CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION, CFSTI DOCUMENT MANAGEMENT BRANCH 410.11 # LIMITATIONS IN REPRODUCTION QUALITY | ACCOBS | 31 011 | σ | |--------|---------------|--| | _9 | 1. | We regret that legibility of this document is in part unsatisfactory. Reproduction has been made from best available copy. | | | 2. | A portion of the original document contains fine detail which may make reading of photocopy difficult. | | | 3. | The original document contains color, but distribution copies are available in black-and-white reproduction only. | | | 4. | The original distribution copies contain color which will be shown in black-and-white when it is necessary to reprint. | | | 5. | The processing copy is available on loan at CFSTI. | | | 6. | | | | | | | 6. | 2 | |-------|-------|-----|-------------|-----|----| | COPY | 1 | OF. | / | | 31 | | HARD | COPY | , | \$. | 3,0 | 20 | | MICRO | FICHE | | \$. | 0. | 15 | MANUAL FOR THE RAND-IBM CODE FOR LINEAR PROGRAMMING ON THE 704 William Orchard-Hays Leola Cutler and Harold Judd (I.B.M.) P-842 V May 16, 1956 Approved for OTS release # Best Available Copy #### LINEAR PROGRAMMING by Wm. Orchard-Hays (Rand Corp.) Eal Judd (I.B.M.) Leola Cutler (Rand Corp.) #### INTRODUCTION cedure with the product form of inverse. It is designed to solve the classical linear inequalities problem and most of its variations on the IBM 704. ## MACRIME REQUIREMENTS The basic machine needed for this system is the IBM 704 with 4 logical drums, 4 tapes and 4096 words of magnetic core storage. One additional tape may be used optionally for storing output results. One tape may be used for input to the data assembly which is run prior to using the system. Hence the imput is from cards or tape and the output is the on-line printer or off-line printer. The card punch is used by the data assembly and also for punching restart information. #### HOTATION The quantities displayed in a matrix require two indices, one for row and one for column. Here a row vector will be denoted by a general subscript, one of its elements by a specific subscript, as: c, is a row vector c₃ is the element of index 3. A column vector will be denoted by a general superscript, one of its elements by a specific superscript, as: b) is a column vector b⁵ is the element of index 5. A matrix will be denoted by both a subscript and a superscript, as: ai is a matrix a5 is the row consisting of the element of index 5 in each column. a_k^i is the column consisting of the element of index 4 in each row. a_2^6 is the element in row 6 and column 2. The ranges of values will be specified when the index is first mentioned. Note that a^i is the transpose of a_i . The transpose of a ma ix must be denoted by defining a new letter, e.g., $b_j^1 = a_j^1$ defines b_j^1 as the transpose of a_j^1 . For a given matrix of coefficients a_j^i and a column of constants b^i , then, a system of m simultaneous linear equations in n unknowns x^j will be written $$a_{j}^{1} x^{j} = b^{1}$$ (i = 1, ..., m; j = 1, ..., n) instead of $\sum_{j=1}^{n} a_{j}^{1} x^{j} = b^{1}$ for i = 1, ..., m. This summation convention is used whenever a column is multiplied on the left by a row. A matrix may be multiplied on the left by a row vector to produce a row vector: $$c_i = d_j - d_j$$. A matrix may be multiplied on the left by a row vector and on the right by a column vector to produce a scalar: $$c_1 = \frac{1}{3} x^3 = z$$. Finally, of course, a matrix may be multiplied on either side to produce another matrix by multiplying by a matrix with the proper dimensions: $$a_j^i b_k^j = c_k^i$$ $$d_i^h a_j^i = e_j^h$$. Uppercase letters (except T) will be used for sets. The use of letters for indices is as follows: h, i, j, k for general indices l, m, n for limits p, q, r, s for specific indices. When it is desired to index a quantity over time, i.e. iterations, the index will be enclosed in parentheses, e.g., $\alpha_{s(t)}^i$ is produced from $\alpha_{s(1)}^i$ after t-1 transformations. The capital letter T will be used as the current limit for t, that is, T is the current iteration number and t = 1, 2, ..., T. # STATEMENT OF PROBLEM We define the standard linear programming problem in two forms. This is because it is mandatory to start with the identity matrix as the initial basis in all circumstances. Certain deviations from these standard forms are discussed in the detailed write-up. # STANDARD FORM 1 Given: A row of coefficients on a linear form to be optimized $$a_{j}^{0}$$ (j-1, ..., t) A matrix of restraint coefficients $$a_j^1$$ (1 = 1, ..., m; j = 1, ..., t) A column of constants $$b^1$$ (1 = 1, ..., m) To find: A column of values for $x^{j} \ge 0$ (j = 1, ..., l) such that the variable x^{0} is maximized subject to (1.1) $$x^0 + a_1^0 x^j = 0$$ $(j = 1, ..., t)$ (1.2) $$a_1^j x^j \leq b^i$$ $(i = 1, ..., n)$ Note that (1.1) is perfectly general since the sum $a_j^0 \times^j$ may be minimized or maximized merely by changing the signs of the a_j^0 . To convert (1.2) to equalities, we define the variables $x^{l+1} \ge 0$ (i= 1, ..., m). Then (1.2) becomes (1.2') $a_j^1 \times^j + x^{l+1} = b^i$. If a_h^1 (i = 0, 1, ..., m; h = 0, 1, ..., m) is the identity matrix of order m+1 (essentially the Kronecker delta), then we can define $$a_0^1 = b_0^1$$ and $b^0 = 0$ $$a_{l+h}^{1} = b_{h}^{1}$$ for $h = 1, ..., m$ (thus defining j=0 and j=l+1, ..., l+m=n) and replace both (1.1) and (1.2') by (1.5) $$a_j^i x^j = b^i$$ (i = 0, 1, ..., m; j = 0, 1, ..., n). If the restraint equations can be put in the form (1.2'), then some of the b1 are permitted to be negative, if necessary. However the number of negative b¹ should be small to prevent an excessive number of iterations. If the restraints cannot be specified exactly in the form (1.2) without an excessive number of negative b^1 , then the problem should be put in standard form 2. It should be noted that the slack vectors c^1_{l+h} introduced above are legitimate. The limit n will be used consistently for the number of legitimate vectors in the system (besides a^1_0 which is an operational device.) # STANDARD FORM 2 Given: A row of coefficients of a linear form to be optimized $$a_j^0$$ (j = 1, ..., n) A matrix of restraint coefficients $$a_j^i$$ (1 = 2, 3, ..., m; j = 1, 2, ..., n) A column of constants $$b^1 \ge 0 \quad (i = 2, 3, ..., m)$$ To find: A column of values for $x^{j} \ge 0$ (j = 1, ..., n) such that the variable x^{0} is maximized subject to (2.1) $$x^{0} + a_{j}^{0} x^{j} = 0 \quad (j = 1, ..., n)$$ (2.2) $$a_j^i x^j = b^i (i = 2, ..., n)$$. We now add to the system, artificially, the identity matrix (except δ_0^1 which is always there) and sumiliary variables x^{n+k} (k=1, ..., m) and construct an auxiliary form in which the variable x^{n+1} is to be maximized first, i.e. before maximizing x^0 . This process is called Phase I. The purpose of Phase I is to eliminate the artificially added columns from the system or at least to make sure that the corresponding variables become zero. Hence we put a weight of unity on each one in the row of index 1, which will become the auxiliary form. Let $a_{n+1}^1 = \delta_1^1$ and for k = 2, ..., k [&]quot; At least one artificial column, usually the δ_1^i column, must remain in the solution at zero level even while maximizing the variable x^0 . let $a_{n+k}^i = b_1^i + b_k^i$. The variables x^{n+k} are to be non-negative except for x^{n+1} which is defined by (2.5) $$x^{n+1} + \sum_{k=2}^{m} x^{n+k} = 0$$. Clearly $x^{n+1} \le 0$ and if $x^{n+1} = 0$, then all $x^{n+k} = 0$. When (and if) this condition is attained, the artificial variables are maintained at zero, including x^{n+1} , by considering (2.3) as a restraint equation while maximizing x^0 (Phase II.) If x^{n+1} cannot be driven to zero, there is no solution to (2.2), $x^{n+1} \ge 0$. This condition is called Terminal 1. The problem at this point can be displayed in the following augmented form where the x^j are shown above the matrix of detached coefficients. Since the identity matrix still does not appear in (2.4), we must make a simple preliminary transformation. First note, however, that setting $$x^{j} = 0 \text{ for } j = 0, 1, ..., n$$ $$(2.5)$$ $$x^{n+1} = -\sum_{i=2}^{m} b^{i} \text{ and } x^{n+i} = b^{i} \text{ for } i = 2, 3, ..., m$$ provides an initial solution in which all variables are non-negative except x this solution will remain valid if we subtract all equations of index 2 through m from the auxiliary optimizing form, row 1. Then defining answ (2.6) $$a_{j}^{1} = -\sum_{i=2}^{m} a_{j}^{i} \quad \text{for } j = 1, 2, ..., n; \quad b^{1} = -\sum_{i=2}^{m} b^{i} \quad .$$ $$a_{n+k}^{1} = 0 \quad \text{for } k = 2, 3, ..., n$$ the row 1 equation takes the form (2.7) $$a_j^1 x^j + x^{n+1} = b^1$$ (j = 0, 1, ..., n). Furthermore, the columns a_0^1 , a_{n+1}^1 , a_{n+2}^1 , ...,., a_{n+m}^1 now form δ_h^1 . The data assembly program computes a_j^1 and b^1 automatically. If some, but not all, of the columns of δ_h^i occur in a_j^i ($j \le n$), then these columns should be indicated as being in the initial basis. The data assembly will then omit the corresponding rows in the sums (2.6). This is equivalent to adding artificial columns a_{n+k}^i only for those columns of δ_h^i which are missing. The vectors \mathbf{a}_0^1 , \mathbf{a}_{n+k}^1 are never entered with the data. They are implicit in the code and, once eliminated, cease to exist. The basis headings, which are the j-indices of the columns \mathbf{a}_j^1 in position $\mathbf{h}=0,1,\ldots,m$ of the basis, are left zero for all artificial vectors since the position \mathbf{h} identifies them sufficiently, i.e. they are never moved around in the basis. Legitimate
