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THE CENTRAL MATHEMATICAL PROBLEM

G. B. Dantzig

I. Algebraic Statement of the L. P. Model

The minimization of a linear form subject to linear inequal-
1ty restraints has been called the central mathematical problem
of linear programming. The standard form for such problems,
because it arises naturally in many applications, 1s findinz a
solution of a system of lincar equations in non-negative variables
which minimizes a linear form. We shall see in a momerit why
this particular form was chosen as standard. At the same time
we shall formalize in mathematical terms our remarks regarding
linear programming models.

Standard Form: If the subscript §J = 1, 2, ..., n denotes
the jJ—th type of activity and Xy its quantity (or activity
level), then usually xJ > C. 1If, for example, xJ represents
trhe quantity of a stockpile allocated for the j—th use, 1t does
not, as a rule, make sense to allocate a negative quantity. 1In
certain cases, however, one may wish to interpret a negative
quantity as meaning taking stock from the j-th use. Here some
care must be exercised; for example, there may be costs, such
as transportation charges, which are positive rerardless of the
direction of flow of the stock. One must also be careful not
to overdraw the stock of %he using activity. For these reasons
1t 18 better in formulating models to distinguish two activities,
each with a non-negative range, for their respective xj, rather

than to try incorporating them into a single range.
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The interdependencies between various activities arise because
fall practical programming problems are circumscribed by commodity

limitations of one kind or another. The limited commodity may

1
‘be raw materials, manpower, facilities, or funds; these are

‘referred to by the general term item. In chemical equilibrium

'problems where molecules of different types play the role of

{
|

activities, the different kinds of atoms in the mixture are the

1
!

{tems. The different types of 1tems are denoted by & subscript

1, (t =1, 2, ..., m. \

!
|
} In linear programming work, the quantity of an item required
}

'by an activity 1g usually assumed to be proportional to the

!quantity of activity level; or if the item 18 not required but
‘produced, it 1s again usually assumed to be proportional to the
iquantity (or level) of the activity and the coefficient of proL
ipertionality 1s denoted by aiJ' The sign of aU depends on
;whether the i1tem 18 required or produced by the activity. The

sign convention used will be (+) 1f required and (-) if produced.

+ Activity -

th

Finally, if b, (1f plus) denotes the quantity of the 1 item !

1
made avallable to the program from outside (or exogenous) sources,

or (1f minus) denotes the quantity required to be produced by

the program, then tie interdependencies between the x, can be

o

expreased as a set of m linear equations; the 1th such equation

glves a complete accounting of the 1th item. Thus
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(1) 84X + 85X, + ... + By X = b,
a21x1 + a22x2 + ... + aenxn = b2
amlxl + am212 + . + amnxn = bm
where
(2) XJZO J“(l, 2, veey n).

Any set of values x, satisfying (1) and (2) is called a feasible

J

solution because the corresponding schedule is possible or feasible.
The objective cf a program in practice often 1e the most

difficult to express in mathematical terms. There are many

historical reasons for this which go beyond the scope of this

course. In many problems, however, the objective 18 simply one

of carrying out the requirements (expressed by those b1 which

are negative) in such a manner that total costzs are minimum.

Costs may be measured in dollars or in number of people involved,

or the quantity of a scarce commodity used. In linear programming

the total costs, denoted by z, are assumed to be a linear function

of the activity levels:

(3) CiXy + CoXp + Lu. + O X =2

The linear form z is called the objective function. 1In some

problems the linear objective form is to be maximized rather than
minimized. For example, the problem may be to produce the maxi-
mum dollar value of products under a fixed budget, fixed machine

capacity, and fixed laber supply. Suppose the linear form ex—
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{preesing totai profité‘to be maxiﬁfzedmis

P1Xq * PpXs + ... + p X
|
’This 1s obviously mathematically equivalent to minimizing

—P1X; — PpXp = -+~ PXy

For these reasons the standard form of the llinear programming

iproblem 18 taken as the determination of & solution of a system

of linear equations in nonnegative variables which minimizes a

linear form.

tJI. Eguivalent Systems

| Any problem involving a system of linear inequalities can

‘be transformed into another system in standard form by one of

}

several devices. Steps (1) and (1i) below constitute one method,
-the easlest one, of accomplishing this. A second method is

glven by steps (1) and (11i)-alternative:
(1) Replace any linear inequality restraint such as
(8) a,x

+8.X2+...+&X Sb

by adding a slack variable X1 2 O such that

(5) B1Xy + BX, + ... 4 BX+ X, » Dy

(11) Replace any variable x, not restricted in sign by
o

the difference of two nonnegative variablesg*

*Any number can be written as the difference of two positive
numbers.



