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1 .     INTRODUCTION 

In  the past, methodö  have been proposed and used for the 

computation of real roots of equations  In a single variable. 

Notable among these  is Nekton's Tangent Method,    However,  this 

procedure  is quite costly  in many instances  wherein  the  function 

whose  zero is desired is inordinately complicated, and indeed, 

it  is usually the case,  polynomials and other simple functions 

excepted,  that derivatives  are more complicated to evaluate 

than the functions  themselves.    This  last  circumstance con- 

stitutes  the principal motivation of later methods which are 

based solely upon evaluations of the  functions themselves.    We 

shall not describe any of  these in detail here, however,  but 

shall  content ourselves  with a single reference  [l],  and the 

remark  that our method  falls in this  latter category.    To our 

knowledge,  none of these  later methods  are  sequential minimax 

in  character except for the  bisection procedure and this  in a 

restricted sense. 

Let us now mention  that due to personal preference,  or 

otherwise established physical laws,   the  functions encountered 

in  the past and presumably to be encountered  in the future,  had 

a strong tendency  to  be analytic  in character.    This happy 

circumstance coupled  with  the  rare occurrence  of the  zero 

sought  being a point of  inflection of the graph of the function 

Justifies  the assertion  that once a root  is  located on a  suf- 

ficiently  arall  interval  by  a positive and negative reading, 

the  function will be  inclined to be convex or concave  throughout 

the  interval. 
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Thua, for example, In [l] the equation f(t) ■ t'-ot1 

^t-^G-et^e^-iete^-^te^^t" - 0 la »tudled, f(2) and f(3) 

were found to be of opposite algn and thus a root was located 

on (2,3). 3y repeated application of the "Msectlon" technique 

the root was found to be approximately 2.7184. However, to 

obtain k  decimal accuracy with certainty using the bisection 

technique would almost always require (starting on an Interval 

of unit length as above) 14 evaluations of the function even 

with the Information that the function Is monotone. On the 

other hand. It can be shown by elementary argumenta that the 

above function f Is convex on [2,5] . Making use of this In- 

formation, together with the knowledge of f(2) and f(3) and 

succeeding functional values (the bisection procedure makes use 

only of the knowledge (x., sgn f(x1)) one should expect to 

obtain far mon» rapid convergence using a sequential relnlmax 

procedure which takea this Information Into account. This 

phenomenon will be exemplified In paragraph 3* 

2.  DKSCRIPTIQN OP THE PROCSDOKB 

In what follows we shall describe a numerical procedure 

for solving the following problem: 

"tfe know Initially a positive and a negative value of a 

function at two given points respectively. The function la 

continuous and convex and Is otherwise unknown but computable. 

Given an Integer n > 0, how do we proceed to locate Its root 

on this Initial Interval within an Interval of minimum length 

In n steps where a step consists In calculating the value of 
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the  function at  any point we choose?"    As  It stands,  the que»— 

tlon  la meaningless.   I.e., has no definite answer, until we 

specify^   for example,  that our procedure be sequential mln— 

lir.ax.   I.e.,  to say at each step of the procedure we assume that 

the  worse possible situation might occur from that point on  in 

the  light of our present Infonnatlon about the function and 

proceed to evaluate  the  function at a point which hedges against 

all  contingencies  so as to guarantee a  fixed Interval at  that 

stage. 

An alternate question would envolve the  final  Interval as 

specified In length and  the requirement  that the number of steps 

be minimized.    Without  going Into any detail, we mention  that 

the procedure which answers the first question need be somewhat 

modified to answer the  second. 

Finally we remark  that If the function is concave rather 

than convex, we merely have to replace  the function by its 

negative.  I.e.,  f(x)  -> —V{x)  for the procedure to be applicable. 

Also,   if the signs of the initial readings are reversed,  i.e., 

a < b and f(a)  < 0,  f(b)  > 0,  where   (ft#b)  is our starting inter- 

val,  we need only replace f(x) by f(—x)   to render the procedure 

applicable. 

We now describe  the procedure cycle: 

Suppose we are   in  the situation  in which we know f (a) - Y > 0, 
> 

f (b)  - -Yb, Y,   > 0,   where  a < b,  and   the root  > S and we have 

n more  readings  to make. 

Then we have bracketed the root on  the Interval   (S,W),  where 

W - a 4  (b-a)  ■ g,     . 
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If n » 0,  the computation ceaaes  and the  valuea  S,W are 

recorded. 

