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\ SUMMARY

An exposition of the simplex computation for transportation

type problems. (
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HITCHCOCK TRANSPORTATION PROBLEM
i D. R. Pulkerson

The transportation problem was first formulated by PF. L.
Bitchcock [17] 4in 1941; he also gave a computational procedure,
such akin to the general simplex method, for solving the problemm.
Independently, during World War II, T. C. Koopmans arrived at
the same problem in connection with his work as a member of the
Joint Shipping Board. The problemr is thus frequently referred
to as the Hitchcock-Koopmans problem.

Mathematically the proolem has the form

m n
tl) minimize > > 8y 4%y
1e] J.l

subject to the constraints

(2a) xu_)_O

(2b) 2 Xyg =8y (1t =1, ..., m)
J

(2¢) inj-bJ (§ =1, ..., n)
1

wvhere a,, bJ, a“ are given. Feasibility i1s assured by assuming

6 2> o, bJ >0, and > 2, = > bJ. A particular realization of
J

i
the problem appears if we think of m sources of a commodity, the

1th one possessing a, units, and n sinks, the Jth one requiring
bJ units, and interpret ‘1J as the unit transportation cost {rom

source 1 to sink J. Thus the linear form (1) becomes the total
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transportation bill, to be minimized subject to fulfilling
demands at the sinks from supplies at the sources. This inter-
pretation is a paraphrase of Hitchcock's original statement of
the problem.
To give some idea of the diverse applications of the

transportation provlem, we have compiled the following list

(by no means exhaustive) of problems which can be successfully

pttacked, either directly as transportation problems or by

Bubsequent developments of the theory:

(1) Suppose n men are to be assigned to n jobs, where
man 1 in job J has a "score” 3y 45 (a) find an assignment of
men to Jjobs which maximizes the sum of the scores [)Q]; (b)
find an assignment which maximizes the least score [9].

(2) Consider a network consisting of N points and inter—
connecting links. Let a, 2 0 denote the supply of a commodity

at the 1"

point, b1 2 0 the demand at the point, where

aibi = 0, and aiJ > O the unit cost of shipping from 1 to J.
Assuming that > a, = SO by, and that any point can act as a
transshipment point, find a2 minimal cost transportation
program [16].

(3) Given a network, let 8y denote the length o the
link from 4 to J. Find a chain of minimal length connecting
two given points [10].

(4) Suppose R = (bij)’ Cm Ay seny Iy o WAL L, By AN
a given matrix. Py a "walk through B from mn to 1n" we will

mean & collection of elements b1J whi'h can be arranged as



'bln '

where each element occurs (in B) either directly above or to
‘the right of the precedinz one. If the sum of the displayed |
/members 18 the length of the walk, find a walk of minimal

length [(].

(5) Let t;,, 1 =1, ..., m J=l, ..., n,kel, 2, ...,

K
1]
'be times at which carriers are to pick up loads at origin 1
for delivery to destination j. Assuming we know travel times
between each origin-destination pair, what iz the minimum
number of carriers required to meet the schedule [3]?

(6) Suppose given a network of N points, where some
/point acts as a source for a commodity, another as a sink,
,and the remaining as transshipment points. If each link of
the network has a nonnegative number assigned to it, 1its rléw
capacity, find a maximal flow from source to sink (4, 5, 7, §].

(7) Given a capacitated network {as in (6)), let
8,>0 (b1 > 0) denote the supply (demand) at the e point.
Under what conditions is it possible to fulfill the demands
from the supplies [10]? Pind a minimal cost transportation
program.

(8) Let Bys «++» E_ be subsets of a given finite set
E= {el, oy em}. Under what conditions is it possible to
pick out distinct €1, -+es &, such that eJEEJ, J®l; 2.0 B

(10, 11]7



(9) Let P be a finite partially ordered set consisting
of elements Pys <++» Py A chain of P is a set of one or more
distinct pil, P pik with p11 2 p12 2 e 2 pik. A set of
disjunct chains covers P if each element of P belongs to some
chain of the set. Find a minimal covering of P [13].

