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SUMMARY

}

Two basic theorems of network flow theory are applied to
determine necessary and sufficient conditions for (a) the
existence of a system of representatives for a collection of

4

subsets of a given set such that each element,aq\of the given
set occurs at leaséf;i\timeb in the system and at most Q;H‘fx
times (a system of restricted representatives), and (b) the
existence of a common system of restricted representatives for

two different collections of subsets of the given set. ( )

\



P-990
12-11-56
-1—

NETWORK FLOW AND
SYSTEMS OF REPRESENTATIVES

INTRODUCTION

The theory developed for the study of flows in networks
[2, 3, 4, 5, 6, 7] sometimes provides a useful tool for deal—
ing with certain kinds of combinatorial problems, as has been
previously indicated in [3, 4, 5, 7). In particular, Hall-
type theorems for the existence of systems of distinct
representatives which contain a prescribed set of marginal
elements [9, 1cﬂ, or, more generally, whose intersection with
each member of a given partition of the fundamental set has
& cardinality between prescribed lower and upper bounds [8],
can be obtained in this way [5]. In this note we apply
network flow theory to generate necessary and sufficient
conditions for (a) the existence of a system of restricted
representatives, by which we mean a system of representatives
such that each element a, of the fundamental set occurs at
least a, times in the system, and at most B, times, and (v)
the existence of a common system of restricted represenfativea
for two different collections of subsets of the fundamental
set. While problem (b) clearly includes (a), we have chosen
to treat the two separately.

Section 1 describes relevant portions of flow theory.
In Section 2 we show how Hall's condition for the existence
of a system of distinct representatives and a similar condition

for problem (a) may be deduced from maximal network flow problems.
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Section 3 deals with problem (b) and resolves (a) as a special
case.

We emphasiie that the present approach may be used not
only to yleld existence conditions for certain kinds of
systems of representatives, but may also be used to provide
explicit algorithms for constructing such as well. On the
other side of the ledger, it can be shown, although we do
not demonstrate it in this paper, that each of the problems
we have mentioned can be reduced, by suitably manipulating
the network which represents the problem, to an application

of Hall's theorem,

1. NETWORK FLOW

A basic problem concerning network flows is the folilowing.
Suppose given a finite network (linear graph) N with node set
{6, ..., x, ¥y, ..., 8'} and oriented arcs joining pairs of
nodes, the arc from x to y being denoted by (x, y), and
suppose each (x, y) has associated with 1t a capacity c(x, y),
where c(x, y) is either a nonnegative real number or plus
infinity. Subject to the conditions (1) the flow in (x, y)
is no greater than c(x, y), (11) the total flow into node x
(x ¥ s, 8') 18 equal to the flow out, find a maximal flow from
s (the source) to 8' (the sink).

Thus, letting f(x, y) be the flow in (x, y), the problem

may be described as a linear program:
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[ (a) T [t(s, y) =y, 8)] —v =0
y
(v) z [t'(x, y) - t(y, X)] -0 (x ¥ s, 8')
y
(1)< (¢) YT [t(s', y) =1y, 8')] +veo
y
(a) o< f(x, y) < c(x, ¥)
i (e) maximize v.

Ifr (£; v) 18 a solution of the constraints (la)-(1d), f 1s a
flow and v its value.

There are algorithms available for solving such problems.
The best known of these 1is probably G. Dantzig's simplex method
[1] for solving the general linear programming problem of
maximizing & linear function subject to linear equations and
inequalities. However, problem (1) is a special kind of linear
program for which simple (and computal onally more efficient)
algorithms have been constructed [2, 7]. These algorithms may
be used to prove an intuitively plausible theorem which 1s
‘basic in the study of network flow. To state thie theorem,
we require some definitions. A cut in N with respect to s, s'
is a partition of the nodes into two complementary sets L, L!

with sel, s'¢L'. The value of a cut is )} c(x, y).
x¢L,yeL’
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Minimal cut theorem [3, 6, 7]. For any network, the

maximal flow value 1s equal to the minimal cut value.

We remark that 1t i1s obvious that flow values are bounded
above by cut values. Thus the content of the theorem 1s the
assertion that there is a flow and a cut for which equality
of values holds.

In addition to this theorem, we need one other result

for the combinatorial applications to be presented in the

sequel.

Integrality theorem [3, 7]. If the capacity function is

integral valued, there exists a maximal flow which is also

integral valued.

