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UPPER BOUNDED VARIABLES IN LINEAR PROORAMWNO 

Q. B. Dantzlg and S. M. Johnson 

1.  INTRODUCTION 

With the growing awareness of the potentialities of the 

linear programming approach to both dynamic and static 

problems of industry, of the economy, and of the military, 

the main obstacle toward full application is the inability of 

current computational methods to cope with the magnitude of 

the technological matrices for many common situations. 

However, in certain cases, such as the now classical 

Hitchcock—Koopmans transportation model, it has been possible 

to solve the linear inequality system in spite of size 

because of simple properties of the system. This suggests 

that considerable research be undertaken to exploit certain 

special matrix structures in order to facilitate ready 

solution of larger systems. 

Indeed, recent computational experience has made it 

clear that standard techniques such as the simplex algorithm, 

which have been used to solve successfully general systems 

involving two hundred equations on electronic computers 

(in any reasonable number of non-negative unknowns), are too 

and lengthy to be practical for extensions much 

beyond this figure, vwr jftirflnns htiie will be tn develop 

short-cut computational methods for solving an important 

lass of systems involving upper bound restraints on the 

variables -fij". 

\ 
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Upper bounds on variables In linear programming are 

used quite commonly. Their use tends to Increase as models 

become more realistic. Typically, In practice, this would 

mean that more activities enter the solution since the 

favored activities are not allowed to carry the whole load. 

The following two classes of problems Illustrate the 

use of upper bounds. 

A. Capacity Restrictions 

1. On factory production rates. 

2. On traffic links In a transportation problem. 

B. Convex Programming Problems 

1. Many examples where the cost of an activity Is 

a convex function of the level engaged In. 

2. Linear programming under uncertainty. 

2. The Statement of the Problem. 

Consider a system of equations 

n 
t1)    2IalJxJ ' bl    XJ ^ 0    (1 - 1, 2, ..., m). 

6I
C
J
X
J " z' 

where It Is desired to obtain values of x. such that the form 

£ c .x. Is to be minimized. 

The size of the array of coefficients associated with awh 

a linear programming problem may become uncomfortably large 
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when,  In addition to (1), many  (or all) variables of the 

Initial set have upper bounds.    Thus,  If each variable 

Batisfied 0 < x. < a.,  it is customary to add an additional 

variable,  say x*.• and a new equation 

(2) Xj + x»  - a^ (Xj i 0, x^ > 0) 

to take care of each such restriction. 

We shall refer to the original system plus these upper 

bound restrictions as the enlar£ed system. 

To illustrate, a linear programming problem of the 

transportation type involving m destinations and n origins 

has a matrix involving m + n rows and m • n variables x.. 

associated with m • n possible routes Joining origins with 

destinations. Suppose there is a capacity limitation r.. on 

a route so that, in addition to the original system of 

equations and linear inequalities, 0 < xt<» one must impose 

m • n additional restraints 

xij + xij"rij        (xij >0'xij i0)- 

It is clear now that the original system has been expanded to 

(mn -f m -♦• n) rows and 2m • n variables. A transportation 

problem with these added restraints is also called a 

"Capacitated Hitchcock Problem" [4], 

3» The Technique Illustrated; 

The main idea which permits solutions to enlarged 

systems without very much more effort than smaller systems is 

based on a slight generalization of the simplex procedure. 
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The simplex algorithm Is usually applied with the non-basic 

or Independent variables at the fixed value zero. However, 

a little reflection makes It clear that the Independent 

variables could be at any fixed value. The simplex criterion 

Indicates that It pays to Increase the value of a variable 

x_ (and adjust the values of basic variables) If c* < 0. 

However, If x Is at Its upper bound value this will not be 

possible« Similarly if c_ > 0 It pays to decrease the value 

of x unless x Is at Its lower bound value (usually zero). 
B B 

If x Is neither at Its upper nor lower bound value It payd 

to increase or decrease its value according as c < 0 or 
B 

cB > 0. 

The purpose of this section is to show that the upper 

bound restraints may be provided for by applying the simplex 

algorithm to the original system with due care that the range 

of values of a variable appearing in a basic solution stays 

within its upper and lower bounds. A simple example will 

illustrate the technique.  (The proof in general is easy and 

is left to the reader.) 

