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A COMPARISUN OF LINEAR PROGRAMMING AND DYNAMIC PROGRAMMING

W‘I'hiau paper considers the applications and interrelstions of limear
and dynamic programming and attempts to place each in a proper perspective

s0 that efficient use can be made of the two techniques. (" —

§1 " The Philosophies

Linear programming adopts an intentionally eimple model. The
complexity of economic formulations during the past hundred years
has far outetripped the mathematician's ability to sclve such
probleas computationally. Linear programming represents an’atteapt
to reverse this trend and to view economic processes as inter-
related, but fundamentally simple, activities. The optimization
of these¢ processes then becomes mathematicelly feasible.

Dynamic programaing concerns iteelf with a leu of
functional relations that arise from multi-stage decision procesees
possessing certain definite structural characteristics. The
characteristic properties are axploited to effect s reduction in
the dimensionality of the mathematical problem, thereby making scmn

complex processes amenable to snalytic or computational techaiques,

2. The Nodels
The formulation of a problem in mathematical terms is the
initial step towards its solution. In this, the model buiiding
stage, care must be taken to aseure two conditions:
1) The model must be an adequate description of reality and

2) the model, if numerical results are required, must be amenabdle
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to computational technicues.

As will be discussed in N, care must be taker that condition
one is fulfilled when coi.zidering a linear programming formulation,
As noted in §5, computational feasibility represents the most important
consideration when a dynamic programming model is coatdlutod.

The linear programming model always assumes the follewing forwm:

Minimise: Xy ¢ e K ¢ ... ¢ O X (1)

subject to the restrictions: .

oy

Wttt ATy
: i}

..lxloa-zxzo...od-‘x.-b.

(2)

A

x>0

J
A common economic imtarpretation of these equations resui.te

to be the input

from considering the x, to be activity levels, the o

3 i
of the 1“ commodity into the j"h sctivity and the bijto be upper
limits on requiremente and availability of commodities. Then the
model states t hat we wish to carry on u productive activities, esch
using the same m limited resources in such a way as to minimise
total cost or maximise profite. [h]

The typical dymamic programming formulation appears as

£ (S)s Max [n(s.r) 3 4 (8'(P))] (3)
N P N-1

This 12 a recurrence relation and is therefore particularly suited

to processes that occur over a sequencs of time periode or stages.
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A multi-stage process that is easily formulated in these terms is an
allocation problea where, at each stage, resources are reinvested in
such a wvay as to maximise total payeff over the length of t he process.
For example, suppose we are given a quantity x of a resource t hat may be
divided into two non-negative parts y and x-y, During stage 1 we obtain
from y a return g(y), at the expense of reducing y to ay where O < a < 1;
from (x-y) we obtain a return h(x~y) at the expense of reducing (x-y)

to b(x~-y) where O < b < 1, The process is now repeated with the new
initial quantity ay ¢« b(x-y), and so on for N periods. How can one
allocate at each stage 30 as to maximize the total return obtained over

the entire process? The functional equation describing this particular

process is

£,(x) = Max (y)oh(x-y)or,,_l(u»wx-y)ﬂ ()
ogrex

Sere fl(x) is defined ac the return from an N-stage process, starting
with resource x, and using an optimal policy. g(y)+h(x~-y) is the return
from an allocation of resources into parts y and (x-y) at stage 1.
ay+b(x-y) represents the remaining resources and is the initial condition
for the (N-1) stage process. The equation states that the retwun from
an N-stage process is the sum of the return from stage 1 plus the retum
from the remaining (N-1) stages w here the initial division of resources

ies chosen 80 as to maximize the sum, [Z-IJ

fhe Nomenclatiire

In view of the above examples, it is easy to appreciate the
choice of nomenclature., Programming, of course, means allocation

in each case. In the linear programming model limited resources are
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allocated to various activities. In dynamic programming resources
are allocated at each of several time periods.

