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SUMMARY

A revision of the simplex method is presented which makes
explicit use of columns of the restraint coefficients associated
with a basic set of variables. The development is based on the
single assumption of linearly independent restraint equations.

An algebraic method of resolving degeneracy is given in con—

clusion. 3
( )
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THE REVISED SIMPLEX METHOD

Wm. Orchard-Haye

INTRODUCTION

Although this course was designed for those interested in
LP computations, it was felt that a considerable amount of theo-
retical background should be included. While this might de in
“the nature of a review for some people, I believe you will all
agree that the material presented thus far has been very instruo-
tive and has provided us with a neocessary solid and common
foundation upon which to continue. In faet, a natural question
now might be, that except for computational tricks, what is there
to say further? Indeed we have enough mathematical theory at
this point to carry out the computations required by a given LP
model, at least with a little luck and provided it is not too
large. There is, of course, a great deal that has not and can
not te said in our limited time about model formulation. PFor
example, linear approximations to convex functionals are inter-
esting mathematically. The transportation problem, which will
be discussed in the next two lectures, has at least one result
of primary importance. But insofar as a general method of
solution is concerned, the preceding theory is more or less
complete except for the matter of degeneracy. Nevertheless, we
have not yet beguli, in reality, to speak about the practical
computational difficulties that confront us nor how we propose

to resolve them.
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These matters will be taken up in more detail during the
second three days of the course. In preparation for this, the
present lecture takes up a revision of the simplex method which
is computationally desirable.

In later lectures, we will find it convenient to use a
slightly different notation than was used in the last one. Also,
in the transportation problem, yeu will find an array of quanti-
ties with double subscripts used in a different sense than ir
the general simplex method. Hence Shis seems like a good place
to introduce the notation to be used later on. To those of you
familiar with matrix theory, the viewpoint taken in some of what
follows may seem narrow but the presentation is not intended to
be general from a matrix theoretical standpoint but only to suit
our purposes assuming as little background as possible. Aitken,
in his excellent little book “Determinants and Matrices,” says:
"It would be intolerably tedious if, whenever we had occasion to
manipulate sets of equations or to refer to properties of the
coefficients, we had to write either the equations or the scheme
of coefficients in full. The need for an abbreviated notation
was early felt..." He also refers to matrix notation as the
shorthand of algebra "expressed at still shorter hand”" and as a
code. This is the viewpoint which will be useful here, rather

than that of abstract algebra.

LINEAR EQUATIONS; NOTATION

A linear equation in n unknoxns 1s one of the form



(1) 8, + 8%, + ... 48X b

where the a's and b are given numbers. The subscripts are called
indioces and are used to distinguish different numbers used in the
same or similar ways.

For reasons that will appear presently, let us put the indi-
ces for the unknowns as superscripts (since these are linear

equations, there is no confusion with exponents}

n

1 2
(1') 8,X" + 8 X" 4+ ...+ 8 X =D,

Suppose we have several such equations, say m of them, which are
to be satisfied simultaneously, that is for the same set of x's.
We can distinguish these by another index on the a's and b's

which we can also write as a superscript:

aixl + a;xz + .00 + a;xn - b1
(2) ale + agxe + ... + aﬁx“ - b2

At this point it becomes clear that some sort of oondensed bdut
systematic notation is highly desirable i{f not actually neees—
sary. Several schemes have been used but they are by no means
standardiged. Out of six standard texts on my shelf, there are
8ix different notations for this purpose. However, we might,
for example, write the aj elements of (2) in detached form, 1.6.

without the x's and plus signs, but in an array which maintains
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their relative positions, and designate this array by the single
capital letter A. Similarly write the b's from the right side

of (2) 1in a column and call this column B.

[ 1 1 17) [ 1]
‘1‘2""!\ b
2 .2 2 2
‘1‘2""!! b
A= . B =
m _mn m m
‘a C... b
B " L

The array A is called an mxn matrix. B 1s an mX1l matrix. A

and B are now considered as abstract quantities, 1.e. a new kind
of numerical animal. There is a whole alzebra dased on these,

in which multiplication is defined in a cne-—eided way. The

left factor is always read row—wise and the right factor column—
wise. That is, one multiplies a row on the left by a column on
the right by summing the products of elements with the sare
numerical index, one from each array. The resulting single
number is the element of the right-hand side with the same index,
here & superseript, as the row. So if we write the matrix

equation

(3) AX « B

X must be a column and hence has its elements distinguished by

superseripts in the present system:
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Note that X 1s an nxl matrix. The single equation (3) now
means exactly the same as the system (2). We have certainly
achieved a condensation in notation. It tends, however, to go
& little too far and obscure the mass of numbers with which we
are really dealing. It also makes it hard to refer to a par-
ticular eslement, a particular column or a particular row witheut
having four kinds of symbols.

