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P. Model Stated In Algebraic Terma    1 

ymbols are Introduced to distinguish various 
activities. Items, the assumed constant flows 
and costs (or profits) per unit level of 
activity, the activity levels and the quanti- 
ties of demand or availability of various 
items. The central problem is then stated 
in standard algebraic form.^ 

Hi Equivalent Systems    4 

^ It Is shown that the problem of minimizing a 
linear form where the unknowns satisfy a system 
of equations in non—negative variables is 
equivalent to one where the variables satisfy 
a system of linear inequalities. 

III. Properties of Solutions and the Simplex Method ....  8 

It is stated without proof that an optimizing 
solution belongs to a class of feasible solutions 
that "involve"' no more variablus than equations. 
The simplex method is illustrated by showing 
for this class a way of testing the optlmallty 
of a solution and constructing a sequence of 
Improved feasible solutions. 

IV. Existence of Solutions, Uniqueness  11 

V.  Problems  17 
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THE CENTRAL MATHEMATICAL PROBLEM 

G. B. Dantzlg 

!• Algebraio Statement of the L. P. Model 

The minimization of a linear form subject to linear Inequal- 

ity restraints has been called the central mathematical problem 

of linear programming. The standard form for such problems, 

because It arises naturally in many applications, is finding a 

solution of a system of linear equations In non-negative variables 

which minimizes a linear form. We shall see in a momerit why 

this particular form was chosen as standard.  At the same time 

we shall formalize in mathematical terms our remarks regarding 

linear programming models. 

Standard Form:  If the subscript J » 1, 2, ..., n denotes 

the J—th type of activity and x.  Its quantity (or activity 

level), then usually x. > 0.  If, for example, x. represents 
j j 

the quantity of a stockpile allocated for the J-th use, It does 

not, as a rule, make sense to allocate a negative quantity.  In 

certain cases, however, one may wish to interpret a negative 

quantity as meaning taking stock from the j-th use.  Here some 

care must be exercised; for example, there may be costs, such 

as transportation charges, which are positive regardless of the 

direction of flow of the stock.  One must also be careful not 
v 

to overdraw the stock of the using activity.  For these reasons 

it is better in formulating models to distinguish two activities, 

each with a non—negative range, for their respective x,, rather 

than to try incorporating them Into a single range. 
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The interdependenclea between various activities arise because 

jail practical programming problems are circumscribed by commodity 

limitations of one kind or another.  The limited commodity may 

be raw materials, manpower, facilities, or funds; these are 

;referred to by the general term item.  In chemical equilibrium 

problems where molecules of different types play the role of 
i 
lactivltles,   the different kinds  of atoms   In the mixture  are  the 
! 
jltemB.  The different types of Items are denoted by a subscript 
I 
|1, (i « 1, 2, ..., m). 

In linear programming work, the quantity of an item required 
i 

•by an activity is usually assumed to be proportional to the 
i 
.quantity of activity level; or if the Item is not required but 
I 
: produced, It is again usually assumed to be proportional to thja 
i i 

iquantity (or level) of the activity and the coefficient of proi- 

jpcrtionallty Is denoted by a.,.  The sign of a. . depends on 

whether the Item la required or produced by the activity.  The 

sign convention used will be (+) If required and (-) if produced. 

Activity 

Finally, If b. (if plus) denotes the quantity of the 1 ,1  Item i 

made available to the program from outside (or exogenous) sources, 

or (if minus) denotes the quantity required to be produced by 

the program, then tt.e interdependenclea between the x. can be 

expressed as a set of m linear equations; the 1   such equation 

gives a complete accounting of the i  Item.  Thus 
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(1)     a11x1 + a12x2 + ... -f alnxn - b1 

a21x1 + a22x2 + ... + a2nxn - b2 

ml 1   mz 2        mn n   m 

where 

(2) XJ > 0 J - (1, 2, ..., n). 

Any set of values x. satlefylng (1) and (2) 1B called a feasible 

solution because the corresponding schedule Is possible or feasible 

The objective of a program In practice often Is the inost 

difficult to express In mathematical terms.  There are many 

historical reasons for this which go beyond the scope of this 

course.  In many problems, however, the objective In simply one 

of carrying out the requirements (expressed by those b- which 
> 

are negative) In such a manner that total costs are minimum. 