The term ''limear'' emphasises that the applications conzern
situations where t'w inpute and outputs of various activitiee can be
assused to be proportional to the level of the activity,

Dynamic programming takes its name from the fact that the
functional equation and its associatsd computstional techniques are
derived from, and sdapted to, s process changing over a discrete or
continuous time interval,

T™wo exceptione should be moted. It is possible to expand the
static picture described in the discussion of the linear programming
model to include severel time periods by the addition of a new ;ot of
restrictions reflecting constraints felt at each time interval. It 1o
important to note, however, that even where a dynamic situation ie being
considered, the entire process is described by one set of equaticns
asd solved as one large problem, [3 In & dymamic programming forwu-
lation an iteration of the functional equation corresponds to each
tims interval, so that a longer duretion of the proceee only entails

additional iterstions. Hence doubling the length of the procoss merely

requires twice the computation time but ne additienal fermulational
considerations. Secondly, dynamic programming does not necessarily
involve processes changing over time. It is a sulti-stage technique,
but often the stages are artificially introduced by coneidering ihe
component activities individually although they actually occur

simultanecusly in time. For an example, see ref. [.IZ'

\
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The Model as s Description of Reality

Linear programming, representing a simple model, is nccu‘urily
restricted as to the generality of problems that can be attacked,
However, 1f applicable, it has associated with it a very powerful
computational device, the simplex algorithm, which can efficiently
solve large systems containing hundreds of equations. Dynamic
programming, on the other hand, is an extremely general technique
of formulation, but carries with it a much more limited co.pu.utionnl
scheme. This section will discuss three aspects of problems which may
make 8 linear programming model not applicable but which are handled
with some ease by dynamic programming.

The linearity aseumption is sometimei invalid when applied te
industrial processes. The deviation from linearity, and the degree
of exactness required from the model, then detsrmine the applicability
of linear programming. A problem involving set-up costs is a repre-
senitative member of the class of rnon-linear processes, Here the
situation {s such that the c;at. of carrying on an activity st zero
level is essentially zero. However the use of the activity at even
a small level incurs a large cost associated perhaps with the retool-
ing of a production line or administrative costs of placing an order.
Once this penalty has been assessed the assumption of proportional
costs may become valid., Turning now to the functional equation (3)
of dynamic programming, the policy, P, may be thought of as the
activity level. When IN(S) i{s computed, the policy space is searched
for a maximizing policy P. If the return or cost functiom R(S,P)
is given in tabular form a discontinuity at the origin represents

no difficulty, If R(S,P) is a function applicable everywhere except
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at the origin, the computer code must include a teest for P = 0 and
the substitution of a cost of zero for the functional cost in that
epecial case.

A second considereation, discretensss of the solution, tends to
complicate the linsar programming formulation. Sems problems of a
mumber theoretic nature require that the activities assume only integral
values. Por example, in a cargo loading problem only the integral
numbers of each itea may be loaded and the optimal fitting tegether of
the cargo stbject to a weight or space restrictions then becomss a
discrete number theory problem. This sort of a restriction is nicely
suited to dymamic programming using a digital computer, for only integral
uembers of the policy damain P need be considered and the fumction f'(s)
need only be computed for fixed discrete values. [g

Pinally, there is & large family of problems where the return
associsted with an activity is knowm only as a stochastic funetion
of the activity level. Here again, except in special cases, linear

programming techniquee are not applicabdle.
Cemputational Solution of the Model

Just as the previous section was devoted almost eatirely to areas

where linear programming may not be applicadble, this section will coneern
{teelf primarily with the computational pitfalls of dynamic progremming.
And just as it was aseerted in the last section that almost any conceivable
precess een be formulated in terms of dynmmaic programming, it s'wuld now
be umderstood that by means of the simplex m.umm.u algoritime

‘' linear programming problems even of formidable sise can be automatically
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subdued and the solutions axhibited. [5] . This should be noted,
since, the entirely successful aspects of each technique being little
discussed, one might arrive at the mistaken corktlusion that asither
technique offered much of practical value. One need only refer to the
well known contributions of the older and better understood linear pro-
gramming approach or to section 7 to see the wide applicability of both
techniques.