Find numbers 

(3)       0 £ x1 ^ 4 , 0 ^ x2 < 5 , 0 $ x^ < 1 , 

0$x^2, 0^ x5^ 

and minimum z satisfying 

* 

The relative cost coefficients, c,, are the coefficients 

In the objective form after elimination of the basic variables 
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x1 ♦   x,    - 2x1^ - 3 

(4) x2 ~   x3    "*■    x4    ^ 2x5 * ^ 

3 ^ 5 '   - 

Using x,  and x2 as basic variables»  the basic feasible 

solution is 

(5) [ 3]   i [^1   .        0 ,        0 ,        0 ,        0 , 

where the values of the basic variables are shown by 

brackets [ ].  It will be noted that the values of all 

variables are less than their upper bound restraints. Since 

c" - -2 < 0 it pays to increase the value of the variable x«« 

Holding the values of the other non-basic variables fixed, 

the values of the variables become 

(6) O-x^] ,  O-wc^] ,     %y       0 ,   0 ,  -^ o 

However, in this case it is not possible to increase x, to 

the value x, - 3 because 0 < x, < 1 . Accordingly we 

increase x to Its upper bound value and hold it fixed there 

while keeping the same set of basic variables.  The new 

"basic feasible solution" is 

(7) [2] ,   [5] ,   1 #   0 ,   0 ,   -5 . 

Since c^ - -1, we now proceed to increase x^, and the values 

of the variables become 
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(8)     [2+2*)]   .     [5-^xJ , 1 , x4 , 0 , -5-x 4' 

The largest value of x^ is not 3/? because 0 < x^ < 2, nor 

Is It x^ • 2 , because In this case x^ •2+2*2-6, which 

violates 0 < x, < 4.  Indeed the largest value of x^ Is 

x^ • 1 at which value the basic variable x, hits its upper 

bound value 4. Accordingly we drop x, from the basic set, 

and replace it by x^. The new canonical form relative to the 

variables x2 and x^ is obtained by using -2x4 as pivot 

element in (4), thereby obtaining 

- ? xl    "" ? x3 "*" '4        " " I 

(9)      g- x1 -»• x2 - ^ x3    + 2x5    - U 

15 3 

and the new basic feasible solution is 

(10)     * ,  [3] , 1 ,  [ij , 0 , -3 , 

since the variable x, enters the non-basic set at its upper 

bound value x^ - 4. It will be noted that the basic vari- 

ables are between their lower and upper bounds and the non- 

basic variables are either at their lower or upper bounds; 

the one at its lower bound, s-, has its corresponding 

Cc ■ 1 2» 0, while the others at their upper bound values 
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x^ and x,f hare c^ - - 1/2 < 0# and c, - - 5A < 0. Since 

this» as we shall show in a moment. Is the criterion for 

optimality in the bounded variable problem, no further 

iterations are required. 

To prove optimality in this case let us substitute in 

(9) for the non-basic variables at upper bounds the 

expressions 

(11) - 4 -x| ,   x^ - 1 - x j ; 

we obtain Immediately an equivalent linear programming problcfn 

(12) 

where 

(13) 

?xi + 7*1 x4 ♦ x. - 1 

^ x£ ^ Xg -». | x^ + 2x. 

♦?*l X1 > xc - 2 - 3 

0 1 xl < ^ 0 < x2 < 5, 0 < x^ < 1 , 

0 <xk <2,    0 < x5 < 3. 

It will be noted that x^ - 3, x^ - 1, and all other x. or 

xl ■ 0 constitute an optimal basic feasible solution to (12) 

that does not violate (13), — hence must be an optimal 

solution to (12) and (13). This solution is obviously the 

same as (10). 
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k.    COItVEX-SBPARABLE OBJECTIVE FOWCTIOM  [2] t   b3 

Consider a situation In which the objective function, 

instead of being a linear form to be minimized! is of the form 

(i*) jt/W -Bln (Xj ^ 0) 

where JA**) is * convex function and the x. are subject to 

(15) 
n 
^•««j (1 • 1#  2#   •• • $ m)   • 

The trick here is to represent ^(x) as an indefinite 

integral which is approximated by a sum over k fixed intervals. 

