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. SUMMARY
Nﬂ// 2, '.;

We—imow—intsieddy-“a positive and a negative value of a
function at two given points respectively. The function is
continuous and convex and 18 otherwise unknown but compytaple. 0
Starting with this information, we—descaibe a proceduré??b%ﬁc{jd/"
locating its unique root (on the starting interval) within
an interval of minimum guaranteeable length in n steps, where
a step consists of calculating the value of the function at
any point we choose. The pertinent functional equation is
; derived and curves of the objective function are plotted for
n=1,2, 3, 4 from data obtained from the Johnniac, RAND's

"\

i Princeton—-type high—speed digital computer. ()
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1. INTRODUCTION

In the past, methods have been proposed and used for the
computation of real roots of equations in a single variable.
Notable among these 1s Newton's Tangent Method. However, this
procedure is quite costly in many instances wherein the function
whose zero 18 desired 1s inordinately complicated, and indeed,
it 18 usually the case, polynomials and other simple functions
excepted, that derivatives are more complicated to evaluate
than the functions themselves. This last circumstance con—
stitutes the principal motivation of later methods which are
based solely upon evaluaticns of the functions themselves. We
shall not describe any of these in detail here, however, but
shall content ourselves with a single reference [1], and the
remark that our method falls in this latter category. To our
Knowledge, none of these later methods are sequential minimax

in character except for the bisectlon procedure and this in a

restricted sense.

Let us now mention that due to personal preference, or
otherwise established physical laws, the functions encountered
in the past and presumably to be encountered in the future, had
a strong tendency to be analytic in character. This happy
circumstance coupled with the rare occurrence of the zero
sought being a point of inflection of the graph of the function
Justifies the assertion that once a8 root is located on a suf-
ficiently srall interval by a positive and negative reading,

the function will be inclined to be convex or concave throughout

the interval.
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Thus, for example, in [1] the equation f(t) = t3-it®
+9t+6—6t'e"t—18te_t-jte—et—ét‘ = 0 i3 studied. f(2) and f(3)
were found to be of opposite 8sign and thus a root was located
on (2,3). By repeated application of the "bisection” technique
the root was found to be approximately 2.7184. However, to
obtain 4 decimal accuracy with certainty using the bisection
technique would almost always require (starting on an interval
of unit length as above) 14 evaluations of the function even
with the information that the function is monotone. On the
other hand, it can be shown by elementary arguments that the
above function f 18 convex on [2,}]. Making use of this in-—
formation, together with the knowledge of f(2) and f(3) and
succeeding functional values (the bisection procedure makes use
only of the knowledge (xi, sgn f(xi)) one should expect to
obtain far mors rapid convergence using a sequential minimax
procedure which takes this information into account. This

phenomenon will be exemplified in paragraph 3.

2. DESCRIPTION OF THE PROCEDUKE

In what follows we shall describe a numerical procedure
for solving the following problem:

"We know initially a positive and a negative value of a
function at two given points respectively. The function 1is
continuous and convex and is otherwise unknown but computable.
Given an integer n > O, how do we proceed to locate its root
on this initlal interval within an interval of minimum length

in n steps where a step consists in calculating the value of
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the function at any point we chcose?" As it stands, the ques—
tion is meaningless, 1.e., has no definite answer, until we
specify, for example, that our procedure be sequential min-—

imax, 1.e., to say at each step of the procedure we assume that

the worse possitle situation might occur from that point on in
the light of our present information about the function and

proceed to evaluate the function at a point which hedges against

all contingencles 80 as to guarantee a fixed interval at that

stage.

An alternate question would envolve the final interval as
specified in length and the requirement that the number of steps
be minimized. Without going into any detail, we mention that
the procedure which anawers the first question need be somewhat
modified to answer the second.

FPinally we remark that if the function is concave rather
than convex, we nerely have to replace the function by 1its
negative, 1.e., f(x) - —f(x) for the procedure to be applicable.
Also, if the signs of the initial readings are reversed, 1i.e.,

a < band f(a) <9, f(b) > 0, where (a,b) 18 our starting inter-
val, we need only replace f(x) by f(—x) to render the procedure
applicable.

