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SUMMARY

‘\fAThﬁ: paper contains a general survey of the mathematical

theory of zero-sum two-person games.{ )It—was—preparsd for

publication in the Applied Mechanics Reviews.
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THEORY OF GAMES OF STRATEQY

In many economic, military, and operations research
problems, the game factor dominates—i.e,, the outcome or
regult can only be deacribed in terms of the dacisions made
by sevaral participants, each having a Adifferent objective.

The Theory of (Games, & relatively new branch of mathematics,
anelyzes such atrategic problems by studying the following
thecretical model patterned on actual parlor games such as
Chesg and Poker: 2 participant knows that one cof meveral
possible svents will occur, and with respect to these events

he has certain preferences. He lacks full control over the
variablies which determine ti'e event. Although he has some
control, other participeants, who have different ot lsctives,
&lso influsnce the event. Further, the svent may be *sfluenced
by rendom glements.

Games of chance have been rtudied mathematically for many
yoars, and ths mathematical theory of probabllity wae developad
from their study. &lthough strategic situatlions have long teer
observed &nd recorded, the firsc attempt t- abstract them into
8 mathemetical theory of strategy was made in 1921 by Emile
Borel. The theory was "irmly establishied ov John von Neumann
ir 1928 when he proved the Minimax Theorsm. However, it was

the pubiicatien in 1944 of the impressive work Theory of Games

and Economic Behavior, by John von Neumann snd Oskar Mcorgenatern,

that stimulated research 1n the mathemati-si theory of games.
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By a game is neant a set of rules which epecify
unambiguously the number of players, the moves that each
player may or must make under all possible circumstances,
the movee that are made for the players by chance, the amount

of information available to the pleyers, and the payoff to

each player. Von Neumann has given a mathematically precise
Aafinition of a game by making use of the notion of partition
of sets.

Although each game 1s initially described in terms of
1ts moves and the amount of information available to the
players, we can normalize the game by the introduction of
the concept of a strategy. In the actual play of the game,
each player, instead o making his decision at eich move
of the game, may formulate a complete plan for playing the
game from beginning to end, for every situation that may
arise. Such a plan is referred to as a strategy. It takes
into account any information that mway become avallable in the
course of the play of the game. No freedom of action is
lost through the use of a strategy, since a strategy specifies
a player's actions in terms of the information that may be
availzble in accordance vwith the m:les of the game.

Bvery game can be‘describod in terms of the sets of
strategies of the players, where each strategy 1s a player's
‘method of playing a given game from beginning to end. Every
combinaticn of strategies, one from each player, will determine

an outcome of the game which is measured by a payoff to each
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player. Thus the game is determined by the number of players,
their strategies, and their payoff functions. If a player has
‘n different strategies, they may be identified by the numbers
1, 2, ..., N,

The fundamental problem of the theory of games of strnte;y
18 the determination of optimal strategies for each player and
to evaluate the amount each player can expect to receive. No
~satisfactory theory exists as yet which solves the problem for
an arbitrary number of players. In genersl, the difficulties
are both computational and conceptual, However, the fundamental
case of two players with opposing interests is conceptually

_complote &énd much progress has been made on the techniocal problems.

1. QGames with Finite Number of StrttqgioQ

The mathematical model for games with two players having,
strictly opposing interests is deceptively simple: Player I
chooses a stretegy, iny one of the numbers { = 1, 2, ..., m,
"and Player II chooses a strategy, any ons of the numbers
J=1, 2, ..., n, each cholce being made without any knowledge
of the other. The payoff to Player I is a function of the
chosen strategies, '13’ while the payoff to Player II is “‘15‘
The objective of Player I is to maximisze ‘14’ but he controls
only the choice of 1, whi'e the objective of his opponent is
to maximize "15 and he controls the choice of j. What are the
guiding principles which should dgtermine the choices and what
is the expected outcome of the game? Ve have assumed that the
outcome can be measured quantitatively by a number and that

the notion of expectation is applicadle for this measurement.
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Among Player I's etrategies there exists some stfategy

such that he can obtain a payoff of at least max nmin ‘1J'
> SR

Player II has some strategy such that he pays no more than

min max a,,. For every matrix (a,,), we have
3 4 13 1)

max min a < min max a_, ..
1 J 1J"‘ J 4 1.1

If the game is such that

mgx m;n ‘15 - m}n m;x aiJ - v,
then Player I has a strategy which ylelds him at least v, and
he can be kept from getting more ithan v by the second player.
Thus in this case, there are optimal strategies 1* for the first
player and J’ for the second player which have the following
properties: (1) if Piayer I chooses 1", then, no matter what
Player II does, Player I will get at least v; (2) if Player II
chooses j*, then, no matter what Player I does, Player I will
get at most v; and {(3) if Player I were to announce in advance
of the play that he plans to use strategy 1", Player II could
not take advantage of this information and thereby reduce
Player I's payoff.