columns of δ_h^1 may go out of the basis and come back in out of position. Hence they must have names, as in Standard Form 1. Note: The row indices i of a_j^1 must have the numerical values 0, 1, ..., m, but the column indices j = 1, ..., n are used above only for expository purposes. These columns can be identified by any n distinct symbols, of five or less Hollerith characters each, which suit the fancy of the formulator of the problem. One convention has been adopted: legitimate columns of b_n^1 are denoted by UPOO1, UPOO2, ..., for "Unit Positive" vector. This convention is essential only to the re-inversion code. #### INPUT The data assembly for the linear programming system is designed to be executed independently of the main code. The options for loading data from tape or from the card reader, to load matrix elements which are punched in standard form or in a fixed field, or for punching out the matrix on binary cards are not controlled by sense switches. Instead, each bit of a word in storage, the SEMEES word, is used to control these functions. In particular, the first three bits correspond to the three options noted above. A zero would correspond to the switch being up, and a one to the switch being down. A binary card must be inserted immediately following the transfer card in the data assembly deck with the SEMEES word punched in the 9's left row. If the data is loaded from the card reader, a one is punched in position 5 of the SEMEES word, i.e. a 9-punch in column 1 of the card. #### PROBLEM IDENTIFICATION The name of the problem or any suitable identification is punched in columns 2 through 72 in Hollerith characters for the heading card. This information is punched in a binary card along with other data for use by the main code which prints the information, as original/punched, as the first line on all of the output listings. #### PROBLEM PARAMETERS The essential parameters needed are punched in the parameter card in normalized form for ease in key punching, e.g., m equal to 77 would be punched in columns 1 and 2 while m equal to 177 would be punched in columns 1, 2 and 3. If the numbers are not in normalized form on the card, leading zeros must be punched. The parameter card is as follows: - cols 1 10 m (number of restraint equations) max m = 255 - 11 20 z (number of Phase I's desired) - 11 21 30 q (total number of Phases) - 11 31 40 ∑ (index of sum row) - '' 41 50 τ (number of preliminary transformations) If the sum row is computed prior to assembly and loaded with the other elements, Σ should be left blank. This is necessary if more than one Phase I is desired since there will be as many auxiliary forms as there are Phase I's. If there is no sum row, leave Σ blank, not zero. #### BASIS HEADINGS The basis headings are punched 7 to a card using as many cards as needed. Ten columns are allotted for each heading (j) with its column index (i). The column index must be in normalized form or leading zeros must be punched. The cards are punched as follows: - cols.1 3 i (column index for basis heading) - col. 4 blank or minus (a minus sign will cause the main code to treat column i of the initial basis as an artificial unit vector, and then to bring the specified vector j into the basis arbitrarily. The number of negative basis headings must agree with parameter τ.) - cols.5 9 j (5 Wollerith characters to denote column i of the identity matrix. These unit vectors must be denoted by UPOO1, UPOO2, etc. for the reinversion code.) - col.10 blank - cols. 11 20 as cols. 1 10 - • • • • • • • • • - cols. 61 70 as cols. 1 10 If one of the basis headings is punched erroneously, it can be overwritten without repunching the entire card by succeeding it with a correctly punched version of the herding in error. A heading of zero will be assigned for all i's not specified. #### RIGHT HAND SIDE The right hand side vector b¹ is preceded by a card with FIRST B punched in Hollerith characters in columns 1 - 7, followed by element cards for non-zero entries as follows: cols. 7 - 9 1 (row index in normalized form or with leading zeros) col. 10 sign of element (blank is interpreted as positive) col.11 The integral part of the number is punched in col.11 on depending on the number of columns needed (8191 is the maximum integer allowed). The integer is separated from the fraction by a blank column. Then, the fractional part is punched using as many columns as needed (a maximum of seven columns may be used). The remaining columns on the card are left blank. For example, .0425 would have 0425 punched in cols. 12-15. Also, 10.0 would have 10 punched in cols. 11-12 only. An alternative method has been provided to load data which is punched in fixed columns as described below. A one is punched in position 1 of the SENSES word if data is to be loaded in this form. colr. 11-14 integral part of number col. 15 blank cols. 16-21 fractional part of number If a supplementary right hand side c^1 is to be loaded, a card with NEXT B punched in columns 1-6 precedes the element cards which are in the same form as the elements of b^1 . A FIRST B card must always be used even if, for some reason, no b are entered, e.g. when assembling a supplementary right side or a new matrix. # RESTRAINT MATRIX A card with MATRIX punched in columns 1-6 precedes the element cards of the matrix \mathbf{a}_{j}^{i} . If no matrix is to be loaded, this step is bypassed by loading a card with NO MATRIX punched in columns 1-9. The non-zero elements of the matrix \mathbf{a}_{j}^{i} are loaded one element per card as follows: col. 1 always blank (corresponds to sign column in basis heading cards, but must be plus here.) cols. 2-6 j (a five Hollerith character symbol to identify the column). All of the elements of each column vector must be in succession. cols. 7-> row index and element punched in the same form as elements of b¹. matrix. A card with ECR in columns 1-3 will terminate leading of the matrix. A card with ECR in columns 1-3 will cause the data assembly to write the preceding vectors on the tape and start a new record with the succeeding vectors. If position 2 of the SERSES word is a one the data assembly purches the matrix in binary. When it is loaded by the main code it is possible to load part, but not all, of the vectors if they have been separated by the ECR breakpoint (see Deviations from the standard forms.) Also, a card with CURTAIN punched in columns 1-7 may be loaded between any two vectors (see Deviations from the standard forms.) If a sum row is used for Phase I, then the sum of each column must be less than 8192. This does not apply to the b. #### DETAILED WRITE-UP The codes whose use are described herein are designed to provide a complete system for solving linear programming and related problems where no special assumptions are made regarding the structure of the model. Since there are so many ramifications to such a general computer program, even for one type of problem, it is deemed necessary to include a considerable amount of explanatory material. In what follows, a general familiarity with the simplex method will be assumed. For example, no proofs will be given for the standard theorems concerning basic solutions or the simplex criterion. However, the algorithm using the product form of inverse and certain special features built into the codes will be developed in detail. The subject matter will be divided into the following sections. - I Advantages of the product form of inverse. - II Reducing the number of terms in the product. (Re-inversion) - III Deviations from the standard forms. - IV Forms of arithmetic. - V The basis - VI The inverse of the basis. (Product Form) - VII The pricing operation. - VIII Choosing the basis column to be replaced. (Degeneracy) - IX Summary of cyclic operations. (One iteration) - I The composite algorithm. (Infeasible solutions) - XI Parametric programming. (Varying the right hand side) - XII Multiple phases. (Varying the optimizing form) # I - ADVANTAGES OF THE PRODUCT FORM OF INVERSE In order to appreciate the advantages of this method, it is necessary to keep in mind the following facts concerning the matrix of coefficients of a typical linear programming