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HITCHCOCK TRAMPORTATION PRODIS 

D.   R.   Pulkerson 

Th« tran»port*tlon problem was first fonnulated by F.  L. 

lltchcock  ^1 ^   In 19^1; he also gave a coaputatlonal procedure, 

nuch akin  to  the general  simplex method,  for solving the problem 

Independently,  during World War II, T.  C.  Koopnans arrived at 

the saiae problem In connection with his work as a member of the 

Joint Shipping Board.    The probleir Is thus frequently referred 

:o as  the Hltchcock-JCoopmans problem. 

Mathematically the problem has the form 

m      n 
(l) minimize    JT   21   a— 

1-1 J-l 

$ubject to the constraints 

(2a)      x1J > 0 

(?b)   2Z xij " ai (1 - 1, ..., m) 
J 

1 

«here a   ,  b., a., are given.    Feasibility Is assvred by assuming 

t-  > 0,  fc* ^ 0,  and 2C *«   ■• ST ^«'    A particular realltatlon of 
1 J 

the problem appears If we  think of m sources of a cormodlty,   the 

1      one possessing a.  units,  and n alnks,  the  j      one  requiring 

t. units, and interpret a. . as the unit transportation cost from 

source  1 to sink j.     Thus  the  linear fonn  (l)   becomes  the total 
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transportatlon bill, to be nlnlmlzed subject to fulfilling 

demands at the sinks from supplies at the sources.  This Inter- 

pretation Is a paraphrase of Hitchcock's original statement of 

the problem. 

To give some idea of the diverse applications of the 

transportation problem, we have compiled the following list 

(by no means exhaustive) of problems which can be successfully 

attacked, either directly as transportation problem» or by 

Subsequent developments of the theory: 

(l) Supposo n men are to be assigned to n Jobs, where 

man 1 In Job J has a "score" a^.; (a) find an assignment of 

»en to Jobs which maximizes the sum of the scores [19]; (b) 

find an assignment which maximizes the least score [9] . 

(?) Consider a network consisting of N points and Inter- 

connecting links.  Let a. ^> 0 denote the supply of a commodity 

St the 1  point, b,^ 0 the demand at the point, where 

Sabj - 0, and *« « > 0 th« unit cost of shlppln«; from 1 to J. 

Assuming that JH a. ■ JP b., and that any point can act as a 

transshipment point, find a minimal cost transportation 

program [16} , 

O) Given a network, let a.. denote the length of the 

link from 1 to J.  Find a chain of minimal length connecting 

two given points [lb] . 

(4) Suppose P - (b4j). 1 ■ 1« ,.., m, J • lf ...,n. Is 

a given matrix.  By a "walk through B from ran to In" we will 

mean a collection of elements b.. whl:h can be arranged as 
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wh«r« each element occurs {in  B) either directly above or to 

the right of the preceding one.  If the sun of the displayed 

■ember« Is the length of the walk, find a walk of minimal 

length [63 . 

(5) Let t.., 1 • 1, ..., m, J - 1, ..., n# k • 1, 2, ,.., 

be times at which carriers are to pick up loads at origin 1 I 
for delivery to destination J. Assuming -e know travel times 

between each origin—destination pair, what is the minimum 

number of carriers required to meet the schedule [j]'t 

(6) Suppose given a network of H  points, where some 

point acts as a source for a comnodity, another as a sink, 
1 

and the remaining as transshipment points.  If each link of 

the network has a nonnegative number assigned to It, Its flow 

capacity, find a maximal flow from source to sink [4, 5# 7# 0] 

(7) Given a capacitated network (as in (6)), let 

Al2 0 ^1 1  0) denote the supply (demand) at the i  point. 

Under what conditions is It possible to fulfill the demands 

from the supplies [lO]? Find a minimal cost transportation 

program. 