(6) X, = X! —x o - xj > 0, x
|
J=1,2, ..., n.

|
(11) Alternative — Let x, be any variable not restrioted

J
in sign that appears in the k—th equation with a non-zero coef-

i
!
|
|[ficient. Solve the equation for x‘j and substitute 1ts value in

|the remalning equations and the obJjective form z. Setting the,

l
k—th equation aside, the reamaining modified equations constitute
' !

ia reduced system of constraints. The procedure is repeated with
Ithe new linear programming problem until either:

(a) a rzduced system of constraints is obtained in

fwhich all remaining variables are nonnegative, or
ﬁ (b) there are no equations in the reduced system.
|

|
Once a solution to the reduced problem 18 obtained, &

‘8olution tc the original problem is gotten by successive substi-

i

!tutions, in reverse order, 1n the eliminated equations.
|

:Example 1: Transform the system into standard form

(6.1) X, +Xx, 26
x1 + 2x2 = Z

Step 1: Introduce slack variable x3

(6.2) X+ Xp = Xy o= 6 X4 >0

+ 2%

]
N

Step 2: Substitute x

|
>
s
!
b
—
!
N
1
~t
m‘_
[
>

1



(53) (xp = xg) el - xp) =k f (k5205 X200 x)20,

"

; (x] = x5) + 2(x} = x5) =z

Step 3: Alternative: Jolve the equation Xy + X5 - x3

for x which 18 unrestricted in sign,

|

1,

(E.4) X

and substitute in the ob'ective form z to get

=f - x, + X (x}>0)

1 2 3

(6.5) Xy + Xy + A =z (x3 > 0)

i
f
| 1]

.This 18 case (b). A general solution to the original system
(6.1) can be obtained by croosing any value for Xy > 0, any

value for x,; substituting these values in (©.4) determines

2}
‘xl. Notice tnhat no finite lower bound for z exists since
‘x ma, be crosen arbltrarily.

2

Example 2: Transform the system into standard form

(F£.6) - %X, — X

Step 1: Introduce slack variables x3 and Xy

(6.7) - X; = X, ¢+ X = f X >0, x, > 0)
- Xt X5 - Xy = 5
X, + 2x =2

J51,2)



Step 2: Alternative: Colve the first.équétion-fof-fl.

and substitute in the second equation and the form z. Next,

|

!
solve the modified second equation for X5 and substitute in thg

{

l

form z. This ellminates the constraint equations and we are

left with

5(6.8) z = 1/2(23 + 3x3'+ xu) (x} >0, xy > o) ,

‘and the eliminated equations ' :

£.9) 2 — '
(£.9) X, 6 X, + X .

= 1/2(11 + x4 + x)

I 7(2 3
‘A general solution to the original system of constraints 1s |
!obtained by selecting any x3 > 0, X), > 0, and determining Xs
.and x, from (6.9). If the obJjective 18 to minimize z, then
ithe optinium solution !s found by setting x3 = 0, Xy = 0,
:obtaining z = 23/2, Xy = 11/2, X, = 1/2.

| Conversely, any problem 1nvolving equations can be replaced
by an equlivalent system involving only linear inequality

restraints. The rule is to replace any equation

)
}
|
\
!
'

(7) 81Xy + 8%, + ... +8ax =b
by the two inequalities
(8) 81X, + a %X, + +ax >0

o
b
—
+
o
no
>
no
4+
+
[+
~
IN
o
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ITI. Properties of Solutions and the Simplex Method

We shall now state two important properties of solutions of

a nystem in standard form:

Theorem 1: If a feasible solution exists for a system of m

equations in nonnegative variables, then one exists in which

&t most m variables have positi-e values, the remaining variables

(if any) being zero.

Theorem 2: If feasible solutions exist and possess a finite

lower bound for the linear objective form z, then an optimlzing

golution exists in which at most m variables have positive

valugg.