If n > 0,  calculate the value of f at x - S -f (W-S)*/* (w^)   . 
a 

If f(x) - Y    > 0, set a« - x,  b»  - b and S'  - x^(»-«) m   i-   . x ax 
If, however,  f(x)  - -Yv < 0,  set a»  - a, b.!  - x,  and If x Y 

Y    > yh aet S1  - S, otherwlae aet S«   - max(S,x-(b-x)  m   i    ). 
b  *x 

Finally, aet n*  - n—1. 

Then we are  in the altuatlon  in which we know f^*)  • ^ai> Q» 

f(b,)  - -Ybi»ybt> 0,  where a'  < b»   and the root > S1  and we 

have n* more readinga to make.    This  completes the cycle.     (Aa 

the problem la stated, S - a initially.) 

In the next section we shall  illustrate how this procedure 

works on a particular example. 

Reaark 1.    The foregoing procedure ia an approximation to 

the actual minimax procedure.    The theoretically correct pro— 

cedure would only involve replacing the expreasion ^(y)   ln 

x 
the formula for x above by/^(^J» y^) #  where ^(S.Y)  ia defined 

a 
in paragraph ^.    Since  the objective  function is relatively in- 

sensitive to S in our choice of /^(SjY)  in the vicinity of the 

minmax, we fttl that  the approximation 

/'n(0,Y)^^n(S,Y) 

is  justified,  and define /^(Y)  -/^(C^Y).    This approximation 

renders the procedure more Adaptable  to machine computation. 

paper. 
Graphs of ^    for n - 1,2,3,4 are included at the end of this 
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Remark 2.     Since the average digital computer has difficulty 
■ 

In reading graphs. In order to program the procedure, one would 

first find suitable algebraic approximations to the graphs of 

fn  after the fashion of C. HaBtings, Jr. [}]. 

j.  A NUMERICAL APPLICATION—COMPARINQ THE HISBCTIQW TBCHNIOT 

Suppose we are desirous of bracketing in on the zero of a 

certain complicated function f defined over the interval (0,1). 

We «enow that f is continuous and convex and that in fact, f(0) ■!# 

f(l) - -1. However, since the function requires one hour of 

■achina time to evaluate a single point, we are ignorant of the 

fact that to all intents and purposes it is given by the rel- 

atlvely imocuous expression f(x) - max(-l, (x-^-Xj- -^)). We 

can afford to make three evaluations of the function (h-^)» 

Upon referring to the graph of Ra(0,Y)# with Y • »^ - 1 we see 
i1 

that we can guarantee locating the root on an Interval of length 

.01 times the original interval, i.e., on an interval of length 

.01. However, since the graphs represent the worst that can 

happen to us, we expect to do much better, and Indoed this turns 

out to be the case. 

We proceed to calculate: 

Cycle Wo. 1. 

a-0, b- 1,YD -1,YK- 1, S • 0, n • 5, whence by our a      u 

formula, W - .5, and we have located the root on (0,.t)). Hext, 

 •  
At the end of this paper. 
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x - 0 + (.5-0) ^»(1) • .5(.l48) - .07^, and w« find that 

f(.07^) - .76839 > 0; BO a» - .07^, b« - 1 and •• - .07* 

^ sOZiLj^i) . .31950. Finally, n' - 2. 

Cycle Wo. 2. (dropping primes on the new variables) 

a - .<m, b - 1, ya - .76819, Yb - 1, S - .31950, n - 2, 

whence by our formula, W - .07^ ■»- 'l^mf^ m  -^7636, and 

we have located the root on (.31950, .47636). Next, 

x - .31950 + .15686 /0»( jb^) - .31950 + (.15686) (.198) - .35066, 

and we find that f( .35066) - -.04795 < 0, so a1 - .074, b« - .35066 

and since ^ < V S« - max ('^950, .35066 - (1-^066^047^) ) 

- .31950. Finally, n' - 1. 

Cycle Wo. 3. 

a - .074, b - .35066, ya - .76839, Yb - .04795, S - .31950, 

n - 1, whence by our formula, W - .074 ^ t '^^feffi^ !6?7$^* »53441 

and we have located the root on (.31950, .33441). Next, 

x - .31950 ♦ (.33441—31950) ^(;%^) - .31950 4 (.01491) ^(.624) 

- .32440, and find that f(.32440) - .02535 > 0, so a' - .32440, 

b. - .35066, and S» - .32440 * i^^^^^l .   .33294. 