The integrality theorem can also be c¢educed in a variety
of ways. For example, the algorithms for constructing maximal
flows which were referred to previously can be shown to produce
integral flows in :case the arc capacities c(x, y) are integers.
The theorem also follows from the fact that all the extreme
points of the convex polyhedron defined by (la)—(1d) are

integral.

2. HALL'S THEOREM; SYSTEMS OF RESTRICTED REPRESENTATIVES

Let of = {81, e, Sn} be a family of subsets of a given

set A = {al, cee, am}. A 1ist R of (not necessarily distinct)

elements By 5 .., By is a system of representatives for z/
1 n
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ir a, GSJ, Je1l, ..., n. If we further stipulate that each

J
element aieA occurs in R at least a, times and at most pi times,

where 0 < a, < B,, we call R a system of restricted repre-

sentatives (abbreviated SRR). In case a, =0, B, =1 for

all 1, then R 1s a system of distinct representatives (abbre-—

viated SDR). A well-imown theorem of P. Hall [11] states

that a2 necessary and sufficient condition for the existence
of an SDR is that, for each k = 1, ..., n, every union of k
sets of J contains at least k elements. The necessity of

the condition is of course obvious.

As an exercise, let us construct a network maximal flow
problem which represents the problem of finding an SDR and
deduce Hall's condition from 1t. To this end, let

s, 8, ... 8,8, ..., @, s'

be the nodes of N, and define arcs and capacities as follows:

(s, BJ) with capacity 1, J =1, ..., n,
(BJ, :1) with capacityoo, 1, Jaa1€8J,
(?1, 8') with capacity 1, 1«1, ..., m.

We assert that an SDR existe for o/ if and only if the

maximal flow value in N is n. Por, given an SDR, we can

construct an integral flow of value n as follows. Let
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£(s, 33) « 1

1l if a, occurs in the SDR,

i

r(S5,, a,) =
J 1 O otherwise

1l 1f a, occurs in the SDR,

i
0 otherwise.

t‘('ii, 8') =
This is clearly a flow in N of value n; it is certainly maximal

n
since the cut value Y c(s, SJ) is also n. Conversely, if

J=1
the maximal flow value is n, we may select (by the integrality

theorem) an integral flow of value n, and let a, represent SJ
if and only if f(BJ, Ei) = 1. Then all sets SJ are represented
(since the flow has value n and c(s, BJ) = 1) and no a, occurs
more than once in the representation (since c(Ei, ') = 1),
Thus an SDR exists for n, if and only if the maximal flow value
( = minimal cut value) for the associated network 1is n.

To discover Hall's condition, we simply examine all
candidates for minimal cuts, and insist that their values
exceed n., First let us introduce some notation. Given two
disjoint subsets X, Y of the nodes of a network N, let (X, Y)
denote the set of arcs from any node of X to any node of Y,

and let c(X, Y) = ¥ c(x, y). Aleso, for any set X
(x,y)e(Xx,Y)
of nodes, let J(X) be the set of nodes of N which are joined

to some node of X by an arc. PFinally, let |X| denote the

cardinality of set X.
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Suppose now that (L, L') 18 a cut in a representing
network N for the SDR problem. Let 3 «{S,, ..., LS
3 {il, .e., 8}, and define subsets of the nodes of N as

follows:
XeLnY; X' «L'nS; YaLnX; ¥ «L'nTK.

Then the condition which 1s equivalent to the existence of

a flow of value n 1is

(2) e(L, L') mc(s, X') + c(X, Y') ¢+ c(Y, 8") > n

for all cuts (L, L'), or equivalently, for all XC¥, YCTX.

Now (2) holds automatically unless (X, Y') 1is vacuous,
end (X, Y') empty implies J(X)NKCY. Thus the set of
inequalities (2) is equivalent to the set

(3) IX'| + Y] >n

for all XC3B, all YDJ(X)NX, and hence to

(%) Ix'| + [3(X)NK]| > n

for all XC8. Replacing |X'| by n = |X| in (&) yields

(5) Ix| < |3(x)nX|,  a11 XCB.
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All that remains is to restate (5) in the language of sets:
for any subset X of the indices {1, ..., n},

(6) x| < 12(x)|

where I(X)c.{l, 0o m} is the index set of l%x 33’
i€

With this as background, let us next turn to the question

of the existence of an SRR. For this problem, let

’, SI, ...’ gn’ El’ ...’ :rn, t' "

be the nodes of N; the arcs and capacities are

(s, Sﬁ) with capacity 1, J=1, ..., n,
(SJ, a’i) with capacity 00, 1, Jaaiésj,
(Ei, t) with capacity By — 8y, 1=s1, ..., m,
(Ei, s') with capacity a,, 1=1, ..., m,

m
(t, 8') with capacity n - 3 a, .

