
\3

C

o

k
/

■v
ADAPTABIUTY OP THE LINEAR PROORAMMINO C0DE3

Win. Orchard-Hays

P-908 ^'

1 August I956

Approved tor OTS release

DDC

^qiNiA

DDCIRA E

":???

SUMMARY

'The operation of an elaborate set of computer codes

ralsea problem» of Its own which car» only be appreciated

from experience. Nevertheless, certain general principles

for designing such a system can be set forth. The activi-

ties which are engaged In during the evolution of such a

system are not a simple sequence of events but there Is

feedback from later steps to earlier ones. How easily the

resulting changes can be handled is dependent on the

organization of the codes and on the assembly program used

An appendix discusses some shortcomings of the latter to-

gether with suggested Improvements. (\

P-90Ö
-1-

ADAPTABILITY OF THE LINEAR PROORAMMINO CODES

Wm. Orchard-Haya

The preceding discussion Illustrated two points:

(i) the operation of an elaborate set of computer

codes raises problems of Its own which have little

to do with the nature of the mathematics, and (11)

If sufficient thought is given to what difficulties

can arise and what variations on the method will

be required — both by the fonnulator and by

exigencies of computer operations — then provision

can be made to handle the most common "unusual

situations'1 smoothly.

It Is difficult to demonstrate these ideas without getting

into the messy details, which we have had to do in several

lectures. The operation and use of a large set of codes

tends to become an art in itself with considerations which

override the very reasons for its existence. One purpose in

presenting as many details of our 704 program ai we have,

has been to furnish an existing — and we believe a good —

example of a system in actual use with all its attendant

paraphernalia.

Nevertheless,* there are some general principles that

can be stated with regard to the design of such a system.

First of all, we note that computers create a lot of work,

simply by their nature, which does not exist in hand

• P-909

P-908
-2-

calculations. Hence the first principle is:

(1) Oet the computer to do as much of its own work as

possible. This notion is not as obvious as, once stated, it

might sound. It has taken four or five years for computer

people to come to a firm conclusion in this regard. On

punched-card equipment, including the CPC, every ei'fort was

made to cut down the work for the machines. But with the

high-speed arithmetic and large storage of today's machines,

it is a necessity for the computer to do its own assembling

of code and data. There is often yet« however, a tendency

for a programmer to rely heavily on proven library sub-

routines and to try to build a cede to suit his needs from

these. This mode of operation certainly has its place but,

for a large class of problems, a compiling routine can be

programmed which does the putting together automatically

from macro-pseudo-instructions. These latter can often be

written by a person with little or no machine experience.

One-shot problems or small problems with many parameter

combinations or other slight variations are efficiently

handled this way. On the other hand, a large program which

is designed for a particular type of problem, which is to be

used extensively and which pushes against the upper bound of

the machine's capacity, must achieve as near maximum

efficiency as possible in terms of the machine itself. This

means hand-tailored code but, if adequate provision is not

made for variations, the resulting program will be too rigid

P-908 -90t

and Inflexible. This can be avoided by having the various

sections of code reflect* the logical breakdown of the method.

Hence the second principle:

(2) Adapt the method to the machine and then tailor

the code to the method. This will usually rule out the use

of standard subroutines. For example, in the L.P. code one

might expect to find a standard matrix abstraction program.

This is not to the purpose however. An L.P. model handled

in standard matrix form is extremely inefficient because of

the large number of zeros and, anyway# there are certain

required operations on vectors which would not be found in a

standard set-up and vice versa. Another common misconception

is that the simplex method should be built around a method

of solving simultaneous equations. Again this Is not to the

purpose. The actual solution is, in a sense# the least

important part of an L.P. problem. It is the inverse of the

basis and the basis headings which are always needed. Our

inversion code turns out to be an excellent routine for

solving large systems of equations but the converse implica-

tion would not be true.

The third principle is more subtle but may be stated

as follows:

(3) Make the construction and use of the actual program

as independent of time sequence as possible* To better

illustrate this point, consider the following events in the

creation of a large system of code, nie double arrows

P-908 T

indicate the next step and the single arrows indicate feed-

back which necessitates modification or re-study.

\
Mathematical Method is Studied

/
Machine Characteristics Studied

N
Method is Adjusted to
machine limitations4
etc*

•Organization of programs planned to reflect method.

I
-Programs coded in Pseudo-language for Assembly program.

