
• to
• <D

O
\0

IO
^ ©

1
<D

s
^

No

COPY

/

THE STORAOE ALLOCATION
OF THE UNBAR PROGRAMMING CODE*

H. A. Judd
Internatlcnal Business Machines Corpcrati en

I

P-907 t '

-July 26, 1956

J

. V-.~CF

Prepared for The RAND Corporation Short
/•/ /y bourse In Computational Aspects of Linear

-T^^/^Progranmlng, Sept. 4-13, 1956.

Approved toe 0T5 release

(13)

DDC

CIRA £
I'OINIA

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI
DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSION ~
A 7 ^ S olo^

|7| I. WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART
UNSATISFACTORY REPRODUCTION HAS BEEN MADE FROM BEST
AVAILABLE COPY.

Q 2. A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL
WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.

[3 3. THE ORIGINAL DOCUMENT CONTAINS COLOR. BUT DISTRIBUTION
COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION
ONLY.

Q 4. THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL
BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO
REPRINT.

n 5. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL
,-1 BE AVAILABLE IN MICROFICHE ONLY.

[I 6 LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL
NOT BE AVAILABLE.

□ 7 DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.

□ 8 DOCUMENT AVAILABLE ON LOAN FROM CFSTI (TT DOCUMENTS ONLY).

D»

PROCESSOR:
TSL-I07-I0 S4

P-907
-11-

SUMMARY

The handling cf storage assignment and subroutine Inter-

connections for the 704 linear programming codes are dis-

cussed. The available storage of the machine Is divided Into

two main parts -- code and data. Their layouts are fairly

independent of one another and the programs Include routines

for automatic "housekeeping" during leading and running of a

Job. Flexibility Is provided for systematic modifications In

the programs or for machines with various storage facilities.

P-907
-1-

I have twc reasons for discussing the storage allocation

that we used In the coding cf the Linear Programming problem.

The foremost reason Is to Increase your understanding of the

operation of the LP code, and secondly, I think It Is an

excellent solution of the storage allocation problem for any

big general program. The 704 code for solving the Transporta-

tion problem, which I worked on In New York,solves the

Transportation problem admirably, but It lacks the tidiness

that a good storage layout provides.

To begin with, the LP code was denigned for a 704 with

409o words of magnetic core storage, one drum unit, five

tape units, a card reader, a printer, and a punch. Only four

tape units are necessary If no off-line printing Is desired.

The code has already been modified to take advantage of the

additional 409t) words of core storage which has been added to

some of the 704^ now using the LP code. A more extensive

modification Is planned for the 32,000 word core storage unit.

The assembly of Input data Is, at present, completely

separated both logically and physically from the LP main code.

The data assembly program Is made up of many subroutines to

accommodate the different options which are allowed. For

example, the data may be loaded on a tape via the peripheral

card-to-tape equipment Instead of the card reader. The Data

Assembly code contains the necessary subroutines to accept

the data either way. The layout Is somewhat similar in

structure to the main code since we wanted to use the same

P-907
-2-

data and constants regions. Since the Data Assembly code did

not fit into the assigned space In high-speed storage, «re

broke it in half storing the second half on a drum. After the

first half is executed, the second half is read in from drums

overwriting the first half. Control Is then returned to the

beginning of the code and the second half is executed. This

type of sleight of hand is very common where space is short

and programs are long. It works best, however, when the pro-

gram need be executed only once before it is destroyed, as in

this case.

For the main code, high-speed storage is divided up as

follows during the execution of the code:

0-- 15 COItlON 16
16-- 391 MASTER CONTROL ROl/TINBS (MCR) 376

392-- 48? UNIVERSAL SUBROUTINES (DPFADD,
DPFMUL, DISTRB) 96

488-- 703 SUBROUTINES 216
704-- 767 UNIVERSAL CONSTANTS o4
768-- H-REQION M+l

V-REOION 2*f2
W-REOION 2Nf2

2048--4096 T-REOION 2048

The COMMON region is used for erasable storage by any MCR

or subroutine at any time. The NCR region is used by the

three different Master Control Routines which we have at the

present time. Only one of these may be operating at a given

time. In normal operation, the COMMON MCR is used until an

optimal solution is reached, or until the operator decides to

stop and invert the present basis. The INVERSION MCR must

then be read into the MCR region from binary cards to perform

the inversion. After the inversion is completed« the COMMON

P-907
-3-

MCR would be read In again from binary cards and the coaputa-

tlon could proceed. This manual switching of the MCR codes

may be eliminated by saving the NCR's Internally, but at the

time these NCR's are loaded« It may also be desirable to load

part or all of the data In again since the restarts are

handled In this way. In the near future some changes may be

made In regard to the way restarts are handled so the MCR's

will be saved Internally for more automatic changing.