problem and the requirements of the simplex method. - (A) The matrix is usually very sparse, the percentage of non-zero elements being typically 5 to 15 per cent of the total number. - (B) The given data is almost invariably expressed with a very few significant figures and is easily scaled to fit in a restricted range of fixed-point numbers. - (C) Some problems have a large number of variables although the number of restraints is not excessive. The ratio of number of variables to number of restraints is often between 5 to 1 and 10 to 1 and actual problems have been run with ratios as high as 30 to 1. - (D) If m is the number of restraint equations, then the essential manipulations of one cycle of the simplex method involve a change of basis in Euclidean m-space, where two successive bases differ only by one column vector. The rules of elimination in effecting this transformation are the same no matter what particular algorithm is used. Although such a transformation is easily represented, its total effect on the numerical representation of a set of vectors, i.e. a matrix, may be extensive. Furthermore, the validity of each cycle performed depends on the accuracy of all preceding cycles. With these observations in mind, the advantages of the present method can be stated as follows: - (1) Since the original data matrix is not transformed from iteration to iteration, it is clear from (A) and (B) that an elaborate organization of the data can be performed at the outset, so that it is in the most convenient and compact form for use throughout the problem. Since the original matrix is referred to only once during the cycle, it can be stored on tape, out of the way, and its compact form minimizes transfer time as well as
computing time. - (2) It is clear from (C) that it would be very expensive in some problems to transform the whole matrix on each cycle since, even if the ratio of variables to constraints is, say, only as much as 5 to 1, it is still very unusual for the process to take 5m iterations. In other words, many vectors (activities) are never selected at all and hence there is no use doing anything to them. - by rows or else linear combinations of rows would not be readily available. Even then, one would require storage for three vectors simultaneously in transforming a column. In changing basis, the transformation vector is a column and hence the modification and re-recording of the m² elements would be awkward and time-consuming, especially if zeros are deleted. On the other hand, the product form requires the recording of only one additional column (plus an index) on each iteration. These columns will almost surely contain many zeros and may be cordensed since they are always applied column-wise and recursively to a single vector. - (4) The product form is extremely amenable to modifications of the method or for generating additional side information, since the inverse or its transpose are equally easy to apply. # II - REDUCING THE NUMBER OF TERMS IN THE PRODUCT One apparent disadvantage of the product form is that, while only one new column is recorded each cycle, it is necessary to read T columns to apply this form where T is the number of iterations already performed. Thus, after m iterations, where m is the number of restraints, one must read more information than in reading a full inverse (not taking condensation into account.) This is still profitable for something over 2m iterations as can be seen as follows. With an explicit inverse, we must read it twice and write it once each iteration, giving 3mT columns handled on T iterations. With the product form, we must read t-1 columns twice on iteration t and write one new column, giving $\sum_{t=1}^{T} 2(t-1) + 1 = T(T-1) + T = T^2 \text{ columns handled on T iterations.}$ Setting T^2 : 3mT gives T = 3m. However something must be allowed for the fact that less arithmetic accompanies the writing than the reading. This disadvantage is more apparent than real, however. After, say, 2m iterations, round-off error will begin to be noticeable on large problems no matter which form is used. Many problems are solved in 2m iterations or less but, if it takes more, one can re-invert the basis matrix, at any time, producing not more than m columns of informations. The time for this inversion is much less and the accuracy of the resulting transformations is as good or better than after the same number of full simplex cycles. (The order of elimination for inverting is designed to maintain accuracy.) A special code is provided for this purpose. It is useful for solving any system of linear equations, especially where several right hand sides are used with a sparse matrix. It is helpful, with t . form of inversion, to consider the matrix of coefficients of the restraint equations as a collection, or set, of column vectors, ignoring the fortuitous ordering given to the variables in the formulation of the model. Whatever scrambling of columns that may occur in the process, is recorded in a list of basis headings which accompany and identify the basic variables of a particular solution. This point of view is adopted throughout the present discussion. ## III - DEVIATIONS FROM THE STANDARD FORMS Some discussion of alternate ways of starting a problem is indicated. In Standard Form 1, the inequalities were converted to equalities in the usual way by adding slack vectors. The matrix then contains the complete identity matrix (not necessarily in proper column order in a_{ij}^{i}) and there is no difficulty. The variable corresponding to column i of the identity matrix is set equal to b^{i} and the name of the variable is recorded in the i-th word of the list of basis headings. This is done automatically by the data assembly pro- gram. The problem is then ready to start with this initial solution. We consider a "solution" to consist of the list of basis headings and the values of the corresponding basic variables. In the usual set-up of the simplex method, it is assumed that all elements of the right hand side are non-negative so as to insure that a starting solution will be feasible, i.e. non-negative. This restriction has been removed in the 70% program by incorporating a composite algorithm which will remove infeasibilities as well as optimize. (See section X below.) Thus it is possible to multiply through, by minus one, equations which have negative slacks in order to make the slack vectors positive, even though the starting solution is thereby rendered infeasible. However, it is recommended that the number of initial infeasibilities be kept small to avoid an excessive number of iterations. There is no hard and fast rule about this since different problems will react differently to the same conditions. If a given matrix does not contain all columns of the identity matrix legitimately, i.e. as positive slacks with zero coefficients in the optimizing form, then one can use Standard Form 2 and have the code perform a Phase I. In this case, it is necessary that all elements b are non-negative. Experience has led to the incorporation of still another device for obtaining initial solutions. Sometimes the formulator of the problem knows a feasible basis other than the identity. Provision is made for introducing, arbitrarily, any number of column vectors into the basis at the outset, with the machine making the decision as to which column of the basis each should occupy. If the formulator has misjudged and the specified columns produce a singular matrix, the machine prints outs (and saves) the perfinent information and stops. If the resulting matrix is non-singular but the solution is infeasible (partly negative), then the composite algorithm automatically cuts in and works toward feasibility in succeeding iterations. This device of arbitrary transformations must not be used in Phase I. One other provision of a less abrilute nature has been made. Occasionally, a model is a re-work of an older problem so that something is known about its behavior. At other times the formulator has certain insights which he would like to exploit without committing himself to absolute statements regarding feasibility or singularity. It may be possible to assemble the matrix columns in order of decreasing likelihood of use, that is, with the most likely candidates for entry into a feasible or optimal basis read in first. These can be separated from the others by a "curtain" which is equivalent to the following instruction: "If any candidate for entry into the basis is available ahead of the curtain, use it; otherwise proceed to the others." Several such curtain marks may be used. They are activated by a switch so that their use is under control of the operator. They have often reduced the number of iterations required but when used injudiciously, i.e. on a mere hunch, may have the opposite effect. There are, of course, other devices which require no special provisions in the code, except