Let us reconsider the recurrence relation

=) =) s (gr) Mr)ey, (0bny) )]

Numerical solution {s obtained by first observing that the return
from a l-stage process is simply the maximum of g(y)+h(x-y) since to'
the O-stage return, is identically zero., A table of fl(l) is caomputed
for all wvalues of ¢ from O to X, We are really saying that although
we don't know what our resources will be when we find that the procees
has only one stage left (this depending on our a3 yet undetermined
policy during the first (N-1) stages), for any initial resource, s,
our final allocation and the return frow it are known, Once fl(s) for
all possicle 3 is calculated, tz(z) can be computed using equation ()

which, for N = 2, relates f  to fl. By working backwards thru the

P
sequence of functione ti(z) ve f{inally arrive at a table of f.(z),
0 < 3<x, where fu(x) is the desired solution, the N-stage return '
employing an optimal pclicy. Hence for an N-stage procese the l-etage
computation is merely perfurmed N times, which presents no difficulties

for the digital computer programmer,

(5)
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Orice the number of time intervals has been relegated te its |
proper place, the preblem is reduced to its true dimesasions. Ite
true dimension is precisely the quantity ef information needed te
descridbe completely the situstion at aay one perticelar stage. In
the sbove axa'ple, x, the quantity of resource available, defines
the state of the system at any stage of the process. 8ince x is a
scelar aumber, the proliem is termed one dimsnsional and presente no
computational difficulties.

Howevor, it is eaay for even this reduced dimensienality teo
become large. In the job—ehop scheduling probles, discuseed in §6,
for example, the dimsnsionality is equal to the mmber of machines
in the shop, since one muet kmow the state of each mechime in order
to understand the state of the system. To ackisve a eelutiom & table
of the function tl(s) must be oo‘-‘tod for all possible states S and
stored for use im computing fz(S). Where S is, say, 10 dimsasioual
and can asewme 100 values in each dimensiocu, the tabulsr storage of
fl(S) would require mom asmory cells, far beyond the rengs of
present generstion computers. 80 the dimensionality of the procese
mist be about 4 or less for dynamic progremming to be applicable
in a purely computational mannsr., The actual performance ef the
maximisation presenis further interesting difficulties, particularly
where it is to be performed over s 2 Ur 3} dimensional region.
Portunately many sppereatly eomplex processes ean bc reduced to one
or two dimensional problems and solved by dynemic programming while
in same higher dimensional problems, the structure of the optimal

policy may be Aeduced analytically, thus simplifying the computation,
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Formulation of a Sample Probles

The following is & variation of a problem discussed by Markowits
and Manne [6] . Consider a small scale job shop., There are 6 machines
or resources. Twenty-one different kinds of items can be manufactured

using the machines. Let x, be the level of the §*P activity, i.e., the

J
mmber of items of type J to be produced, ‘U is the amount of time
e
on the 1*" machine rejuired to produce 1 of the I*" ttem. e g 10 the

return from the unit level of the Ju’ activity. b1 is the total
time available on the it'h sachine, Further, let us assume that it

makes no eense to produce a fractional number of items. Finally, we
sseert that the purpose of the process is to maximize the total return
by choosing an optimal number of each item to produce.

Viewed first on a linear programming model w have:

21
Naxinige: ; ¢ X, T(the return)

subject to the restrictions

21
a X <V foriel, 2,3,4,5, 6
je 1337 14

wvhere the activity levels x must be non-negative and integral.

