<td>0.74314483</td>
<td>0.17160054</td>
<td>0.97055326</td>
</tr>
<tr>
<td>21</td>
<td>0.50000000</td>
<td>0.86602540</td>
<td>0.12796327</td>
<td>0.98362540</td>
</tr>
<tr>
<td>22</td>
<td>0.30901699</td>
<td>0.95105650</td>
<td>0.08709731</td>
<td>0.99241406</td>
</tr>
<tr>
<td>23</td>
<td>0.1052846</td>
<td>0.99452189</td>
<td>0.05785099</td>
<td>0.99665326</td>
</tr>
<tr>
<td>24</td>
<td>0.00000000</td>
<td>0.86602540</td>
<td>0.12796327</td>
<td>0.98362540</td>
</tr>
<tr>
<td>25</td>
<td>0.69103661</td>
<td>0.74314483</td>
<td>0.17160054</td>
<td>0.97055326</td>
</tr>
<tr>
<td>26</td>
<td>0.50000000</td>
<td>0.86602540</td>
<td>0.12796327</td>
<td>0.98362540</td>
</tr>
<tr>
<td>27</td>
<td>0.30901699</td>
<td>0.95105650</td>
<td>0.08709731</td>
<td>0.99241406</td>
</tr>
<tr>
<td>28</td>
<td>0.1052846</td>
<td>0.99452189</td>
<td>0.05785099</td>
<td>0.99665326</td>
</tr>
<tr>
<td>29</td>
<td>0.00000000</td>
<td>0.86602540</td>
<td>0.12796327</td>
<td>0.98362540</td>
</tr>
<tr>
<td>30</td>
<td>0.6910359</td>
<td>0.74314483</td>
<td>0.17160054</td>
<td>0.97055326</td>
</tr>
<tr>
<td>31</td>
<td>0.50000000</td>
<td>0.86602540</td>
<td>0.12796327</td>
<td>0.98362540</td>
</tr>
</tbody>
</table>

Figure 14.- Continued

(d) Circulatory flow solution
2-D CASCADE TEST PROBLEM

SPACING = 3.00000000

SPACING = 3.00000000

ALPHA = 9.99999988

DELTA ALPHA = 19.60917735

INLET ALPHA = 19.51188397

V INLET = 1.04480879

XMC = 0.

EXIT ALPHA = -0.09729340

V EXIT = 0.98480917

YMC = 0.