We now descride the procedure cycle:

Suppose we are in the situation in which we know f(a) = Y‘> 0,
£f(b) = ~Y,» Y, > 0, where a < b, and the root > § and we have
n more readinge to make.

Then we have bracketed the root on the interval (S,W), where
Y

H-a+(b—a)Yb—iyg.
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If n = 0, the computation ceases and the values S,W are
recorded.

Y
If n > 0, calculate the value of f at x = S 4 (W—S)'Fh(yg).-
a

Y
If f(x) = Yx > 0, set a' = x, b' « b and 8' = x+(x—8) !—:§- .
a 'x

If, however, f(x) = -Y <0, set a' = a, b! = x, and if
Y, > Y, set S' = 5, otherwise set §' = max (8, x—(b—x) Y;:;; ).

Flnally, set n' = n-1,

Then we are in the situation in which we know f(a') = Y, >0,
f(b') = -¥.,,Y,,> O, where a' < b' and the root > 8' and we
have n' more readings to make. This completes the cycle. (As
the problem is stated, S = a initlally.)

In the next section we shall illustrate how this procedure
works on a particular example.

Remark 1. The foregoing procedure is an approximation to

the actual minimax procedure. The theoretically correct pro—

Y
cedure would only involve replacing the expression F%(YE- in
a

the formula for x above by A2 (S—-a Yb) where ©_ (8,Y) is defined
y n ﬁo Y; /] n '

in paragraph 4. Since the objective function is relatively in-

sensitive to S in our cholice of f%(S,Y) in the vicinity of the

minmax, we feel that the approximation
£, (0,Y) = 2 (8,Y)

is Justified, and define A (Y) = 2,(0,Y). This approximation

renders the procedure more adaptable to machine computation.

.Oraphe of Fh for n = 1,2,3,4 are included at the end of this
paper.
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Remark 2. Since the average digital computer has difficulty
in reading graphs, in order to program the procedure, one would

first find suitable algebraic approximations to the graphs of

A, after the fashicn of C. Hantings, Jr. [3].

g A NUMERICAL APPLICATION—COMPARING THE BISECTION TECHNIQUE

Suppose we are desirous of bracketing in on the zero of a
certain complicated function f defined over the interval (0,1),
We «now that f 1s continuous and convex and that in fact, £(0) =1,
f(1) = -1. However, since the function requires one hour of
machine time to evaluate a single point, we are ignorant of the
fact that to all intents and purposes it 1is given by the rel-
atively imrocuous expression f(x) = max(-1,(x-— })(é»—))). We
can afford to make three evaluations of the runction (n=3).

Upon referring to the graph of Rg(0,Y)® with Y » ;% = 1 we see
that we can guarantee locating the root on an interval of length
.01 times the original interval, i.e., on an interval of longtﬁ
.01. However, since the graphs represent the worst that can
happen to us, we expect to do much better, and indeed this turns
out to be the case.

We proceed to calculate:

Cycle No. 1.

a=0, bs=1, Ya - 1, Yb =1, Se0,ns= 3, whence by our

formula, W= .5, and we have located the root on (0,.5). Next,

—5
At the end of this paper.
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x =0+ (.5-0) A(1) = .5(.148) =« .0T4, and we find thet
£(.074) = .76839 > 0; 80 a' = 074, b' = 1 and 8' = 0T

+ .°7i :,68 = .31950. PFinally, n' = 2,

Cycle No. 2. (dropping primes on the new variables)

a= 074, b = 1, Ya - ,76879, Yb = 1,8« ,31950, n = 2,
whence by our formula, W= .074 + 4¥%$éé%g§221 = 47636, and
we have located the root on (.31950, .47636). Next,
X = 31950 + .15686 ’%(775§3g) - .31950 + (.15686)(.198) = .35066,
and we find that f(.35066) = —.04795 < O, 80 a' = .07k, b' = ,35066

and since ¥ < Y., 8' = max (-}1950. -35066 —'11:f2§9g8%$§§51221 )

 ,31950. Pinally, n' = 1,

_Cycle No. 3.

a= .074%4, b = .35066, Ya = .76839, Yb = 04795, S = ,31950,

.35066—.074)( .768

n = 1, whence by our formula, W = .074 + 33441

and we have located the root on (.31950, .33441). Next,

X = .31950 + (.33441-.31950) fi(:°“7 5) = .31950 + (.01491) A(.624)
= .32440, and find that f(.32440) = .02535 > 0, so a' = .32440,

b' = 35066, and S' = .32040 + (32330 0T3)(-02905) . 33004,

-

Finally, n' = 0.