A necessary and sufficient condition that max min a1J -
i

min max ‘13 is that the payoff matrix (aij) have a saddle—point;
§ o1 ,
i.e., that there exists an element of the matrix which is at the

same time the minimum of its row and the maximum of 1ts column.
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If the payoff matrix (‘11) 1s such that it contains no
saddle—point. and hence nelther player has an optimal strategy,

‘1t 18 nocessary to generalige the notion of a strategy. A

. player, instead of choosing a single strategy, choonses a

probability distribution over his set of strategies and the

particular strategy for the play of the game 1z chosen by some

. chance device satisfying this probability disiribution. Each

probability distribution over the set of strategles 1s a mixed

l

. strategy. This randomization by & player protects him against

choosing a strategy which would benefit his opponent. Of

course, any strategy can be regarded as a mixed strategy.

However, to evaluate the effect of a mixed strategy, the expected
value of the effect of the strategies needs to be determinod.

Let 3, and S, be the sets of mixed strategier of Ployer I
and Player II, respectively. Let E(X, Y) be the expected payoff
received by Player I if he uses mixed strategy X and Player II
uses mixed strategy Y; then it turns out that in any game with

a finite number of strategies

Max Min B(X, Y) = Min Max E(X, Y) = v.
XG%n YGSn YESn XGSm

This 18 the Main Theorem of finite games, and was first proved

by von Neumann in 1928. It shows that both players have optimal
mixed strategies, 1.e., there exists a probability distribution
for Player I which assures him a gain of at least v on the

average, and there exists a probability distribution for Player II
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which insures him against a loss of more than v on the

averags.

2. Solution of Finite Games

The sets nf optimal strategiea can be characterized
geometrically as closed convex polyhedra., Thus to find all
optimal strategies we need only determine the extrewe points
of the convex set. L. 8. Shapley and R. N. Show have shown
that each extreme point is associated with some nonsingular
square submatrix of the payoff matrix (aiJ). Thus every optimal
strategy which is an extreme point can be obtained as the
unique solution of a suitably chosen subsystem of linear
equations.

There exist iterative procedures for approximating
optimal mixed atrategies.' The two most common procedures are
dne to George W. Brown and John von Neumann. The Brown pro—
cedure 1s a method of fictitious play which bases future
decisions on relevant past history. In the von Neumanh pro—
cedure the steady state solution of systems of differential

squations corresponds to the optimal strategies of the game.
®

3. Uames with Infinite Strategles

Although most parlor games require the evaluation of a
finite nurber of strategies, many military and economic games
heve an infinite number of strategies. For example, in such

games it is frequently required to choose an optimal percentage
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from an infinite number of percentages. In an infinite game,
the two players choose strategies x and y from infinite sets
8, and 8,. The payoff is the value of a function M(x, y).

By analogy with the finite games, if

Mex Min M(x, y) < Min Max M(x, y)
xeal y¢82 y¢82 1681

" then mixed strategies are rbquiredﬁ They are defined as proba-—
" bility distridbutions P and G over 31 and 82. Now Player I's
expectation is given by the double integral

3(?. G) .ff "(xn y)dl'(x)da(y).
. The existence of optimal mixed strategies, 1i.s.

Max Min E(F, @) = Min Max E(F, @)
4 a a P

now depends on the function M(x, y). If M(x, y) 1s continuous,
with 81 and 82 unit intervais 0 { x (1, 0 { y < 1, then optimal
mixed strategies exist. However, if M(x, y) is discontinuous,
optimal strategies need not exist. Even when optimal strategies
exist, as in the case of continuous M(x, y), no general method
exists for computing them.