perhaps for loading. For example, certain activities (calumns) may be withheld from the machine until optimality is obtained with the others. This is enother advantage of the revised method and additional date may be added at any time simply by releading the data tope. # IV - NOW OF ARTEROGRES The product form of inverse is generated, recorded and applied in decision precision (NP), fleating point arithmetic. Cartain operations whose results are not retained are performed in DP fined-spoint for factor operation. Frinted action put is in fined-point form for easy reading, with 8 digits of whole makes and 8 digits of fraction. Although such precision exceeds the of the inpute (a fight to remaker when interpreting results), it has been found necessary to unfaithful. # Y- TE IMP Any non-singular square matrix formed from mil columns of a 1 is denoted (5.1) μ_h^1 (1 = 0, 1, ..., m) h = 0, 1, ..., m $\mu_0^1 = \frac{1}{2}$ where it is always assumed that $\mu_1'=a_1'=a_2'$. The matrix μ_2' is exlicated Lasis and the during from them to not on the companies. One do not be the companies $$(1.2)$$ $\frac{1}{2}(1)$ $\frac{1}{2}$. This implies have a feature a mention of the same in a minute form of non-rains $\frac{1}{12}$. This is obtained for a substitution of the same sa The columns h a been main from h . The polyment h a been main from h . the definition of the same of any series (m, 1). Hence it is necessary to be the definition of the series of any series (m). There is a necessary to be a least series and the series of the least series (m). # AT - CHO, THANGE OF LAND LYC . We will not be so much concerned with the basis $\mu_h^{1(T)}$ on iteration T as with its inverse which will be denoted by $\pi_h^{1(T)}$, that is (6.1) $$\pi_k^{1(T)} \mu_h^{k(T)} = \mu_k^{1(T)} \pi_h^{k(T)} = \delta_h^1$$. The matrix $\eta_h^{1(T)}$ never exists explicitly but is carried as a product of elementary matrices which are stored in a condensed form consisting of at most one column plus an index and identification. These columns are themselves condensed with only non-zero elements recorded. They are called <u>transformation vectors</u> (sometimes elimination "equations", see (6.5)) and denoted by $\eta_T^{1(t)}$. Since the index r is itself a function of t, it should be written r(t). However this will not usually be done since it sometimes appears as a superscript in an array already indexed (t-1) and confusion would result. As already indicated, Greek letters will be used for a basis and its inverse, and also for all (m+1)-erder vectors expressed in terms of the basis. Likewise certain ratios and functions involved in decisions concerning the basis will be denoted by Greek letters. An explanation of the generation and use of
the $\eta_r^{1(t)}$ vectors is in order. Since we started with $\mu_h^{1(0)} = \pi_h^{1(0)}$ for the first iteration, we will have $\pi_h^{1(T-1)}$ on hand to start iteration T. Suppose that column $a_{s(T)}^1$ has been chosen from $a_{s(T)}^1$ to replace column h = r(T) in $\mu_h^{1(T-1)}$, producing a new basis $\mu_h^{1(T)}$. Throughout the following discussion, the specific index r is to be understood as r(T). Superscripts in parentheses will always refer to the entire array to which the element belongs and are not to be understood as modifying the open superscript. Let $a_{\mathfrak{s}(T)}^{1}$ satisfy the equation (6.2) $$\mu_h^{i(T-1)} a_{s(T)}^h = a_{s(T)}^i$$. Clearly $a_{\phi(T)}^{1}$ can be obtained by (6.3) $$\pi_h^{i(T-1)} a_{s(T)}^h - \alpha_{s(T)}^i$$. Nov (6.4) $$\mu_k^{1(T)} \delta_h^k = \mu_h^{1(T-1)}$$ for $h \neq r(T)$ since only column h = r(T) changes. However, from (6.2) we can solve for the exceptional column. (6.5) $$\mu_{\mathbf{r}}^{\mathbf{1}(T-1)} = \frac{1}{\alpha_{\mathbf{s}(T)}^{\mathbf{r}}} a_{\mathbf{s}(T)}^{\mathbf{1}} + \mu_{\mathbf{h}}^{\mathbf{1}(T-1)} \eta^{\mathbf{h}} \qquad (\mathbf{h} \neq \mathbf{r})$$ where (6.6) $$\eta^h = \frac{-\alpha_{s(T)}^h}{\alpha_{s(T)}^r}$$ ($\alpha_{s(T)}^r \neq 0$ by choice). Now defining where $$\eta_{\mathbf{r}}^{\mathbf{r}(\mathbf{T})} = \frac{1}{\mathbf{r}_{\mathbf{s}(\mathbf{T})}}$$, $\eta_{\mathbf{r}}^{\mathbf{i}(\mathbf{T})} = \eta^{\mathbf{i}}$ (1 \neq \mathbf{r}) $\eta_{\mathbf{h}}^{\mathbf{i}(\mathbf{T})} = \delta_{\mathbf{h}}^{\mathbf{i}}$ (h \neq \mathbf{r}) we can replace (6.4) and (6.5) by (6.8) $$\mu_k^{i(T)} \eta_h^{k(T)} = \mu_h^{i(T-1)}$$ since $a_{s(T)}^{i}$ becomes column $\mu_{r}^{i(T)}$. Clearly only the column $\eta_{r}^{i(T)}$ and the index r = r(T) need be recorded. Now multiplying both members of (6.8) on the left by $\pi_1^{J(T)}$ and on the right by $\pi_k^{h(T-1)}$, we obtain (6.9) $$\eta_h^{j(T)} \pi_k^{h(T-1)} = \pi_k^{j(T)}$$. Equation (6.9) is the heart of the product form of inverse. Applying it for t = 1, 2, ..., T and using h_t to indicate dummy indices, we obtain (6.10) $$\pi_h^{i(T)} = \frac{i(T)}{\eta_{h_{T-1}}} \frac{h_{T-1}(T-1)}{\eta_{h_{T-2}}} \cdots \frac{h_t(t)}{\eta_{h_{t-1}}} \cdots \frac{h_1(1)}{\eta_h}$$ Hence an equation like (6.3) implies the recursive generation of its right member by using the form of $\pi_h^{1(T)}$ given by (6.10). This is easily done as follows, using (6.3) for an example. Let $$a_{s(T)}^{i} = \overline{\alpha}_{s(1)}^{i}$$ form $\eta_{h}^{i(1)} \overline{\alpha}_{s(1)}^{h} = \overline{\alpha}_{s(2)}^{i}$ $$\vdots$$ $$\eta_{h}^{i(t-1)} \overline{\alpha}_{s(t-1)}^{h} = \overline{\alpha}_{s(t)}^{i}$$ $$\vdots$$ $$\eta_{h}^{i(T-1)} \overline{\alpha}_{s(T-1)}^{h} = \overline{\alpha}_{s(T)}^{i} = \alpha_{s(T)}^{i}$$ It is easy to see that $$\frac{\overline{\alpha}_{s(t)}^{i} = \overline{\alpha}_{s(t-1)}^{i} + \overline{\alpha}_{s(t-1)}^{r} \eta_{r}^{i(t-1)} \qquad (i \neq r = r(t-1))}{\overline{\alpha}_{s(t)}^{r} = \overline{\alpha}_{s(t-1)}^{r} \eta_{r}^{r(t-1)} \qquad (r = r(t-1))}$$ An equally simple rule suffices for multiplying $\pi_h^{1(T)}$ by a row vector on the left. Suppose it is necessary to compute (6.13) $$\ell_1 \pi_h^{1(T-1)} = \pi_h^{(T)}$$. We use the transformation vectors in reverse order to that of (6.11) : (6.14) form $$f_i = \overline{\pi}_h^{(1)}$$ $$f_i = \overline{\pi}_h^{(1)}$$ $$f_i = \overline{\pi}_h^{(2)}$$ (6.14 cont.) $$\frac{\pi_{h}^{(t)} \eta_{i}^{h(T-t)} = \pi_{i}^{-(t+1)}}{\pi_{h}^{(T-1)} \eta_{i}^{h(1)} = \pi_{i}^{-(T)} = \pi_{i}^{(T)}}$$ Again it is easy to see that (6.15) $$\overline{x}_{i}^{(t+1)} = \overline{x}_{i}^{(t)} \qquad (i \neq r(T-t))$$ $$\overline{x}_{r}^{(t+1)} = \overline{x}_{i}^{(t)} \eta_{r}^{i(T-t)} \qquad (r = r(T-t))$$ # VII - THE PRICING OPERATION (Choosing index s) The rew vector $\mathbf{x}_{1}^{(T)}$ in (6.13) is called the <u>pricing vector</u>. In the simplest problem (Phase II, maximise \mathbf{x}^{0} , no infeasibilities), $\mathbf{f}_{1} = \delta_{1}^{0}$. However, in a typical Phase I, $\mathbf{f}_{1} = \delta_{1}^{1}$, and in general $\mathbf{f}_{1} = 1$ for several 1. The pricing vector is applied to \mathbf{a}_{1}^{1} , (7.1) $$\pi_{i}^{(T)} = a_{j}^{i} - d_{j}^{(T)}$$. (The d_j are what are called (\cdot) $(c_j - s_j)$ in the original simplex method.) To choose $a_{s(T)}^i$ to bring into the basis, take (7.2) $$d_{i}^{(T)} = \min d_{j}^{(T)} < 0$$. (If the minimum is not unique, the first such index s is retained.) If all $d_j^{(T)} \geq 0$, the phase is complete. In a Phase I, this is Terminal 1; in a Phase II it is called <u>Terminal 2</u> and is the point at which one usually expects to arrive and quit, i.e. the optimal solution is attained. # VIII - CHOOSING THE BASIS COLUMN TO BE REPLACED (Index r) Let the current basis be $\mu_h^{1(T-1)}$, the current optimizing form be row p and the current solution vector be $\beta^{1(T-1)}$, i.e. (8.1) $$\beta^{i(T-1)} - \pi_h^{i(T-1)} b^h$$. We will assume the solution is feasible, that is $$(8.2) \beta^{1(T-1)} \ge 0 \text{for } 1 \ge q$$ where row q is the first actual restraint equation. Normally q = p+1. The usual criterion for choosing r(T) is to choose $\theta_{r(T)}$ as follows. Let A be the set of indices $i \ge q$ for which $\alpha_{s(T)}^i > 0$. Then (8.3) $$\theta_{r(T)} = \min_{1 \in A} \left\{ \frac{\beta^{1(T-1)}}{\alpha_{s(T)}} \right\} \geq 0.$$ The problem of degeneracy, i.e. multiple values of if A for which $\beta^{1(T-1)} = 0$, is disregarded except for the following rule which has proved effective for reducing round-off error. (It incidentally breaks the tie in Hoffman's examples of "cycling.") If $\theta_{r(T)} = 0$ and r(T) is ambiguous, choose r(T) so that $\alpha_{s(T)}^{r(T)}$ is the largest possible (positive) value. In case of further ambiguity, take the smallest such index. We will modify (8.3) slightly. Let R be the set of indices $i \ge q$ for which $\beta^{i(T-1)}$ and $\alpha^{i}_{s(T)}$ have the same sign with $\alpha^{i}_{s(T)} \ne 0$. Then let (8.4) $$\theta_{r(T)} = \min_{i \in \mathbb{R}} \left\{ \frac{\beta^{i(T-1)}}{\alpha_{s(T)}^{i}} \right\} \geq 0$$. Note that (8.4) gives the same result as (8.3) as long as (8.2) holds. Degeneracy is resolved in the same way, that is, if $\theta_{r(T)} = 0$, take $\alpha_{s(T)}^{r(T)} > 0$ and max. If no $\theta_{r(T)}$ can be chosen, that is, all ratios are non-positive and zero ratios have negative denominators, then β^p has no finite maximum. A class of solutions exist as follows: (8.5) $$\mu_h^{i(T-1)} (\beta^{h(T-1)} - \theta \alpha_{s(T)}^h) + \theta a_{s(T)}^i - b^i$$ with the value $$(8.6) \beta^{p(T-1)} - \theta \alpha_{s(T)}^{p} \longrightarrow +\infty \text{ as } \theta \longrightarrow +\infty.