Cycle No. 4.

a = 32440, b = .35066, Y, = .02535, Y, = .04795, 5 = .33294,

n = 0, whence by our formula, W = ,32440 + (-63066-;22u40!§.02§z§2

« .33348, and we hava located the root on (.33294,.33348)° n = 0,
80 the computation ceases and the interval (.33294, .33348) 1is

recorded.
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Discussion

Since the bisection procedure does not teke c  Znizance of
the convexity of the function, one would obtain initially without
any evaluation of f that the root lies on (0,1); with one evalua-—
tion, (0,.5); with two evaluations, (.25,.5); and finally, with
three evaluations, (.25,.375). The lengths of these bracketing
intervals are, then, 1, .5, .25, .12%5 respectively. Comparing
these with those obtained by the procedure above, namely .5,
.15686, .01491, .00054, we see that our procedure does have a
8light edge in this instance. 1In fact, in any inatance of a
convex function with the same starting valuees as our example,
we can guarantee in thrse evaluations, a bracketing interval
of length ¢ .01, as was pointed out earlier. Thils value compares

favorably with .125.

4. DERIVATION OF THE FUNCTIONAL EQUATION

Given a continuous convex function f and two of its values,
one positive and the other negative, (say f(x,) > O and f(xg) < O
with x; < xg) how should one search for the zero of the function
which 1lies on the known interval (x;,xg)? Utilizing the principle
of optimality of the theory of Dynamic Programming [2], we formulate
the problem in terms of minimizing the maximum length of interval
on which we can deduce that the zero is located in n readings
taken sequentially.

First, by reduction to scale, we can always consider the

following diagram:
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Pig. 1

where f(0) = 1, f(1) » -Y, Y >0, W = T%Y‘ Since f 1s convex,

the zero must lie on (O,W]. If we have just one more reading
to make (n=1), then we choose® x on (0O,W) and calculate f(x).
It can be shown by simple dominance arguments that no reading
of f need ever be taken outside any interval on which the zero
has been located. Having chosen x and calculated f(x) we en—
counter exactly one of the following cases (barring f(x) = O,

of course, the best possible case).

Case 1

If £f(x) = v > 0, then by drawing straight lines Jjoining

—
The particular optimal choice will be derived in what
follows.
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known points on the graph of f, we have the picture below, with

the root located on [s,w'] as implied by the convexity of f.

Pig. 2

Case 2

If f(x) = —v' < 0, the plcture 1is
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Pig. 3

with the root located on (max (0,8'),w") as indicated.

Let 8" = max (0,S'). If x is the final point at which
f(x) 18 to be determined (i.e. n=1) then it is chosen 3o as
to minimize the maximum poesible value of max (W'-S, W'-S")
consistent with our cholce.

Before going into the algebraic detalls of the solution
for nel, let us consider the general n stage process in which

we have several more readings to make. 1In either of the two
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cases dlagrammed above, all the essential data can be described
by a basic triangle determined by a two parameter system as
follows.

In Plg. 2, we can conclude that the graph of { lies above
the line segment v8 and below the segment vW'Y (where the letters
stand for both points and values in the obvious manner). If
we now draw the line segment SY, it may or may not be crossed
by the graph of [; but 1f 1t 18 crossed at some point P say,
we can replace that portion of the curve lying below PY by PY
with impunity. This device does not violate the convexity
condition nor does it exclude the worst possible case. This
can be shown by simple dominance argumente based on our knowledge
of the function at any particular stage.

The essential data can thus be deecribed by the triangle
vSY. Since a vertical reduction in scale leaves the problem
invariant, and a horizontal reduction, relatively invariant, the
triangle vSY can be replacea by & triangle of standard form

described pictorially by two parameters Y,S (say) as follows.