-Program punched or ot nerwise Recorded by Hand.

i
Program Assembled on machine and recorded in Machine

Language.

-Program Checked and De-bugged.

-Operating procedure Established for running Jobs

t I
Difficulties and Special requirements appear on

Production runs.

These activities may be iterated on several times before a

satisfactory system evolves and the process never really ends.

Old codes never die, they Just get revised. The question Is,

in the limit can the process be made to approach zero work?

The answer to this is very largely a function of how

irreversible each step is and how determinate with respect to

its immediate successor. Unfortunately this is controlled to

some extent by the assembly program used and, with the

p.908
-5-

Increaslng tendency toward conformity In the computtr pro-

feseion, ¥% have to live with certain llmltatlone which

could be relaxed. But, even so, we can go a long way toward

establishing two-way streets everywhere.

Note first of all that we can afford to spend a lot of

time on the first three levels. Once the organization is

firmed up, we automatically commit ourselves to many con-

ventions and assumptions which must be observed thereafter.

That Is, once the actual coding is begun, the general organ-

ization cannot be changed in particulars without re-examin-

ing the whole. Otherwise logical Inconsistencies will be

inadvertently introduced.

The coding Involves a large investment in programmers'

time. The hand recording in punched cards or other suitable

media is less expensive but facilities for this may be in

short supply. At any rate, once a code is punched up, the

programmer usually has some hesitance about making major

revisions.

The assembly Involves a considerable Investment in

machine time and is singly the most Irreversible of the steps

in the process. We will have some suggestions later on how

this could be improved.

De-bugging requires a large investment both in

programmers1 time and in machine time. In a practical sense,

100 per cent de-bugging is impossible until production jobs

are run because many conditions will never arise in the

P-908
-6-

running of a test case, no matter how elaborate (within

reason).

However« the program can be corrected to a point where

it is considered checked-out« tentatively. Then an operating

procedure must be established. If the programmer was wise,

he has looked ahead to this point in planning the organiza-

tion of the programs but, unless he was a prophet, he has

overlooked some things. Awkward handling of equipment may

show up and changes will necessitate at least re-assembly,

probably some new punching, and possibly considerable new

coding. This may all take place, however, within the frame-

work of the basic organization and it is this inner loop

which needs to be flexible.

If, in running production, serious difficulties arise

and special requirements cannot be accommodated by revising

the operating procedure, then one has to go back to the

beginning and start over. We have been through this major

cycle six or seven times and feel Justified in taking some

pride in the organization which we have been explaining in

the last several lectures. We are, nevertheless, well

aware that this organization is inadequate for higher

abstractions -- such as block triangularity algorithms — and

also that several improvements are possible within the

smaller cycle. There is, however, a considerable amount of

inertia to be overcome in making what might seem minor

changes to a pure theorist. To see why this is so, let us

F-908
-T-

examine In more detail the coding« assembly, de-bugging and

establishing of procedures.

Once one has decided upon an assembler — or has had it

decided for him — he is committed to numerous rules and

conventions which have nothing to do with either the math-

ematical method or his own organization of the problem for

the machine. When the coding is completed — on paper

forms — it is usually entirely unsuitable for translation

to the language of a different assembler and« once punched

in cards« is completely fixed. (There is a possibility of

partial machine translation between assembler languages in

some cases but it is never complete or very satisfactory).

But it is still easy to change« add or delete a few cards«

provided the usual precautions are observed. However« once

we start the next step« we find ourselves irretrievably

committed to an expensive process which cannot be interrupted

or modified« except trivially« without starting the step

over. There is« of course« considerable high-priced machine

time involved in assembling a large code. More than this«

it is at this point that the complete and up-to-date record

of the code is created« where actual references and links

are established between parts of the program« and where the

massive translation from relative« symbolic« mnemonic«

alphadecimal code to absolute« binary machine language is

made. Our experience with the L.P. codes has consistently

shown that assemblers simply do too much at once for large

P-908
-8-

codes. The tendency today is to build even some features of

a compiler Into an assembler, in spite of the fact that they

serve two distinct purposes. Instead of being tools, assem-

blers have become black-boxes which gobble up Information,

spit It out on listings which are non-processlble, and then

reduce the whole thing to absolute binary cards, which. If

wrong, go In the trash can. Until this situation is recti-

fied, it is mandatory to break the program up into Independent

but compatible parts and to leave some of the putting to-

gether to the last possible point in time when an actual

problem is being run. The method we have used does this.