$$ This is <u>Terminal 3</u>. It cannot happen in a Phase I since clearly zero is an upper bound for the variable x^{n+1} . # II - SURDIARY OF CYCLIC OPERATIONS (One Iteration) - (9.0) Test for end of a Phase I or for arbitrary halt (external switch.) - (9.1) Determine values of f, (discussed further below.) - (9.2) Form $\pi_i^{(T)} = f_h \pi_i^{h(T-1)}$ by (6.14). - (9.3) Compute $d_j^{(T)} = \pi_i^{(T)} a_j^i$ and choose $d_{\bullet(T)}^{(T)} = \min d_j^{(T)} < 0$ or terminate if all $d_j^{(T)} \ge 0$. - (9.4) Compute $a_{s(T)}^{i} = \pi_{h}^{i(T-1)} a_{s(T)}^{h}$ by (6.11). - (9.5) Choose $\theta_{r(T)}$ by (8.4) or terminate. - (9.6) Compute $\eta_r^{i(T)}$ by (6.6,7), transform $\beta^{i(T-1)}$ to $\beta^{i(T)}$ by one step as in (6.11) and record s(T) for $j_{r(T)}^{(T)}$. - (9.7) (Optional) Print results of iteration - (9.8) Condense and store $\eta_r^{1(T)}$ and r(T). - (9.9) (Optional) Check solution and print # I - THE COMPOSITE ALGORITHM (Forming f,) Suppose that a basic solution has been obtained which is infeasible, that row p is the current optimising form and that q is the smallest row index of the actual restraint equations. (10.1) $\mu_h^{i(T-1)} \beta^{h(T-1)} = b^i$, her if $h \ge q$ and $\beta^{h(T-1)} < 0$. Suppose a vector $a_{s(T)}^i$ has somehow been chosen to bring into the basis and that (8.4) is used to determine r(T). After the change of basis, the new values of β^i are (10.2) $$\beta^{r(T)} - \Theta_{r(T)} \ge 0$$ (the value of $x^{s(T)}$) (10.3) $$\beta^{i(T)} = \beta^{i(T-1)} - \Theta_{r(T)} \alpha^{i}_{s(T)}$$ (i $\neq r(T)$) Now for $i \ge q$ and $i \notin F$, (10.3) gives $\beta^{1(T)} \ge 0$. However, for $i \in F$, there are two cases. (10.4) If $$i \in F$$ and $\alpha_{\alpha(T)}^{i} < 0$, then $\beta^{i(T)} \ge \beta^{i(T-1)}$ (10.5) If $$i \in F$$ and $\alpha_{\alpha(T)}^{i} \geq 0$, then $\beta^{i(T)} \leq \beta^{i(T-1)}$ Hence by (10.2) and (10.3), no infeasibilities are created. By (10.2) and (10.4), some infeasibilities are improved or removed altogether. However, by (10.5) some may be made worse. To overcome this difficulty, consider the function $\lambda = \sum_{i \in P} \beta^i \leq 0$ which is a measure of the infeasibility of a solution. We wish to maximise it to zero and hence we may replace the maximisation of β^p by the maximisation of (10.6) $$\sigma = \beta^p + \lambda \leq \beta^p$$ provided σ is monotonically non-decreasing. When σ reaches its maximum, if $\lambda=0$ then β^p is maximum. If $\lambda<0$, then β^p is too great and λ must be increased without regard to decreases in β^p . Let $f_i = 1$ if if F or i = p, $f_i = 0$ otherwise. Then, as can be seen from (9.2,3,4) (10.7) $$d_s^{(T)} - f_1 \alpha_{s(T)}^1 < 0$$. Consequently, after change of basis, the new value of σ is * (10.8) $$\sigma^{(T)} = \sigma^{(T-1)} - \Theta_{r(T)} d_{\bullet}^{(T)} \ge \sigma^{(T-1)}$$. If the set F is void, then (10.8) is the same as (10.9) $$\beta^{p(T)} - \beta^{p(T-1)} - \Theta_{r(T)} d_{s}^{(T)} \ge \beta^{p(T-1)}$$ which is the usual formula for the change in the maximand. Now, however, if all $d_j^{(T)} \geq 0$, we cannot
claim Terminal 2 without checking to see whether F is void. If F is not void and all $d_j^{(T)} \geq 0$, it may be because (10.9) dominates (10.8). In this case, we may scale down f_p , perhaps Note that if $\beta^{i(T-1)} < 0$, then $\beta^{i(T)} \le 0$ for if F and i $\ne r(T)$. That is, $\pi_i^{p(T-1)} a_j^i \ge \left| f_h \pi_i^{h(T-1)} a_j^i \right|$ for hip. to zero, until such time as $\lambda = 0$. If all $d_j^{(T)} \ge 0$ with $f_p = 0$, then no feasible solution exists since $\lambda < 0$ is at a maximum. Even though λ = 0, it is sometimes desirable to set $f_p < 1$. Of course, tolerances must be built into the code in testing $d_j \ge 0$ since, if it is sufficiently small in magnitude, it ought to be considered zero. Varying f_p has the effect of varying this built-in tolerance. Provision has also been made for setting $f_p < 0$ which causes β^p to be minimised instead of maximized. This is often convenient when experimenting with a model. The value of f_p is entered on a binary card subject to a switch. If $\sigma < \beta^p$ is at a maximum and $f_p \neq 0$, the machine will set $f_p = 0$ and stop so that other values may be loaded if desired. If $\lambda = 0$ and $f_p = 0$, the machine will set $f_p = 1$ and stop. The variable β^p is checked for monotonic behavior each iteration, according as $f_p > 0$ or $f_p < 0$. This test is suspended if $\lambda < 0$ or when making arbitrary transformations when the behavior of β^p is unpredictable. # II - PARAMETRIC PROGRAMMING (PLP) Provision can be made for parametrizing the right hand side as a linear function of $\theta \geq 0$, i.e. (11.1) $$a_j^i x^j = b^i + \theta c^i$$ where, if a Phase I was used, c^1 must be formed in the same manner a^2 in (5.26). To do this, first find an optimal solution for $\theta = 0$, say (11.2) $$\mu_h^{i(T-1)} \beta^{h(T-1)} - b^i - b^{i(T-1)}$$. Let $$-\pi_h^{i(T-1)} c^h = \gamma^i$$. Now using γ^{i} in place of $\alpha_{s(T)}^{i}$ in (8.4), a value $\theta_{r(T)} = \Delta \theta$ can be found such that (11.4) $$\mu_h^{i(T-1)} (\beta^{h(T-1)} - \Theta_{r(T)} \gamma^h) = b^i + \Theta_{r(T)} c^i$$ with (11.5) $$\beta^{i(T-1)} - \theta_{r(T)} \gamma^{i} \ge 0 \text{ for } i \ge q$$ and $$\beta^{\mathbf{r}(T-1)} - \Theta_{\mathbf{r}(T)} \gamma^{\mathbf{r}} = 0 \quad (\mathbf{r} - \mathbf{r}(T)).$$ The parameter Θ cannot be increased by more than $\Theta_{\mathbf{r}(T)}$ with the basis $\mu_h^{\mathbf{1}(T-1)}$ without violating (11.5) but (11.4) is an optimal feasible solution to (11.1) for this value of Θ . Let $$\beta^{i(T)} = \beta^{i(T-1)} + \Theta_{r(T)} c^{i}$$ $$\beta^{i(T)} = \beta^{i(T-1)} - \Theta_{r(T)} \gamma^{i}.$$ To increase 0 further, $\mu_{r(T)}^{i(T-1)}$ must be removed from the basis and replaced with some $a_{s(T)}^i$ to form a new basis $\mu_h^{i(T)}$ so that (11.7) $$\mu_h^{i(T)} \beta^{h(T)} = b^{i(T)}$$ is also an optimal feasible solution to (11.1) for the same 9. The whole process can then be repeated. The index s(T) is determined by the rule used in the dual simplex algorithm. Let D be the set of indices j for which $\pi_h^{r(T-1)}$ ah < 0 (r = r(T)). Then choose $\Phi_{n(T)}$ by (11.8) $$\Phi_{s(T)} = \min_{j \in D} \left\{ \frac{\pi_h^{p(T-1)} \cdot h}{-\pi_h^{r(T-1)} \cdot h} \right\} \ge 0 \quad (r = r(T)).$$ Note that $$\Phi_{s(T)} = \frac{d_s^{(T)}}{-a_{s(T)}^r}$$ and (11.8) is the analogue in the dual problem of (8.3). If the set D is void, then Θ is at a maximum. If all $\gamma^1<0$ in (ll.3), then Θ can be increased without bound. These are the only two automatic terminations in PLP. The following theorem is of interest. Theorem: If the choice of r(T) for (11.4) is unique and if D is not void, then there exists a finite range of θ , $\theta_{r(T)} \leq \theta \leq \theta_{r(T)} + \xi$, for which the solution obtained by replacing $\mu_{r(T)}^{i(T-1)}$ by $a_{s(T)}^{i}$, where s(T) is determined by (11.8), is both feasible and optimal. A proof can be found in Reference :.. A separate control code for the computer is used in doing PLP. It always starts from a prior optimal, feasible solution. Due to (11.8), the iterations are longer than the regular code. ### XII - MULTIPLE PHASES It is somewhat difficult to parametrize the optimizing form since the analogue of γ^1 would be a row vector of n+1 elements. As an alternative, provision is made for multiple optimizing forms which can be made to differ by finite amounts in any desired way. Of course, it is not contemplated that two such forms will be drastically different since that is equivalent to two different problems. In such a case, it would be better to start the second one from the beginning or from the end of Phase I. It is also possible to split Phase I into multiple phases. This will not be discussed further since its application is limited and it generalizes easily from the discussions given. It will be easier to describe the use of multiple phases if a specific example is used. Let it be required to optimize three forms and to start the problem with a Phase I. Then the auxiliary form must be (12.1) $$a_j^3 x^j + x^{n+1} = 0$$ (j = 3, 4, ..., n). The form to be optimized first (after Phase I) must be (12.2) $$x^2 + a_j^2 x^j = 0$$ (maximize x^2). Similarly, the other two forms to be optimised in turn must be (12.3) $$x^{1} + a_{j}^{1} x^{j} = 