Fig. &

Similarly, in the second case (Pig. 3), the graph of f
lies above S'v' and below 1W"v'., Draw the line segment from 1
to S' and replace any portion of the graph of f lying below
this line by the line itself from 1 to the pcint of crossing.
This does not effect the choice of subsequent x's, since they
will all be chosen on minimal bracketing intervals. Again,
this can be shown by simple dominance arguments. Thus, in the
second case also by a sultable reduction to scale we are led
to another representation of Fig. 4.

Now define

Rn(S,Y) = the minimum length of interval on which we can
guarantee locating the zero 1in [0,1] of any convex function f,
given that £(0) = 1, f(1) « =Y < O, the root 1s > S and we have

n readings to make. If n = O, we have clearly,
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1
F.O(S,Y) - m - S

Next, using the principle of optimality, and taking into account
the scale factors, we obtain for n > 0 the following recurrence

relation:

xy—v' ,)
0<$?§ Yix—e[ xR (i{?ZVTT »V

Rn(S,Y) = min ; max
S<XS Thy

X v

i - ) ’ Y
Osr‘r’z)lc-x(lﬂ)(1 x) R"-l (1—x 1-v v)

with the upper and lower expressions after the brace correspond—
ing to the second and first cases, respectively. The scale
factors are obtained in a completely elementary manner by means
of similar triangles.

The ranges of the variables S,Y above are given by Y > 0O,
0 ¢S K T%Y . To render the expressions more amenable to

computatlion on the Johnnlac, we made the following substitutions:

W= y3y o+ 4(S,4) = R (S,Y), wnence R (8,Y) = ¢, (S,r3y)-

An additional modification of the quant  1ied variablee v, v!

finally reduces the system to

¢o(snw) - W3

. t W(l-t
X max @ (3 Mﬂ)
S{tx
&n(S,J) = min max ¢
S<XCW t'ox  W(t'—x
L (1-x)x§g’.‘<w¢n-1 (r_T ' F‘Zﬁ‘)‘)

where 0 { S ¢ W (1.
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The functions ¢n(s,w) were then computed for n = 1,2,3,4
by means of a discrete approximation using various grid sizes
and linear interpolation. We are indebted to S. Dreyfus for
programming these computations for the Johnniac.

The minimizing x's were of course recorded and these form
the basis of our optimal policy, l.e. to say x*= x;(S,H) is
the point at which we evaluate our unknown function f given
that the root lies on (S,W) in our basic triangle and there
are n evaluations to be made. The point xa is, of course, itself
measured on the basic triangle. To take csre nf the general
situation, we must of course relate our readii ,s to the original
scale. If we let /%(S,Y) denote the fraction of the distance
between S and W occupied by x;, we readlily obtain

x;(S,H)—S
/On(S:Y) - W-3 ’

where W = TéY . It is now a relatively easy matter to relate
xa to the original scale and thus to obtain the procedure cycle
outlined 1n paragraph 2.

Qraphs of the functions Rn(O,Y) and /%(O,Y) for n = 1,2,3,4

are included at the end of this pajer.

5. REMARKS—THE SPECIAL CASE n = 1

&

We shall initiate this section with a few remarks intended
primarily to validate certain assumptions made, tacitly or other—
wise, in the derivation of the functional equation. We shall
close this section with a brief treatment of the speclal case

n =1, S = 0, which provided us with an excellent check on the
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validity of the data obtained from the Johnniac. The remarks
are as follows.

1. Suppose we are at a certain stage 1in an optimal sequentl al

minimax search. We have several values of [ computed and we are

ready to choose our next point of evaluation. Let a,b denote
the closest evaluation points on the left and right respectively
of the minimal interval (S,W) on which the root is known to lie.
Then in an optimal procedure, we choose x on (a,b). To see
this, we need only state that since the unknown function { may
indeed be plecewise linear (a possible contingency) outside
(a,b) 18 i3 easy to see that any such subsequent reading would
in such & contingency afford us no information regarding the
character of f within (a,b) pertinent to the location of its
zero, not already implied by the quantities a,b,f(a),f(b), S and
W, or indeed by any of our previous readings for that matter.
Similar but slightly more involved arguments can be given to show
that the next reading should be taken on the interval (S,W).