(8) Let B,, ..., E be subsets of a given finite set 

S - (e., ..., e \.  Under what conditions Is It possible to 

pick out distinct e., ..., e such that e«*K«, J • 1, ...# n 

[10, 11]? 
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(9) L*t P bt « finite partially ord«r«d fat comlftlng 

of tltaentt p.# ,,,,  pN. A chain of P 1B a ftt of ont or mort 

distinct p. ,   ...f p.  with p.  > p4  > • • • > P« •  A cat of 
11       1k     11   x2        1k 

disjunct chains covers P If each element of P belongs to soae 

chain of the set. Find a alnlnal covering of P [15] • 

(10) A caterer knows that he will need r. > 0 fresh 

napkins on the J  day» J • 1, ...# n. Laundering normally 

takea p days; however the laundry has a higher ocst service 

taking q < p days. Laundering coats b and c cents respectively, 

and new napkins a cents, b < o < a, say. How doea the caterer 

meet his needs at Blnlmal cost [l*,   n']f 

(11) Given a capacitated network (aa in (6)) with aource 

and sink, suppose it takes one unit of tiae to ship froa any 

point to a neighboring point. Maxialze the total flow through 

the network froa source to sink in the first M tlae periods. 

(12) Oiven a warehouse with fixed capaolt.. b and an 

initial stock s of a certain coaacdity, which is subject to 

known seasonal price and cost vsriatlona, what is the optiaal 

pattern of purchasing, storage, and sales [ij? 

Perhaps acre Impressive, froa a practical viewpoint, than 

a lang list of transportation-type problems is a recent report 

[18] froa a panel discussion on "The Current uses of Linear 

Programming in American Business" which states that out of 

about twenty ezaaples of ths Industrlsl uses of linear pro- 

graaaing known to the panel, aore than half of these were 

tranaportatlon problems.  It Is conssquantly iaportant to find 
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mor« tfflcltnt ways  to computt tuch problems  (even though the 

simplex computetion  to be dlsoussed presently 1c certainly 

efficient)f particularly since larger and  larger systems are 

being considered.     (One practical example  reported lately has 

B - 200, n - 3000.) 

From a mathematical  point of view,  perhaps the most  interest— 

ing distinguishing feature of the transportation problem is 

that it provides an approach to some problems which at first 

appear to be purrlj   combinatorial.     T^ius,   Tor example,  problems 

1»  3,   4,   3,  ^, 9,   10 in the list are or this nature.    The 

reason for this, as we shall see,  is that in case the a4  and 

b. are  integrsl,   the extreme points of  the  convex polyhedron 
J 

described by (2)  are also integral.     Stated another way,   tJis 
■ 

simply means that  Tractions are never encountered In solving 
I 

the problem via the simplex method.     This characteristic,   whicfi 
■ 

makes  it possible  to  represent some  combinatorial problems as 

continuous onea^ also accounts for the ease of computation of 

transportation probleois.    While it  is an impossible task,  at 

present,   to solve a general   linear programming problem with 

3200 equations and 600,000 variables,  transportation problems 

of  this sire are  currently being programmed.     Even by hand, 

problems of fairly respectable size can be computed in a few 

hours.     For example,  L.  R,  Ford and  I recently solved  (using 

a new algorithm to be discussed at the end of the course) a 

problem with m • 12,  n - 120,  involving all  1*440 variables, 

in something like eight hours. 
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1.     SIMPLEX METHOD ' 

Th« partlcularlzatlon of the simplex method to the transporta- 

tion problem was set forth by G. Dantzlg In a paper published 

in 1951 DO* Since then, various other agcounts of th« method 

have appeared and also other propooals for solving the probltra 

have beet< made. It Is certainly safe to assert that the simplex 

computation is the one in widest use at present. 

Before taking up the coniputatlon /ia the simplex method, we 

shall first state and prove some fundamental properties of the 

problem. 

Lemma 1>  The problem is feasible if and only if a. ^ 0» 

bj > 0, and 2Z ai * S bj • 
a.b 

Prcef.     If the condition holds,   then x. . ■ M  satisfy 
  1J      I>i 

the constraints. 