0$$ (maximize x^{1}) (12.4) $$x^0 + a_j^0 x^j = 0$$ (maximize x^0). The initial restraint equations will be (12.5) $$a_j^i x^j + x^{n+1} = b^1$$ (i = 4, 5, ..., m; j = 3, 4, ..., n). Thus the initial value of q is specified as q = 4 (total number of phases) giving p = q-1 = 3 (number of "Phase II's"). The other two parameters required are z = 1 (number of "Phase I's") and $\leq = 3$ (index of sum row.) At the end of Phase I, p, q and z will all be reduced by 1 giving p = 2, q = 3, z = 0 so that x^2 will now be maximized disregarding x^1 and x^0 , (12.1) will now be considered a restraint equation the same as (12.5), and the phase will be recognized as a Phase II. When x^2 reaches a maximum, p will be reduced by 1 to p = 1 but q will remain at 3 so that x^1 will be maximized disregarding x^2 and x^0 . Similarly, when x^1 reaches a maximum, p will be reduced to p = 0 with q still remaining at 3 so that x^0 will be maximized disregarding x^2 and x^1 . In other words, p is reduced each phase but q is reduced each phase only as long as z can also be reduced. All three must remain non-negative, obviously. A Phase I is terminated when the variable being maximized reaches zero. A Phase II terminates when all $d_j \geq 0$. These criteria are not always equivalent even in Phase I. If b^1 is representable with fewer than m of the columns a_j^1 (i, j > 0), then several artificial columns may remain in the basis at zero level at the end of Phase I. In this case, the d_j corresponding to the Phase I pricing vector will not all be non-negative. If Phase II starts with artificial columns in the basis (other than a_0^1 and a_{n+1}^1), then a_{n+1}^1 may be eliminated in Phase II but one a_{n+1}^1 will always remain. # References. The following provide hashground material on the revised simplex method. - 1. Dantzir, G. B., Alex Orden and Philip Molfe, Notes on Linear Programming, Part I The GENERALIVED SIMPLEY METHOD for MUNICIPIES A LINEAR FORM UNDER LINEAR LIE-WALTY CENTERING, PV-10-4, The RAID Corp., Canta Monica, Calif. - C. , Port II, DUNIJTY THEOREMS, RM-1265, The PANT Corp. - Jackster, G. B., Mm. Orchard-Haus, Notes on Linear Programming, Part V. ALTERIATE AIGCRITHE FOR THE REVISED SHIPLEY MYTHOD Using a Product Form for the Inverse, RM-1208, The TAIR Corp. - 4. Orchard-Hoys, Wh., BACKGROUID, DEVELOPMENT and EXTENSIONS OF THE REVISED SIMPLEY 12THOD, RM-1177, The 1912 Comp. The following discuss the original simplex method. - 5. Cowles Commission Monograph No. 13, ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCA-TION, T. J. Moopmans, editor. New York, John Wiley and Sons, inc., 1991. (See especially Chapters XXI, XXII, XXIII) - GRAMMING, New York, John Wiley and Sons, Inc., 1953. - 7. Eisemann, K., IJNEAN PROGRAMMING, Quarterly of Applied Mathematics, Vol. XIII, No. 7, October 1995. #### CEGANISMINION OF THE CODES The date assembly code, or the name implies, is an assembly program and contains the usual conversion routines, etc. as well as several special submutations designed for the particular conventions used in this system. A detailed description of its organization would serve no useful purpose here. Complete listings of the program are available for those who have a technical interest in the coding. The preparation of the inputs are described under INPUT and the output is discussed under CPETATION OF THE CODES. We will merely note here that data is processed either from ranks or from tape of and that output is to tape 5 and punched cards (binary.) Since the entire program is too long for the available part of core storage, a part of the data assembly program is stored on drum 1 (automatically, during loading) and recalled to core storage when needed. The contern here is with the delegation of the main routines, as teserine of a. Conceptually, the high-speed store (MSS) is divided into two main sections: (1) the programs, constants, parameters and temporary storage, (11) the data, both original and transformed. Similarly, auxiliary storage is divided into two parts, one part as permanent storage for (i), the other as permanent storage for (ii). Thus the entire HSS is in a sense "temporary storage". In practice, a considerable part of section (i) of HSS remains intact throughout a run but can be restored from auxiliary storage (drums) if necessary. The advent of the extremely reliable core-storage, however, makes the med of restoring unlikely. When HSS reaches the sises now contemplated (that is, 32,768 words of core storage), auxiliary storage for the code and for
certain data will be unnecessary. The main use for auxiliary storage is for the a_1^1 matrix and the $\eta_T^{1(t)}$ vectors. Magnetic tapes are used for both. On the IBM 704, three tapes are actually used for the $\eta_r^{i(t)}$ vectors as explained below. The data section of HSS is divided into four regions; the H-region for the basis headings; m+l words the V-region for the values β¹ of the current solution, maintained in double-precision, floating point; 2(m+l) words the W-region for work space in generating a¹_{S(T)} and a^(T)_l and other purposes; 2(m+l) words. the T-region for temporarily holding the a_j^i matrix or $\eta_r^{i(t)}$ vectors or as much as possible of either: the remainder of section (ii) which should be at least 4(n+1) words. The size of these regions is a function of the number of restraints. Their origins are computed by the data assembly program. In PLP, V-region is used as a second W-region in pricing. A duplicate of H- and V-regions, as well as the original b¹, is kept in auxiliary storage. This allows re-starting after an error and checking a solution by computing and printing $$e^{1} - \mu_{h}^{1(T)} \beta^{h(T)} - b^{1}$$. For PLP, it is also necessary to keep c^{1} and γ^{1} in auxiliary storage. The program section of HSS is divided into seven regions: - (a) Temporary storage called COMMON. - (b) The main control region, called the MCR. - (c) A sub-routine for doing double precision, floating point addition, called DPFADD. - (d) A similar sub-routine for multiplication, called DPFMUL. - (e) A routine called the distributor (DISTRB), explained below. - (f) Space for the largest sub-routine. The first location is called SRORIG. The origin of T-region has been arbitrarily set at 2048 for all problems. (g) Universal constants, parameters, origins etc., called K-region. The need for COMMON, DPFADD, DPFMUL and K-region is obvious. Their locations are permanently fixed and may be referred to from any program in the system. All sub-routines are closed. The K-region contains certain calls whose contents are fixed only for part of an iteration or other sub-sequences of the problem. There are conventions on when and by what routine these are to be changed. COMMON is always available to any routine. The function of the MCR is to make the major decisions and call for the proper sequence of operations. Most of the actual work is delegated to sub-routines. Besides the MCR for the main algorithm, there is one for PLP and one for re-inverting a basis. Other sumiliary programs are easily created by coding a new MCR. operation. DISTRB calls in the proper sub-routine from auxiliary storage and loads it into MSS starting at SRORIG. Control is then transferred to the sub-routine which returns control to the MCR after completing its function. If some other arrangement for linking to sub-routines is desired (as for example, when MSS is very large) it is only necessary to change DISTRB to arrange for the proper routine to take over in the proper way. There are fourteen standard sub-routines. Others may be added for special purposes if desired, up to the limit of auxiliary storage to hold them. More importantly, if an improved or a special version of one is developed, it can replace the old one merely by exchanging the proper binary cards. These sub-routines, together with DPFADD, DPFMUL, K-region and a special loading routine, exist in binary cards which constitute a basic deck. The origins card produced by the data assembly is put ahead of, and the MCR behind this basic deck. As soon as the special loading routine is in HSS, it takes control and loads the remainder of the basic deck and the MCR, storing them in auxiliary storage (drums). Since many of the sub-routines require addresses to be set which depend upon m, a loading interlude is performed to do this initialisation. This is accomplished by an initialising routine which goes with a sub-routine, the two being loaded simultaneously into HSS. Control is then sent to the initialising routine which does its job once and for all and returns control to the loader. The loader stores the initialised sub-routine in auxiliary storage and builds a catalogue of locations into DISTRB. The MCR takes over control when loading is complete. The fourteen sub-routines (called "codes") are as follows. Some are used for multiple purposes which are controlled by internal switches. - Code 1. Load