(10) A caterer knows that he will need ry > 0 fresh

th day, J =1, ..., n. Laundering normally

napkins on the J
takes p days; however the laundry has a higher ocst service
taking q ¢ p days. Laundering costs b and ¢ cents respectively,
and new napkins a cents,b ( ¢ < a, say. How does the caterer
meet his needs at minimal cost [14, 17]¢?

(11) Given a capacitated network (as in (6)) with source
and sink, suppose it takes one unit of time to ship from any
point to a neighboring point. Maximize the total flow through
the network from source to sink in the first N time periods.

(12) Oiven a warehouse with fixed capacit, b and an
initial stock s of a certain commcdity, which is subjest to
known seasonal price and cost variations, what is the optimal
pattern of purchasing, storsge, and sales [1]

Perhaps more impressive, from a practical viewpoint, than
2 leng list of transportation-type problems is a recent report
(18] from a panel discussion on “The Current Uses of Linear
Programming in Ameriocan Business” which states that out of
adbout twenty examples of the industrial uses of linear pro-

gramming known to the panel, more than half of these were

transportation prodblems. It is consequently important to find



;mort efficlent ways to compﬂfe such p;oﬁicma k;b;n tgough tﬁi ?
tsimplex computation to be discussed presently ic certainly |
'efficient), particularly since larger and larger systems are |
being considered. (One practical example reported lately has
lm = 200, n = 3000.)

| From & mathematical point of view, perhaps the most inter¢st-
|ing distinguishing feature of the transportation problem 1s !
that 1t provides an approach to some problems which at first
Enppou* to be purely combinatorial. Thus, for example, problems
1, 3, 4, 5, 8, 9, 10 in the 1ist are ol this nature. The
reason for this, as we shall see, 1s that 1in case the a, and
;bJ are integral, the extreme points of the convex polyhedron
described by (2) are also integral. Stated another way, this |
{simply means that fractions are never encountered in solving
.the problem via the simplex method. This characteristic, which
?mnkes it possible to represent some combinatorial problems as
continuous ones, also accounte for the ease of computation of
transportation problems. While it is an impossible task, at
present, to solve a general linear programming problem with
'}200 equations and 500,000 variables, transportation problems
of this size are currently being programmed. Even by hand,
problems of fairly respectable size can be computed in a few
hours. For example, L. R. Ford and I recently solved (using

a new algorithm to be discussed at the end of the course) a

problem with m @ 12, n = 120, involving all 1440 variadbles,

in something like eight hours.
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1. SIMPLEX METHGCD

The particularization of the simplex method to the transporta—
tion problem was set forth by G. Dantzig in a paper published ;
in 1951 [Z]. Since then, various other agcounts of the me thod
have appeared ard also other proposals for solving the probled
 have beer, made. It is certainly safe to assert that the simplex
;computation 1s the one in widest use at present. ;
?efore taking up the computation via the simplex method, we

shail first state and prove some fundamental properties of the

;problem.

! Lemma 1. The problem 13 feasible if and only 1f a, 2 o,
:bj_>_o, and 53 ay = 35Dy
a,b
Proof. If the condition holds, then x,, = 1] satiary !

' }E>1
the constraints. f

Clearly the conditions a, 2 o, b‘j > O are necessary. Summing

equations (2b) on 1, (2¢c) on J ylelds ?‘1 -izxi‘1 - ZbJ .
»Jd J
The m + n by mn coefficient matrix !l of the set of equations

(2) has the form
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! X11 %12 * © - X*1n X2y X2 ¢ Xan * ¢ *m1 *m2 ¢ ¢ Xm
| | - —
| [| S 1 0O © o) R T R 0
. 0 0 0 1 1 . 1 . O 0 . 0
m ' ° . ]
o o0 . o) 0O © 0 A I S N 1
?H -
; 1 0 . o) 1 0 . 0 1 0 .. 0
| 0 1 0 o 1 ... O GO 0
L -
| O o0 . 1 o o0 . 1 .10 o .. 1
|
i

where we have recorded the variables xiJ at the top of their
[orresponding column vectors xiJ' If wn refer to the first m

omponents of x1J as its source components, the last n as 1its

h

I
Bink components, then le has 1 in its 1t scurce component, 1

in its Jth sink component, and zeros elsewhere.