We carried it farther in our 701 codes by having relative

addresses on all instructions which were made absolute only

when a section of code was actually to be used during a

run, but we found that we got into the region of diminishing

returns. In the appendix, we outline an assembler which

would overcome most of the difficulties mentioned above but,

even with such a tool, it would be profitable to use the

same coding philosophy of delaying as long as possible the

final commitments on Just what parts of the code and what

parameters should be used.

The most obnoxious part of the de-bugging process is

not so much the finding of the errors and correcting the

coding as it is keeping the records, i.e. listings and cards,

up-to-date. As one approaches the point of making a system

operational, his obligation increases to provide adequate

I

f-908
-9-

wrlte-ups, listings« forms, procedures, etc. A person who

has not attempted this on a large code can have no Idea of

the trouble It causes. Once program decks, listings and

write-ups get out. It Is doubly hard to correct them, not to

speak of the confusion. This difficulty is considerably

reduced by having completely, physically separable parts of

the code.

It Is when one begins to set up operational procedures

and to try to accommodate special job requirements that the

"plug-in-unit" concept of organizing a code is most apprec-

iated. If, for a particular run, I would like code No.3,

say, to work in a slightly different fashion, I can revise

that small piece of code, assemble it, and use the little

package of binary cards to replace the corresponding orig-

inal cards for code No.3* There is no question of it

fitting. Of course, it may not work but I know that the

errors, if any, are in the little piece I changed. The rest

of the program must be right because it is still recorded in

the same physical medium. If I had to re-assemble the whole

code, then all sorts of things might go wrong which have

nothing to do with the Intended modification. Of course, the

logical interconnections of the various routines must be

maintained or the program won't make sense, but there is no

trouble with physical interconnections. Furthermore, modifi-

cation of the logical relationships is rendered easier

because these had to be systematically arranged and explicitly

P-908
-10-

etated In the first place in organizing the programs. Patch-

work due to afterthoughts are reduced to a minimum and errors

found in particular sections of code can be corrected inde-

pendently of the rest.

In conclusion, let me re-emphasize these points with

the notion of remote control of a computer. A modem high-

speed, stored program computer is utterly useless as it

stands. It is virtually inoperable. A few instructions can

be entered manually but, for all practical purposes, every

control exercised on the oraputer, its components, or the

data it contains, must be executed by means of a program

within the computer itself, including its own loading

process. (Hence the term "bootstrap.") Hence it becomes

clear that the most important programs are not those which

carry out arithmetic functions but, rather, those which

assume command of the machine. There is a large payoff in

giving these programs great consideration and making them

one's alter ego, as it were. The feeling of frustration

that one has in walking up to a machine and not being able

to get his hands on the things he wants to manipulate can

be overcome with these leprechaun routines which do our

bidding and control the million-dollar monster which defies

us.

P-908
-11-

APPENDIX

SUGGESTIONS FOR AN ASSEMBLY PROGRAM

We will speak in terms of the IBM 704 but the Ideas

are equally applicable to any large computer. The first

assembly program for the 704 was IBM's NYAP1 assembler

(New York Assembly Program 1). It has been almost universally

supplanted by United Aircraft's symbolic assembly program

(UA-3AP), which is only slightly different but, according to

some, an improvement. At any rate, both of these programs

accept symbolic instructions, one per IBM card, written in

alphadecimal with standard Hollerith punching. Great flex-

ibility is allowed in assigning symbolic addresses or other

identification, in making locations relative to arbitrary

symbols, etc. In short, the inputs are such as to make the

coder's job as easy as possible and to get the machine to do

a maximum of organization within the definition of an

assembler. (UA-SAP even has some features more apropos of a

compiler, as remarked in the main text). We have only one

complaint (discussed later) with regard to the rules for pro-

graming code which these assemblers accept as input.

Now while quickly admitting great admiration for the

coding skill which created these programs, we nevertheless

submit the proposition that they are not very handy tools.

The trouble is with the output; briefly, they are overly

ambitious and seem to have been designed as an end in

!

P-908
-12-

theraselves rather than as a means. When one would like a

little ball-peen hammer to smooth out a rough spot, they

offer a rolling mill. Or, instead of a proof sheet, they

hand one a bound book (well, almost).

