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THE COMBINATION OF TIME SERIES AND CROSS-SECTION DATA
IN INTERINDUSTRY PLOW ANALYSIS®

Kenneth J. Arrow \
Stenford Wniversity

0. Sumary
The following problem arose in the course of a larger study waich sought

to explain the variations of input-output retios over time. (By the input-output .
ratioc of industry i to industry i is meant the ratio of that part of the

output of industry i used by industry J to the output of industry J, (oee [1_7).
For such a study, there are tvo types of data available. For all years, there
are available (ideally) outpute and final demands (the final demand for an
industry consiets of all uses of its product other than in other industries or
iteelf) for all industries. The ‘hhnc. equations” of input-output analysie
(see /73 7 below) form an (incomplete) systes of simultaneous relations which
may be estimated by some version of the method of maximum likelihood |for compu-
tational reascns, the single-equation limited-information method is the only

one likely tu be used ).  However, for some years, we have additional information
in the form of knowing the actual interindustry‘flows, which clearly should
substantially increase the accuracy of our estimates.

The simplest technique is, of course, to assune that the "true” input-output’
ratio for any year for vhich flov data are available is exactly equal to the
observed input-output ratio for that year. The assumption behind this is, hovever,
contradictory to the basic postulate that all the relations involved are valid
only up to a stochastic term.

It is therefore of interest to consider more explicitly the interindustry
flov model implied in the use of both time series and interiudustry flov data for

estimating the paraseters imvolved.c)The maxizum likelihood estiamstes for & eingle

# This paper arcee out of a study conducted by the RAND Corporation. I am
indebted to Ronald W. Shephard, nov of the Sandia Corporation, for raising
the proble=.
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equation are then derived, in the sense of being expressed as the solution
of a systen of simultaneocus equations. Unfortunately, these equations are
rather cusbersome, and it is hoped that some reasonably efficient method of

soultion can be found.

1. el stant Input-Qutput Coef ent

For expository reasons, we will start by assuming that the input-output
ratios are constant over time. We consider the estimation of a single L )
one of the balance equations of the input-output table. Let

X * derived demand for commodity O at time t, i.e., total net output

less final demand,

Xy ® output of commodity J at time t for J =1, ..., N,

ijt T
We have the identity,

input of commodity O to industry J at time t.

(1) xg = Jél 3o

where N is the number of commodities other than commodity O. The assumption of
input-output coefficients constant over time can be written,

(2) x,, = « xtGu

3t J t’

where Uy is a disturbance, distributed normally with mean zero. Frem (1) and

(2), we have the balance equation for industry O,

where

W =£l e

The disturbance u, is therefore normally distributed with mean O.
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It is assumed that there are two types of observations, one in which only
the variables xjt.
;Jt. are also observed. Let U be the set of years of the first type, V the set

(=0, «c., N) are observed and one in which the variables

of years of the second type; in application, V contains only the year 1947
plus possibly the year 1939. Let
;lﬁ.t = xjt. for any t € V,
X, be the column vector with components X, (3=0, «c., N),
;‘ the column vector with components ;Jt. (=1, «oo, M),
z, the column vector of the predetermined variables,
T the regression matrix of x; on z,,
7 the regression matrix of ;t. on z,.
The reduced forms for X, ;t. can therefore be written,
(5) x = T 2 +v,

(6) ;‘ =T B, ¢V,

where the vectors v,, v, are each distributed rormally with means zero and inde-
pendently of z,.

Let Ty be the 4*B row of M, ?J the 3"" row of 77 . By sul'stituting (5)
and (6) into (1) and (2) end equating coefficients of z, in the usual way (see’ [QJ), |

. e
(1) M= ;1 LT
(8) 1'7'.1 =, 77:1 (321, eeep N)e

Prom the definition of ’5* 5,00
’
(9) 17‘3 s ?lﬂ'

Let /. bot.hoeov.rtnu-truotvt,x thutot;t. Then the distributions
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of x, and ;t. (for given :'_) are given by

(10) 20x) = k| A1 exp [-@)(x - 7T 2)" Aty - 7T 3],
W) &) =) NP wp DE - T s)' AR -7 5],

where k, and k, are constants. For t in U, x, is observed; for t in V, ;t. is
observed. Hence, the likeiihood function L is obtained (assuming serial
independence of the disturbances) by multiplying together all expressions of
form (10) with t € U with all expressions of form (11) with t € V.