Clearly the conditions a*  2 ^» bf > ^ Äre neceBSAry.    Sunaning 

equations  (2b) on 1,  (2c)  on J yields 3£ **  " 2Z xi 1 " 2 ^ 1 • 
1 i,J J 

The m "f n by mn coefficient matrix H of the set of equations 

(2) has the form 
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xll xi2   '   '   ' 'm    x21 x22   *   *   * x2n   *   *   '    xml xii2   *   '   * xmn 

m 

H 

1     1    ...   1 
0      0     ...     0 
•                •            •       •       •            • 

0      0     ...     0 

0      0     ...     0 
1     1    ...    1 
•               •            •       •       •            • 

0      0     ...     0 

• •       t 

»       •       • 

• •       • 

• •        • 

0      0     ...     0 
0      0     ...     0 
•               •            •       •  l    •           • 

1     1    . .j.   1 

1       0     ...     0 
0       1     ...     0 
•             •          •     •     i          • 

0      0     ...     1 

1 0 ... 0 
0       1     ...     0 
•                •            •       •       •            • 

0      0     ...     1 

• •       • 

• •       • 

• •       « 

• •      • 

1       0     ...    0 

0      1     ...     0 

•                •            •       •       •            « 

0      0     ...     1 

khere we have recorded the variables x.. at the top of their 

jorreapondlng coluam vectors X...  If wo refer to the first m 

oroponents of X1. as Its source components, the last n as Its 

- 

klJ 
th Ink components,  then X-, has  1  In Its 1      source component,   1 

.th In Its  J       sink component,   and zeros elsewhere. 

Lemma 2.    The matrix H has rank m -»■ n — 1. 

Proof.    As we saw In the proof of Lemma   1,  the sum of the 

"Irst m rows of H Is equal  to the sum of the  last n,  and hence 

rank H^m+n-1.    On  the other hand.  It  Is easy to see that 

the m + n - 1  oolumn vectors  Xj j,  X12,   ....   Xln,  X2  ,   ...,  Xj^ 

are linearly Independent.     For assume a linear dependence 

k,, X,,   4- k,«X,« +   ...  + k,_X, _ •► k^. X^.    -   . k    )i      - 0 . , ~, ,    ^   -:o--   T   • ■ ■    •   -   : -,,   -   •v2nX2n 

ITils vector has the form   (written as a row  for convenience) 

IXM 
J-l 

1J'  "2n ,   • • • i  k mn ,  kjj,  k12,   ...,  kj  n-1, 2^ 

1-1 
1J 
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and consequently each k vanishes. 

Thus one of the sot  (2b),   (2c)  could be discarded,   leaving 

m > n - 1   linearly Independent equations.    Por computational 

purposes.   It  is perhaps better to retain all of  the equations, 

however,  and we shall do this. 

There are  various convenient ways of schematizing equations 
1 

(2b),   (2c).     We might,   for example,  think of the array 

- xll     x12   *   *   *  xln      al 
x21    x22   .   .   . x2n      a2 

•      •      • 

kml 

bl 

ra2   '   *   *  xmn       am 

n 

having prescribed row and column  sums a.   and b.. Another wa", 

that of the  original realization of the probism. Is  to picture 

the  linear graph consisting of m source-nodes,  n sink-nodes, 

and all links  1J  joining sources  to sinks 

Sources (1) 

th •^o that, associating x. . with link ij, the 1  source equation 

says that the sum of all variables associated with  links e«Ä- 
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nating  from 1 la a.,  and  similarly for the  sinks. 
i 1 

For hand computation, a layout shaat in the form of an array 

Is corrunonly used and Is more convenient than drawing linear graphs. 

For the purpose of proving theorems about the problem, however, 

we shall adopt the linear graph point of view for two reasons: 

to take advantage of some of the elementary concepts and results 

from linear graph theory, and to make the discussion of the 

Hitchcock problem tie In more closely with the next lecture on 

network problems. 

