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SUMMARY

\\\The purpoge of thte paper 18 to dlscuse some applications

of the {unclivnair equation technique of dynamlc programming to

come guestions of matrix theory.

7

We shall first conetder/the solution of a system Of linear

equations,

(1) AX = b,

wiiere A 1s a Jacob! matrix. Then we shall discues the same
problem for the case where A i3 /almost” a block—-dlagonal matrix.
Matrices of this type arise in the study of weakly—coupled mech-
anical or electrical ayetems. Pinally, we shall disguss the

calculation of the largest or smallest characteristic values of

matrices of this type.
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ON SOME APPLICATIONS OF DYNAMIC PROGRAMMING TO MATRIX THEORY

By

Richard Beliman

§1. Introduction

The purpose of this paper is to discuss some applications
of the functional equation technique of dynamic programming to

some questions of matrix theory.

We shall first consider the solution of a system of linear
equations,
(1) AX = b,
where A is a Jacobl matrix. Then we shall discuss the same problem
for the case where A 18 "almost” a block—dlagona. matrix. Matrices
of this type arise in the study of weak.y—coup.ed mechanica. or
electrical systems. Pinally, we shall discuss the caicuiation of

the largest or smallest characteristic values of matricees of this

type.

§2. Jacobi Matrices

There 1s a large body of literature connected with systems
of linear equations of the form

a. . X, <+ = b

8, X
1171 1
(1) 272

8o1%

l)

+ aQ}x3 - b2,

+ 822X2

Bysn-1 XN~1 * ON'N XN " DN

——_—E



P—917
Revised
11-21-56
—2—
If ‘1J - ‘Ji’ the associated matrix A is called a Jacobi
matrix. Assuming that A is positive definite, we wish to obtailn
the solution of this system in a form quite different from &ny

of the solutions furnished by classical methods.

§3. Punctionai Equations.

If A io positive definite, the solution of the system in
(1) <8 equivalent to that of determining the minimum of the

inhomogeneous form

N N
(1) Qx) = X a, ,x,x,—2 I b,x,.
WL F W ST ]

Let us define the auxiliary sequence of funotions
( r K k-1
(2) rk\z) - ?ig L 1“Zjl.lui‘jxix" -2 151 byx, — szkJ ,
k= 1,2, ..., N, —®< z < ®. We wish to determine rN(bN)
and the potnt (x,, X,, ..., Xy] @&t which the minimum 1s

attained. It is easy to see that

r 2 - 2
(3) fl(z) - Hin L a“xl - 2:xl ] = -z /‘11‘
1
We now wish to derive a recurrence relation connecting

rk(z) with fk_l(z). If we fix x, and then minimize over the

other x,, we obtain

{
, k-1
(%) f,(z) = Hin L a, X~ — 2zx, + Min [ Zooayxxg
e {xij 1, )=1
k—2 )
BRI ot S LV Rl RS PP VY } |
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This is an application of the "principle of optimality”

ef. [1].

4. Explicit Relations.

We have thus reduced the determination of the minimizing

sequence {xk} to the problem of computing the sequence f, (z).
C . J

With the use of digital computlters and systematic search tech-

niques for determining the locaticn of the minimum,

easlly done. However,

t

sequence frk(z)} in a much more precise fashion.

in this ~ase, we can determine the

It 18 easy to ree inductively that e¢ach member of the

sequence {tk(z?}is & quadratic in z. Hence we set

2
(1) rk(z) -u  +vz+wz,

k

k

where Uer Vo W are independent of z.

Substituting ir (2.4), we have

thie 18

2
[akkxk —ax, vy vy (b —a )y

(2) fk(z) « Min
Xy
+ wk__l(bk \ a
Hence
5 I S by S Y Sl V) o by o
K
a,

kk ¥ 8%—1,k"Kk-1
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Using this value of x, 1in (2), we obtain rk(z) and thus
recurrence relations connecting (uk, Vi wk) with (uk—l' 'k—l‘"k—l)’
i
S kT o . + w_ .a° ,
kk k--1" k—-1,k-1
—v, .a
v - oLkl ,
Bkt "k—1%%-1,Kk-1
2 .2 2
2 w b a
Wi = Bt P ViemiPn Y M By T kel koL, kel
a

§5. Slightly Intertwined Systems.

Let us now consider the problem of resolving a set of linear

equations of the forms

(1) a

blx} + a)Nxl + ausx5 + a“6x6 - °4,
a6uxu + 86515 + &6616 + b2x7 - C6,

+ +

PN_1%3N=3 ¥ B 1N 143NE 143N T BLa3N, 24 INF2 43N

Y BI4aN, 343N 343N = ClaaN’
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+ +

Bo43N, 1438 143N ¥ 224N, 243N% 243N 824N, 343NT 343N 24

+ + - C

Ca343N, 1+3N%143N ¥ Bapan o43n®oiaN * B3N, 3e3nT 33N T Oy

A matrix of the type appearing above, we shall call "slightly
intertwined.” It arises in a variety of physical, engineering,
and economic problems involving multi-component systems with

weak coupling.