It will be convenient to use the phrase "a solution

involving k variables" to mean a solution in which the remaining

n — k variables are zero.
Proofs of these two theorems will be given 1nh a later

lecture. Our purpose now is to i{llustrate these two theorems

with a simple example. Consider the system

(8.1) X1—3X2+4X3 = 2 (xl > 0, 12>o' x}?_o)

(8.2) X, + 2%, - Xy = 2

where 1t 1e required to choose x, such that the form z below

is minimized:

(9) Xy Xy + Xy =2

We observe that 1f 1in (8.1) and (8.2) we set
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X) =X, = xj = 1 we obtain a feasible solution where the cost g

1s 3 = 3, According to the first theorem we should be able to;

find a feasible solution involving no more than two variables.:

Moreover, a solution 1nvolv1q‘,no more than two variables '

!
exists which minimizes the value of z. This, however, is not T

direct consequence of the second theorem, because the second

theorem states that this is the case only if z has a finite i
lower bound. (This 1s a hedge against the possibility that |

values of xJ 2 O can be chosen which ma tisfy the constraints
and make z less than any pre-assigned number, in which case, i
there is no minimal feasible solution.) However, for the 5
particular example, it is clear that always i

(10) z =x; + X3 + X5 >0 !

and the second theorem also applies. _ |
Let us 1ist the three possible solutions to (8.1) and (8.?)

involving only two of the three variables. These are:

|
| 1st solution x, =2 all others (in this case x3) -0
| (optimal) ‘
‘ 12-0
z =2

2nd solution x, =2 all others (in this édase xa) =0
(optimal)

3rd solution X, =2 all others (in this case x;) « O
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811 thres of the combinations turned out in this case to be

;feasible solutions. Moreover, the first and second solufions
;are identical. By the second theorem, the first (and second)
'solution must be an optimal solution to the original problem.

'Ae shall now glve a direct'proof trat this 1s tre case.

|
|Testing Optimality of a Solution: Indeed, the first solution

|
1s optimal because if we multiply (8.1) by 1/5 and (8.2) by 4/5

|
,and subtract from the minimizing form (9), we will eliminate

'the variables X4 and X and will be left with

!(11) Xy 2 = z,

{

|
and 1t 18 clear that x, > O implies z > 2, but & value of 2 can

3
'be achieved by setting X, = 2, X, = o, x} = 0. Hence, this 1is

ia minimizing solution.
|

‘Problem: Show by eliminating trhe variables X, and x} from the

objective form that the second solution 1s optimal also.

.Improving & Solution: On the other rand, our third solution 1is

not optimal, because 1f we multiply (8.1) by 3/5 and (8.2) by
7/5 and subtract from (§), we will eliminate the variavles X5
and x} from the minimizing form and will be left in this case
with

(12) - x, + 4 = 2z,

hence it pays to increase the value of x,, 1If possible. If we

do 8o, this will affect the values of tre selected variables

X, and x,: they will become

2 >
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x2 x 2 - xl
x3 = 2 - X

It follows that X, may be increased to 2 before X, or x3 becomes
negative and this will be an improved (in fact, optimal) solution.
The new feaslble solution may be examined for optimality in the
same manner. If it were not optimal it could be used in turn to
construct a third lower cost solution.

The procedure just outlined is called the simplex method

and 1s the one in general use for solving linear prozramming

problems.

IVt Existence of Solutions, Uniqueness

Just as in the special case of solving linear equations, 1t
is pogsible that there exist no solutions to a system of linear
inequalities, or there may exist many. To see this geometrically,
let us take the linear programming problem in the form ol a system

of linear inequality restraints instead of standard form. Consider

the system
(13) Xyt Xg > 2
x4 >0
X5 >0
t Xy - X, >3

Let (xl, x2) represent the cartesian coordinates of a point in

a plane. All points (xl, x,) that satisfy X, + x, > 2 lie on

c

one s8ide of the line X, + x2 = 2, Which side can be detsrmined

by substituting the coordinates of some fixed point (such as
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fhemo}igin) into the linear 1nequality.. Ik the liﬁéar inequal-~
Qity 1s satisfled, all suc!li points are on the same side as the
f1xed point; otherwise, on the opposite side. To indicate the
side of tre line represented by the inequality, we shall use a-
flittle arrow in Figure 1. The shaded area 1s the region of
boints satisfying all four inequalities simultaneously. In

this case the region is unbounded. If the restraint

4

(14) X; + %5 < A

'ts added to tne system the common region will become bounded

(see Figure 2). If now the restraint
! -
.(15) X, + 4x5 > 0

M8 added, the region 1s reduced to a unique point (4, 1) (see

Figure 3). Fipally, if the condition
(1) ~ 22X + x5 > 2

1s added to tre system, no pcints satisfy all restraints simul-

taneously and thre exist no solutions.
If 1t 13 required to find a solution that minimizes the foru
(17) -2X| - X5 = Z,

where the polnt (xl, x2) liee in the shaded reglion (see Figure

4) the 1line 2x, + X, = constant 18 moved parallel to itself

until 1t fust toucnes the shaded area at the extreme right point

(£, 0). The (unique) optimal solution 18 glven b X, = &, X, = C



Figure 1

Figure 2

r—032

,,_9__30

—13—
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‘and z = —2(6) — (0) = —=12. On the other hand, Iif the problem

'were to minimize this same form over the shaded rezion of Figufe

1, it would be possible to move tne line 2x1 t Xy w2 indefi-

|
!