The detached columns B and X are called vectors. Datached
TOows Aare also called vectors and they do not opearate in the same
way as columns. If the distinction between rows and columns is
not maintained, chaos results.

The other common shorthand for systems of linear equations

uses the summation sign, Z, as follows.

() z n} x’ < p! (1 =1, ..., m)
J=1
which reads: The sum of the products nj xJ taken for fixed 1

and J =1, ..., n gives b1 and this is true for { = 1, ..., m.

Equation (4) has the advantages of retaining individual symbdols
for each element and of distinguishing clearly rows and columns.
We will therefore dispense with the capital letters of the ab-

b b

stract notation (3) and simply write 8y, xJ, d® to mean the

arrays called sbove A, X, D respectively. Similarly, a single
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row of elements €y c2, vees Op will be designated simply e,
Note that the letters used for indices are unimportant.

We ocould Jjust as well write '2 or even ai in place of '3‘

we sometimes want to refer to a particular row, column or element

But

in a matrix. VWe will reserve the two letters r and s for this

purpose. Thus ‘S means the rth row of ni, a: means the lth

column of aj and a: means the element of 13 in row r and eolumn

8. In other words, when r and s are used, we will understand

that they are limited to one value and not the whole range 1, ..., m
or 1, ..., n. In this lecture we will occasionally use q and ¢

in this way also.

CENTRAL MATHEMATICAL PROBLEM OF LP

An LP problem now takes the form

Given: ag » a} » b1 (f @1, ..., mj =1, ..., n)

Pind: xJ > 0 such that

n

z ag xJ is ninimum and

J=1

n 4.3 |

SIQJ xY = b (1«1, ..., m; m<n).
J-

It seems worthwhile to point out here what the nature of
the problea really is. Ve are seeking a non-negative solution
to a system of linear equations which minimizes a linear form.
The important fast is that there exists a finite number of fea-
sible solutions in terms of which all others can be expressed.

These are precisely the basic feasible solutions. The number
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of these, however, may dbe very large, not exceeding the number

of combinations of n things taken m at a time,

Even if only a small fraction of these is feasidle, there may
be an awful lot of them. For example, if n « 100, m = 50 and
only about 1 in a billion combinations is feasible, this is
st11l about 10°° bastc solutions. The fact that the simplex
method has never been known to iterate through a significant
fraotion of this number of solutions to reach one that is

optimal is one of the more pleasant phenomena of life.

LINEAR INDEPENDENCE

Suppose it is possible to find elements of a row vector
m
}\1 (1 =1, ..., m) not all gero, such that 181 )\1 aj = 0 for
1 -
all jJ. Then the rows of the matrix aJ are said to be linearly

dependent, that is some one ¢f them ocan be represented as a

linear combination of the others. If this cannot be done, thea

the rows are said to be linearly independent. For the moment,

let us sssume that the rows are independent sirce, in practiece,
there is a way of insuring this. JIt is the first requireaent

for obtaining a solution, since otherwise one does not neces--
sarily exist for an arbitrary right-hand side, bi. The signif-
icance of linearly independent rows is that there is always @
solution for any given bi. though not necessarily with non-nege-
tive xJ. To see that no solution exists for certain b1 if the

rows are dependent, find some set of A, not all sero sweh that
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}1:.)\1 aj « 0 for all J. Next set b1 -\1 (1L =1, ..., m). Now

adding together all equations multiplied by ?\1 gives

0=z A
J1

. x"-i‘.)\i?‘1>o

p |
J
whiech 18 obviously impossible for any xJ. The last inequality
holds because the right-hand side is a sum Of squares not a 1
Zoro.