There are three universal subroutines, namely, Double

Precision Floating Point Add, Double Precision Floating Point

Multiply, and a subroutine called the Distributor. The

functions of the first two are adequately explained by their

titles. They are always available for use by any of the sub-

routines (hence, they might be more aptly described as sub-

subroutines) . The Distributor Is a very short subroutine

which contains a table of the number of Instructions and the

drum address of the first Instruction of each subroutine In

the code (with the exception of the Universal Subroutines).

At present, there are Ik subroutines which may be used by the

raaater codes. These subroutines do a great deal more than the

ordinary macro-Instruction type subroutines. The pricing

operation, for example, is a single subroutine. When the MCR

wants to execute this subroutine, it is only necessary to

execute the two instructions

CLA PRICE
TSX DISTRB, C

P-907

The first Instruction places the code number corresponding

to the desired subroutine In the accumulator register sc the

Distributor can select the proper drum address from the table.

The second Instruction places the 2'a complement of Its own

location In Index register C and transfers control to the

Distributor. First, the Distributor saves the contents of

Index register C In a standard location. Then the drum

address of the first Instruction and total number of Instruc-

tions In the subroutine are taken from the table. The

Distributor reads the subroutine from the drum Into the

standard subroutine region and transfers control to the first

Instruction of that region (486). The subroutine Is then

executed. Upon completion of the subroutine, Index register

C Is reloaded from the standard location with the S's comple-

ment of the location of the TSX Instruction In the MCR.

A TRA 1,C Is executed which returns control to the Instruction

following the TSX Instruction In the MCR. In the 704, the

effective address of a tagged TRA Instruction Is computed by

subtracting the contents of the Indicated Index register from

the stated address In the Instruction. The Index registers

do not have an associated sign, hence, the subtraction Is done

by taking the S's complement of the number In the Index

register- and adding It to the stated address. The 2^ comple-

ment of the 2,B complement Is the number Itself. In the ex-

ample above, we added one to the original location ana thus

returned control to the Instruction following the TSX

P-907
-5-

Instructlon In the MCR. If you are not confused by now, the

rest will be easy.

Since It Is possible to move 10,000 Instructions per

second between drum and high-speed storage, very little time

Is used by keeping all of the subroutines on drum and calling

them In fresh each time they are to be executed. Thus, all of

the "heavy" work was relegated to subroutines while decision

making and control remained to the MCR's. Thus, to call a

subroutine off the drum and execute It requires only two In-

structions In the MCR, the Distributor routine, and a very

short amount of time. Each of the subroutines must necessar-

ily make certain assumptlcns concerning the disposition of the

data which It uses. It Is the prime function of the MCB's to

control the various activities and flow of data using the sub-

routines like the powerful tools they are.

In the space allotted, you will note that a subroutine

cannot exceed 21b words In length. Later on, I will show how

we can fudge this number up a bit, but first I want to point

cut the storage for constants and data. The Universal

Constants contain the numbers 0, 1, 2, and other commonly uaed

Integers. They also include all of the standard locations for

parameters to Indicate which phase, which stage, which cap-

tion the print program will use, etc. Some of these constants

are fixed by the Data Assembly program to define the storage

layout for the particular problem being run such as M+l, 2M+2,

VORION, WORIQN, etc.

P-907
-6-

The H-REGION always contains M+l words and Is used to

keep the names of the current activities which constitute the

basis. The V and W regions are 2M^2 words In length and each

may contain a double-precision vector. The solution vector.

Beta« Is normally kept In V-reglon from where It Is used. The

l(t) W-reglon la used for working storage In generating a /«x and

IT)
IT* ' while working with the transformation vectors In

T-reglon. It Is used for several purposes> all of which

require an expanded double precision vector. The transforma-

tion vectors. Eta., are kept In ccndensed form In T-reglon when

they are being used. At other times, they are stored on drum

3» or transferred to tape (end-of-stage procedure) if they

exceed the capacity of T-reglon. The only difference between

the code for the ^096 and the 8192 word core storage machines

Is that T-reglon Is expanded to half of 2048 plus 4096, that

Is from 2048 to 3072. Drum 3 Is not used at present In the

8192 word machine. In place of using the drum for temporary

storage for the Eta vectors, the high-speed storage following

T-reglon is used. This change has caused a considerable

Increase In speed over the 4096 word machine. The T-reglon

is also used for temporarily holding the matrix, or as much

of it as possible, when it Is used.

The tapes are used for permanent storage of the matrix

(tape number 5)* for permanent storage of the transformation

vectors (tapes numbered 2, 3, and 4), and tape 6 is used as

output by the print program if peripheral printing is desired.

P-907
-7-

Three tapes are needed for the transformation vectors for

reliability and because they are used In both a forward and

a backward direction. Tape 2 contains the vectors In the

order In which they were generated providing, of course, that

they exceed the capacity of T-reglon. Tapes 3 and 4 are used

alternately to contain the transformation vectors In backward

direction with respect to records only. That Is, at the first

end-of-stage, the record Is written on tapes 2 and 3» At the

second end-of-stage, the new record Is added to tape 2 and

written on tape 4. Then the contents of tape 3 are written

on tape 4 following the new record. Tapes 3 and h are alter-

nated In this way as long as necessary.