The method of solution of infinite games depends upon the
functional form of N(x, y). In many applications the payoff
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function M(x, y) 1s strictly convex in y for each x, in which
case an optimal strategy for Player II is to choose that y

which minimizes Max M(x, y). However, Player I must use a
x

mixed strategy generally consisting of two strategies. The

value of the game is Min Max M(x, y).
Yy x

If the payoff function is a polynomial, i.e., 1f

m,n
M(x, y) = 2 aijxiyJo
1,J=0

then both players have c¢ptimal mixed atretegies which are step
functions. Each player randomizes on 1/2 min (m + 2, n + 2)

strategles, at most.

4. Examples of Infisite Games

ALLOCATION OF RESOURCES. The <ollowing attack—defense

game has interpretations in economics as well as in mi;itary
planning. Given n targets Tl' T2, ceeyp Tn whose values are

Vir Vor eees Voo respectively. Suppose Player I has a total

of A attacking units and Player Id has a total of D defensive
units. How should che players allocate their forces among the
n targets? Let us assume that if x = (xl, Xos coes xn), where
each x, 18 nonnegative and 2:x1 w A, 18 an allocation of Player
I's resources among the n targepa, and if y = (yl, Yor =ves yn)
18 an allocation of the defender's forces among the tergets,

then the payoff to Player I is defined by



?__99 i
1217 5F

n
#{x, y) = § v, max {c, Xy - yi).
{w]

This 48 8n »n-~ 1 dimens’ional infinite zame with & continuous

pavoff and hsnce ortimal strategies exist. If A > D, then the

o

optimal crretegy Jor the delender is to defend only *he high~
vaiues tearv+ 8 and leeve low-—valued tarcets undefended., However,
the attacker must uss a mixied srirategy. He selects one of the
targets at rendem. subject to a given probadllity discribution,

and allocateas his entire force A to that target. An intereating
property of the optimsl strategies 1a that the high-valued targets
which &a,¢ defended are alsc the targets which may, depending on

the outcome of the randomization, receive the concentreted attack.
The low—-valved targets are undefended &nd never a*t&cked, Furthrer,

the optiv "1 straregles x" and y' are guch that there sxist no

gt o ote Y.e.,
. - £ \
vi(A - yi) = v = constant, it y, >0
VA <, ¥y, = C.

TYMING OF DECISIOHS. Many tim‘rg problems can te viewed

s8 two-pliéysr games whose rulas descrite the actions which tha
plazers are to take, but the timing of the action& I8 to be
“etarmined by the playsrs. Ir these gamen each player wishea to
izley the actiona as long &s possi“le but he 18 algo penslized
for delaying by his opponent. This coanfllict of interests can

re2 tegoived and & vest timing of actions can be determined lor

PN T 5
£5CH Dikyer.
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Let up assume that each »leyer has to choose only one
sction time. let us aleso assums that each player jie informed
of his opponent's action &s soon ag it takes place. Define
Plix} as the probability that Player 1 willl succesd if he acts
ot time x, and ngy} as the probability that Player II will
gucceed 1f he acts at time y. Let the payoff be *+i 1o the
succersful player and C to both players if both or neither

succeeds, then the expected paycff to Pluyer I am & function

of acticnh timesa x and y becomez:

2?1(1) -1 L x <y
M(x, y} =JP (x) = Py(x) Af x =y
1 - ?Pg(y) T x >y.

In thie case the optinmal action time for each playar depends

¢ the sclution of the equation
P (t) + P (t) = 1.

Ra h playar delays his actlon until t, if his opponent has
not acted prior to t. 1If his cpponent haer acted prior to t,
then the rlayer acta at time x such that Pi(x) =1, 1.e., the
rleyer waits until ne is c-rtail of success,.

Xf ir the preceding evample wo remove the information
agpect and sssume thet each plaver ia ignorant of ths action,
i any, taken by his opponent, then optimal timing requirecs

randomization by both playera. Let us wrke the additional

assumption tnat ?1(x} - Pg(x}@ then the payoff function becomes
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~ + (1 + y)x 12 x < ¥y
Mix, y) o0 if x = y
-y + (1 - y)x it x>y

where x and y are the probabilities of success o Player I
and Player II, respectively. The two players have the same
optimal etrategles—deiry untll the probability of success isa
at least 1/3, then act at a time chosen at random subject te

the probability distribution

F(x) = 0 0<x<1/3

-%(9-;15) /3§ x g 1.
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