To see this clearlyf let us note first that we may 

represent ^(x) as 

^(x) -<4/(u)du4k,      ^(0)  -k, 

where ^(x) convex means j  (u) is nondecreasing and that j  (u) 

may be approximated by a histogram over some interval 

0 < u < c where c is some assumed very large upper bound for 

x. This is Illustrated below. 

1 ^ 

J * 

\ w 
*i* 

/(u) 

hl ^ h2 1 h3 • • • i.\_ 
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Here height of bars h- < h.   .   follows from the convexity 

of 4.    We now replace x by 

"*! 
+ A   ♦ ...  + A 

c n A1 > 0 

where ^ are non-negative variables and k is the fixed number 

of intervals into which the range of x was subdivided. It is 

easy to see that 

k 
^(x) - min ? h^       0 < ^ < d1 . 

Indeed, it is clear that the minimum is attained by choosing 

^1 " dif ^2 ■ (12' *•• unt11 the value of x la exceeded for 

some i in which case ^ is set equal to the residual. Thus 

the effect of the minimization is to represent ^(x) by the 

area under the histogram up to x. 

We now employ this approach to solve (14) and (13)• The 

procedure is to replace x. and 4*  in the linear programming 

problem by 

(16) X
J "1 äIJ J - 1, 2#  •••# n 

and 

(17) *W "1 hiAj 0 ^ Aij < dij • 

noting that since a minimum for X ^i(xi) lB »ought in (14), 

this implies that the values of A  satisfying (16) must, at 
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the mlnlmu«, satisfy T ^^A < ■ ,nln« 

This manner of treating convex separable objective 

functions greatly increases the number of variables without 

increasing the number of equations (instead of x^ we have 

many more A's, each with an upper bound). However, it is the 

number of equations that, as a rule, determine the amount of 

work in the simplex method. Moreover, it should be noted 

that there are numerous short cuts possible due to the 

appearance of sjveral columns with identical coefficients 

(except for the cost row) so that, in fact, it is quite 

simple to solve rapidly cases involving a convex separable 

objective form. 

5. LIHBAR PaOORAMMUtQ ÜMDBR ÜNCBRTAIWTY [2] 

An example is a two-stage programming problem with the 

following structure. For the first stage 

(18) 

J^M - ai Kj > 0) 

where x^, represents the amount of the i  resource assigned 

to the J  destination and bj, represents the number of units 

of demand at destination J that can be satisfied by one unit 

of resource 1. For the second stage 

• 
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(19)     dJ " UJ * VJ ~ BJ      ^ " 1| 2' •••' n' 

where v* 1B  the ehortage of supply and B. IS the excess of 

supply. 

The total cost function is assumed to be of the form 

m  n 

■ ^ frifu * tVi 

I.e., depends linearly on the choice of x^. and on the 

shortages v.  (which depend on assignments u. and the demands 

dp. 
Our objective will be to minimize total expected costs. 

Let ^(ujdj be the cost at a destination if the supply is 

u* and the demand is d..  It is clear that 

wv - {j(dj"J 
If dj 4 uj 

we shall now give a result due to H. Scarf. 

Theorem;    The expected value of ^.(u Jd.), denoted by 

^.(u.),  is a convex function of u.. 
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Proof:    Let pCd.) be the probability density of d.;  then 

-»•00 

r ^j(uj) m atS      (x-AaJ)p(x)dx 

•fOO -»-00 

■ a. /      xp(x)dx - a.u- f      p(x)dx 
J x-u. J  J x-u1 

whence differentiating ^(u) 

oo 
••(up - - «j/      P(x)dx 

X-Uj 

It la clear that ••(u.)  la a nondecreaaing function of u. 

with ^(Uj) > 0 and that •«(uj la convex. 

Thus the expected value of the objective function la 

(20) Bxp e - X c^j r^/jOV 

where 4AM .) are convex functions.    Thus the original problem 

haa been reduced to minimizing (20) aubject to (18).    This 

permits application of the device already diacuaaed for 

approximating auch a problem by a standard linear programming 

problem in case the objective function can be represented by 

a aum of convex functions. 
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