[N

!
Lemma 2. The matrix H has rank m + n — 1.

Proof. As we saw in the proof of Lemma 1, the sum of the

!
Iirst m rows of H is equal to the sum of the last n, and hence

rank H < m + n -~ 1. On the other hand, it 1s easy to see that

the m + n — 1 column vectors X X

iy sy £ At Xln’ x2n' = Timd xmn
are linearly independent. For assume a linear dependence

ky1Xy9 + Kyp

This vector has the form (written as a row for convenience)

m
(30 kg ys ks nes s Kyps Kygs +ons e Tk )
J=1 1a]

)(]2 + ... + k]nxln + k2nx2n + oo + kmnxmn = 0.
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and consequently each k vanishes.

Thus one of the set (2b), (2c) could be discarded, leaving
m+ n -1 linearly independent equations. Por computatiocnal
purposes, it is perhaps better to retain all of the equations,
however, and we shall do this.

There are various convenient ways of schematizing equations

(2b), (2c). We nmight, for example, think of the array

G I |

21 Xp2 ¢ -+ Xopn | 2

a
Lxml xm2 ‘mn-J m

b,

having prescribed row and column sums ay and bJ. Another wa™,
that of the original realizaticn of the probiem, 1s to picture
the linear graph conslsting of m source-nodes, n sink-nodes,

and all links 1) Joining sources to sinks

Cources (1) Zinks (J)

P
N e
|
|

“n

30 that, assoclating Xy with 1ink 1!, the 1th source equation

says that the sum of all variubles associated with 1links ema—
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nating from 1 1s 8, and similarly for the sinks.
' For hand computation, a layout sheet in the form of an artay
'is commonly used and is more convenlient than drawing linear graphs.
Por the purpose of proving theorems about the problem, however,
we shall adopt the linear graph point of view for two reasons:
:to take advantage of some of the elementary concepts and results
‘from linear graph theory, and to make the discussion of the
tHitchcock problem tie in more closely with the next lecture on
network problems,.
| Notice that the matrix H i3 the incidence matrix of nodes
;vs. links of the graph, that is, if we 1list the links iJ horizon-
’fally, the nodes vertically, and record a 1 if a link is incident
with a node, zeros elsewhere, the matrix H results. Because of
;the special structure ol the transportation graph, namely the
;odes .an be separated into two classes (sources and sinkss S0
that all links Jjoin nodes of the first class to nodes of the
second class, the O—-1 incidence matrix H has a very special
property, as we shall see later on.

All 4= will need concerning linear graphs are the following
notions. For the moment, denote the rnodes of a graph G by 1,
2, ..., N and the links by unordered pairs of nodes. Then a
chain 1s a set of one or more links that can be arranged as
1112, 121}, AP ik—lik where the nodes 11, 12, e, 1k are
distinct. A cycle is a set of links that can be ordered as
1,1,, 121}, eeer 1 41,0 4,1,, the nodes 1,, 1,, ..., 1, again

being distinct. A graph 18 connected 1if eaqh pair of nodes 1is

Joined by a chain, and a connected graph without cycles 1s a
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3333. EQuivalently, a tree 18 a graph in which each pair of
nodes is joined by Just one chain, since the union of two chains
Joining the same pair of nodes contains a cycle. Let G have L
links and P connected pieces; then L — N + P, known as the cyclo-
matic number of G, gives the maximal number of indepenient cycles
ﬁn G, where 2 set of cycles 1s independent if each contains a
1ink not in any of the others. Thus any two of the three con—
ditions (a) G connected, (b) G has no cycles, (c) L = N -1,
imply the third and characterize G as a tree.

| Now corresponding to any basis for the transportation pro-
Plem, we may assoclate a subgraph of the full transportation
graph by deleting those links corresponding to non-basic variables.
It 1s now easy to prove the following fundamental theorem, which

Bccounts for the simplicity of the simplex computation f.r trans—

portation problems,

Theorem. A set of variables 13 a basic set if and only if

its graph 1s a tree.

