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SUMMARY 

Two basic theorems of network flow theory are applied to 

determine necessary and sufficient conditions for (a) the 

existence of a system of representatives for a collection of 

subsets of a given set such that each element, a^of the given 

set occurs at least/or times In the system and at most <*v^r^ 

times (a system of restricted representatives), and (b) the 

existence of a common system of restricted representatives for 

two different collections of subsets of the given set. ( ) 
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NETWORK FLOW AND 
SYSTEMS OF REPRESENTATIVES 

INTRODUCTION 

The theory developed for the study of flows In networks 

[?, 3# ^, 5,  6, /] sometimes provides a useful tool for deal- 

ing with certain kinds of combinatorial problems, as has been 

previously Indicated in ^5, 4, 5, T] .  In particular, Hall- 

type theorems for the existence of systems of distinct 

representatives which contain a prescribed set of marginal 

elements [$, id], or,  more generally, whose intersection with 

each member of a given partition of the fundamental set has 

a cardinality between prescribed lower and upper bounds [8], 

can be obtained in this way [3]. In this note we apply 

network flow theory to generate necessary and sufficient 

conditions for (a) the existence of a system of restricted 

representatives, by which we mean a system of representatives 

such that each element a* of the fundamental set occurs at 

least a* tiroes in the system, and at most ß1 times, and (b) 

the existence of a common system of restricted representatives 

for two different collections of subsets of the fundamental 

set. While problem (b) clearly includes (a), we have chosen 

to treat the two separately. 

Section 1 describes relevant portions of flow theory. 

In Section 2 we show how Hall's condition for the existence 

of a system of distinct representatives and a similar condition 

for problem (a) may be deduced from maximal network flow problems. 
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Section 3 deals with problem (b) and resolves (a) as a special 

case. 

We emphasise that the present approach may be used not 

only to yield existence conditions for certain kinds of 

systems of representatives, but may also be used to provide 

explicit algorithms for constructing such as well.  On the 

other side of the ledger, it can be shown, although we do 

not demonstrate it in this paper, that each of the problems 

we have mentioned can be reduced, by suitably manipulating 

the network which represents the problem, to an application 

of Hall's theorem. 

1.  NimfORK FLOW 

A basic problem concerning network flows is the following. 

Suppose given a finite network (linear graph) N with node set 

{s, ..., x, y, ..,, s'} and oriented arcs Joining pairs of 

nodes, the arc from x to y being denoted by (x, y), and 

suppose each (x, y) has associated with it a capacity c(x, y), 

where c(x, y) is either a nonnegative real number or plus 

infinity. Subject to the conditions (i) the flow in (x, y) 

is no greater than c(x, y), (ii) the total flow into node x 

(x f' s, s') is equal to the flow out, find a maximal flow from 

s (the source) to s (the sink). 

Thus, letting f(x, y) be the flow in (x, y), the problem 

may be described as a linear program: 
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(•)  I PCs, y) - f(y, •)] - v  - 0 
y 

(b)  £ [f(x, y) - f(y, x)]      -0      (x^s, a«) 

y 

(1) ^ (c) I  [fdS y) - f(y, a')] -»- v - 0 

y 

(d)  0 < f(x, y) < c(x, y) 

(e)  maximize v. 

If (f; v) Is a solution of the constraints (la)—(id), f Is a 

flow and v Its value. 

There are algorithms available for solving such problems. 

The best known of these Is probably 0. Dantzlg's simplex method 

[l] for solving the general linear programming problem of 

maximizing a linear function subject to linear equations and 

inequalities. However, problem (l) Is a special kind of linear 

program for which simple (and computal onally more efficient) 

algorithms have been constructed [2, 7] . These algorithms may 

be used to prove an Intuitively plausible theorem which Is 

basic In the study of network flow. To state this theorem, 

we require some definitions. A cut In N with respect to s, s* 

is a partition of the nodes Into two complementary seta L, L* 

with seL, sUL*. The value of a cut la   J   c(x, y). 
xcI^ytL* 
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Minimal cut theorem  [2# 6, 7] .    For any network,  the 

maximal flow value is equal to the minimal cut value. 

We  remark that it is obvious that flow values are bounded 

above by cut values.    Thus the content of the theorem is the 

assertion that there is a flow and a cut for which equality 

of values holds. 

In addition to this theorem, we need one other result 

for the combinatorial applications to be presented in the 

sequel. 

Integrality theorem  [3, 7] .     If the capacity function is 

integral valued,   there exists a maximal flow which is also 

integral valued. 

The integrality theorem can also be deduced in a variety 

of ways.    For example,  the algorithms for constructing maximal 

flows which were  referred to previously can be shown  to produce 

integral flows in  case the arc capacities c(x,  y) are integers. 

The theorem also followj from the fact that all  the extreme 

points of the convex polyhedron defined by (la)—(id) are 

integral. 