COMBINED VELOCITIES

BODY NU. 1 UNTRANSFORMED COORDINATES

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>VC</th>
<th>CP</th>
<th>DELTA S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.99999999</td>
<td>-0.00000001</td>
<td>-2.7208283</td>
<td>0.92597093</td>
</tr>
<tr>
<td>2</td>
<td>-0.98907378</td>
<td>0.10395583</td>
<td>-0.27208283</td>
<td>0.92597093</td>
</tr>
<tr>
<td>3</td>
<td>-0.97014759</td>
<td>0.20791168</td>
<td>-0.81635635</td>
<td>0.33356231</td>
</tr>
<tr>
<td>4</td>
<td>-0.9458651</td>
<td>0.30732416</td>
<td>-0.81635635</td>
<td>0.33356231</td>
</tr>
<tr>
<td>5</td>
<td>-0.91354544</td>
<td>0.49726093</td>
<td>-1.36190663</td>
<td>-0.8547967</td>
</tr>
<tr>
<td>6</td>
<td>-0.88612812</td>
<td>0.67546501</td>
<td>-1.36190663</td>
<td>-0.8547967</td>
</tr>
<tr>
<td>7</td>
<td>-0.77007379</td>
<td>0.58778523</td>
<td>-1.36190663</td>
<td>-0.8547967</td>
</tr>
<tr>
<td>8</td>
<td>-0.66913059</td>
<td>0.74314480</td>
<td>-1.36190663</td>
<td>-0.8547967</td>
</tr>
<tr>
<td>9</td>
<td>-0.58456529</td>
<td>0.80658509</td>
<td>-2.45247802</td>
<td>-5.01664844</td>
</tr>
<tr>
<td>10</td>
<td>-0.49999999</td>
<td>0.86802539</td>
<td>-2.45247802</td>
<td>-5.01664844</td>
</tr>
<tr>
<td>11</td>
<td>-0.40508499</td>
<td>0.90854094</td>
<td>-2.45247802</td>
<td>-5.01664844</td>
</tr>
<tr>
<td>12</td>
<td>-0.30901700</td>
<td>0.95105650</td>
<td>-2.45247802</td>
<td>-5.01664844</td>
</tr>
<tr>
<td>13</td>
<td>-0.20677274</td>
<td>0.97278919</td>
<td>-3.32314461</td>
<td>-10.04329002</td>
</tr>
<tr>
<td>14</td>
<td>-0.10452864</td>
<td>0.99452189</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>15</td>
<td>0.00000000</td>
<td>0.86602540</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>16</td>
<td>0.10452846</td>
<td>0.99452189</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>17</td>
<td>0.20677272</td>
<td>0.97278919</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>18</td>
<td>0.30901699</td>
<td>0.95105650</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>19</td>
<td>0.40508499</td>
<td>0.90854094</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>20</td>
<td>0.50000000</td>
<td>0.86602540</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>21</td>
<td>0.58456530</td>
<td>0.80658509</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>22</td>
<td>0.66913059</td>
<td>0.74314480</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>23</td>
<td>0.77007379</td>
<td>0.58778523</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>24</td>
<td>0.86412121</td>
<td>0.49726094</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>25</td>
<td>0.9458651</td>
<td>0.30732416</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>26</td>
<td>0.91354544</td>
<td>0.49726094</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>27</td>
<td>0.97814760</td>
<td>0.20791168</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>28</td>
<td>0.99999999</td>
<td>0.00000001</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>29</td>
<td>-0.10452846</td>
<td>0.99452189</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>30</td>
<td>-0.20677274</td>
<td>0.97278919</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
<tr>
<td>31</td>
<td>-0.30901699</td>
<td>0.95105650</td>
<td>-3.44250140</td>
<td>-10.85081577</td>
</tr>
</tbody>
</table>

CY = 2.09703341

CX = -0.35218436

CL = 2.10384563

CM = -0.00000016

Figure 14. Continued (e) Combined solutions for cascade body
2-D CASCADE TEST PROBLEM

SPACING = 3.0000000000 ALPHA = 9.99999988

OFF-BODY POINT VELOCITIES

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>VX_L</th>
<th>VYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4.00000000 -0.</td>
<td>0.98323388</td>
<td>-0.00167368</td>
<td></td>
</tr>
<tr>
<td>2 5.00000000 -0.</td>
<td>0.98461396</td>
<td>-0.00167261</td>
<td></td>
</tr>
<tr>
<td>3 6.00000000 -0.</td>
<td>0.98478390</td>
<td>-0.00167250</td>
<td></td>
</tr>
<tr>
<td>4 4.00000000 -0.</td>
<td>0.98323388</td>
<td>-0.00167368</td>
<td></td>
</tr>
</tbody>
</table>

Figure 14. - Continued (f) Combined solutions for off-body points
Figure 15. - FORTRAN listing of the Douglas cascade program.
Figure 15. - Continued
Figure 15. - Continued
IF I ITEM .EQ. 100) GO TO 1400
IF I NTU .EQ. 10) GO TO 1200
 NTU = 10
GO TO 400
1200 NTU = 11
GO TO 400
1400 DO 1600 J = 1, NCFLG
 IF (KFLAG(J) .NE. 0) GO TO 1500
1600 WRITE (16, 101)
DO 1700 1600
 WRITE (16, 151) KFLAG(J)
151 FORMAT (3HO 5E 15.12 30 36H 30 Iterations Required for Convergence)
1610 WRITE (13, (1 SIG1(J), J = 1, NT)
 RETURN
 END
SUBROUTINE MISI (A, N, NDD, S, P, NERR, G)
SUBROUTINE PART
COMMON IH, NER, NT, MB, NCFLG, RP1, RP2, SP, CL, ALPHA, FALPHA
1. DFLA, CHMOD, FLDG0, FLDG1, FLDG2, FLDG3, FLDG4, FLDG5, FLDG6, FLDG7, FLDG8, FLDG9, FLDG10, FLDG11, FLG12
2. FLG01, FLG02, FLG03, FLG04, FLG05, FLG06, FLG07, FLG08, FLG09, FLG10, FLG11, FLG12
COMPLEX IN
DIMENSION A(135,135), R(135,101, ND10), NL(101)
REWIND 3
REWIND 4
REWIND 10
REWIND 11
50 KJMAX = IMAX (K-I)
51 KJ = K
52 J = I
DO 60 J = 1, N
 IF (A(I,J) .GT. 0.) GO TO 51
60 CONTINUE
DO 100 N = 1, N
 DO 90 J = 1, N
90 CONTINUE
DO 100 N = 1, N
 DO 90 J = 1, N
90 CONTINUE
51 A(I,J) = A(I,J) + A(KJ)
52 KJ = K
53 J = I
60 J = J + 1
DO 50 J = 1, N
 IF (A(I,J) .GT. 0.) GO TO 51
50 CONTINUE
DO 40 N = 1, N
 DO 30 J = 1, N
30 CONTINUE
DO 40 N = 1, N
 DO 30 J = 1, N
30 CONTINUE
IG0 CONTINUE
999 RETURN
END