Proof. I{ B i1s a basic set, Lemama 2 shows that B contains

n +n — 1 variables. Since the graph G(B) associated with B
has m + n ncdes, we see that condition (¢) above 1s fulfilled.
We now verify (b). Notice that any cycle of the transportation

graph must be of the f{orm

Thus, since
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‘6(B) can contain no cycles. It i1s therefore a tree.

[ Conversely, let B be any set of variables whose graph G(B)
is a tree. By (c), B contains the proper number, m + n — 1, of
variables. Moreover, the associated column vectors o! H are
linearly independent. To see this, locate an "end-node'" in G(B)
(1.e. a node incident with just one link of G(B) ); there must

be at least two such. Let this node be a2 source-node I, say,

and suppose-ij-is the 1link. Then, assuming a linear depencence

1, € G(B)

we deduce immediately that kIJ-- O. We then delete this node
and the link on it, leaving a tree, and repeat the procedure.

At follows that all the coefficlents of the assumed llnear
dependence vanish, and hence B 1s a basis, although of course
hot necessarily a feasible one. (Notice that Lemma 2 was proved
by selecting a particular subtree.)

' We point out that this last part of the argument does not
rely on ¢ny special (eatures of the transportation graph. 1In
other words, the incidence matrix of nodes vs. links of any trce
has maximal rank. Moreover, the argument also shows that such

a8 matrix may be arranged in triangular form, ¢nd indeed gives a
prescription for doing so.

Corollary 1. Every transportation basis is triangular.
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Examgle. -
1 a
) b
3 e
d ’
(1d) (2c) (1b) (3a) (2a) (1a)
d 1 o o o o0 o |
e 0 1 0 0 0 0
. b! 0 0 1 0 C 0
30 0 0 ] 0 0
2 0 1 0 0 1 0
a 0 0 0 1 1 1
. 0 1 0 0 1

Corgllary 2. 1f the a, and b, are integers, so are the 11J

for any basic solutlon.

Froof. Since the coefficlents in the equations are either

O or 1, and every basis is triangular, only addition and sub—

traction are required in sclving for a basic solution.
Actually one can s8ay somewhit more — the valu=z of any

variable in a basic solution 13 elther a partial sum of the ay

ninus a p:rtial sum of the b,, or vice versa. Thus

(V]
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Corollary 3. Degeneracy 1n the simplex computatioﬁ can

occur only if a partial sum of the a, equals a partial sum of

the b

q°
J

We next turn attention to the simplex multipliers. Denote
by °<1( ﬂJ) the multiplier corresponding to the 1th source
,(Jth 81nk) equation. Then the eqQuations to be solved in evalu-

iating the simplex multipliers are

(3) o<y +p', =ay (LJEG(B)).

'Thus we may think of assigning a number to each node 3o that

the sum of any two numbers on nodes joined by & 1link of G(B) 13
kqual to the transportation cost for the link. Because one of

the original equations 1s redundant, (3) determines the¢x1 and

ﬂJ only to within an additive constant; nmore precisely, if Cxi.
p‘} satisfy (3), all solutions are given by X, — k, (0‘1. + k.
¥ixing some multiplier at zero, 3ay, gives a unique determination.

Prom Corollary 1 we have

Corollary 4. If the a4y are integers and one o! the multi-

pliers X g p, 1s assigned an integral value, all multipliers

A

are integral.

Let source 1 and sink ! be ‘oined by the (unique) chain,

necessarily of odd length,

1:1, Jlil' 11J2, ool O AL 1,J

4n G(B). Then, solving for the multipliers along this chain,
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we see that

e B - O
o, =™y,

= A - a + a - O
P"z 1,0 4y gy 1

= 8 - a + ... + & - a .
Py hd S T (R T

Hence

Corollary 5. The eimplex multipliers satisfy

CKi + F% - a1J1 = ‘11J1 + 311J2 - .. s + ‘1kJ

where 131, 5111, 1132, % Jklk' 1k3 is the chain Jjoining 1

and § in G(B).
The simplex criterion for optimality of a basic feasible

solution is

sl byt sy %y m 2

(9]

for all non-basic variables xiJ' If some 61J < 0, the variatle xU
may be introduced into the basic set with a possible decrease

in cost. To introduce suc' a variable, we need only look for

the chain joininzg { and J; this chain, together with link 1],
constitutes a cycle; 1t is the only cycle in the graph G(B) U (1J).
For a cycle, as we have seen, the associated column vectors of H
are linearly dependent, the coefficients of tre dependence being

alternately +1 and —-1. Stated another wav, if tte cycle 18
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Jil 1\’1' Jlil’ QRO ) Jkik’ ikJ

and we denote the basic feasible solution by Q, then a change
A

of & in le is compensated for dy alternately subtracting and

adding © along the chain, {.e.