The way in which linear independence comes into play in
our problem is that the independence of the m rows implies that
there is at least one set of m columns which are also linearly
independent and hence form a basis, that is a set of columns in
terms of which any right-hand side can be represented. This is
usually proved in terms of determinants or linear transformations.
We will prove it by elimination, which is closely allied to the
method of determinants (in fact, they used to be called eliminants)
but which is more apropos of the simplex method.

ELEMENTARY ROW TRANSFORMATIONS

Definition: An elementary row transformation (E.R.T.) on an

1
J

mxn matrix a, is one which replace: some row { = r with

is -Aa? + /lag (A #0, 8 ¢r).

Theorem 1: E.R.T.s are reversible and the inverse transformation

is an E.R.T.

Proof: Clearly if i’g - has +;u: (A £ 0, 8 £r) then

l-r

ns - X‘J - é{- a; uniquely
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and the latter is also an E.R.T.

Theorem 2: E.R.T.s preserve linear independence of the rows.

Proof: Suppose I, lj = O for all J implies 11 - 0
i
for all ¢§. Feplace as with i; - ?\as + Pug
(A £ O, 8 Fr). Now let 4, be such that

p & =T
1§r'41 IJ U8y - O for »ll J.
Then
1§r 111 aj + (,U' + Af//r) a; + (1/,7\) as 0
ifs

which, by above assumption of independence, implies
/‘4 = 0 (1 f !‘,8)
Uy + MUy =0 ana LA = o.

Since 7\/ 0, ’Ur « O and hence /(. = 0. also. Thus

the transformed system still has independent rows.

Definition: A unit column vector 8 for 1 < r ¢ m 1s defined by
O1f 1 4
11r 1 ar

1 [ J
r
The set of unit column vectors forr -1, 2, ..., m, in

that order, form the identity matrix of order m,
6. (1,h=1, ..., m)

NOTE: b; is usually called the Kronecker delta. In our notation,

it is the identity matrix also.

Theorem 3: Any column in a} with at least one non-gero element

can be transformed into a unit column vector by E.R.T.s.
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Proof: Suppose that for column s, a: ¥ 0. Then row r can

be replaced with & = L o (5 =1, ..., n). Obviously
a

8
i: = 1. Then every row i £ r can be replaced with

is-aj-n:is (1 #r).

Now clearly for J = 8, Ei - a1 — a: «0 (1 4r), or,

8 8
b 1

for all i, :e = 0, as was to be shown.

The element a: in the above proof is called the pivot element.

Corollary: If any 6: (q £ r) appeared in 13, then 1t
remains intact in ij
Proof: 4 4
Suppose a, = bq Then t 8 1f q § r. Hence
- 1 r
& = al Svia g
a
-1 1 { =-r 1 P 1
8, ~a -a 8 =-a -8a.0e=a (1 £ r)

Theorem &: If the rows of aj are linearly independent then the

matrix can be transformed into bj by E.R.T.s so that every

column of bé appears somewhere in b}.

Proof: Choose some a: # 0. By Th. 3, .3 can be transformed

ty E.R.T.s into i; where E: - 61 . Now no row of

3! can contain all zeros. For, suppose i? - 0 for

J
all J. Then setting 7\q -1, A g = 0 for { £ q,

m
z Aiii. - O for all |
1l J

and she rows are linearly dependent. Hence, by Th. 2,
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the rows of aj were dependent, contrary to assumption.

Hence we can choose some q # r, t § s for which ig [ )

and transform ij by E.R.T.s into :; with 5: - b;.
However, any column of 6; (h £ q) which appeared in
i; will remain undisturded in :; by the corollary

to Th. 3. This process can clearly be repeated until
every row has been chosen, each with a different column,

80 that we arrive at the matrirx b1

] as required.

Corollary: If m > n, then the rows of a} are dependent.

Proof: Even assuming we can choose n rows, at that point
all elements of the transformed matrix will be sero
except the pivot elements already chosen. Consequently
the rows of the transformed matrix are dependent, hence

s0o are those of ai.

J

We need a few facts which are practically obvious. VWe will

state them as lemmas.

Lemma 1: Both the rows and the columns of b; are linearly
independent.

Lemma 2: If the same E.R.T.s are applied to the right hand side
of a system of linear equations as are applied to the matrix
of coefficients, each solution of the original system is &
solution of the transformed ayctem.