the binary cards produced by the data assembly and store in appropriate places. If the ai cards are included, they are transferred to tape. Subject to a switch, a value may be loaded from a special card for fp. By means of an internal switch and the use of control cards which it loads, this load routine is able to distinguish various cases, initial start, re-start, start of PLP, re-start of PLP, so that the proper information can be stored in auxiliary - Code 2. Store the current solution in auxiliary (drums). The "current solution" is defined as K-, H-, and V-regions. - Code 3. (Normal) Form the row f in W-region, and record whether any variables are infeasible. (During PLP) Form sp in V-region and sr in W-region. - Code 4. (Normal) Compute $\pi_h^{(T)} = f_i \pi_h^{i(T-1)}$ in W-region. (During PLP) Compute $\pi_i^{p(T-1)}$ in V-region and $\pi_i^{r(T-1)}$ in W-region. - Code 5. (Normal) Price the matrix a_j^i and choose $d_k^{(T)}$. (During PLP) Choose $\phi_{s(T)}$ as described in Part A, Sect. XI. Subject to an external switch, recognize "Curtain" marks in a_j^i . Subject to instructions from the MCR, make the following check: (Normal) If $d_j^{(T)} \neq 0$, (during PLP) if $\pi_i^{r(T-1)}$, $a_j^i \neq 0$ for $j \neq j_{r(T)}^{(T-1)}$, then test for j occurring in $j_h^{(T-1)}$. If it does, an error has occurred. This check is very valuable for detecting errors before much more computing is done. It does consume some smount of time, however, which increases with n. - Code 6. Load $a_{s(T)}^1$ from a_j^1 matrix into specified region as double-precision, floating point vector. - Code 7. Multiply $\pi_h^{i(T-1)} = a_{s(T)}^h$ (or any vector in specified region). - Code 8. (Normal) Choose the index r(T) as discussed in Part A, Sect. VIII. For arbitrary transformations or inversion, choose r(T) by: $$\begin{vmatrix} \alpha_{s(T)}^{r} & - & \max_{i \in A} & \alpha_{s(T)}^{i} \end{vmatrix}$$ where A is the set of indices i for which $j_i^{(T-1)}$ (artificial). Code 9. (Normal) Compute $\eta_{\mathbf{r}}^{\mathbf{i}(T)}$ from $\alpha_{\mathbf{s}(T)}^{\mathbf{i}}$ and transform $\beta^{\mathbf{i}(T-1)}$ to $\beta^{\mathbf{i}(T)}$. (PLP, first entry) Compute $\beta^{i(T)}$ and $\theta_{r(T)}$ from $\beta^{i(T-1)}$, r(T) and $\gamma^{i(T-1)}$. (Part A, Sect. II). Then compute $b^{i(T)} = b^{i(T-1)} + \theta_{r(T)}c^{i}$. [&]quot; Part A" is used here to refer to DETAILED WRITE-UP. - (PLP, second entry) Compute $\eta_{r}^{1(T)}$ from $\alpha_{s(T)}^{1}$ and transform $\gamma^{1(T-1)}$ to $\gamma^{1(T)}$. (All these operations are very similar, even more than appears at first glance. The variations are merely switches.) - Code 10. Delete seroe from $\eta_T^{1(T)}$ and index non-sero elements. Store condensed vector in auxiliary storage (drums; cf. Code 13). - Code 11. Multiply out $\mu_h^{1(T)} \beta^{h(T)} b^1 = \epsilon^1$ taking $\mu_h^{1(T)}$ from original a_j^i matrix by referring to $j_h^{(T)}$. ϵ^1 is left in T-region and b^1 in W-region for printing. - Code 12. Print program. This program is raite elaborate and longer than the other codes. Special provisions for it need not be discussed here except to say that appropriate captions and identification of columns are printed for each type of print-out, of which there are 14. The print output can also be put on the fifth tape, if desired, for later printing. In all print-outs, there are 5 columns of which the first three are: $j_1^{(T)}$, $β_1^{1(T)}$ and i = 0, ..., m. The last two are the contents of W- and T-regions. - Code 13. This performs an "end-of-stage" is which some of the $\eta_{\bf r}^{i(t)}$ are transferred from drum to tape. See below. - Code 14.-18. (Undefined, except for code 14 used with a special MTR.) - Code 19. Automatic restart program for recovering after an error by returning to the beginning of the iteration. Clearly, this is highly dependent on the particular machine. The important points to note are that all programs, the original data, the current colution at beginning of the iteration, and the $\eta_r^{i(T)}$ vectors must be intact somewhere in the machine. Also this code must have been previously instructed where to return control to and be able to restore all equipment (e.g. tapes) to the proper positions. Besides the physical organization above, there are also dynamic groupings, several of which have already been discussed: the iteration, the phase, maximisation of $\lambda<0$, arbitrary transformations, etc. Another grouping is called a stage and always consists of an integral number of iterations. It has nothing to do with phases or other mathematical aspects but is simply an operational device. It was devised for the IEM 701 and has been carried over to the 704, for slightly different reasons. Some analogous arrangement is probably necessary on any machine. It must, of course, be activated by some external means. Nost of the advantage of condensing the $\eta_{\mathbf{r}}^{\mathbf{i}(t)}$ vectors would be lost if a separate access to auxiliary storage had to be made for each one. It is desirable that as big a chunk of there transformation vectors as possible be recalled at one time. The limiting factor is the size of T-region. Hence as the $\eta_{\mathbf{r}}^{\mathbf{i}(t)}$ are generated, they are stored on a drum until one more would exceed the capacity of T-region. At this point an end-of-stage procedure is performed. Before describing this, it is necessary to explain the use of three tapes for the $\eta_{\mathbf{r}}^{\mathbf{i}(t)}$ vectors. The
tapes on the 704 can be back-spaced and additional records can be added to an existing file. However, they cannot be read in a backward direction and the back-space is somewhat slow. Hence the records are stored in reverse order on a second tape for use in computing $\pi_1^{(T)}$. The third tape is used alternately with the second from stage to stage. Though this costs some copying time, it does provide a spare (and checked) copy of the tape at The end-of-stage procedure is as foliows: - (1) Compute ξ^1 . - (2) Print $j_1^{(T)}$, $\beta^{1(T)}$, i, b^1 , ϵ^1 . - (3) Transfer the $\eta_r^{1(t)}$ on drum to an additional record on the forward tape. - (4) Transfer the $\eta_r^{1(t)}$ on drum to the first record on the free backward tape. - (5) Copy old backward tape to remainder of new backward tape. - (6) Punch out binary cards containing h-region, $j_1^{(T)}$ and $\beta^{1(T)}$. During PLP, also punch $b^{1(T)}$ and $\gamma^{1(T)}$. - (7) Adjust the necessary bookkeeping parameters. An end-of-stage may be forced by an external switch. It also occurs at the end of Phase I and terminations. These (1) and (2) above may be forced without the others at the end of a cycle by an external switch. This would be desirable To restart from the end of a stage, it is only necessary to use the punch-outs to replace the corresponding original data cards and put the tapes back on the same units. Similar simple hand collating of blocks of punch-outs with the original data cards (binary) and changing of the MCR are all that are necessary to set up the deck for PLP or re-inverting the basis. Special short MCR's are usually accumulated for such things as: transforming a new right hand side, computing and printing the d_j , altering a vector in the basis, etc. A special routine is provided for copying a $\eta_r^{i(t)}$ tape in reverse order so that a problem can be picked up after bad luck with tapes. ## OPERATION OF THE CODIE ## DATA ASSESSIT CODE The data assembly program (which will be discussed only briefly) reads an identification card followed by a card with the 5 parameters. After this cames the basis headings, if any, FIRST B, the b¹, etc. as described under DIFUT. Only non-sere elements are entered, with their proper indices.