A N A
() x,, =-© x;, =x,, =0, x -x +0, ..., x, , =X
R P SO T P PT Leo T

Using Corollary 5, it is clear that if

b -'ooo+.

K TR PR BE 1,9, "9 <%

this change results in a decrease of 0613 in the transportation
cost.

The new set of basic variables results by taking © as large
as possible consistent with maintaining non—-negativity of variables,

1...
A A

x cersn Xa g%
’ 11.’20 ’ 1}(“

A
(6) ¢ = min ( 11J1
Now it may happen *hat the minimum in (6) oscurs for more than
one index pair. Tnis situation, referred to as a "tie" in the
algorithm, might lead, on some future basis change, to a deter-
mination of © = 0, {.e. to degenerascy in the algorithm, and the
consequent possibility of non—termination. By Corollary 3, this
ean happen only if a partial sum of 8 equals a partial sum of

b Viewing Corollary 3 in a slightly different way, we see

J.
that 1if a tie has occurred, the graph of the strioctly positive

basic variables in the new set is disconnected, and thus the
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original problem splits up into feasible "sub—problems."
It 18 easy to see from Corollary 3 that degeneracy can be

and b, as follows:

avoided, if one desires, by perturbing the a, 3

a, —> a, ~a, + nE
a, —> a, -8, (1 > 1)

b, —> b‘;-bJ+€.
For £ sufficiently small, no partial eum of the ai can equal a
partial sum of the b3, as otherwise we would ave either
Ot = k¢ or nf = k€&, where 1 < k < n-1, a contradiction. A
value of € need never be specified; when a tie occurs in the
original problem, it can be resolved by evaluating the "&£ —part"
of the solution. Another way to resolve ties is Just to select
at random among the tled alternatives. It is easy to see that
the simplex computation then terminates with probability one.
It may be instructive at this point to re-interpret the

various steps of the simplex computation in terms of the array

(1nstead of a linear graph) commonly used for hand computation:
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Sinks
1 2 3 [} 5 6 ?
‘11‘0{‘12”1' = U %
811 %12 %13 | tfig| %16 %17 1
*22™° oy +® %26 2 |,
821 8pp| 853 8ou| %25| 8| %o =2
] 135-0' n3 s
310 %32] %33 s %ss] Y] fy | %
Xyy  Pan0 Xys*® Xp7 S
®a1] w2 %a3| M) s %ag) w7 | O
b b b b b b
1 2 3 } 5 6 7 i
Pl B || A 185 [ B | & \",.&"
0 1 5 2 3 2 [ —

The values of the current basiec set are recorded in their

appropriate cells (indicated in the example by the Xy shown).

To compute the multipliers %,, @J. assign 0K, = 0, say, then

soan the first row for basic eells, computing the corresponding

( and {in the example). Then scan the columns associatd
B 1 2

with newly computed @ g evaluating a set of o('s (o(2 in the

example).

Continue this process until all multipliers are

evaluated. The next step is to compute 8ll 6,, = &;, ~o(y -pJ

and find the most negative one (assumed to be 631 in the example).

Increasing this variable to © causes the chain of reactions indi-

cated by 4+ © and - © in the array.

Taking © as large as possible

(min ('11' Xo0r Xyyo x35) ) gives the new basic feasible solution.

Notice that the cycle one is looking for takes the form of a "rook's

tour” in the array.

For small problems, searching for a cyele 1is
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easily done without any special algorithm. For larger problems,
however, one needs an efficient algorithm for this search. We
sr~11 describe one such, which might be referred to as the "labeling
procedure" [6]. This procedure 1s, in general, an efficient way
of finding a chain jJjoining two given nodes in an arbitrary net-
work, and will play an important role in subsequent lectures on
network problems and a new algorithm for the transportation
problem.