i=])
m
(Notice that we are tacitly assuming n > iia a,, obviously
--

a necessary condition for the existence of an SRR)

It 18 not difficult to see that an SRR exists if and
only if the maximal flow through N has value n. Define
X, Y, X', Y' as before, and suppose first that t€L. Then

the relevant condition is
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(7) c(s, X') + c(X, Y') + c(Y, 8') + c(t, 8') > n

for all XcS, YCA. Proceeding as before, (7) leads to
' m
(8) IX'| +Ya, +n~ } a, >n
Y i=]

for a1l Xc ¥, all Y2J(X)NnZ, and thus to

(9) IXlgn- 3 a+ 3 a

for all XC8§.
In a similar manner, if teL', one obtains the condition

(10) Xl < 2 8
J(X)n X

for all XC8. Thus we may state (since (9) includes the

m
- condition n -~ ¥ a, > 0):
i=]
Theorem 1. An SRR exists for J- {81, s o5 Sn} if and
only if, for every subset X of the indices {1, ..., n}

(1) IxXlgmn(n-F a+ T a, T 8)
i=1 I(Xx) I(Xx)

where I(X)C {1, ..., m} 1s the index set of y
JEX

SJ'
Observe that (11) reduces to Hall's condition in case
a, = o, 51 @ ] for all 1. Also, by taking a, = 1l for

1 =), ...,q,GI-Otorinq+1, ceey, M, anai-l,



1%

P-9590
12-11-56
~10-

(11) yields the Hoffman—Kuhn condition for the existence of

an SDR containing a prescribed set of marginal elements

8y, ++0) 8y (9] .

3. EXISTENCE OF COMMON SRR

Since the only ingenuity required in solving problems of
the kind we have discussed lies in finding a representing network
(1f one exists), we shall merely give a description of such a
network for the common SRR problem and a statement of the
conditions, leaving the proof to the reader.

Let of= {S,, ..., 5}, = {T), ..., T } be the two
families of subsets of A = {al, %0 B am}. Define a network N

consisting of nodes

e, 8, ..., 5,8, ..., &, :1, Soen (U5 i E Soor Tk, s’

and capacitated arcs

(s, 8&) with capacity 1, J=1, ..., n
(s, Ei) with capacity a,, 1=, ..., m
(SJ, i&) with capacity ®, 1, Jaa1€SJ

(31, :1) with capacity B, - @, 1=, ..., m
(ay, 8') with capacity a, {1, ..., m
(:1, Tﬁ) with capacity 00, 1, JaaieTJ

(TJ, s') with capacity 1, Ji= 25 .., B
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Having convinced oneself that a common SRR exists for Rf; zZ

if and only if there 1s a flow from s to s' of value

m
n +Ya,, much the same procedures as before lead to the

ie]
following theorem.

Theorem 2. A common SRR exists for o= {Sl, .ot Sn},
T= {'rl, .ee» T} 4f and only if, for every X, Yc{l, ST 7

(12) x| + |¥Y] ¢ n - Eci + p) a, + 2 By

im] I(X)VI(Y) I(X)NI(Y)
where I(X)c{l, cees m} 1s the index set of U 8,, and
jex J
I(Y)c {1, ..., m} 18 the index set of y T,.
JEY

Notice that, for any given X, taking Y empty ylelds

x| <n - %aiﬁ» Zoi
1=] I(x)

and taking Y the full set yields

Xl - oy ¢+ 3 a+ T B <38
1] I(X)UI(Y) I(x)nI(Y) I1(X)

which combine to give (11). Conversely, if 8, = T, for all 4,

and if (11) holds for all X, then (12) holds for all X, Y.

1

To see this,” suppose given any two sets X, YC {1, S olely n}

l'mu short proof 1is due to O. Gross.
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and apply (11) to the sets XUY, XNY, obtaining in particular

|XUY|S_n—an:ai+ Y ai-n—§ai+ )) a,
{=] I(XVUY) i=1 I(X)vI(Y)

xnYl < T B < T By
I(XNnY) I(Xx)nI(Y)

Adding these tr> inequalities gives (12).
By taking a, = 0, B, = 1 in (12), one obtains conditions

for the existence of a common SDR.

Corollary. A common SDR exists for e/and Z1f and only
if
(13) x| + Y] <n + [X(X)NI(Y)],

where I(X), I(Y) are as defined in Theorem 2.
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