As dynamic programming our model appears:
£1(0 0050000 5bg) = Max (‘1‘1"20("1"11‘1"’2 “21‘1’"""5"61"1)>
A (bl’ "’bb )
x, < Min| =~ il
11 61
x, an integer

'V
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The process involving 21 items has been expressed in terms of the
firet item and a process involving the remaining 20 items,

As discussed in the text, the linear programming solution is
made difficult by the integral restriction, whereas dynamic pro-
graming is obstructed by the 6~dimensionality of the process.

Some Applications

Contained in this section will be found the statement of
several problems thet have been solved by either linear programming
or dynamic programming. References are mede L0 papers containing
more detailed discussions of the solutions. This section is
included for two purposes: to demonstrate the catholic nature of
both techniques and to aid the reader in deciding which a pprosch,

if either, might prove rewarding if applied to problems he may be
facing.

Some problems solved by linear programming.
Transportation Problem:

There are N sources of an item and N sinks. The require-
ment of each sink is known, and the cost of shipment between
each source and sink is given, A shipment policy is desired
to meet the N Gemands at minimm shipmest opet. [19]

Aseigrment Problem:
N employees are to be assigned to N distinct jobs. The

aptitude of each employee for each job is known. Which employee
is assigned to which job in order to maximize the total aptitude
of all employees for the jobs they are filling? [7)
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Petroleum Blending Problem:

Crude oil produces gases, straight-run gasoline, 3 weights
of distillate and residue. These products may be used for fuel
oil blending or in several other processes. The value of the

total output of the interrelated process is to be maximized. [l]

\

Traveling Salesman Problea:

To determine a path of minimum length touching 49 principal
cities of the U. . [9]

Network Problem:

Consider a network connecting two given points by wey of
a number of intermediate points, where each link of the metwork
has & number assigned to it representing ite capacity. Assuming
a steady state condition, find s maximal flow from one given

point to the other. LlQ]

Some problems solved by dynamic programaming.

Cargo loading Problem:

A vessel of weight capacity 2 is to be loaded with an assort-
ment of items. Each item has a weight W, and value '1' The value
may be a non-linear or stochastic function of nuaber losded. To
determine an integral number of each item to losd in order to

maximize the value of cargo subject to the weight restriction, [A]

Missile Allocation Problea:

M missiles are to be allocated to N targets. Targets are of
various values and defense levels. Probability of a missile sur-

viving defenses and destroying target is an exponential functionm
of the number allocated. HKHow many miceiles should be allocated

L

|
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to each target to maximize total expected damage? Elﬂ

Optimel Ciimb Problem:
What path should an airplane follow in erder to minimise

time-to-climb from takeoff to combat oconditions? [12]

Early Warning Radar Ne: Problem:

Radar protection circles are constructed around each of &

complex of airbases. Protection afforded each base is a function
of the radius of ite circle. A set of radii is desired which

affords the base complex a fixed protection at minimum defense

systea perimeter. Eé]

Bigenvalue Calculation Problea:

The eigenvalues aseociated with the differential equation
u"ol\zl(t.)a-o are obtained. We are interested in the values of

22 which yleld non~trivial solutions u. (2]

Conclusiens

The potential wser of either of these programming techaniques
should first consider the fa:tors diecuseed in the preceding sections.
If the problem is essentially linear in its assumptions, there is
little doudt that linear programming offers the superior mesans of
solution, If the proeess is of a multi-etage nmature and its true, or
reduced, dimension is not large, dynamic programming should dbe capable
of providing a solution unperturbed by non-linear, stochastic, eor

integral restraints.
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It should be noted, however, that both techniques, when
artfully applied, have solved problems that at firet glance did
not fall wvithin the limited domains described above.

Finally, it is important to realise that both linear and ,
dynanic programming represent powerful analytic tools, Interesting
theoreas have been proved and structures of solutions which are not
computationally obtainable have been demonstrated by msthematical
application of the simplex or dual-simplex algorithms of linear

programming and functional equation theory of dynsmic programming.
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