2. In the treatment of Case 2, it was tacitly assumed that
Yx <Y, i.e., to say the SY line has a nezative slope as shown
in the figure. Again, it can be shown by dominance arguments
that the wcrst situation occurs when { 1s monotone, and indeed
when the graph of [ lies abc 'e the 1line SY. It is this condition
which determines the limits of the quantiflied vesriable v in the
upper 1line ¢of the functional equation for Rn' It 18 precisely
such dominance considerations as these which, though enabling
us to express the functional equation in a relatively simple form

and to obtain an optimal "policy" therefrom via its recursive
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computation, do not enable us to obtain an optimal "procedure"
directly from the equation. However, all the happy contingencles,
together with the information about the function f they afford
are taken care of in the procedure outlined in paragraph 2. It
is intuitively clear that the resulting procecdure is sequential
minimax.

3. We now conjecture that the functional equation for Rh
may be validly simplified by assuming that the maximum in the
upper line of the equation 1is always taken on at the upper end-
point of the range of v. This is8 true for example if n=1. However,
the authors were unable to prove the assertion in general and
thus the transformed equation for én was subsequently submitted
to the Johnniac in 1ts present form. Suffice it to say that
the resulting data supported the conjecture.

4. Rn(S,Y) is separately decreasing in S and Y. To see
this for the {irst variable, for example, upon recalling the
definition of Rn(S,Y), we need only observe that, other things
being the same, the information that the root is > 8 includes
the information that the root is > S' if S' < S. On the bLasis

of the additlional information, then, we can clearly guarantee

at least as short a final bracketing interval with a larger S

value if we are proceeding optimally, 1.e. Rn(S,Y) < Rn(S',Y)

if S > S'. An analogous argument applies for the second variabdle.
5. We conclude our remarks with a conjecture about the

asymptotic behavior Oftch(s,Y) as Y > é — 1. 1In particular,

we conjecture that there exists a positive number,og such that
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~,(0,Y) i,ﬂ: as Y —>m . This is easily shown to be true for
n « 1, but the proof seems to be difficult for larger values
of n. The precise value for n = 1 18 known and 18 1included
in the accompanylng graph together with "estimates"” of ;8 for
n = 2,34,

We conclude this paper with a brief discussion of some
results obtained for the case n = 1, S = 0. We shall spare

the reader the elementary albelt complicated algebraic detalls

involved and simply state that upon substituting the function

RO(S,Y) L] m - S

in the right member of our functional equation and setting S = O
in the result we obtain a relatively simple algebraic minimax
problem for the determination of R,(0,Y).

The substitution 2= x(1+47) then ylelds, upon performing
the minimax operation, the following equation relating the optimal

ratio £ and the varisable Y:

(P2 5P% -2 +1)YR + 2(27°—P%-37+1)Y + (20-1)% = O,

with the restrictions Y > 0, 0 (p,< 1.

By some inexplicable gquirk of fate the discriminant of the
above quadratic in Y turns out to be precisely 8. Thus, we
readily obtaln the following rational parameterization of the

(P,Y) curve:

P = (1-1)?
he®

Y w YY
14 t—t¢ )
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To determine the value of to we note that the limiting
form of the polynomial equation as Y —>m is simply the co-

efficient of the leading term in Y set equal to zero:
P25 2041 = 0.

This equation has a unique root on the interval (0,1) and is

given by

P‘,‘-“Qﬁ— S4+4 [2

2

~ .282

This 1s the asymptotic value mentioned earlier in remark 5. It
follows from the parametric representation of @ that to - ] -JZ?E

= .250. As a check on this we note that this value of t. 1is

0
the smallest positive root of the denominator in the parametric
expression for Y.

The graphs of R,;(0,Y), A (Y) were plotted from manual com—
putations using the preceding formulas and these compared quite
favorably with the results from the Johnniac. Unforiunately,
however, due presumably to the choice of insufficiently small
grid sizes imposed by the Johnniac's 1imited memory, a cumulative
error caused, in effect, a gradual upward creep in the talls of
the © curves. These were smoothed out to agree with theory to
obtain the included graphs. The R curves, fortunately, seemed
quite insensitive to cholce of gricd sice.

In closing, we mention that further checks on the computa-—

tions were provided by the easily derived relationships:

‘n(wnw) =0, ¢n(sol) - ‘1‘:;‘ ’

and these were found to fit the Johnniac data exactly.
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