Proof: Suppoae ? al xJ - p! (1 =1, ..., m) 1s satisfied

J
for some set of values x°. Then I (/\as +;u;) x’

th

- '\br +/Ib' and thus the r ~ equation of the system
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obtained by applying an E.R.T. 1s satisfied. Clearly
the others are also. Applying this argument repeatedly
proves the lemma.
1.3 1
lemma 3: I bJ bY = b";
J
b
e, b, =c¢
T T
1 .k 1
z 5, = B, .
T

These all follow immediately from the definition of b..

Definition: An mxm matrix consisting of linearly independent

rows is said to be non-lingglar.

Theorem 5: If an mxm matrix /U; has linearly independent rows,

it aiso has linearly independent columns.

Proof: Let 3" be such that zU! A" = 0 for a1l 1. we
san trtnsforn_/dé by E.R.?.a to‘JT; which differs from
6; oniy in the order of the columns. Applying the
same E.R.T.s to the right hand eside maintains the
equalities without changing the B". But since E.R.T.s
applied to all zeros obviously give all zeros, the

ﬁr'mUlc all be zero. Hence the columns of M é are

linearly independent.

Theorem 6: If the mxm matrix /l; i{s non—singular, then the

system of equations

m
I:Al;x"-b1
h=l
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1 whatsoever.

ras a unique solution x" ﬂh for any given b
Proof: By E.R.T.s, /?: can be transformed to 27; which
differs from bé at most in the order of the columns.

1

At the same time, b~ can be transformed to 51. 1r

‘ZZi - bi, then the value of x® must be 57 and this 1‘
true for each 8 = 1, ..., m. Furthermore, for each
such s, a different value of r will be chosen so that

r « ¢§(s) 18 a permutation of the indices s = 1, ..., m.
Hence the solution of the transformed systen is

xh = EQ(h), uniquely. But we can retrace our steps

to the original system by the inverse E.R.T.s applied
in reverse order without changing the values of the

x". Hence x" -ﬂ o Fo(h) is a solution; it 1is

unique by Lemma 2.

Corollary to Ths. 5 and 6: If the mxm matrix )y; is

non—singular, then the system of equations

. 1

ERIVIRA

has & unique solution Yy = 7 for any given °n
whatsoever.

Proof: The whole system can be transposed to the form of

h i
Th. 6. That is, let u =4y and replace y, with

y', e, with ¢”. Then we nave
m
p) u? y1 = ch.
1e1

By Th. 5, the rows of u? are independent.
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We now observe that we can solve a system simultaneously

for several right-hand sides. Suppose we wish to f'nd a solu—

tion to a

: D) 1
JEI .J xk L J bk (1 - 1, s 00 m)
for p different right-hand sides bi. bé, R b;. Then we can
write xi as ar nxp matrix and bi as an mxp matrix. Each coluan

k of xﬁ will be the solution to the same column k of bi. Hence

we see that, in general, an m n matrix times an nxp matrix gives

an mxp matrix. We will now state the general rule of

1 is an mXn matrix and b1 is

Multiplication of Matrices: 1If aJ ]

an nxp matrix then the mxp matrix c} given by the rule of
multiplication

n

1  k 1

z b, =

Ny B T
is called the product of a§ and bj in that order.

Jlemma 4: Multiplication of matrices is associative, that {s,

1r aj 1s fxm, bj s mxn and 03 1s nXp, then

m n n m

L a }:bﬁc“-|-z z alp) | oof .

hel K1 J_J kel | ha=l J

We leave this for the reader to prove to his own satisfaction.

It 18 a well known fact that multiplication of matrices is not

1

commutative, that is, even i{f a 1s mxn and bl 18 nxm (why 18

J
this necessary?) that
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is not in general equal to I bi a? .

K
J K

i
Za b

k k
Obviously, if m ¥, n then the two products are not even of the

same order. But even when m = n, the two are not generally

equal.

Theorem 7: If the mym matrix /l; is non—-eingular, then there
exists a unique mxm matrix r; such that

(5) % My 7y = O -

Proof: Using, for t =1, ..., m, the tth column of bi as

the right hand side, we can obtain a unique solution
'k
t
1 1
The matrix L is called the inverse °r‘b‘h :

by Th. 6.

Theorem 8: A non-singular matrix commutes with its inverse.

Froof: Multiply both sides of (5) on the left by 1{ .