In addition to the question posed above, we shall also
consider the eigenvalue problem. In both cases, we shail issume
that the matrix is symmetrio, and, in addition, that it 1s posi-

tive definite.
&6. Notation

Let us introduce the matrices

(l) Ak ' (‘1*}k, J*}k)' 1, =1, 2, 3,
for k « 0, 1, 2, ..., and the vectors
k k
(2) X = (x}k—(’ x)k—l' x}k)’ C o (c}k_ey c}k-—l' O}k)

§7. Variational Pormulation

Since the matrix of coefficients is, by assumption, positive
definite, the solution of the linear system in (1.1) is equivalent

to determining the minimum of the inhomogeneous quadratic form

i 1 Pd 2 N
(1) (x*, AX ) + (x°, A x ) + ...+ (x7, Ax

+ 2(01, xl) + 2(c2, 12) + ... +2(27, x

b
+ 2blx}x~ + 2b216x7 + ... + 2 N—l’}N—}x}N—Q
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§8. Dynamic Programming Formulation

For N = |, 2, ..., and @ (z<®, let us introduce the

sequence of functions of the varliable z defined by

[ N N
{
(1) ry(z) = min 2 a2z (ol 1)
X, L 1=l 1=l
N—1 |
+ 2 Z b,x X + 2zx :
oy T1M1431731 )NJ‘

We then have the following recurrence relation:

(2) fN(7) - Min

N
("}N"‘jm—l ”‘3N—2)

(xN, Ath) + sz}

LU |

+ 2(cN, xN) +

Tn_1(Py_1%3p 0 ) }

Thie ie an application of the "principle of optimality.”

3. Computational Aspects — I

Since the function rl(z) is readily determined, we can
compute the sequence {rk(z)} by means of (4.2), at the expense
of a minimization over a 3-dimensional region. This minimization
may be greatly speeded up upon using the convexity properties
of tne functions involved. A.though no optimal methods are known
for multi—-dimensiona. problems, the one—dimensional method pre—

sented in (2, may be empioyed in an iterative manner.

writing (5.2) in the form

- 3
| _ -
(1) rN(z) = Min | Min i}xN, ANXN) + ?ZX)N + 2(CN.XN)4§
Tano XN Xan—,
[
(R SVIRL CIVINE SYPY) |

4

#—_—_
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we see that 1t reduces to

- ]
(2) fy(z) = Win [ ey(zy) + £y (o) |,
where
(3)  ey(zy) = omn [N ad) v aeegy s 2, o)

Xan+X3N-1
upon identifying ‘}N—Q a8 y. This new relation is now well—

suited to the technique described in [2].

The computation of the functions {gu(z,y)} 18 independent
of the computation of the cequence {rN(z)?. Observe that this

-

computational apprcach involves no divisions.

$10. Computational Aspects — II

Another approach to the computational solution reposes upon
the easily established fact that rN(z) is a quadratic in z for
each N, 1.e.

2
(1) tN(z) = Uy + 2Vyz + W 2%,

where UN' VN and HN are independent of z. This is the same device

vsed above.

Substituting in (6.2), we obtain the equation
(2) U, + V.2 + W 2° - Min | (xN, AN1N) + 2zx
N N N (%o, = | 3N
AN’ T3N-1"T3N-2)

b ¢ v + b2 12 w
N—1"3N—-=2 N-1 N—1"3W—2 "N-1

Upon performing the minimization and determining the minimum

+ 2(cN, xN) + Uy | + @b

value of the right—hand side, we obtain reocurrence relations

lIllllllllllllllIIIIIllllilllllI--------_.
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connecting the triple (uN, vy uN) with the triple (UN_l
Vo1 Wl

This affords an alternative computational technique.

§ii. The Eigenvalue Problem

Consider the problem cf determining the largest eigenvalue
of the matrix appearing in (5.1). This 1s equivalent tc deter—

mining the maximum of

N 4 { N-1
(1) QN(x) - 2 (x", Aix ) + 2 X b1x51x1+)1
{=] {=]
¥ 1 g
over the sphere S : 2 (x%, x°) = 1.

Def ne the auxiliary system of functions

- | ~ -‘
(2) rN(z) ng L QN(x) ‘ eazx)N K
N
for - ®<Cz - x and N =1, 2, ...,

Then 1t 1s readily seen that

(3) ty(z) = max LN M) e o GM oM Pe ) |
(xN,xN)sl . -
where
1
(&) HN(x) - EbN—lx}N—E/(l — (xN,xN) )§
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