Costs may be measured In dollars or In number of people Involved, 

or the quantity of a scarce commodity used.  In linear programming 

the total costs, denoted by 2, are assumed to be a linear function 

of the activity levels; 

(3) c1x1 + Q2*2  + ... + cnxn - z . 

The linear form z Is called the objective function.  In some 

problems the linear objective form Is to be maximized rather than 

minimized.  For example, the problem may be to produce the maxi- 

mum dollar value of products under a fixed budget, fixed machine 

capacity, and fixed labor supply.  Suppose the linear form ex— 
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jpresslng  total  profits  to be maximized Is ; 

! 

p1x1 + p2x2 + ... + Pnxn . 
1 

1 
I 

This Is obviously mathematically equivalent to minimizing 

i 

|        -Plx1 - p2x2 -...- Pnxn . 

IPor these reasons the standard form of the linear programming 
■ 

Iproblem is taken as the determination of a solution of a systeift 
i 

of linear equations in nonnegative variables which minimizes a 

linear form. 

|II.  fc-Quivalent Systems 

I    Any problem Involving a oystem of linear inequalities can 

be transformed into another system in standard form by one of 

several devices.  Steps (i) and (11) below constitute one method, 

the easiest one, of accomplishing this.  A second method is 

given by steps (1) and (11)—alternative: 

(i)  Replace any linear inequality restraint such as 

(4) a1x1 + a2x2 + ... + anxn < b 

by adding a slack variable x
n+i > 0 such that 

(5) a1x1 + a2x2 + ... + anxn 4- xn+1 « b1 

(11)  Replace any variable x, not restricted in sign by 

the difference of two nonnegative variables* 

~   *Any number can be written as the difference of two positive 
numbers. 
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[(6)" " '  Xj'- xj'- x"     x' > 07x"'> O": 

! 1 
; J = 1, 2, . . ., n . 
i 

.  . i 

(il) Alternative — Let x. be any variable not restricted 

In sign that appears In the k-th equation with a non—zero coef-i- 

jflclent.  Solve the equation for x, and substitute Its value in 

jthe remaining equations and the objective form z.  Setting the, 

k-th equation aside, the remaining modified equations constitute 
i 

|a reduced system of constraints.  The procedure is repeated with 

ithe new linear programming problem until either: 
t 

(a) a reduced system of constraints is obtained in 

■which all remaining variables are nonnegative, or 

(b) there are no equations in the reduced system. 

1 | 
Once a solution to the reduced problem is obtained, a 

solution to the original problem is gotten by successive substi— 

.tutlons, in reverse order, in the eliminated equations. 
I 

i 
t 

'Example 1:  Transform the system into standard form 

(6.1)        Xj + x2 > 6 

x, + 2x2 = z 

St ep 1:  Introduce slack variable x. 

(6.2)       . x. + x^ - x, = 6      x, > 0 

Xj + 2x?    =■ z 

Step 2:     Substitute x, » xJ - x'J,  Xp ^ xA - x" 
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,(6.3)    (x- - x^) +(x^ - xn
2)    - x3 - 6  (x^O; x'>0. x"j>0,   jfl,2) 

' {x[ -  xj) + 2(x' - xj) = z . ! 

i | 

Step J>:     Alternative:  Golve the equation x, + Xp - x, = 6 

^or x1, which Is unrestricted In sign, 
I 
i 

'(6.4)    x1 - 6 - x2 + x5 (x^ > 0) 

i 
i 

and substitute in the objective form z to get 

i 

'(6.5)    x0 + x, + 6 = z (x, > 0) . 
,        2   3 (   3 - , 
i 

.This Is case (b).  A general solution to the original system 

(6.1) can be obtained by cr.oosing any value for x, > 0, any 

^alue for x^; substituting these values In (r.4) determines   | 

iX,.  Notice that no finite lower bound for z exists since !  1 

iX0 may be chosen arbitrarily. 

Example 2:  Transform the system Into standard form 

(6.6)        - x1 - x2 < A 

- xl + x2 ^  - 

x, + 2Xp = z 

Step 1:  Introduce slack variables x-, and x^. 