‘nitely to the right and still cut the region of solutions. In.
|

i
Ithe latter case, 1t would be possible to construct solutions

'such that z can be made smaller than any pre-assigned value.

It will be noted that the minimizing solution 18 unique in

|Figure 4 for whatever linear form is chosen, unless the line

'z = constant 18 parallel to one of the sides of the shaded aréa.

!
tIn general, the optimal solution 1s unique unless the line

irepresented ty the objective form z = constant 18 in a speclal

I
positlion relative to the other lines. In the latter case, a

islight modification (or perturbation as it is called) of the
'coefficients 1n the objective form can bring about uniqueness.
!Paradoxically, in practical cases, non—-uniqueness 18 rather the
irule tran the exception. The underl;ing reason for this 1s not
‘clear. Mathematical models for economic, militar;, and
industrial applications exnibit very special structures, and
this 18 certainly part of tle explanation. A second partial

reason for this may be trat the coefficlents &11‘j and cJ in

practice are carried with onl; a few significant figures.

Problem: Show that the values of X, and X5 trhat yleld the
maximum value of the form —Xy = 2x2 = z are not unique 1n
Figure 4. Show, b: slightly perturbing the coefficients of
the form, that eitrer (6, 0) or (4, 1) wtll yield the unique

minimum.
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Nheré non—uniqueness is the ruiv ratﬁef thé;.the exceb%ioﬁ,
1t i8 a ood thing to have at hand a second criterion, such as:
an alternative objective form. After minimization of the first
!form 2, the equation z = Z,, where z, - Min z, is added to the
8,8tem of equations and the second form is then, in turn, mini;

mized.
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RCELEM2
Assuming thrat firing 18 the cpposite of niring, glve reasdns
wry 1t 1s better to treat this as twc non-negative activities
ratner than as a single activity with positive and negative
activity levels.

If an activity such as steel production requires capital
such as bricks and cement to builld blast furnaces, what
would the negative of this activit, Imply, if it were used
as an admissible activity?

Suppose trat the difference between productlion and requirements
is interpreted as surplus or deficit (depending on sign).
Illustrate how surplus can be interpreted as a storage
activit: and deficit as a purchasin. activity in which all
coefficients of the associated variables can be quite
different.

Reduce sy;stem

(a) X{ *+ X5 > 2 (b, X+ X, > 2
X; = X5 < 4 Xy - X, <4
x1 + x2 < 7 x1 + x2 + x3 -7

to a sygtem of equali“ies 1in non-nerative variables by
two different methods. Show that aystems (a) and (b)
correspond to cases (a) and (t) of the alternative method.

Reduce the same system as above where it 1s assumed also

X, > ©, x2 > 0
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10.

Suppose steaks contain per unit 1 uniﬁigf-ga;bbﬂydrates, j
units of vitamins, 3 units of proteins and cost 50 units of
cash. Suppose potatoes per unit contain 3, 4, 1, and 25
units of these items respectively. Lettling x be the quantity
of steaks and ; the quantity of potatoes, express the mathe-
matical relations trat must be satisfied to meet the minimum
requirements of 8 units of carbohydrates, 19 units of vita—
mins, and 7 units of protein. If x and y are to be chosen
so that the cost of diet 18 a minimum, what 18 the obJjective
form?

Feduce tre inequality system of problem six to an equallty
system 1in non-negative variables.

Using x and y as cocrdinates of a point in two—space, rlot
the various relations of problem 6 and describe the set of
points which constitute the set of feasible solutions; what
is8 trhe optimal solution? Is 1t unique?

Reduce the s, stem

X4 + x2 + x3 = 5 Xy > 0, X5 >0
xl - x2 + x} a 7
X, + 2x~ + 4x < 2

2 >

to an equivalent inequality system.

Solve graphically the system i{n non—negative variables:

xl + x2 < 1
uxl + 8x2 < 32
X4 + x2 < y

b
—_
|
n
~
R
v
n
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What inequalities are implied by others?

Transform the system below into a system of equations in

non—-negative variables by two methods:

2x, + 3%, + ux3 >5

1

bx, — Tx, + 3x5 < L,

1

Transform the system of equations below in non-negative

variables into a system of inequalities by two methods:

2x1 + }x2 + Ux_ =5

3

+ 3x, = 4,

Mxl - 1x 3

2