By lemma 4, we can combine summation signs:

1 Kk J .1 J
s vl K o5y 0, = w
fk 1Tk T r T Oh h
Jytl _ 4’
Let i.wil(k dk’
b) - o9
Then ijdkr; "

Hence, by the Corollary to Th. 5 and 6, dg - bi whioch

with (5) proves the statement.
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THE BASIS 1IN THE SIMPLEX METHOD

Suppose that in solving an LP problem in which the rows
are linearly independent we have arrived at a basic solution in

which & c¢ertain set B of m indices J specifies the bdasic vari-

1
J

is olear that any matrix formed from these columns is non-singular.

ables. The columns a, (JEB) are referred to as s basis. It

We do rnot know, in general, in what order these columns were
chosen nor what columns of bé they become in canonical form,

1.0. after application of the E.R.T.s. Indeed the set of E.R.T.s
neocessary to get us to this point is not at all unique. Of
course, if we have & machine code, which must follow certain
detailed rules, and we feed it the same problem, ordered in the
same way, twice, ther it will, we hope, do the same identical
operations both times. But a slight change in the rules or the
order of the columns will lead to the same result along a d4iffer-
ent path. Wwe can avoid & good deal of confusion by distinguishing
between the index which is the name of a variadble and the index
which denotes the place its coefficient column occupies in a
particular ordering of the basis.

[et us pretend that we have lost all information about our
basic solution except the list of name indices in B. Sinece the
basic solution i{s unique, any way in which we reconstruct it 1is
valid, that is, an interochange of two columns merely interchanges

the two corresponding values in the final solution column. Let

us denote this column by ph. Hence, which x' any particular ﬂr

1

is the value of, depends on what column a: (s £B) becomes 5,
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when we transform the basis. Let us denote this correspondence
by 8 = ¢(r). Thus ¢(h) 1s a 118t of m name indices ordered on
h=1, ..., m. We will refer to this list ¢(h) as the dasis
headings. We do not think of 1t either as a column or a row
but merely a list denoting a correspondence.

et us now attempt to reconstruct our lost solution froam
the original data and the set B of indices J. Let us form an
mx2m matrix in which the first m columns are the aj for J in B
and the last m are 6;. We will associate the ¢(h) with the
columns of 6. and make ¢(h) = O initially.

From the first m columns, choose some a: # 0. By E.R.T.s

on the whole array we can transform a: into b:. At the same

time we apply the same E.R.T.s to the right-hand side bi. Ve
also change ¢(r) to s. We can now choose another pivot element
from the first m columns, say ?:: £ O, and transform column s'
to bi, (r' g r, 8" p8). ¥We make ¢(r') = s'. Proceeding in
this manner, we can change every one of the first m e¢olumns into
unit column vectors and determine the complete list of basis
headings.

Now let us suppose the first m columns had been ordered in
the way the 1ist J = ¢(h) finally turned out. Then these columns
would have been transformed into the unit columns in proper order,
i.e. 6;. The last m columns, initially bé,have been transformed
into the solution to

ol h .1
(6) hfl ‘Q(h) 'J - 6.1 (1,J @ 1, 44, .)
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as 18 seer in the proof of Th. 6. (The ¢ uesed there was the
inverse of the ¢ used here.) At the same time, the c¢olumn b1
has been transformed into the solution to
o
1 h i

7 = - i

( ) hfl .o(h) p b (1 1: ’ m)
Herice the last m columns have become the inverse of the ordered

basis aé(h) (h =1, ..., m) and the value of x¢{h) -=$h.

THE TRANSFO: MATION OF THE COST ROW

o
J

cbjective form. However, in reducing the basis to canonical

We have neglected thus far the coefficients a, of the

form, there i1s nothing to prevent us from performing extra E.R.T.s
on this row to make each coefficient associated witnn the basis
vanish. The total effect of all these E.R.T.s is equivalent to
solving for variables LA in a transposed system

(8) ‘8(h) + 1%1 L 'é(h) - 0 (h=1, ..., m).

Putting ag(h) on the right in (8) and multiplying both sides by
h on the right gives

¥
1 h o h
L v, e - -2 a
fon Tt ten) Tyt T fen) Ty
or by (6)
b . _0 h
S IS B IOV

Hence, the transformed cost coefficients are given by

(9) a, = a% + ; 4 a1 (§ =1 n)
] R SR
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where dJ = 0 for J in B by definition. Note that the order of
the v, in (8) 1s not affected by the ordering J - ¢(h) of the
columne aj.