(6.7)    - x1 - x2 + x^     » -6  [Xj  > 0, xu > 0) 

- x1 + x2     _ x4 » 5 

x, +■ 2Xp = z 
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Step 2:  Alternative:  Solve the first equation for x< 

and substitute In the second equation and the form z.  Next, 
i 

solve the modified second equation for Xp and substitute In the 

form z.  This eliminates the constraint equations and we are 

left with 
i 

(6.8)    z = 1/2(23 + 3x3 + x4) (x3 2 
0' x^ > 0),, 

and the eliminated equations ,      i 

(6.9)    x1 " 6 - x2 + x, i 

| x2 - 1/2(11  + x^ + x4) . 

A general solution to the original system of constraints Is   J 
i 1 
obtained by selecting any x., > 0, x^, > 0, and determining x« 

and x, from (6.9).  If the objective Is to minimize z, then 

ithe optimum solution is found by setting x, = 0, XL = 0, 

obtaining z = 23/2,  x2 - 11/2,  x1 = 1/2. 

Conversely, any problem involving equations can be replaced 

by an equivalent system Involving onl> linear inequality 

irestralnts.  The rule is to replace any equation 

(7) alxl ■f a2X2 + ••• + anxn n b 

by the two inequalities 

(6) alxl + a2X2 + ••• + anxn ^ b 

a1x1 + a2x2 + ... 4- anxn < b 
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III.  Properties of Solutions and the Simplex Method 

We shall now state two Important properties of solutions of 

a tiystem in standard form: 

Theorem 1:  If a feasible solution exists for a system of m 

equations in nonnegative variables, then one exists in which 

at most m variables have positive values, the remaining variables 

(if any) being zero. 

Theorem 2:  If feasible solutions exist and possess a finite 

lower bound for the linear objective form z, then an optimizing 

solution exists in which at most m variables have positive 

values. 

It will be convenient to use the phrase "a solution 

Involving k variables" to mean a solution in which the remaining 

n — k variables are zero. 

Proofs of these two theorems will be given in a later 

lecture.  Our purpose now is to illustrate these two theorems 

with a simple example.  Consider the system 

(8.1) x1 - 3x2 + Ux^ = 2       (x1 > 0, x2 > 0, x^ > 0) 

(8.2) x1  + 2x2 - x, » 2 

where it is required to choose x^ such that the form z below 

is minimized: 
> 

(9)     x1 + x2 + x^ = z . 

We observe that if in (8.1) and (8.2) we set 
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lz1 • x2 • x, • 1 we obtain a reaa1ble solution where the coat l 
11• • • '· Aooord1nl to the rtrat theorem we should be able to 

tind a teaaible aolut1on involving no aore than two variables ... . 

Moreover, a aolut1on 1nvolvina no aore than two variable• 

ex1ate wh1oh •1n1m1zea the value or •· Th1a, however, 1e not 

d1reot oonaequence or the aecond theorem, becauae the second 

theorea atatea that thta 1e ~he oaae only it z has a t1nite 

lower bound. (Thia 1a a hedge againat the poeaib1lity that 

value• ot x3 ~ 0 oan be choaen which ~attery the conetratnta 

and make z leee than any pre-asai1ned number, in whioh case, 

there 1e no ain1 .. 1 feasible solution.) However, ror the 

particular example, it ie olear that al.waye 

(10) z • x1 + x2 + z, ~ 0 

and the eecond theorem aleo applies. 

I 
I 

i 

I 
I 

Let ua liet the three posetble eolut1one to (8.1) and (8 .t) 
I 

tnvolvin two or the three variablee. These are: 

let solution xl - 2 all others (1n th1a caee xJ) 
(opti~aal) 

x2 - 0 

z . - 2 

2nd solution x1 - 2 all others (in thie caee x2) 
(optimal) 

x, - 0 

z - 2 

- 0 

- 0 

3rd eolution x2 - 2 all others (in this caee x1) ~ 0 

x, - 2 

z - 4 
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all three of the combinations turned out In this case to be 

feasible solutions.  Moreover, the first and second solutions 

are identical.  By the second theorem, the first (and second) 

solution must be an optimal solution to the original problem. 

jWe shall now give a direct proof that this is the case. 