Finally, n* - 0. 

Cycle No. '4. 

a - .32440, b - .35066, ya - .02535, Yb - .04795, S - .33294, 

n - 0, whence by our formula, W - .32440 ♦ (!^^Ii2g^0H ^gS3S) 

- .33348, and we hav^ located the root on (.33294, .33348) • n - 0, 

so the computation ceases and the Interval (.33294, .33348) Is 

recorded. 
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Dlscussion 

Since the bisection procedure doeo not take c- gnlzance of 

the convexity of the function, one would obtain Initially without 

any evaluation of f that the root lies on (0,1); with one evalua- 

tion, (0,.3); with two evaluation», (.25»»5)j and finally, with 

three evaluations, (.23,075). The lengths of these bracketing 

Intervals are, then, 1, .5, .2^, .125 respectively. Comparing 

these with those obtained by the procedure above, namely .5* 

.15686, .01491, .0005^, we see that our procedur« doe» have a 

slight edge in this Instance.  In fact, in any instance of a 

convex function with the same starting value» as our example, 

we can guarantee in three evaluations, a bracketing interval 

of length < .01, as was pointed out earlier.  This value compare» 

favorably with .125. 

4.  DSRIVATION OF THE FUNCTIONAL EQUATION 

Qlven a continuous convex function f and two of its value», 

one positive and the other negative, (say f(xl) > 0 and f(xi) < 0 

with Xi < x«) how should one search for the zero of the function 

which lies on the known interval (xi,xa)7 Utilizing the principle 

of optimality of the theory of Dynamic Programming [2] ,  we formulate 

the problem In terms of minimizing the maximum length of interval 

on which we can deduce that the zero 1» located in n reading» 

taken sequentially. 

First, by reduction to scale, we can always consider the 

following diagram: 
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Pig. 1 

wh«r« f(0) • 1, f(l) « -Y, Y > 0# W - j-fr. Since f la convex, 

the zero must lie on (0,w]. If we have Juat one more reading 

to make (n«l), then we ohooae* x on (0fW) and calculate f(x). 

It can be shown by simple dominance arguments that no reading 

of f need ever be taken outside any Interval on which the zero 

has been located. Having chosen x and calculated f(x) we en- 

counter exactly one of the following oases (barring f(x) « 0, 

of course, the best possible case). 

Case 1 

If f(x) - v > 0,  then by drawing straight lines Joining 

The particular optimal choice will be derived In what 
follows. 
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known points on  the graph of f,  we have the picture below, with 

the root  located on   [S^1]   as  Implied by the convexity of f. 

• 

Fig.  2 

Case 2 

If f(x)  - -v»   < 0,   the picture   Is 

*i 
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Plg. 3 

with the root located on (max (0,t'),W") as Indicated. 

Let SB - max (OjS'). If x le the final point at which 

f(x) 1B to be determined (i.e. n-l) then It le chosen ao as 

to minimize the maximum possible value of max (W—S, Wn-^Sn) 

consistent with our choice. 

Before going Into the algebraic details of the solution 

for n«l| let us consider the general n stage process In which 

we have several more readings to make. In either of t^e two 



9-11-56 

casea dlagranunecl above, all the essential data can be described 

by a baalc triangle determined by a two parameter ayatenr. at 

follows . 

in Plg„ 2, we can conclude that the graph of f lies above 

the line segment v8 and below the segment vW'Y (where the letters 

stand for both points and values In the obvious manner).  If 

we now draw the line segment SY, it may or may not be crossed 

by the graph of f; but If It Is crossed at some point P say, 

we can replace that portion of the curve lying below PY by PY 

with Impunity.  This device does not violate the convexity 

condition nor does It exclude the worst possible case. This 

can be shown by simple dominance argument" based on our knowledge 

of the function at any particular stage. 

The essential data can thus be described by the triangle 

vSY.  Since a vertical reduction In scale leaves the problem 

Invariant, and a horizontal reduction, relatively Invariant, the 

triangle vSY can be replaced by a triangle of standard form 

described plctorially by two parameters Y,S (say) as follows. 
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Flg. 4 

Similarly, In the second case (Fig. 5), the graph of f 

lies above S'v" and below IW^v'. Draw the line aegment from 1 

to S' and replace any portion of the graph of f lying below 

this line by the line itself from 1 to the point of croaslng. 