Notice that the matrix H Is the Incidence matrix of nodes 

vs. links of the graph, that Is, If we list the links 1J horizon- 

tally, the nodes vertically, and record a 1 If a link Is Incident 

with a node, zeros elsewhere, the matrix H results.  Because of 
I 
the special structure of the transportation graph, namely the 

i , 

nodes -an be separated Into two classes (sources and sinks) so 

that all links Join nodes of the first class to nodes of the 

second class, the 0-1 Incidence matrix H has a very special 
I 

property,  as we shall  see  later on. 

All w«  will need concerning linear graphs are the  following 

notions.     For the moment,  denote the nodes  of a graph 0 by  1, 

2,   ...,  N and the  links  by unordered pairs of nodes.    Then a 

chain  Is a set of one or more links that  can  be arranged as 

distinct.    A cycle  Is  a  set of links that  can be ordered  as 

Ijlg,   Ij1^'   •••'   ^-l^k'   ^k^l*     the node3  ll»   12'   •••'   1k  a8aln 

being distinct.    A graph Is  connected  If each pair of nodes  la 

Joined by a chain,  and a connected graph without cycles Is a 
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tree.  Equlvalently, a tree is a graph In which each pair of 

nodes Is joined by juat one chain, since the union of two chains 

Joining the same pair of nodes contalno a cycle.  Let G have L 

links and P connected pieces; then L - N ■♦■ P, known as the cyc^o— 

Enatlc number of G, gives the maximal number of Independent cycles 

In G, where a set of cycles Is Independent If each contains a 

link not In any of the others,  itius any two of the three con- 

ditions (a) G connected, (b) G has no cycles, (c) L » N - 1, 

Imply the third and characterize Q as a tree. 

Now corresponding to any basis for the transportation pro- 

blem, we may associate a subgraph of the full transportation 

graph by deleting those links corresponding to non—basic variables 

It Is now easy to prove the following fundamental theorem, which 

accounts for the simplicity of the simplex computation f.r trans- 

portation problems. 

Theorem.  A set of variables Is a basic set If and only If 

Its graph Is a tree. 

Proof.  If B Is a basic set. Lemma 2 shows that B contains 

m -f n - 1 variables.  Since the graph 0(B) associated with B 

has m -► n nodes, we see that condition (c) above Is fulfilled. 

We now verify (b).  Notice that any cycle of the transportation 

graph must be of the form 

1 '   '1       1 ;   11 

Thus, since 

X^ ,  ~ Xi ,  -f ...•♦■ X.    — X^ ,  » 0, 
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0(B) can contain no cyclea. It la therefore a tree. 

Converaely, let B be any set of variables whose graph 0(3) 

Is a tree. By (c), B contains the proper number, m + n - 1, of 

variables. Moreover, the associated column vectors of H are 

linearly Independent. To see this, locate an "end-node" In 0(1) 

(I.e. a node Incident with just one link of 0(B) ); there must 

be at least two such. Let this node be a source-node 1, say, 

and suppose 1J Is the link. Then, assuming a linear dependence 

ijeo(B) 

we deduce immediately that ^TT" 0.     We then delete  this node 

end  the link on  it,   leaving a  tree,  and repeat  the procedure, 

^t  follows that  all the coefficients  of the assumed   linear 

dependence  vanish,   and hence B Is  a  basis,  although  of course 

hot necessarily a  feasible one.     (Notice that Lemma  2 was proved 

by selecting a particular subtree.) 

We point out  that  this last part  of the argument  does  not 

rely on fny special  features of the  transportation graph.    In 

other words,  the  Incidence matrix of nodes vs.  links  of any tree 

has maximal rank.     Moreover,   the argument also shows  that such 

a matrix may be  arranged In triangular form,  rnd Indeed gives a 

prescription for doing so. 

Corollary  1.     Every transportation basis Is triangular. 



Example 

a 

b 

c 

(Id) (2c) (lb) (3a) (2a) (la) 

d 1 0 J G 0 
- 

0 

c 0 i - 0 0 0 

b 0 0 ' 0 0 0 

? 0 0 0 1 0 0 

2 0 : 0 0 1 0 

a 0 0 0 : 1 
1 1 

1   i : 0 : 0 0 1 

Corollary 2. If the a* and b, are integers, so are the x., 

for any baaic solution. 