Label the column which contains the variable to be intro-
duced by a O, say, and scan the column for basic c¢ells; when
one is found, label the corresponding row by the number of the
colunmn being scanned; take any newly labeled row and scan it
for basic cells contained in unlabeled columns; label the ccrre—
apondikg columns by the number of the row being scanned; when
these ;ows have all been scanned, go to the newly labeled col-
umns and\}epeat the procedure (never labeling a row or column
which already has a label), stopping only when the row which
contains the cell being introduced has been labeled. Then
proceed, in that row, to the positior indicated by its label,
and record — ©; then go, in the column reached, to the position
indicated by its label, and record + €. Continue this backward
replacement until the original column, labeled O, 1s reached.

A ladbeling which finds the desired cycle i1s indicated at
the bottom and to the right of the array in the example.

For machine calculation, it 1s probably a good 1dea to
carry along a separate list of basic cells, sorted perhaps on

both rows and columns, and to do the computation of the multi-
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pliers and the search for the cycle in terms of just this 1list.
So far we have said nothing about finding a starting basic
feasible solution. This again 1s an easy task. Simply select

any cell 1J and set

Xgq " min (ai, b,).

L

th row, replace bJ by bJ - ai,

Ir xu - a8 < bJ, delete the 1
and select another cell in the reduced array. 1If xiJ @ bJ < aq
dele¢te the Jth column and reduce a, by bJ fo obtain the reduced
array. If ay = bJ, delete either the row or column, unless there
are several rows (columns) left and only one column (row), in
which case & row (column) is deleted.

This completes the discussion of the simplex computat.on

for transportation problems.

2. OPTIMAL ASSIGNMENT PROBLEM

As we have mentioned earllier, the integrality of basic
feasible solutions for the Hitchcock problem with integral
supplies and demands enables one to solve some combinatorial
problems by setting them up &3 Hitchcock problems. Perhaps the
best known example of this 1s the problem of optimal assignment

(1a in the 1list), where the constraints take the form

D oxg - (11, ..., M)
(7) J
X, , =1 (j-l....,M)
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and we wish to maximize 55131;‘1;~ Since basic feasible solu-—
tions are integral, eachiééw and each column of such a solution
contains a 1 and 0O's elsewhere, and this describes a permutation
or assignment of men to jobs. Conversely, any permutation matrix
is a basic feasible sclution. Thus an optimal assignment problem
may be solved as a Hitchcock problem having the constraints (7).
It 1s 8lso true that a Hitchcock problem with integral ay
and b, may be formulated as an optimal assignment problem with
M= Zal. The 1dea can be made clear by considering an exanple

(pictured schematically below):

JE-
a a ‘
185 gl2 ! 5 851304 355 1
a a ) I

21 22 | 821]221]%21) %21 }22 |
v | 82122120 851 [220 |

1 1 1 1 1

5
Thus the 1 L source 1s replaced by a, sources, each with unit
supply and the same shipping costs, and the process is repeated

for the sinks.

5. UPPER BOUNDS ON VARIABLES

In addition to the constraints (2). one may add 'capacity
restrictions

(8) X4 < CiJ

without altering the character of the problem, except that the
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feasibili’y criterion is no longer simple. Since upper bounds

on variables will be dealt with later on in the course for the
general linear programming problem, we will not discuss the
matter here in any detaill. Briefly, the situation is this. If

inequalities (8) are rewritten in tre usual way as

(9) xij*yij.clj ’ yiJZO'

then one of xiJ' y1J must be in any basic set. Thus, {f B
denotes a basic set, the pairs 1' fall into three classes:
those 1§ for which xué B yUéB; those for which x1:€B,
Yy %B (hence I cw); and those for which X, €B, ,,'UéB
(hence ey = ciJ)' The graph of the pairs of the first kind
can be shown to be a tree, and thus the basis 1s again trian-

gular.

