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SUMMARY

Let X(t) be a continuous nx n symmetrix matrix function
of t for 0 { t { 1, monotone in the sense that X(t) — X(s) is
non-negative definite for 1 ) t > 8 ) 0. Denote by
(x(t) —-x(a)]l/2 the unique non—negative definite square root
of X(t) — X(8) for t » s. Take 0 {t; (t, { ty =1 tobea
sub—division of [0, 1] and consider the sum

N—1
B = 5 X(ty,) - X(5)]Y2 R(e) [x(ry,) - X(e)] V2,

where P(t) 1s a given contiiiuous matrix function of t in

[o, l] L]
It is shown that as N —» o, with Max (t,+1 - ti) —» 0,
i -

Sn converges to a linear matrix function of P which we write
5 1/2 1/2
L(F) = ,{ (ax) P(t)(dx)"/ <.

This is a rfeneralized Riemann-3tieltjes integral for

matrices.
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ON POSITIVE DEFINITE MATRICES AND STIELTJES INTEGRALS

by
Richard Bellman

§1 . Introduction.

In a recent paper, [1], we considered two generalizations
of the Riemann—StieltJjes integral connected with the study of
positive definite matrices. One extension was considered in
full generality, the other only for 2x 2 matrices.

In this paper, relying upon a result of Ali R. Amir-Moez,
[3], concerning the variational characterization of the eigen-
values of symmetric matrices, we shall complete the second
extension.

Our final result is a Riemann—Stielt jes 1ptegral for
matrices, which can be extended to many other classes of non-
comuutative hypercomplex number systems. This will be
discussed subsequently. The motivation for the present
investigation arises from an extension of classical probability

theory treated in [2].

§2. A Riemann—Stieltjes Integral for Matrices.

Let X(t) be a continuous nxn symmetric matrig function
of t for 0 { t { 1, monotone in the sense that X(t) — X(s) 1s
non—negative definite for 1 ) t > s > 0. Denote by
(x(t) - x(s)] 1/2 the unique non—negative definite square root

of X(t) — X(s) for t ) 8.
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Take 0 { t; (t, { *++ { ty = 1 to be a sub—division of

the interval [0, 1], and consider the sum

N—1
(1) sy = % [X(t,, 1) = X(t,01%2 R(t,) [K(t,, 1) =X(5,)] Y2,

where F(t) 1s a given continuous matrix function of t in

[0, 1].

We wish to demonstrate the following:

Theorem 1. Let Mziuc (t:1+1 — ti) —> 0 a8 N —» . Then S,
converges to a llnear matric functional of P, which we write

(2) L(F) = %’1 (dx) /2 p(¢) (ax)Y/2.

The proof of this result feor (2x2) matrices 1s contained

in [1]. Below we shall present a proof of the general result.

§3. Preliminaries.

It 1s sufficient to indicate the proof for the case where
the sub—divisions possess a special form, t, = k/N, with N '
assuming values of the form 2", M=l 2, <+, 1In this case,
every sub—division 18 a refinement of the preceding one.
Standard techniques used in the scalar theory can be carried
over to the matrix case to establish the general result.

Let us now show that S,, is a uniformly bounded matrix

N
function. We have, for any n—dimensional vector Yy,
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N-1 1/2 1/2
(2) (s"y’y)'ifo ([x(t1+1)—X(t1)J P(t,) (x(t,,,)-x(t;)] y.y)

N-1 1/2 M2

Since P(t) is continuous in [0, 1], we have (Fz, z)
m(z, z) for any z, for a fixed m. Thus
N-1
%
i

1/2 1/2
(3) (8yy,y) {m (EX(tiﬂ)—X(ti)J / v, [x(ty,;)-x(t,)] /9

=0

N-1
mz (v [xCey,y)=x(e,)]y)

S m(y. x(1) - x(o)]y) :

This completes the proof of the boundedness of SN
Since X(t) — X(s) is symmetric, and non—negative definite,
for t ) s, we may write
1(t:,ls) 0
k2(t,s)
(3)  X(t)X(s) = T(t,s ] Ti(t,8),

0 xn(t,a

where Ai(t. s) are the characteristic roots of X(t) - X(s),
taken™ for the sake of definitneess ii. the order

L i LY PIEEEED A,» and T(t, s) is an orthogonal transformation
which may be taken to be continuous in t and 8 for 1 2 t > s > 0.
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Then we may write
. l(to')l/z 0
1/2 xz(t")l/z
: (5) [x(t)-x(s)] =T(t,s) g T'(t,8
; '1n(*-r')1/2

As in [1], we may show that the convergence of Sy depends

upon the convargence of sums of the form

(6) () o NT (b Lt 1, )
N AR L SRt U5 LR

N-1

z h(ti)(kj)\k)l/z ,

(3.) .
RN 1=0

for 1 { J, k { n, where g(t) and h(t) are continuous functions
of t in [0, 1]. As in [1], it is sufficient to consider the
case where g and h are constant.

The convergence of sums of the form Slgk) has been

considered in [1]. It remains to consider the sums R.'(Jj’k).

§4. Representation of Amir-Moez — Hoffman.

The result we require to treat the convergence of sums

involving terms of the t‘ox'm(kak)l/2 is

Theorem 2. Let A be a non-negative definite matrix with

characteristic values A, > A\, p -+ 2 A,, and let 1,, 1,, **°, 1,

be integers such that 1 (1, { --+ {1, {n. Then
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(Axy, x;)  (Ax), x)

(1) AN = Sup Inf
172 My C M, X, € M, (Ax,, xl) (Ax,, x2) :
dim Plp-ip {xp}o.n.

This is a particular case of a general result of Amir—Mdez,
[3], found independently by A. J. Hoffman.

§5. A Lemma.

Finally, we require the simple

Jemma. If A and B are 2x2 non-nhegative definite matrices,

then

(1) [det(A + B)] /2 D (det A):l/2 + (det B)l/a.

A proof of this is given in [1], and 1s readily established
by direct calculation. '

§6. Proof of Theurem. y
1/2
It is easy to see from the inequality (ki)‘k)_ £ (AJ+ xk)/z,
or otherwise, that each sum of the form Ft}(‘J ok is uniformly

bounded for all N. Let us now establish the inequality

(1) Rg;‘l‘) gng'k) :

This will demonstrate the convergence of R}(‘J’k) for N = 2M
Using Theorem 2, we see that
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B . )Jl/? (Kgx10%y)  (KyXy,%5)
2 At ot IN (t, . ,,t = Sup Inf )
JV141° 74Tk 1417 (K1x2,x1) (Kixz'x2)
where Ki - x(t1+1) - x(ti).
Let B1s Boy ey By be the additional points added to

transform the N* sub—division into the (N+—1)St sub—division

<PH
- N

Y

» .
v

-«
<+
-

Since
(3) K1 - X(t1+1)—X(t1) - [X(t1+1)—X(l1+1)] + EX(I1+1)—X('t1)J,

we see upon applying the lemma of SS to the representation in

(2) above, that

1/2 1/2
(8) Dyl (80601 2 Dl ey )N (808 y)] 0+

1/2
[ ylogpp (g q0t)]

This ylelds the desired monotonicity and completee the

proof of Theorem 1.
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