2.     HALL'S THEOREM;   3YSTgM3  OF RESTRICTgD RgPRKSKNTATIVKS 

Let  ft/ • {S-i»   •••, S }  be a family of subsets of a given 

set A - [a,,   ...,  al.    A list R of  (not necessarily distinct) 

elements a.   ,   ...,  a.    is a system of representatives for  v 
11 ^ 
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If a. € S., J • 1, ..., n. If ir« furthtr stipulate that each 

element a^A occurs In R at least a. times and at most p. times, 

where 0 < a. < ß1# we call R a system of restricted repre- 

sentatives (abbreviated SRR). In case o1 • 0, ^ • 1 for 

all 1, then R is a system of distinct representatives (abbre- 

viated SDR). A well-known theorem of P. Hall [ll] states 

that a necessary and sufficient condition for the existence 

of an 8DR is that, for each k • 1, ..., n, every union of k 

sets of v  contains at least k elements. The necessity of 

the condition is of course obvious. 

As an exercise, let us construct a network maximal flow 

problem which represents the problem of finding an SDR and 

deduce Hall's condition from it. To this end, let 

*# 1' •••* n* ^1' •••» *m' ' 

be the nodes of N, and define arcs and capacities as follows: 

(s, 5.) with capacity 1,  J"l, ...,n, 

(3j, a.) with capacity oo,  1, jaa^S., 

(a^, sf) with capacity 1,  1 • 1, ...» m. 

Ve assert that an SDR exists for Of if and only if the 

maximal flow value in N is n. For, given an SDR, we can 

construct an Integral flow of value n as follows. Let 
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f(fl, ^j)   -   1 

1  If a.  occurs In the SDR, 
J IQ otherwise 

f 1 If a-  occurs in 
(ä,, s') -J 1 

10 otherwise. 

the SDR, 

This Is clearly a flow In N of value n; It is certainly maximal 
n 

since the cut value £ c(s, 7.) is also n. Conversely, if 

J-l 
the maximal flow value is n, we may select (by the integrality 

theorem) an integral flow of value n, and let a« represent S. 

if and only if f(^, a,) ■ 1, Then all sets S. are represented 

(since the flow has value n and cfs, 7.) - 1) and no a. occurs 

more than once in the representation (since 0(7., s ) ■ l). 

Thus an SDR exists for J if and only if the maximal flow value 

( - minimal cut value) for the associated network is n. 

To discover Hall's condition, we simply examine all 

candidates for minimal cuts, and insist that their values 

exceed n. First let us introduce some notation. Oiven two 

disjoint subsets X, Y of the nodes of a network N, let (X, Y) 

denote the set of arcs from any node of X to any node of Y, 

and let c(X, Y) •    J    c(x, y). Also, for any set X 

(x,y)€(X,Y) 

of nodes, let J(X) be the set of nodes of N which are joined 

to some node of X by an arc. Finally, let |X| denote the 

cardinality of set X. 
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Suppose now that (L,  L1) is a cut In a representing 

network N for the SDR problem.     Let 5 »j^,   •••»  5   } , 

X ■ (a. f   ..., a  } , and define subsets of the nodes of N as 

follows: 

i X - LAS; X* • l/nH;  Y - Lnl; Y1  - L'AT. 

Then the condition which is equivalent to the existence of 

a flow of value n is 

(2)    c(L, L1) - c(s, X') ^ c(X# Y
1) 4 c(Y, s') ± n 

for all cuts  (L, L*)* or equivalently,  for all XC5, YCX. 

Now (2) holds automatically unless (X,  Y1)  is vacuous, 

fnd (X,  Y ) empty implies J(X)AJcY.    Thus the set of 

inequalities (2)  is equivalent to the set 

(3) IX1!  ^  |Y| ^n 

for all XCl, all YDJ(X)Al, and hence to 

(4) IX1!  +  |J(X)nX| ^n 

for all XC7.  Replacing Ix'| by n ~ |X| in (4) yields 

(5)    |X| ^ |J(X)nX|,   all XCF. 
i 
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All that remains Is to restate (3) in the language of setsi 

for any subset X of the Indices {l, ..., n}, 

(6)    |X|<|I(X)| 

where I(X)c(l, ,,., m} Is the Index set of U S.. 
1 JCX J 

With this as background, let us next turn to the question 

of the existence of an SRR.  For this problem, let 

*#  1' •••» n' *1' •••» *jn» **» ' 

be the nodes of N; the arcs and capacities are 

(s, Z,)    with capacity     1,   J ■ 1, ..., n, 

(5., a1) with capacity     co,   i, jaa^^^s,, 

(a^, t) with capacity ß^ — a^,   i ■ 1# ..., m, 

(a^, s1) with capacity    o.,   i " 1# ..., m, 

m 
(t, s') with capacity n — T a.. 