The drum layout Is straightforward and flexible enough so

that It can be changed around If desired. There are four

logical drums In a drum unit of the 704 with 20^8 words each.

The first logical drum Is selected by the drum load button

sequence which we use extensively for restart procedures.

Thus, the program labeled DRBOOT, for drum bootstrap, has to

be placed at the beginning of drum 1.

The last 2H+2 words of drum 1 have been arbitrarily chosen

to keep b , the original right-hand side. All of the other

data Including the current MCR and constants are saved on

drum 1 for the automatic restart. Drum 2 and the rest of drum

1 are used for sub-MCR's and all cf the subroutines. Drum 3

Is used for storing transformation vectors when T-reglon is

being used for other purposes except when using an 8192 word

P-907
.ft

machine. Drum 4 is used for other vectors generated during

the runs which must be temporarily saved during the parametric

programming.

Now I would like to show the way In which we are able

to cheat on the rigid storage layout of both the MCR region

and the subroutine region. The Inversion MCR exceeds the 376

word limitation on the size of the NCR's. Here again, we use

the sleight of hand technique of loading a part of the

Inversion MCR as a subroutine with a code of zero. The main

part of the Inversion MCR calls In this sub-MCR via the dis-

tributor. This sub-MCR knows a priori where the MCR gets

stored on drum 2 so that It calls It In to the MCR region

overwriting itself after It has finished Its function.

The program which loads the subroutines, the sub-MCR's,

and the current MCR Is known as the executive loader (EXECLD).

This is a standard binary loading program which has been

modified for our special needs. The standard binary loader

reads cards and stores the words In storage getting the

number of words on each card and the loading address of the

first instruction from the left word in the ^'s row on the

card. A hash check sum of the card Is in the right word in

the 9'a row. Before it stores the instructions away, it tests

the word count to see if it Is zero. When it finds a card

with a count of zero, it uses this Indication to stop loading

and transfers control to the location indicated in the address

part of the left word in the 9'» row.

P-907
-9-

The executive loader- uses the same Indlcatlcn, a ccunt of

zero, and applies a detailed examination of the right word In

the ^'s row. Per clarification, a card with a word count of

zero Is called a TITLE card Instead of a transfer card in our

write-ups. The number In the 9's right row of the title card

indicates whether a subroutine, sub-MCR or MCR has Just been

loaded.

While the executive leader Is loading these sub-MCR's and

subroutines. It stores them away first on drum 2 and then on

drum 1 when drum 2 Is full. It keeps track of the first and

last loading address of each code being loaded between suc-

cessive title cards. Thus It computes the exact number of

Instructions In the routine which It adds to a counter to

keep track of the space left en the drum which It Is loading.

Prior to loading each routine It places a return Jump

(TRA 1, C) In the first location of the MCR region. This Is

automatically destroyed by loading MCR's and also by some sub-

routines since we use another device for increasing the total

length of subroutines. This Is to put a preface to some sub-

routines In the MCR region and execute this set of code

before the executive loader tucks the subroutine away on a

drum. The preface Is used to preset those addresses In each

subroutine which depend en the particular problem the code Is

working on. You may recall that M is variable for each prob-

lem and determines the limits of H, V, and W regions. Thus

the executive loader always transfers control to the first

Inatructlon of the MCR where the preface Is executed. If

there la one, and control returns to the executive loader

after the subroutine Is Initialized. Then the executive

loader Ignores the preface in the MCR region and tucks the

condensed subroutine away on the drum, places the number of

Instructions and first drum location \n the table of the Dis-

tributor routine and proceeds to load the next subroutine or

MCR. Thus, the order of loading Is determined to be:

BASE routines (DRBOOT, Universal sub-routines,
EXECLD, the CONSTANTS)

SUBROUTINES
SUB-MCR's

DATA

The Inherent beauty In this loading scheme Is that the program-

mer does not have to know hew many Instructions are in each

subroutine, sub-MCR, or MCR so long as the region boundaries

are not violated. Again, we have allowed the 704 to do the

housework of keeping track of the number of Instructions In

each subroutine, store them away on drums efficiently, and

bring them back again when they are called for by the MCR.

The print subroutine exceeds the subroutine storage so

badly that we have a pseudc-subroutine In Its place and the

real print program Is loaded like a sub-MCR. The pseudo-

subroutine gets called In and It In turn calls the real print

program Into T region since that Is the only unoccupied space

available which la large enough to accommodate the print

program.

P-Q07
-11-

In ccncluslcn, let me pclnt out that data storage la a

function of the number of equations In the system the code is

working on. The storage of the LP code Is Independent of the

problem and parts can be reassembled and Included as they are

needed. If we had a 70^ with 32,000 words of core storage and

no drum, we would use a block of core storage for the main

subroutine storage. Any change like this affects only two

routines, the executive loader and the distributor. If we

get drums and 32,000 words of core storage, we would still

keep the subroutines on drum and use all additional high-speed

storage for transformation vectors.