The value of the basic solution is

¢ h 0 h 1 1
Z = hfl a¢(h) 5 -h}':i .°(h) 71 D" = = f '1b .

THE REVISED SIMPLEX METHOD

The row vector v, in (8) 1s called the pricing vector. As

seen above, it can de generated at the same time as the inverse

o
t? is computed, in fact it 1s convenient to think of v, T,

The revieed simplex method consiats of using the pricing veetor
to determine a vector a: (aiB) to bring into the basis, and of

using the inverse to represent a: in terms of the basis. It is

clear by this time, of course, that the transformed column i:

used in the original simplex method is nothing but the values

of the unknowns o i in the equations

n% aé(h)al:-a: (L =1, ..., m) .

Whence 1
k h k
LT %) Xe = Oy=IT

4
1,h '

k
1.

The index 8 is chosen as usual by the rule

da « min dJ < 0
J
taking smallest index, say, in case of ties. If all dJ 20,

then the present solution is optimal.
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The rule for choosing the index r of the vector to go out

of the basis 1is .
. r

(10) of = min 'Lir if any d: >0
d:)o q.

where some arbitrary rule i{s often used to resolve ties. This

will be discussed further in the next section. If all (1: <0,

then a class of solutions exiats

4 h h 1
(11) f;"o(h)(ﬁ --:;ot.)un.a-b1 (e > 0)

with the values
o h h o) o h i o
pX lo(h) (p - Od.) + an -z -0 .Q(h) '1’8 + 0.8
h h,1
(12)
: 1 o .
-z +Q (f vo&, + ‘a) =z +0d4, <z

and as © approaches + o, this quantity approaches - .
If some O(: > O, then the value of © is bounded by o' whieh

is such as to make
2(r) o BT - 6" oy = 0.

The new values of the other basic variables, ocall them éh, wili be
r
’ - p -
$er ¢(h) h h
r
) w ghe el >0 (hgr) .

We must now remove aé(r) from the basis and replace it with

1 This ts formally accomplished merely by making 6(r) = s but

a,-
of course we must change the inverse. Since
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p j i i
ﬁ Io(h) d: = .. - la(r)

clearly dh
; g ok [=C S I U R S
(1 ) h/r .¢(h) q: + l. “: .¢(P)

Now since @(h) = ¢(h) for h ¥ r, and since

i h i r 1
(15) hﬁr .®(h) ‘IJ + .Q(!‘) YJ - bJ
substituting (14) into (15) gives
h
o
1 h r 8 | r 1 p |
Z a T, — Y, — + v, —— «f8,.
J T J
e §(n) | 4 Jar | b o
Thus ,
1'r§- 1?715 (=1, ..., m)
(16) °
*h r %%
T =T -1 —5 (hgr).
o™

This, of course, is the same kind of E.R.T.s we have been making
right along. Note that (13) and (16) involve the same E.R.T.s.
It 18 also easy to show that the new pricing vector is given by

r d

[ qlu

as can be seen by considering the change
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Since CK: is always chosen non—gero, the above E.R.T.s are all
valid, hence linear independence of the rows is maintained. we
have only to start with the identity matrix as the initial basis
to insure the validity of all transformations. 1In practice, one
always does start with the identity matrix eithe: because {t
arises from slack vectors, because it is introduced artificially
for a Phase I, or as a convenient way of inverting a given basis.
The use of Phase 1 was discussed in the last lecture and will be
taken up again in a later one. Hence we will not pursue it at

this point.

DEGENERACY

we have left to the last the matter of degeneracy, which
by the rule (10) can conceivably cause indefinite cycling through
the same set of bases. It is logically easier to discuss at
this point but it is also the least interesting part of the
thcory. There used tC be a great hulabalu about this theoretical
hole in the simplex method but nowadays people more or less

ignore it and go on abcut their business. UnqQuestionably the
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theory had to be completed but actual cycling in a real prodblem
has never been reported. A few examples have been cooked up to
prove it can happen. However, no proof has ever been given that

the simplex method will converge in a reasonable number of iter-

ations, cyciing or not. It Just does.