ITesting Optlmallty of a Solution:  Indeed, the first solution 
I 
Is optimal because If we multiply C8.1) by 1/5 and (8.2) by 4/5 

t .   . 
^nd   subtract  from the minimizing  form   (9),   we will  eliminate 
I 
ithe  variables x1  and Xp and will  be  left  with 

(11) X-  +  2   =  z, 

and it Is clear that x., > 0 implies z > 2, but a value of 2 can 

;be achieved by setting x, = 2, x2 = 0, x, - 0.  Hence, this is 

'a minimizing solution. 
! 
I 

IProblem:  Show by ellmlnatlhg the variables x, and x, from the 

objective form that the second solution Is optimal also. 

0 

0 

0 

jlmproving a Solution:  On the other rand, our third solution is 

not optimal, because if we multiply (8.1) by 3/5 and (8.2) by 

7/5 and subtract from (9), we will eliminate the variables Xp 

and x, from the minimizing form and will be left In this case 
5 

with 

(12) x1 + 4 = z, 

hence it pays to Increase the value of x,, If possible.  If we 

do so,, tnls will affect the values of the selected variables 

Xp and x,:  they will become 
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x2 » 2 - x1 

x, - 2 - x, . 

It follows that x. may be Increased to 2 before Xp or x, becomes 

negative and this will be an improved (in fact, optimal) solution. 

The new feasible solution may be examined for optlmallty In the 

same manner.  If It were not optimal It could be used in turn to 

construct a third lower cost solution. 

The procedure Just outlined is called the simplex method 

and is the one in general use for solving linear programming 

problems. 

IVt Existence of Solutions^ Uniqueness 

Just as in the special case of solving linear equations, it 

is possible that there exist no solutions to a system of linear 

Inequalities, or there may exist many.  To see this geometrically, 

let ua take the linear programming problem In the form of a system 

of linear inequality restraints Instead of standard form.  Consider 

the system 

(13) x1 '■ x2 > 2 

x1 > 0 

x2 > 0 

+ x1 - x2 > 3 

Let (x. , Xp) represent the cartesian coordinates of a point in 

a plane.  All points (x,, x0) that satisfy x. f Xp > 2 lie on 

one side of the line x, + Xp «= 2.  Which aide can be determined 

by substituting the coordinates of some fixed point (such as 



P-89? 
7-9-56 
-12- 

ithe origin) Into the linear Inequality.  If the linear Inequal-' 

■Ity is satisfied, all such points are on the same side as the 

[fixed point; otherwise, on the opposite side.  To Indicate the 

islde of the line represented by the inequality, we shall use a 

little arrow in Figure 1.  The shaded area is the region of 

jpolnts satisfying all four inequalities simultaneously.  In 

Ithis case the region is unbounded.  If the restraint 
< 

t 
(1^)     x1 + 2x2 < 6 

i 

is added to the system the common region will become bounded 

(see Figure 2).  If now the restraint 

'(15)     - x1 + 4x2 > 0 

lis  added,   the   region   is   reduced   to  a  unique  point   (4,   1)   (see 

Figure  5).     Finally,   if  the  condition 

(16) - 2x1  +  x2  >  2 

is added to the system, no points satisfy all restraints simul- 

taneously and there exist no solutions. 

If it is required to find a solution that minimizes the foru 

(IV)     -2x1 - x2 ^ z , 

where the point (x., x2) lies in the shaded region (see Figure 

4) the line  2X, + x- = constant  is moved parallel to Itself 

until it just touches the shaded area at the extreme right point 

(6, 0).  The (unique) optimal solution is given by x, =«6, x0 = 0 



o 
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Flgure  2 
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I I 

Figure  ^ 

Figure   4 
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:ancl z - -2(6) - (O) = -12.  On the other hand, If the problem 
1 ' i 
!were to minimize this same form over the shaded region of Figure 

1, it would be possible to move the line 2X-, + Xp ^ —z  lndefl-r 

■nltely to the right and still cut the region of solutions.  In 
i i 

ithe latter case, it would be possible to construct solutions 

'such that z can be made smaller than any pre-asslgned value. 

It will be noted that the minimizing solution Is unique in 

jFlgure 4 for whatever linear form is chosen, unless the line 
I , 
!z = constant  Is oarallel to one of the sides of the shaded ar(a, 

i In general, the optimal solution Is unique unless the line   , 
■ 

irepresented by the objective form z = constant is In a special 
I 
jposition relative to the other lines.  In the latter case, a  ; 

jsllght modification (or perturbation as it is called) of the 
I ■ 

'coefficients in the objective form can bring about uniqueness.' 