FrooT.  Since the coefficients in the equations are either 

0 or 1, and every basis is triangular, only addition and sub- 

traction are required in solving for a basic solution. 

Actually one can say somewhat more — the value of any 

variable in a b'jsic solution is either a partial sum of the a- 

ninus a pirtial sum of the b,, or vice versa.  Thus 
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Corollary 3«    Degeneracy  in  the Simplex computation can 

occur only  if a partial aum of the a.  equals  a partial sum of 

the b.. 

We  next  turn attention  to the simplex multipliers.    Denotf 

by   o<   ( ß  )  the multiplier corresponding to the  i      source 

,(J      sink)  equation.    Then  the equations  to be solved in evalu» 

ating the  simplex multipliers  are 

I 

(3) «»<! >^.   -a^ (lj€0(B)). 
■ 

Thus we may think of assigning a number to each node so that 

the sum of any two numbers on nodes Joined by a link of 0(B) is 

equal to the transportation cost for the link.  Because one of 
i 
the original equations is redundant, f3) determines the oc« and 

p.  only to within an additive constant; more precisely, if c* 

$,  satisfy (3), all solutions are given by oC , - k, ß,  + k. 

Fixing some multiplier at zero, say, gives a unique determination 

Prom Corollary 1 we have 

Corollary h.    If the a., are integers and one of the multi- 

pliers p( ^,   ß,   is assigned an integral value, all multipliers 

are integral. 

Let source 1 and sink J be Joined by the (unique) chain. 

necessarily of odd length. 

1*  11* LV 2'    *•*' ^kk'  k'' 

in 0(B).  TYien, solving for the multipliers along this chain. 
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we see that 

-"l 

•     •     •     • 

Hence 

Corollary 5-  The plmplex multipliers satisfy 

^i+ ft - 'u, - «ijj,+ 'i,^ V\ * '»kJ 

where IJj, J^» ^i^'p» •••* «^k^* ^k^ Is the chain joining 1 

and J In C(D). 

The simplex crlterlor for optlmallty of a basic feasible 

solution Is 

(*)        Bu-«u-*i-/*.•>c 

for all non-basic   variables x}1.     If some 5..  < 0,  the  variable x.. 

may be  Introduced  into the basic  set  with a possible decretse 

in  cost.     To Introduce  sucr a variable,   we need only   look for 

the  chain  Joining   1  and  J;   this chain,   together with  link  ij, 

constitutes a cycle;   it   is  the only  sycle  in  the graph G(B)   U  (ij). 

For a cycle,  as we  have  seen,   the associated column  vectors of H 

are  linearly dependent,   the coefficients of t'-.e dependence being 

alternately -fl  and -1.     Stated another wav,   if Ue cycle  is 
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jl» IJj» Ji^i» •••» ^Ir k'  k* 

^ 
and w« d«not« the btflo feasible •olution by x, then a change 

of e In z. , it eoapensated for by alternately eubtraotlng and 

adding ^ along the chain, I.e. 

\ 
(5) «tj - ♦. x^  - «1Ji - •, *lih - *lih * • x^, - «li(J 

Uiing Corollary 3* It la clear that If 

8ij ■ «u - •ij1 
+ »ijj, - ••• ♦ 'i^ - v <0' 

thlf change reeulte In a decreaee of ^6 . In the transportation 

cost. 

The new set of basic variables results by taking £ as large 

as possible consistent with Maintaining non-negativity of variables, 

i.e. 

(6) $ - «in ( x. -   , JN   ,  ,   ..., x4   ,  )   . 
1J1       11J2 11 

- ^. 

k * 

No« It say happen "hat  the ■Inlmu« In  (6)  occurs for mora  than 

one Index pair.    This situation,  referred to as a "tie" In the 

algorithm, alght lead,  on some future basis change,  to a dater- 

■Ination of ^ - 0,  I.e.  to degeneracy in the algorltha, and the 

consequent possibility of non-tenslnation.    By Corollary 3,  this 

can happen only If a partial  aua of a.   equala a partial SUM of 

b..    Viewing Corollary 3 in a slightly different way, we see 

that if a tie has occurred,   the grsph of the  strictly positive 

basic variables In the new set  is disconnected,  and thus the 
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original problem epllte up Into feaalble "sub-problam»." 