1000 WRITE (6,1100) HEDR, CASE
1100 FORMAT (1H1,25X,ZANDOUGLAS AIRCRAFT COMPANY / 28X ZIMLOG BEACH2Y1

1 DIVISION /// 5X 846 // 4H CASE A6)
1 IF (K.GT.0) GO TO 1500
1 IF (K.LT.0) GO TO 1300
1 WRITE (6, 1100)

1200 FORMAT (1H1,19HSTREAMFLOW SOLUTION)
1 GO TO 1700

1300 WRITE (6, 1400)
1400 FORMAT (1H1,23H0-DEGREE FLOW SOLUTION)
1 GO TO 1700

1500 WRITE (6, 1800) K
1600 FORMAT (1H1,35H=UNIFORM OSET FLOW SOLUTION NO. 13)
1700 WRITE (6, 1900)
1800 FORMAT (1H1,25HTRANSFORMED COORDINATES / 12X 1H2 1H3 1H4 1H5 1H6 1H7)
1900 FORMAT (1H1,12X 1H2 1H3 1H4 1H5 1H6 1H7)
2000 WRITE (6, 2400) 1, X(i), Y(i), XM(i), YM(i), VT(i), L(i), M(i)

2100 FORMAT (1H1,13, 2F14.8 / 4X 2F14.8)

C READS IN SINES AND COSINES

A = N + 1
100 N = N + NDTK(1) - 1
110 IF (N .LE. 1) GO TO 200
120 GO 150 J = 3, NCFLG
130 READ (13) I (I, J), I = 1, FT
140 DO 200 J = 1, NCFLG
150 DO 250 K = 1, IN
160 READ (10) I (I, K), I = 1, NT
170 DO 300 K = 1, NCFLG
180 DO 350 L = 1, VL
190 READ (10) B(L), L = 1, NT
200 DO 400 L = 1, NCFLG
210 READ (8) O(L)
220 DO 500 L = 1, NCFLG
230 WRITE (111) I (I, J), I = 1, NT
240 RETURN
250 END

Figure 15. - Continued
Figure 15.- Continued
Figure 15. - Continued
EQUIVALENCE (I,F1), (K,FK)
NERR = 1
NO = NOD
10 DO 20 J=1,N
 A(J) = A(J)
 IJMAX = I
 DO 25 J=1,N
 IJ = I + (J-1)*N
 IF (ABS(I(J)) - ABS(A(J)) < 25,25,20
 20 A(J) = A(J)
 IJMAX = IJ
 25 CONTINUE
 IF (A(IJMAX) < 30,999,30
 30 DO 50 J=1,N
 IJ = I + (J-1)*N
 AIJ(J) = A(IJ)
 IJMAX = IJ
 DO 40 J=1,N
 IJ = I + (J-1)*N
 BIJ(J) = B(IJ)
 UO 70 K=1,N
 IF (K=I) 50,73,50
 50 KJMAX = IJMAX + (K-1)
 AKK = -AKK
 KJ = K
 IJ = I
 DO 60 J=1,N
 IF (AIJ(J)) 55,95,95
 55 AK(J) = AK(J) + AIJ(J)
 58 KJ = KJ + N
 60 IJ = IJ + NO
 40 CJMAX = C(J)
 KJ = K
 IJ = I
 DO 60 J=1,N
 IF (BIJ(J)) 65,95,95
 65 BK(J) = BK(J) + BIJ(J)
 68 KJ = KJ + N
 69 L = L + NO
 70 CONTINUE
 90 AIK(J) = FI
 IO 100 J=1,N
 IF (K=I) 93,100,95
 93 L = L + N + 1
 FL = A(L)
 IF (K=I) 93,100,95
 95 IJ = I
 O0 90 J=1,N
 AI(J) = A(J)
 BIJ(J) = B(IJ)
 BIK(J) = B(J)
 IJ = IJ + NO
 99 IF = IF + NO
 100 CONTINUE