Paradoxically, in practical cases, non—uniqueness Is rathe^ th0 
\ 
t 

irule than the exception.  The underlying reason for this is not 

clear.  Mathematical models for economic, military, and 

industrial applications exhibit very special structures, and 

this is certainly part of the explanation.  A second partial 

reason for this may be t^at the coefficients a., and c. in 

practice are carried with onlj a few significant figures. 

Problem:  Show that the values of x, and Xp that yield the 

maximum value of the form —x, - 2Xp - z are not unique in 

Figure 4.  Show, by slightly perturbing the coefficients of 

the form, that either (6, 0) or (4, l) will yield the unique 

minimum. 
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■v'here non—uniqueness is the rule rather than the exception, 

[It is a ^ood thing to have at hand a second criterion, such as 

■an alternative objective form.  After minimization of the first 

furn z, the equation z = z , where z  =« Mln z, Is added to the i o        o 

jaystem of equations and the second form Is then, In turn, mini— 

mlzed. 



l-S9f 
1-9-% 

-.11: 

PROBLEMS 

1. Assu.T.ing  that   firing   Is   the  opposite  of  niring,   give  reasons 

wr.y  it   Is  better  to  treat   this  as  two  non—negative activities 

ratner   than as  a  single  activity with  positive  and  negative 

activity   levels. 

2. If an  activity  such as  steel  production  requires  capital 

j           such as   bricks  and  cement   to  build  blast  furnaces;   what 

| would   the  negative  of  this  activity  Imply   If   it   were  used 

j as  an  admissible activity? 

\J).     Suppose   tfiat   the  difference   between  production  and  requirements 

is   Interpreted  aa  surplus   or deficit   (depending  on  sign). 

Illustrate  how  surplus  can   be   interpreted  as  a  storage 

activity  and  deficit  as  a  purchasing  activity   in  which all 

coefficients  of  the  associated   variables  can   be  quite 

different. 

^.       Reduce   system 

(a)     x1+x2>2 (b;     x1+x2 >2 

xl ~ X2 - 4 xl  _ x2 - ^ 

x1   + x? <  7 x1  + x2  +  x,   -'7 

to a system of equalities In non-negative variables by 

two different methods.  Show that systems (a) and (b) 

correspond to cases (a) and (b) of the alternative method. 

f..   Reduce the same system as above where It is assumed also 

Xj > 0,  x2 > C. 
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'6.   Suppose steaks contain per unit 1 unit of carbohydrates, 3 

,    units of vitamins, 3 units of proteins and cost 50 units Of 

cash.  Suppose potatoes per unit contain 3, k,   1, and 25 

units of these items respectively.  Letting x be the quantity 

of steaks and y   the quantity of potatoes, express the mathe- 

matical relations that must be satisfied to meet the minimum 

requirements of 8 units of carbohydrates, 19 units of vita- 

mins, and 7 units of protein.  If x and y are to be chosen 

so that the cost of diet Is a minimum, what is the objective 

form? 

7. Reduce the inequality system of problem six to an equality 

system In non-negative variables. 

8. Using x and y as coordinates of a point in two—space, plo\ 

the various relations of problem 6 and describe the set of 

points which constitute the set of feasible solutions; wh^t 

Is the optimal solution?  Is it unique? 

9. Reduce the system 

x^^  -f x2 + x, = 5 x1 > 0, x2 > 0 

x1 - x2 + x3 " 7 

x, + 2x2 + 4x, < 2 

to an equivalent inequality system. 

10. Solve graphically the system In non—negative variables: 

x, + xp < 1 

^x1 + 8x2 < 32 

x1 + x2 < 4 

x, - 2x2 > 2. 
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What Inequalities are Implied by others? 

11. Tranßform the eystem below into a oystem of equations In 

non—negative variables by two methods: 

2x1 + 3x2 + 4x5 > 5 

12. Transform the system of equations below In non-negative 

variables Into a system of Inequalities by two methods: 

2x 1 + ^x2 +  4i o 5 

1x - 7x2 + 3x3 » 4. 