It Is «tsy to sae from Corollary J>  that degeneracy can be 

avoided, If one desires, by perturbing the a. and b. as follows: 

aj  > a^ - aj ♦ n£ 

•i  >    fti " *! (1 > 1) 

bJ —^ S ^J " ^- 

For £ sufficiently small, no partial sun of the a| can equal a 

partial sum of tha b', as otherwise we would -ave either 

0£ • k£ or nf - k£-, where 1 < k < n-1, a contradiction.  A 

value of S  need never be specified; when a tie occurs In the 

original problem. It can be resolved by evaluating the "£.-part" 

of the solution.  Another way to resolve ties Is Just to select 

at random a :.> • . the tied alternatives.  It Is easy to see that 

the simplex computation then terminates with probability one. 

It may be instructive at this point to re-Interpret the 

various step» of the simplex computation In terms of the array 

(Instead of a linear ^raph) commonly used for hand computation: 
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Sourcts 

"ir^i'ia4^ 
*!! '     a12l    >13      tl»       '15      *16      a 

k21 

x2^ 

•22 
e 

äi 

'41 

äs 

l42 

23 
^24"^ 

•24 

!2L !a 

AL 

^1 . fe r^ I gb 

w 

äa 
x35-e 

ix45^ 

*»»      *»3      ^ 

J?5 

X26 
l26 

!lL^6 

% 

rr 
17 

'27 

1 
^1 

^ 

äi 
[47 

l47 

\ 

4 
^4 k 

4 ^- 

Th« values of th« current btile ttt tr« rteordtd In their 

appropriate otlla (indicated In tne example by the !_ ahown). 

To ooapute the ■ultlpliera ^^, ßy  aealgn o<1 - 0, eay, th'tn 

aoan the flrat ro« for baalc eella« ooaputinf the oorreeponding 

k4 (p. and pp 
ln th# •xamplt). Than aoan the eoluana aaaoelatd 

with newly computed A«, eraluatinc a ttt of o^'a (oC?  ln tht 

•xaaple). Continue thla procets until all aultlpllera are 

evaluated- The next atap la to compute all 5., - a,, "^i ~ß J 

and find the most negative one (aaiuaad to be 6.^ In the example). 

Inoraaalng thla variable to £ caueaa the chain of reactlona Indi- 

cated by + 9 and - e in the array. Taking 6 aa large aa poeaible 

(■In («JJ» *22'  z44' x35^ ' «lvt8 th# n#w b**10 reaelble aolvtion. 

Notice that the cycle one Is looking for takes the fone of a "rook*a 

tour" In the array. For email problems, searching for a cycle la 



easily done without any special algorithm.    For larger problems, 

however,  one needs an efficient algorithm for this search.    We 

fh«ll describe one such, which might be referred to as the "labeling 

procedure"   fQ .    This procedure Is,  in general,  an efficient way 

of finding a chain Joining two given nodes In an arbitrary net- 

work,  and will play an important role in subsequent  lectures on 

network problems and a new algorithm for the transportation 

problem. 

Label the column which contains the variable to be intro- 

duced by a 0f  say,  and scan the column for basic cells; when 

one is found,  label the corresponding row by the number of the 

column being scanned; take any newly labeled  row and scan it 

for basic  cells contained in unlabeled columns;  label the ccrre- 
i 

spending columns by the number of the row being scanned; when 
* 

these rows have all been scanned,  go to the newly labeled col- 

umns and repeat the procedure  (never labeling a row or column 

which already has a label),   stopping only when the row which 

contains  the cell being introduced has been labeled.    Then 

proceed,  In that row,  to the position indicated by its  label, 

and record - 6;  then go.  in the column reached,   to the position 

indicated by its label, and record > 6.    Continue this backward 

replacement until the original column,   labeled 0,   is reached. 