This does not effect the choice of subsequent x's, since they 

will all be chosen on minimal bracketing Intervale. Again, 

this can be shown by simple dominance arguments. Thus, In the 

second case also by a suitable reduction to scale we are led 

to another representation of Fig. 4. 

Now define 

11 (S,Y) • the minimum length of Interval on which we can 

guarantee locating the zero in [0,l] of any convex function f, 

given that f(0) - 1, f(l) • -Y < 0, the root is > S and we have 

n readings to make. If n - 0, we have clearly. 
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rv{3tY)  - ^ - s . 

Next, using th« principle of optlmallty, and taking into account 

the scale factors, we obtain for n > 0 the following recurrence 

relation: 

<^X|~I xRn-l (ify^T '*•} 

^(^Y) - mln , mauc < 

0< 

max      (1-x) R^  (^ • ^ . ^) 
0<v^l-x(l+Y)      n i v i x  i v  v/ 

with the upper and lower expressions after the brace correspond- 

ing to the second and first cases, respectively. The scale 

factors are obtained in a completely elementary manner by means 

of similar triangles. 

The ranges of the variables S,Y above are given by Y 2 0» 

^ S ^ ^ TTV * ^ rendGr the expressions more amenable to 

computation on the Johnniac, we made the following substitutions! 

W " TTY ' VS'W) • M3'*)' vfhenca V8'Y) * ♦n(S'T?r)' 
An additional modification of the quant  led variiblee v, v' 

finally reduces the system to 

^(S^W) - W-S 

d (3,V) ■ min max < 
n      S<x<W 

where 0 ^ S ^ W ^ 1. 

x max ♦n-l { I' v(llxj^-t) 
S<t<x 

/i   \       A    /t'-X   W(t,-X)\ 
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The functions i (S,W) were then computed for n • 1,2,3»^ 

by means of a discrete approxlaatlon using various grid sizes 

and linear Interpolation.  We are Indebted to S. Dreyfus for 

programming these computations for the Johnnlac. 

The  minimizing x's were of course recorded and these form 

the basis of our optimal policy. I.e. to say x#" x#(3,W) Is 

the point at which we evaluate our unknown function f given 

that the root lies on (S,W) In our basic triangle and there 

are n evaluations to be made. The point x» Is, of course. Itself 

measured on the basic triangle. To take cfre of the general 

situation, we must of course relate our readli ^s to the original 

scale.  If we let /> (ß.Y) denote the fraction of the distance ' n 

between S and W occupied by x*, we readily obtain 

x*(S,W)-5 
^n(S,Y) .^  , 

where W • y-y . It Is now a relatively easy matter to relate 

x* to the original scale and thus to obtain the procedure cycle 

outlined In paragraph 2. 

Graphs of the functions R (0,Y) and /^ (0,Y) for n - 1,2,3,^ 

are included at the end of this paper. 

S.  REMARKS—THE SPECIAL CASE n - 1 

We shall Initiate this section with a few remarks Intended 

primarily to validate certain assumptioat made, tacitly or other- 

wise. In the derivation of the functional equation.  We shall 

close this section with a brief treatment of the special case 

n - 1, S • 0, which provided us with an excellent check on the 



P-935 
9-11-56 

-In- 

validity of the data obtained from the Johnnlac. The remarka 

are as follows. 

1. Suppose we are at a certain stage In an optimal sequential 

mlnlmax search.  We have several values of f computed and we are 

ready to choose our next point of evaluation. Let a,b denote 

the closest evaluation points on the left and right respectively 

of the minimal Interval (S,W) on which the root Is known to lit. 

Then In an optimal procedure, we choose x on (a,b). To see 

this, we need only state that since the unknown function f may 

Indeed be plecewlse linear (a possible contingency) outside 

(a,b) Is is easy to see that any such subsequent reading would 

In such a contingency afford us no information regarding the 

character of f within (a,b) pertinent to the location of its 

zero, not already implied by the quantities a,b,f(a),f(b), S and 

W, or Indeed by any of our previous readings for that matter. 

Similar but slightly more involved arguments can be given to show 

that the next reading should be taken on the Interval (S,W). 