(12) log L =C + (1/2) log |[/\| - (&) t{:u (x - T2,)" /i(x - T 2,)
f2) e | A - @) TR, - 3) X (X, - T 3,
5
where T and 3 are numbers of observations in U and V, respectively.

The aim, then, s to maximize log L with respect to 77, F, N, eoe, X

1
A\, and K, subject to the restraints (7-9). The resulting values of

0(1, veeyy are the required maximum likelihood estimates.

2. Tne Model With Varying Input-Qutput Ratics

In general, each input-output ratio is presumed to vary linearly with a
nunber cf other var‘ables. Let Wi oeees My be the variavbles on which the

input-output ratiosex, depend. Any one coefficient may depend on only some

“

of these variables; let K bte the set cof variables on wluichon, depends. For

“ “

simplicity of notation, let w_be the conctant 1, and assume that K, contains



0 for all J.
(13) o, = ) oy e

(13)and (2) can be written,
() ;jt. = (kgqukj v“) Xgp + Uy (321, «cey N).
Let

5kf‘.t = 'kt ‘Jt (k = 0, seey ‘; J = 1. ceny ')o

For k = O, this definition corresponds to the earlier one, since 'ot. = ] for

all t. Also, let

(15) -ﬁkﬁ-J,t = ﬁ(k-l)fj,t. (k =1, coo, B#1; 3 =1, .0o, W),

x, be the column vector whose components are Xy (3 =0,.0., N(K+1)),

X, be the column vector whose components are !Jt. (3 =1,..., N(K+2)).

The vectors X, and X, are the observables in the observations under U and
V, respectively; they are somewhat redefined from section 1. (14) can be written,
(16) %, = L ., x (321, ..., N). ,

4t cer, ki X Nk, t » seey

Define 77 and 7T, as before, as the regression matrices of x, and X, ,

respectively, on the vector of predetermined variables z Since most of the

L
components of the two vectors are formed as a product of two variables, there is
no reason for the regressions to be linear; however, as Anderson and Rubin have
shown, acting as if they vere linear normal leads to consistent estimates
(see /37, p. 574). Hence, equations (5 ) and (6) will still be rega-ded

es valid. Since (1) still holds, (7) is still valid. Substituting (5) and
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A\
(6) into (16) yields the following .n;lo.‘i of (8)s
l

17) w, = s 81, ees, N).

Finally, (15) implies that,
(18) ?n’J = .(k’l)fJ (k = 1, LR ‘*1; J = 1. LN .)o

The likelihood function has the same form as before. Hence the maximum
likelihood estimates are obtained by maximizing (12) subject to the restraints
(7), (17), and (18).

3. strictions on the Cov ce Matrices of the Reduced Form Disturbgnces.
It can be argued that the above model implies certain relations between
the covariance matrices of the reduced forms (5) and (4), i.o.,./\:l Andx-l.

Since (15) is an identity,

(19) 7lkoj,t. B vI(k-l)fJ,t. (k =1, coop B¢1; J =1, ¢cc, N)

M‘“ be the covariance of vy and Vie 5"1’ the covariance of 71 and ;J' Then,
from (19)

’nfj. 'k'.'J' .c.(k-l)*J. .(k'-l)‘fd' »(koh' = 1; ooy Keol; JDJ. ® 19 ees, ')

which can also be written

(20) ;13 O gy =W, .., N(K+2); 3 = M+1, ..., N(E+2)).

Similarly, since (1) is an identity,
N
(21) o6, = 5}21 Ty so (L1, «oo, N(Kt1)).
It would be reasonable to impose the conditions (20) and (21) upon the

maximization of the likelihood function. However, this would greatly complicate
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the form of the estimation procedure. Further, if we wish to assume that the
interindustry flows are observed only with error, the relation (1) becomes a
stochastic relation (if ;Jt. is taken to refer to the observed rather than the
actual flow), and the argument leading to (21) breaks down. Por these reasons,
we will dim;‘rd the restrictions on the covariance matrices of the reduced
form disturbances.

be vation of the Estimate

Rewrite (13) as
(22) 7= Tox (3=W1, oo, N(Ke2)).
We wish to maximize (12) subject to (7), (17), and (22). We use the method of
Lagrange multipliers. There are altogether N(K+2)+ 1 restrictions, each a vector
restriction with as many components as there are predetermined variables. To
each restriction we assign a Lagrange multiplier, itself a vector. Let A
correspond to (7), 47 to the J'P restriction in (17), and v'J to the §*P
restriction in (22). The Lagrangian may then be written,