A labeling which finds  the desired cycle Is  indicated at 

the bottom and to the right of the array in the example. 

For machine calculation,   it  is probably a good idea to 

carry along a separate list of basic cells,  sorted perhaps on 

both rows and  column*,  and to do the computation of the multl- 
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pllera and the search for the cycle in terras of Juat this list. 

So far we have said nothing about finding a starting basic 

feasible solution. This again is an easy task. Simply select 

any cell ij and set 

xij -raln (v V- 

If x^j * ai < bi' *•!•♦• the 1th row» replace b. by b, - a^» 

and select another cell in the reduced array.  If x^j " ^ < a. , 

delate the j  column and reduce a. by b. £o obtain the reduced 

array.  If a« ■• b<» delete either the row or column, unless there 

are several rows (columns) left and only one column (row), in 

which case a row (column) is deleted. 

This  completes t.ie discussion of the simplex computation 

for transportation problems. 

2.  OPTIMAL ASSIGNMENT PROBLEW 

As we have mentioned earlier, the integrality of basic 

feasible solutions for the Hitchcock problem with integral 

supplies and demands enables one to solve some combinatorial 

problems by setting them up es Hitchcock problems.  Perhaps the 

best known example of this is the problem of optimal assignment 

(la in the list), where the constraints take the form 

(1 - I, .... M) 

(J - 1.  M) 

. 1 

V'u' • 1 
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and we wish to m&xljnlze 52 ai «xi «•  Sine« basic feaalbla solu- 

tlons are Integral, each row and each column of such a solution 

contains a 1 and O's elsewhere, and this describes a permutation 

or asalgnment of men to jobs.  Conversely, any permutation matrix 

is a basic feasible solution.  Thus an optimal assignment problem 

may be solved as a Hitchcock problem having the constraints,^). 

It is also true that a Hitchcock problem with integral a. 

and b, may be fonnulated as an optimal assignment problem with 
v 

M - > ft,.  The idea can be made clear by considering an example 

(pictured schematically below): 

h 
11 

a 
21 

a12jg 

a22 |3 

: 

alllaIl 
an "ll a12 

all £n aii an a12 

a21 a21 a21 a21. a22 

a21.'a2] ^l,^! a22 

a21la21 a21,a21 a22 

th 
Thus the 1  source 18 replaced by a, sources, tmch with unit 

supply and the same shipping costs, and the process is repeated 

for the sinks. 

^.  UPPER BOUNDS ON VARIABLES 

In addition t: the constraints (2). one may add "capacity" 

restrictions 

(8) X1J ^ C1J 

without altering the character of the problem, except that the 
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ftiilDlllty criterion li no longtr simple.  Since upper bounds 

on vsrlables «111 be dealt with later on In the course for the 

general linear progranmlng problem, we will not discuss the 

matter here In any detail.  Brleflj, the situation Is this.  If 

Inequalities (8) are rewritten In the ueual way as 

then one of x^,, y.. must be In any basic set. Thus, If B 

denotes s basic set, the pairs 1J fall Into three classes: 

those 1J for which x-.^B, y««^0? taose for which x.,€.B, 

y« « 4B (hence x. . - c.J; and those for which x. , f B, y*.£B 

(hence y..  - c. .),  The graph of the pairs of the first kind 

can be shown to be a tree, and thus the basis Is again trian- 

gular. 

4.  THE TRANSSHIPMENT PROBLEM 

The transshipment problem (problem 2 in the list) arises 

frequently In practical applications.  It was originally formu- 

lated and solved by A. Orden [16];  his method of solution is 

to add the "transshipment variables'* x.. and double the original 

number of equations, thereby getting the problem In the standard 

Hitchcock form.Instead of using trie device, we snail give a 

brief discussion of the problem directly In terms of the given 

linear graph. 