The proof that the simplex method will eventually reach an
optimal solution depends on the value of z decreasing by a non-
zero amount each iterstion. Since there are only a finite number
of bases and each successive one is better than the last, they
must eventually terminate. The mere existence of ties in (10)
does not invalidate this argument, it is only when the value of
o' turns out to be zero that a difficulty arises. Unfortunately,
the schemes that have been devised for avoiding degeneracy depend
on resolving all tiees, zero or not, and on maintaining feasibility
at every step. We will see later that it is possible and often
convenient to work with infeasible solutions and hence rigorous
resolution of ties becomes impractical since it would require
extremely elaborate machinery. Nevertheless, we will show how
degeneracy could be avoided.

Again we make use of the identity matrix. Instead of a
single column bi, consider the more general problem rcatra%nto

n

z alxd .l (k =0, 1, +.., m)
J Tk Kk
J=1
1 i i 1
where b~ becomes b, and b = b, (k =1, ..., m). (It is really

only neceasary that bi have linearly independent rows but in

practice the identity matrix is by far the most convenient

extension 8o we will proceed on that dbasis.) We will generalise



P=911

8-6-%6

-8~

the non-negativity requirement on the variables as follows.
Consider the rows of xi as lexicographically ordered veotors

(L.O.V.), by whiech we mean that, for fixed r, and considering

the whole row at once,

r
xk_§ o 1f x; > 0 or {f x; - xi - ... = x: , = 0. xg > 0 (1<s<m)

-—

and r r r
X, > y, if (xk - yk) 9> 0 in the above sense.

The relation denoted by " } " constitutes an ordering on row
vectors as is easily seen from the definition.

The functional is similarly generalized to

n
- I a0 xd
zk Jfl nJ xk

and the elimination ratio e’ now becomes the vector

e =)
Y

(18) e = min (k =0, 1, ..., m)

k4
da>0 e

g

the minimum being taken in the L.O.V. sense. iHence the new

solution when a: is introduced into and .é(r) eliminated from
the basis is

*r _‘jig - er

[E3% Tk

= bumoG (AT,

*r r
Clearly, Fsk >»O ir jk } 0. Similarly, for all other 1 £/ r,

B

(&8

r
S P: (k =0, 1, ..., m)
o

(19)

o r4 K r
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unless, for some { = r' and constant ¢ = ——; > 0,
c‘s
]
(20) T e [oF (k =0, 1, ..., m).

But this cannot be the case, for, since the (3; are obtained
from b; by E.R.T.s and the rows of bi are linearly independant,
the rows of f}i must be linearly independent, whereas (20) would
imply that with A_, =1, A

r ™" C p o,

A B "'+ A BT =0 for all k.

Hence (19) holds and therefore

Beoefay (147
whence

Bis o ploo

we have thus proved that, starting with a basic solution matrix
(i} 0, the condition will be maintalned. If we start with the

identity matrix as a basis, and all b> > O, tnen the initial

basic solution matrix is

M 1 00 . . . o0

> 01 0 . . . O
, . - (G«
me 000 . . .1 |

il
80 that every Lﬁk {s strietly (L.0.V.) positive. Therefore, at

every step, the change in the functional



2

1s strictly (L.0.V.) negative, since d, < 0 by the usual choloe,
and the process must eventually terminate.
The computation of LAY and w? as well as the 4, is unchanged.

v

However, by a very happy circumstance (which we cleverly arranged)

h
Bk - T (h,k =1, ..., m)

80 we have no additional computation except the “generalized ratios”

in (18). Even then there i1s no extra work unless we find, for r'pgr,

r' r
o _ 6o
" T
0g Oy

in which case we examine

r ok r r! r

51 61, 62 $2, . m m

(21) rT VB r » r7 VB r » . . . ] ‘_'? VB ‘_r
g o) X g Xg g s

in order until we find a pair of unequal ratios. As we saw
following (20), all pairs cannot be equal. There may, cI course,
be more than two equal ratios on first components in (18). we
have merely 1llustrated the situation for a two—way tile.

It should be noted that the choice using (21) may be made
on negative ratios. In this case, the min in (18) must be
understood in an algebraic sense on the "tie—breaker"” element
although there will, of course, be a leading positive element.

Ir ‘3: = O on the current {teration, then there must have been

a tie on the last iteration whioh was resolved to make the first
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non—zero element positive, excepting of course on the first

iteration which 1s guaranteed O0.K. by the initial solution.