Yet, one cannot operate without an assembler. The

symbolic code for the L.P. programs takes about a tray and

a half of a standard filing cabinet or about 4800 cards.

Imagine trying to code and record these in absolute binary I

The assembler processes these and produces about 225 binary

cards — 22 absolute, machine language words per card.

(Some symbolic instructions produce more than one absolute

word and not all binary cards are full.) At the same time,

the 4800-odd instructions are printed out in both symbolic

and absolute octal. This is the primary document for the

program. This printing is a very expensive operation and,

if wrong, must be done again, at least in part. Remember

that we have not yet begun de-bugging. If the printing is

right, it is still expensive to reproduce.

If now a mistake is found in a section of code, it must

be corrected and all the original symbolic cards for this

section assembled again. The binary cards produced the

first time are Junked and the new listing must be fitted in

to replace the original Incorrect part. (One simple improve-

ment in present assemblers would be to start a new page on

each "origin" card, i.e. at the start of each new section.)

Not only is there no salvage from the first assembly, but the

P-908
-13-

correctlon of the primary records la awkward.

Now the time-consuming part of an asaembly is not the

assignment of actual locations sind punching of binary cards.

This is fairly cheap. It is the reading and printing of

original symbolic code that is expensive. But what if a

symbolic card is wrong? lifliile this may invalidate the

entire output, it usually does not affect the other symbolic

cards. Probably 97 to 98 per cent of these are right the

first time. When the assembler reads these cards it converts

the information to a binary-coded alphadeciraal form which

can be packed into much less space. But, at this point, no

information has been lost, it has only been written more

efficiently. If the code being assembled were saved in this

status, in a form which could be hand corrected, re-assembly

would be cheap, except for printing. But again, what of

printing? Do we really have any use for all those reams of

paper in de-bugging? The answer is no, in fact we would be

better off with much less information given in condensed

form. The detailed information is available on the binary

cards if it is really required. When the code is checked

out, then is the time for a full and complete — and correct-»

listing of the program.

Aside from ambiguities and mispunched hash detected by

the assembler, the really useful information in de-bugging

is the absolute location assigned each symbol. However, one

feature of present assemblers makes every word of code a

P-908
-14-

potentlal symbolic location. This Is the feature of

addresses relative to a symbol, e.g. SYMBI/+6 means the

sixth address after the address assigned to SYMBL. Similarly

ABCDE-2 means the second address before the one assigned to

ABCDE. This seems like a marvelous convenience from a

coder's viewpoint. We found, however. In de-bugging the LP

codes, that the great majority of errors occurred from mis-

counting the addresses from the symbol or forgetting to

correct after insertions or deletions near the symbol. The

references are often far removed. Of course, the obvious

way to avoid this Is to use a distinct symbol for each

referenced location. However, this Increases the amount of

Information required by the assembler and It Is often conven-

ient for symbols In a sub-section of code to be related. For

example, one might use SYNB, SYMB1, SYNB2, etc. for referenced

locations near together. This In fact Is done throughout

the coding of UA-SAP ItselfI (Amazingly, It Is written In

terms of Itself.) Hence, why have relative locations at

all? A better device would be second-order symbols. I.e.

sub-symbols which are reheaded automatically whenever a new

major symbol appears, e.g.

(Location) (Reference)

SYMB - - SYMB
1 - SYMB1
6 - SYMB6

ABCD - - ABCD
3 - ABCD3

where the location sub-symbols are written In a distinct

I

P-908
-15-

column set aside for them. With these remarks# we oan now

state a set of proposed specifications for an assembly pro-

gram. We will assume familiarity with UA-SAP.

We would accept the standard "SHARE" .^-letter symbolic

operation code In Its entirety Including the additional

"prefix operations" MZS# MON, etc. We would modify the

UA-SAP definition of a symbol to read as follows:

SYMBOL: Any combination of not more than 3

Hollerith characters except the

comma, the first of which Is non-numeric.

SUB-SYMBOL: A symbol prefixed with a digit

1* •••# 9»

FIXED SYMBOL: A symbol prefixed with a minus sign.

We would reserve column 1 for a symbol prefix but otherwise

adopt the UA-SAP symbolic card form.

We would do away entirely with arithmetic expressions

In terms of symbols and integers. Including relative

addresses. (These are properly functions of a compiler.)

We would require all tags to be numeric and disallow

all-numeric location fields to act as origin cards.