 NERR = 0
 999 RETURN
END

Figure 15. - Continued
Chief of Naval Research
Fluid Dynamics Branch, (Code 438)
Department of the Navy
Washington 25, D.C. (2 copies)

Chief, Bureau of Naval Weapons
Dynamics Section (Code RAAD-222)
Attention: Mr. D. Michel
Washington 25, D.C.

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Att: Code 210L (3 copies)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Att: Code 420 (2 copies)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Att: Code 440 (3 copies)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Att: Code 341B

Director
Langley Research Center
Langley Field, Virginia
Att: Mr. I. E. Garrick

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Att: 422

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Att: 644 (2 copies)

Commanding Officer and Director
David Taylor Model Basin
Washington 7, D.C. (65 copies)

Mr. R. P. Godwin, Acting Chief
Office of Research & Development
Maritime Administration
441 G. Street, N.W.
Washington 25, D.C.

Commander
Defense Documentation Center
Cameron Station
Alexandria, Virginia (20 copies)
Avco-Everett Research Laboratory
2385 Revere Beach Parkway
Everett, Massachusetts
Att: Dr. Richard H. Levy

Lockheed Missile Systems Division
Research and Development Laboratory
Sunnyvale, California
Att: Dr. W. Griffith

Avco Manufacturing Corp.
2385 Revere Beach Parkway
Everett, Massachusetts
Att: Dr. A. Kantrowitz

Norair
Division of Northrop Aircraft, Inc.
Hawthorne, California
Att: Dr. W. Pfenninger

AVCO Research Library
2385 Revere Beach Parkway
Everett, Massachusetts

Mr. K. E. Van Every
Norair, Division of Northrop Aircraft, Inc.
Hawthorne, California

Aeronutronics Systems, Inc.
1234 Air Way
Glendale, California
Att: Dr. L. Kavanau

Sulzer Bros., Inc.
19 Rector Street
New York 6, New York

Chance-Vought Corporation
Dallas, Texas
Att: W. C. Schoolfield

North American Aviation, Inc.
4300 East 5th Avenue
Columbus, Ohio
Att: Mr. R. M. Crone

General Dynamics Corporation
Electric Boat Division
Groton, Connecticut
Att: Frank Walker Caldwell

North American Aviation, Inc.
Aerophysics Department
12214 Lakewood Boulevard
Downey, California
Att: Dr. E. R. van Driest

General Electric Company
2900 Campbell Avenue
Schenectady 6, New York
Att: Library

Republic Aviation Corporation
Conklin Street
Farmingdale, Long Island, New York
Att: Dr. W. J. O'Donnell

General Electric Company
Research Laboratory
Schenectady, New York
Att: Dr. H. T. Nagamatsu

Therm Incorporated
Aerophysics Section
Ithaca, New York
Att: D. E. Ordway, Head

Grumman Aircraft Engineering Corp.
Bethpage, Long Island, New York
Att: Fluid Mechanics Section

MISCELLANEOUS

Hughes Aircraft Company
Florence Ave. & Teal Street
Culver City, California
Att: Dr. A. E. Puckett

Pacific Aeronautical Library
Institute of the Aeronautical Sciences
7660 Beverly Boulevard
Los Angeles 36, California

United Aircraft Corporation
East Hartford, Connecticut
Att: Mr. J. G. Lee

Applied Mechanics Review
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas

McDonnell Aircraft Corporation
St. Louis, Missouri
Att: Library
Society of Naval Architects and
Marine Engineers
74 Trinity Place
New York, New York

Von K. Jacob
Computing Center
California Institute of Technology
1201 East California Street
Pasadena 3, California