If we let x.. (l, J • 1, ..., N) denote the commodity flow 

from node 1 to node j and assume that the numbering of the nodes 

Is such that 1, ..., k are sources, k + i, ..., N are sinks, 
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then the constraints tre 

(10) 53 (xM - XJJ) ■ - *!    (1-1.  k) 
J/l 

(1 - k -f lf ..., k •♦• i - 1) 

(1 - k + i, ..., N) 

X1J  > : 

(•»her« VÄrlables corresponding to missing links do not tppetr), 

aubjsct to which It Is dsslrsd to minimize 

(n) 
1,J 
1/J 

Thus,  for txsniplt,   If the nstwork  is 

br 

the matrix T of the linear programming problem is 

T - 

X12 X21 X13 x3i 
X14 x11 X23 X32 

X?4 X.2 «34 «43 X55 X53 X45 X5A 

1 ^1 I -1 i -1 I c c : 0 C c 3 0 C C 

2       1 -1 c 0 0 -1 ! -i 1 c : L 0 c 0 

3  0 c I -1 c 0 1 -1 c 2 -1 1 -1 : u c 
k      o c : 0 I -1 0 ../ i -1 1 -i 0 c -1 1 

f  c 0 0 0 0 0 : 0 O 0 c c : -i 1 -1 
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Notlct tr.at the column vector X- 1 hts -1 In the 1th posi- 

tion, -fl In the J  position, and zeros elsewhere.  Consequently 

the sum of the rows of T vanishes, and rank T < N - 1.  Just as 

In the Hitchcock problem, MS can exhibit a set of N - 1 linearly 

Independent column vectors of T (provided tfe  graph Is connected, 

aa ve assume to Insure feasibility) by selecting a spanning sub- 

tree of the graph and choosing either X, ^ or X^ corresponding 

to the links of the tree.  Indeed, every set of N — 1 linearly 

Independent column vectors can be exhibited In this fashion. I.e. 

the fundamental t.-.eorem on the correspondence of basic sets of 

variables and trees remains valid.* The proof Is little differ- 

th 
ent; one Just observes thst because X1 , has -1 In the 1  compo- 

nent, -fl In the J  , any choice of columns corresponding to a 

cycle leads to a dependency.  More specifically. If we orient 

the links of tne cycle C In the directions dictated by the 

choice of variables, e.g. 

% 

then 53 1 ^i 1 " 0' where th'e - Bigr  Is selected If, In 

1J£C 

traversing the cycle, link 1J la traversed In the direction 

•More properly, a basic set of variables corresponds to an 
oriented spanning subtree of the graph, since the Incidence 
matrix T Is composed of ones, minus ones, and xeros. 
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opposite Its orlentstlon, say, the ■♦■ SIK-H otherwise. 

One difference between the transihlpment and Hitchcock 

problems that should be pointed oat la t'at the convex polyhedron 

defined by (10) la unbounded.  The assumption »4 . > C guarantees 

a finite minimum for the problem, however. 

The simplex computation for tne transshipment problem differs 

only In detail from the computation for the Hltcrcock problem. 

The simplex multipliers, one for each node, are found b> assigning 

one of them an arbitrary value, and computing the others along 

the tree, taking account of the orientation of the linke.  Intro- 

ducing a variable x, . Into a basic set Is a(
:aln equivalent to 

finding the chain of the tree which Joins node 1 to rode J, and 

may be done by a labeling procedure. 

For machine computation, one «ould of course not hmvt a 

separate program for the transs'Ipment problem, but would use 

Orden's approach and solve an equivalent N by N Hitchcock problem. 

For the transshipment graph pictured earlier, the equivalent 

Hitchcock problem is described b\  tne array 

s + a. 1 o     .1? 'ij 'it     00 

r '21       C •23 ■sn 1 n 
3 'JI     a?2 

c a> ! ft^ 

H 
'»? 1   "^ 

5 CD              00 
'53 

Ä54; G 

1 
• ♦ a 

8 

S 

B+Ö.  8-fbr 
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whtrc ctllt «1th coats ♦ ao oorrespond to missing variables, 

x-, has zsro cost, and s is a sufflclsntl> large nuisbsr (s - 23fti 

will do). 
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