2, In the treatment of Case 2, it was tacitly assumed that 

Y < Y, I.e., to say the SY line has a negative slope aa shown 

in the figure.  Again, it can be shown by dominance arguments 

that the worst situation occurs when f is monotone, and Indeed 

when the graph of f lies abc e the line SY.  It is this condition 

which determines the limits of the quantified variable v in the 

upper line of the functional equation for R . It la precisely 

such dominance considerations as these which, though enabling 

us to express the functional equation In a relatively simpla form 

and to obtain an optimal "policy" therefrom via its recursive 
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computatlon, do not enable ua to obtain an optlnal "procedure" 

directly from the equation. However, all the happy contlngenclea, 

together with the Information about the function f they afford 

are taken care of In the procedure outlined In paragraph 2.  It 

la Intuitively clear that the resulting procedure Is sequential 

mlnlmax. 

).  We now conjecture that the functional equation for II 

may be valldly simplified by assuming that the maximum In the 

upper line of the equation Is always taken on at the upper end- 

point of the range of v. This Is true for example If n-1. However, 

the authors ware unable to prove the assertion In general and 

thus the transformed equation for 4 wa5 subsequently submitted 

to the Johnnlac In Its present form.  Suffice It to say that 

the resulting data supported the conjecture. 

4. R (S,Y) Is separately decreasing In S and Y. To see 

this for the first variable, for example, upon recalling the 

definition of R^SjY), we need only observe that, other things 

being the same, the Information that the root le > S Includes 

the Information that the root Is > S1 If S' < S. On the basis 

of the additional Information, then, we can clearly guarantee 

at least as short a final bracketing Interval with a larger S 

value If we are proceeding optimally. I.e. FL(S,Y) < KfS'jY) 

If S > S*. An analogous argument applies for the second variable- 

5. We conclude our remarks with a conjecture about the 

asymptotic behavior of ^ (S,Y) as Y -> w - 1. In particular, 

we conjecture that there exists a positive numberz^» such that n 
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f  (O.Y) X/** as Y —>a) . This Is easily shown to be true for 

n • 1, but the proof seems to be difficult for larger values 

of n. The precise value for n » 1 Is known and Is Included 

In the accompanyInü graph together with "estimates*1 of/0* for 

n - 2,M. 

We conclude this paper with a brief discussion of some 

results obtained for the case n » 1, S - 0. We shall spare 

the reader the elementary albeit complicated algebraic details 

Involved and simply state that upon substituting the function 

In the right member of our functional equation and setting S - 0 

In the result we obtain a relatively simple algebraic mlnlmax 

problem for the determination of Ri(0,Y). 

The substitution p*  x(l-fy) then yields, upon performing 

the mlnlmax operation,the following equation relating the optimal 

ratio/^ and the variable Y: 

{r*-2f*-5f*-2  +l)Yt 4 2{2p*~f*-y>*\)\  + (^-1)* - 0 , 

with  the restrictions Y > 0,   0 ^/^ 1. 

By some  Inexplicable quirk of  fate the discriminant  of the 

above quadratic   In Y turns out  to  be precisely 8/**.     Thus,  we 

readily obtain  the  following  rational  parameterization of the 

(^,Y)   curve: 

r- i(i-t)a 

Y  -    ^ 
1^4 t-t4 

0 < t < t0 

J 
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To determine the value of l0 we note that the limiting 

form of the polynomial equation as Y —XX) is simply the co- 

efficient of the leading term In Y set equal to zero: 

This equation has a unique root on the Interval (0,1) and is 

given by 

z0! 282 . 
2 

This is the asymptotic value mentioned earlier in remark 5. It 

follows from the parametric representation of f  that t0 • 1 - ^2^ 

ä .250. As a check on this we note that this value of t0 is 

the smallest positive root of the denominator in the parametric 

expression for Y. 

The graphs of Ri(0,Y), /^(Y) were plotted from manual com- 

putations using the preceding formulas and these compared quite 

favorably with the results from the Johnniac. Unfortanately, 

however, due presumably to the choice of insufficiently small 

grid sizes imposed by the Johnniac's limited memory^ a cumulative 

error caused, in effect, a gradual upward creep in the tails of 

the f>  curves. TYiese were smoothed out to agree with theory to 

obtain the included graphs. The  R curves, fortunately, seemed 

quite insensitive to choice of grid si/.e. 

In closing, we mention that further checks on the computa- 

tions were provided by the easily derived relationships: 

♦n(w.w) - 0, ^n(s,i) . M , 

and these were found to fit the Johnniac data exactly. 
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