We would accept the UA-SAP pseudo-Instructions 0R0, EQU,

SYN# DEC, OCT, BCD, BSS, BES and END as defined. The EQU

Instruction would require a decimal address and the SYN

operation a previously defined symbolic address.

We would omit entirely REP, LIB, HED, DEF and RSM and

Impose some restrictions on remarks. We would also add the

I
P-908
-16-

pseudo-instructions ORP, OPE and CLR which will be explained

subsequently.

Prom this point, we diverge from UA-SAP, for we would

Introduce "circulating Information" In the form of BCD

(binary coded decimal) punched cards. All symbolic cards

(with certain exceptions) would be punched in this form

before punching the absolute binary deck. These BCD cards

would be readable by the assembler and could be intermixed

with symbolic cards for re-assembly. The BCD cards used as

input would not be re-punched.

These BCD cards would be punched in groups, each group

being associated with a major symbol. The nrst card of a

group would be distinctive and be associated only with the

major symbol. We shall hereafter refer to these as S-cards.

These are the only BCD cards on which comments would be re-

produced and only the comments on symbolic cards with a major

symbol in the location field would eventually be printed.

The original alphadecimal symbol would be punched in standard

Hollerith characters in columns 73-77 (no prefix) on an

S-card which would act as a gang master for the rest of the

group. (If an automatic sequencing device is available on

the card punch, this could be used on columns 78-80). The

BCD cards could then be Interpreted for easy identification.

The other cards of the group will be referred to as

0-cards. These would contain up to 12 Instructions each.

Instructions which contain neither a location nor a decrement

p-9oe
-17-

would require one row of a card, otherwise two rows.

Symbolic cards with DEC, OCT or BCD operations and a

major symbol In the location, would be reproduced on one

S-card with no comments.

If It should be desired to use several major symbols In

sequence, as for a region of universal constants, then It

would be desirable to punch them all In O-cards. This one

could do by heading the symbolic cards with a card contain-

ing the pseudo-instruction ORP. All following symbolic

cards would then be reproduced In O-cards (with no comments)

until either a symbolic card with the Instruction OPE or an

S-card was read. Columns 73-77 of these cards would retain

whatever symbol was previously being ganged.

Symbolic cards with the pseudo-Instructions ORO, SQU,

SYN, ORP, OPE, CLR, or END would not be reproduced In BCD

cards since this Information might well vary from assembly

to re-assembly.

The pseudo-Instruction CLR would accomplish the follow-

ing:

All unfixed symbols are sorted, stored on tape and

cleared out of the symbol table.

This would eliminate the difficulty of duplicate symbols In

different sections of the program being assembled and be

much more to the point than the UA-SAP Instruction HBD.

Universal symbols (which ought to be universally honored)

could be fixed. When the END card Is read, all symbols

P-908
-18-

renialnlng In the table would be sorted. Since the fixed

symbols would be negative, they would occur first. The re-

maining unfixed symbols would be written on tape which would

then be rewound and the records of unfixed symbols, i.e. set»

divided by ClU cards, would be used in order of occurrence

together with the fixed symbols.

The BCD cards would be punched during reading of the

symbolic cards. On the first assembly, this would require

considerable punching but, on reassembly, only corrected

symbolic cards would be punched and reading time should be

cut by a factor of six or eight.

There would be two kinds of printing, each subject to a

switch. Before each set of symbols is sorted, they could be

printed out in order of occurrence together with the absolute

locations assigned. This would be the only printing normally

done on a first assembly. The other option would be the

complete listing of the assembled program in a fonn entirely

similar to the UA-SAP format. This could be deferred until

the program was de-bugged. At that time only BCD cards

would have to be read (none punched) and printing could be

done on vellum for reproduction.

The assembled program would, of course, be punched in

absolute binary cards in any case.

The detailed formats of the S- and G-cards have been

worked out and are entirely practicable. They are not dis-

cussed here as being of interest only in the event such a

P-908
-19-

prograra Is developed. This would, of course, be a two-pass

assembler. The program for the first pass has been outlined

and a considerable part of It actually coded. The second

pass (actual assembly) would not be much different from the

second pass of UA-SAP. On the first pass, there Is no

question of being able to handle 12 Instructions per O-card

at 250 cards per minute since there Is no conversion,

packing, editing, etc. to be done. This would have all been

accomplished on the first assembly.