i-1 1 

■ 
(Notice that we are tacitly assuming n > J a., obviously 

~ 1-1 1 

a necessary condition for the existence of an SRR^ 

It is not difficult to see that an SRR exists if and 

only if the maximal flow through N has value n.  Define 

X, Y, X1, Y* as before, and suppose first that tiL.  Then 

the relevant condition is 
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(7) c(f,  X') + c(X, Yf) -»• c(Y,  a') + c(t,  s')  > n 

for all XC5,  Yc A.    Proceeding at before,  (7)  leada  to 

(8) |Xf|  -i-Xa+n-   £   a>n 
Y 1-1 

for all XC5, all YOJ(X)nI, and thua to 

(9) |X| < n - J ^ +   2  o^ 
1-1    J(X)nI 

for all XCS. 

In a aimllar manner, if t€L , one obtains the condition 

do)   |x| <  2 Pi 
j(x)rNl 

for all XC?. Thus wo may state (since (9) includes the 
■ 

condition n - J ai 2 0): 

i-1 

Theorem 1. An SRR exieta for eA» (S,, ...» Sn} if and 

only if, for every subset X of the indices |l, ..., n} 

(11)    |X| i «In (n - J o1 ♦ 2 ai'   1     ^i) i 
i-1    I(X)    I(X) 

where I(X)c-fl, ..., m\ is the index set of \J   S.. 
1       J JfX J 

Observe that (ll) reduces to Hall*a condition in case 

a. - 0, 0. - 1 for all i. Also, by taking a^ - 1 for 

i-1, ..., q, a1 - 0 for 1 ■ q -f 1« ..., in, all P1 • 1, 
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(ll) yields the Hoffman-Kuhn condition for the existence of 

an SDR containing a prescribed set of marginal elements 

a., eg. 

3.  EXISTEWCH OP COMMON SRR 

Since the only Ingenuity required In solving problems of 

the kind we have discussed lies In finding a representing network 

(if one exists), we shall merely give a description of such a 

network for the common SRR problem and a statement of the 

conditions, leaving the proof to the reader. 

Let a/- {S^ ..., Sn|, 2"- (T1, ..., Tn^ be the two 

families of subsets of A - ja,, ..., a V. Define a network N 

consisting of nodes 

8»  i» •••» n' *1' •••» *m' 'l' •••» ^in'  1' *••» n' 

and capacitated arcs 

(B, 5.) with capacity 

(s, a.) with capacity 

(5., a^) with capacity 

1, 

«i» 

oo, 

(iL, a.,) with capacity P^ — ai' 

(äj, s*) with capacity    o,, 

^*1* ^J^ wlth capacity     oo, 

(T., s') with capacity      1, 

■ 1, ..., n 

■ 1, ..., m 

, jaa^Sj 

■ 1, •. •, m 

■ 1, ..., m 
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Havlng convinced oneself that a common SRR exists for   V, %? 

If and only If there is a flow from s to s    of value 
m 

n * Ja.,  much the same procedures as before  lead to the 
i-1 

following theorem. 

Theorem 2.    A comnon SRR exists for  or«   JS,,   ..., S J, 

JT- {tj,   ..., Tn} if and only if, for every X, Ycil,   ..., n]# 

(12)        |X|  +  |Y| ^n -   j;o1 + I ^ + 2 pl 

i-i        i(x)ui(y)        i(x)rM(Y) 

where I(X)c{l, ...» mV is the index set of US,, and 
1       J J€X J 

l(Y)c(l, ..., m} is the index set of uT.. 
1 J£Y J 

Notice that, for any given X, taking Y empty yields 

i-l   Kx) 

and taking Y the full set yields 

1*1 <- S«! ♦      2     \*    I      ßi^ 2 pi 
i-l   I(X)UI(Y)  i(x)ni(Y)   I(X) 

which combine to give (11). Conversely, if S1 * T^ for all i, 

and if (11) holds for all X, then (12) holds for all X, Y. 

To ate this, suppose given any two sets X, YC [l, ..., n) 

This abort proof is due to 0. Oroas. 
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and apply (ll)  to the sets XUY,  XOY,  obtaining In particular 

m m 
a XUY|   <n -   J^ >        Z     ai -n -    Zai + 2 

1-1 I(XUY) 1-1 I(X)UI(Y) 

XOYI   <        E      Pi   < I tv 

l(xnY) l(x)ni(Y) 

Adding these two Inequalities gives (12). 

By taking a. - 0, p. - 1 In (12), one obtains conditions 

for the existence of a common SDR. 

Corollary. A common SDR exists for «f and .Tlf and only 

If 

(15)   |X| + |Y| ^n + |I(X)Ol(Y)|, 

where l(X), l(Y) are as defined In Theorem 2. 

1 
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