4. THE TRANSSHIPMENT PROBLEM

The transshipment problem (problem 2 in the list) arises
frequently in practical applications. It was originally formu-
lated and solved by A. Orden [14]; his method of solution 1s
to add the "transshipment variables" x,, and double the original
number of equations, theredby getting tre problem in the standard
Hitchcock form.Instead of using trhis device, we shall give a
brief discussion of the problem directly in terms of the given

linear graph.

If we let X, (4, y =1, ..., N) denote the commodity flow
from node i to node ! and assume that the numbering of the nodes

is such that 1, ..., k are sources, k + £/, ..., N are sinks,
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then the constraints are

(10) Z(x:i—xu)w—ai (L mil, «.., %)
JA1
EE:(X11 - x1J) « O (1 =k + 1, , k + 1 - 1)
JAL
j::(xJ1 & xij) = b, (1 =k + ¢, , N)
Xy, 20

(where variables corresponding to missing links do not appear),

subject to which it 1is desired to minimize

(11) > 8y Xy

3
a 1———————1?//’ | \\\\ES b
1 e , 2
B e
i P
| f-'
O

the matrix T of the linear programming problem is

112 X21 le X}l ’1“ Xul Xz) X}2 x?“ 1“2 X}“ Xu} X}S X,_.)) sz 15“

Y+~ 1 -1 1 -1 ! O © O O O ©
4 1 =i @ 0 © - 1 0 O
T o 4 0 ¢ 1 -1 ¢ 5 1 -1 ¢ 0o -1 1
¥ o0 ¢ O 0 1 =1 ¢ 0 1 =1 1 =1
4 ¢ o o 9 0 ¢ O 0 O G € O©

0

o

-1 1
C C
1 -1

G

(@)
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Notice that the column vector xij has -1 in the 1th posi-

tiocn, +1 {in the Jth position, and zeros elsewhere. C(onsequently
the sum of the rows of T vanishes, and rank T < N =-1. Just as
in the Hitchcock problem, we can exhibit a set of N — 1 linearly
independent column vectors of T (provided tre graph is connected,
as we assume to insure feasibility) by selecting a spanning sub-
tree of the graph and choosing either xij or XJi corresponding
to trhe 1inks of the tree. Indeed, every set of N — 1 linearly
independent column veoctors can be exhibited in this fashion, i.e.
the fundamental theorem on the correspondence of basic sets of
variables and trees remains valid.®* The proof is little differ-
ent; one just observes that because xiJ has -1 in the 1th compo—
nent, +1 in the Jth, any choice of columns corresponding tov a
cycle leads to a dependency. More specifically, If we orient
the links of tne cycle C in the directions dictated by the

choice of variables, e.g.

x4 2)
@ N
: N @
xr ?
f_!’ Rh\.:g\

then S + X1J =~ 0, where the — sign 1s selected If, in
1JeC

traversing the cycle, link 1J 18 traversed in the direction

*More properly, a basic set of variables corresponds to an
oriented spanning subtree of the graph, since the incidence
matrix T is composed of ones, minus ones, and zeros.
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opposite its orientation, say, the + 8iun otherwise.

One difference between the transshipment and Hitchcock
problems that should be pointed out 1s tiat the convex polyhedron
defined by (10) 1s unbounded. The assumption 8.2 C guarantees
& finite minimum for the problem, however.

The simplex computation for the transshipment problem differs
only in detail from the computation for tle littctcock problem.

The simplex multipliers, one for eact. node, are found by assigning
one of them an arbitrary value, and computing tle others along

the tree, taking account of the orientation of the links. Intro—
ducing a variable x,, into a basic set 1is a‘ain equivalent to
finding the chain of the tree which Joins node {1 to node J, and
may be done by a labeling procedure.

For machine computation, one would of course not have a
separate program for the transs:' ipment problem, but would use
Orden's approach and sclve an equivalent N by N litchcock problem.
For the transshipment graph pictured earlier, the equivalent

Hitchcock problem 18 described b, tne array

1 2 3 4 5

11 0 a,, 1‘1} a,, | © £ + al

2la 0 ’a
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where cells with costs + o ocorrespond to missing variables,

X, has zero cost, and s is a sufficiently large number (s = :[:.1

will do).
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