(23) &= c+(v/2) dog [AR/2) d0g [A]-0/2) T xy = 72" N lxy = 7 5,)

-(WV2) T G -Ta ) A(x,-Ts)

se vV

R )
(7, ;«J)/\«».’g (kngau T ey = T 904

N(E+2) v Tk
JaN+l
Let 'n be the matrix of sums of cross-products of x and 2z, summation extending
over all observations in U,

'u be the matrix of sums of squares and cross-products of the z's, summed

over observations in U,
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in be the matrix of sums of cross-products of X and z over v,

i“ be the matrix of sums of squares and cross-products of the z's,
summed over V.

Now differentiate A successively with respect to 77;, "’mm (k =0, ...,K;

J=1, «eo, N), -773, and equate the results to O.
(24) OWT, = A My - TT M)+ A1 = 0.

25) oW My o AN - e wdl B D

(k 20, oo, K; § =1, ..., N).
(26) oW T 2RIy -FH) - - A =0 (521, ..., ».
3

(27) OA/FJ=7LJ(E -TH) -v

2 2z *'=0 (J =N, ..., K(E#2)).

Here, each equation represents a row vector of derivatives. In (25), it is under-
stood that

(28) =01rk¢x5.

J
Define row vectors,

Vl(lul)t

(29) Po==- A", P s-(au/ujv,, J') (k®0, oveyp K3 351, coo B),

Nk+J

(30) &y = ""/’J '(3=1, e, ), By= vy 0 (5=, ..., B(KR2)),

and matrices,

P R
(31) Py By
P= |2 Rs | .
LT By (x+2) |

Then (24) and (25) may be wriiten,
(32) A, - Tn,)=p,
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(26) and (27) become
(33) J(.(ih -7 =R

(3‘0) 'ﬁfj E - qkj RJ - %(k’l)'J - qu ’0 .

Define
(35) % = 0, %k".: - -qu. %QJ.'(R’I)’J = '1. %kfj.q = 0 for all q ‘ J.

'(k’l)f: (q = 1. see, l(l’Z); k= 0, seey ‘3 J s 1. seey ')o

Let Q be the matrix with elements % (p s 0, ceey .(‘fl)‘ q®= 1. ceey I(I‘O'Z)).
Let Q be the column vector with Q, = 1, anﬁ "~y (k 20, eeep, K3 =1, co0, N).

Then (34) can be written,
(36) P=QR+QP, .

1f we combine (32) and (36),
(37) A, - TH,) =QR+ TP, .

Note that Q and Q depend only on the < In effect, the unknown Lagrange

's.
kJ
pll‘.-torl A .ﬂj (J = 1. ces, '). UJ (J = "’l. ceey '(”2)) have been
transformed into the unknown aatrix R and vector P,. (33) and (37) are the
results of the differentiation of the Lagrangian (23) with respect to the

regression matrices 7, Ir. Now differentiate with respect to X 3

(38) 7y 4 @0 (K=20, cosy K3 321, oau, N).

With the aid of (29) and (30), (38) may be rewritten
(39) ”.”J (RJ+ Po)' = 0 (k s 0. L) l‘ J = 1. seey .)o
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" We can eliminate P, as follows: In (37), multiply on the left by Q 2,
where ), = AL, Let

W) F=@ L.
Note that J is a scalar. Then,

W) P,z F@ N, -7, -3 L qR).

Finally, we may differentiate A with respect to the matrices /\ " 7(..
the inverses of the covariance matrices of reduced form disturbances in the
equations in the observations of U and V, respactively. Let E = 7\_'1 o« Then,

as in Anderson and Rubin (see n. 2),
(42) Ezlxx"gu ™ - WR, TN, '

et
- gV o

W) T=H_-H -7k _+ TN
b3 Xz X
We have then to solve equations (33), (37), (39), (42), and (43) for the
unknowns A, A, T, R, &, 7T, and 77, where P, is eliminated with the aid of
(40) and (41). Actually, we are only interested in Q (note that the matrix &
is completely defined by the vector a) which involves the structural coefficients
to be estimated. .‘!'hue equations seem considerably more difficult to handle than

the corresponding ones of Anderson and Rubin.
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