(Europeanth will cause no difficulty, only a waste of time and space.) The program punches in bimary cards: The identification cord (binary coded) which must be placed after the matrix transition cord before leading by main code. A self lending erigins card meeded by the lender for the main feattimes which must be placed on the front of the main cede deck. Two blank separators. (discard) Initial K-, K-, and V-regions fellowed by a blank (retain.) Right hand side for leading in V-region. (Optional) Blank, auxiliary right hand side for loading in W-region. (Optional) Blank, matrix for loading in T-region. Multiple records are separated by blacks (retain but not after last record.) Matrix transition card (9 punch in col.57 only.) For error detection, see list of stops. #### CEDERATE OF MAIN CODE DECK oards are used, they must not be placed after the last card of a restine unless they lead into the highest numbered cell used by the restine. The leader keeps track of first and last location of each restine except for ME's, and uses this information for loading the restines on the drums and building the table for use by BIFES. Following each restine, a title eard identifies the code just loaded. The 9 res left is blank. The 9 res right contains the code master in the decide. ment. Sub-MCR's are identified by zero and MCR's by minus zero in 9 row right. The print program is loaded on drum 2 first as though it were a sub-MCR. However, this causes no difficulty since DISTER does not recall the print program to MSS directly. A pseudo-code 12 (loaded in the normal way) recalls the real print program from the known location at the beginning of drum 2. The print program occupies the high part of T-region when in use. If another sub-MCR is loaded later in the loading sequence, DISTER recalls this when Code 0 is called for by the MCR. DISTER does not recognize Code -0°. The binary cards are identified by Hollerith characters in cols. 73-80. The basic deck is as follows. CIR REDS 1 card self-loading program to clear index registers and load next card. (Preceded by erigins card punched by data assembly which leaves index regs. is roperly for HIABSLUR.) MIABSIDE 1 card self-loading load progress for loading LPBASE. LPRANDO1 Several service routines: DEBOOT, a drum "bootstrap" for activating Code 19; DFFADD; DFFADL; DISTRB with blank table; LPBASE13 and EXECID, the actual lead program discussed above. LIPARETE Transition card to give control to MICLD. LIBINIO1 -- LIBINIO The actual print program. LERIETL Title card for print program. IPCD0101--IPCD0105 Code 01 IECD01TL Title card IFCD0201--LFCD0202, LFCD02TL Code 02, etc. 1FCD0501--LFCD0505, LFCD057L LPCDO401--LPCDO410, LPCDO471 LPCD0501--LPCD0511, LPCD05TL LFCD0601--LFCD0603, LFCD06FL LECDO701--LECDO706, LECDOTTL LPCDO801--LPCDO806, LPCDO8TL LPCD0901--LPCD0909, LPCD09TL LPCD1001--LFCD1004, LFCD10TL LFCD1101--LFCD1109, LFCD11TL LPCD1200 Pseudo-code 12 fer calling print program into ESS. LFCD12TL Title card. LPCD1501--LPCD1509, LPCD15TL LPCD1901--LPCD1904, LPCD19TL LPSINVOL Sub-MCR for inversion code. May be left in basic deck if desired, as long as no other sub-MCR is used in which case LPSINVIO the carecity of the draws wight he exceeded. LPSINVYL the capacity of the drums might be exceeded. # THE THREE MAIN MCR'S The basic NCR is for the composite simplex algorithm including Phase I, multiple phases and arbitrary transformations. The cards are identified by IFCOMMI--IFCOMMIS, IFCOMMIL. These follow the basic deck described above. A special NCR is used for PIP. The cards are identified by IPPLFMO1--LPPLFMOLO, LPPLFMTL. When starting a run to do FLP, these cards are used instead of LPCOMO1, etc. Another MCR is used to re-invert a given basis. Put LPSINVOL, etc. at the end of the basic deck (see above) and use the fellowing MCR cards. LPTHVM1--LPTHVM15, LPTHVMTL. The sub-MCR operates first to organize the work. However, the operation of this is automatic. LPSINVOL--LPSINVIO, LPSINVIL, LPINVIOL--LPINVIOL5, LPINVIOL can all be left together and considered as one MCR, if desired. #### SWITCHING MCR'S DURING A RUN It is sometimes desirable to start with one MCR and then switch over to another one without getting off the machine. It is not necessary to use the punch-outs and reload the basic deck to do this. However, if a switch-over is to be made to the inversion MCR, the sub-MCR must have been leaded with the basic deck initially. The special switch-over procedure uses Code 19, sense switch 6 and a special transition card. There are two of these, one for use with LPCOMM or LPINVM marked PIKUP TN. The other is for use with LPPLPM explained below. To switch over to either LPCOMM or LPINVM, proceed as follows: 1. Put the following sequence of cards in the render: MCR without title card PIKUP TH Blank card Matrix transition card (9 in col. 37) Identification card punched by data assembly Three blank cards - 2. Put Switch 6 down. - 3. Push CLEAR button. - 4. Push LOAD DRUM button. - 5. Mcr is read in and machine halts. Put Switch 6 up. - 6. Push START button to proceed. If it desired to read a scale factor card (f_p) , then Switch 6 is left down in 5 and the f_p card is put after one of the blanks following the identification card. To switch over to LPPLPM, the procedure is the same except for the cards used which are: LPPLPMO1--LPPLP10 The c¹ cards punched by the data assembly (which load to W-region) FIRST PROPERTY (card is punched this way) and two blank cards. An f card cannot be leaded for PLP in this manner. #### LEMOTE OF RUN The codes have been designed to operate continuously until either - (a) a phase is complete, - (b) switch 1 is put down (arbitrary end-of-stage and halt), (also sw.6, see - (c) the value of f must be changed, or - (d) an error is detected. Whenever a stop occurs, hitting the START button will cause the program to do the "right thing", insofar as possible. This may be either - (a) to continue the calculations, - (b) to try again the sequence of operations in which an error was detected, or - (c) to lock-up and do nothing. If the machine has performed everything required, it will lock-up with all four sense lights on. If the error is such that it cannot be corrected, the automatic drum restart (Code 19) may be used to repeat the iteration. This is activated by clearing MSS (CLMAR button) and pushing the LOAD DROM button. Be sure switch 6 is up when doing this. All stops are described in the list given later below. The once normally to be expected are 0, 1, 6, 7, and 27. After certain stops (e.g. 5, 122) Switch 1 must be put down before hitting START (to get an emi-of-stage) in order to stop the machine at the proper point. The job may be taken off the machine after any end-of-stage and restarted from this point. The punch-outs replace the corresponding original binary data cards, i.e. K-, H-, V-regions and, for PLP, W-region $(b^{1(T)})$. The binary data cards for COSMER and PLPMER are compared below. ## ORDERING OF THE BIHARY DATA CARDS These cards follow immediately after the MCR title card. | LPCOM | | IPPLEM | |---|---|--| | K-region H-region V-region | (Replace with punch- outs for restarting) | K-region W-region Blank card V-region (b ^{1(T)}) T-region (γ ^{1(T)}) insert | | Blank card W-region (b ¹) Blank card a ¹ matrix (T-region | (Optional) | Blank card start W-region (c ¹) Blank card a matrix (T-region) | | Matrix transition Identification oas Blank card | | Matrix transition card Identification
card Blank card | | f _p card
2 blank cards | (Optional)** | f _p card
2 blank cards | (Keyed from last page) Current 7^{1(T)} vector does not exist initially. For starting PLP it is substituted for by a card which is blank except for 9-punch in some (any) column 58-72. This does not replace the blank following. To start an inversion run, use same data set-up as for LPCOM with the punch-outs whose H-region specify the basis to be inverted. Everything is automatic provided the designations UPOO1, UPOO2, etc. have been used for legitimate unit vectors δ_1^1 , δ_2^1 , etc. If any $j_h < 0$ are left over from original set-up, they will be treated as zero and discarded. ## PLEASE COLLAR The captions on the print-outs describe the reason for printing. The identification card is always printed first, followed by a line with iteration number (T), stage number less one (i.e. number stages completed), form number of maximand (i.e. current value of p), caption and, for some prints, "S IS _____" with appropriate vector name filled in. This means a_S^1 just came into the basis or is to be multiplied by θ for unbounded solutions. The third line is a set of headings for the five columns of printing of which the first three are always: J for $j_{+}^{(T)}$; BETA for $\beta^{1}(T)$; I for running index i. The fourth column may be headed by any of the following: I for $$\eta_r^{i(T)}$$ A for $$a_{e(T)}^{i}$$ Read only if Switch 6 down. The two words in 9-row are the value, the binary point being between columns 26 and 27. If f is to be negative, put a 9-punch in both columns 1 and 37. The fifth column may be either IR for $$e^{1}$$ (error) or PI for $x_{1}^{(T)}$ or, in one instance, blank. The fourteen captions with the corresponding headings for the fourth and fifth columns are as follows: | 1. | CYCLE PRINT | SI | 8 | 3 | PI | (forced by Switch 4) | |-----|-----------------------|------|----------|---|-------------|---| | 2, | NEW SOLUTION | 8 1 | 8 | В | PI | (occurs every iteration in PIP unless $\theta_r = 0$.) | | 3. | CHECK SOLUTION | | | B | ER | (forced by Switch 6) | | 4. | END OF PEASE ONE | | | B | | | | 5. | END OF STACE | | | B | ER | (drum 3 full or Switch 1 down) | | 6. | NO FEASIBLE SOLUTION | | | B | | (see stope 2 and 4 below) | | 7. | Peasible Solution | | | B | | (see stop 3 below) | | 8. | OPTIMAL SOLUTION | | | B | | (no stop until after 9) | | 9. | PRIMAL-DUAL SOLUTIONS | | | B | PI | (final print after 8, 13 or 14) | | 10. | UNBOUNDED SOLUTION | 8 I | 8 | A | PI | (Terminal 3) | | u. | RIGHT HAND SIDE OPEN | 8 18 | 3 | G | PI | (one of 2 pessible PLP terminations, similar to 10) | | 12. | MATRIX SINGULAR | 7 11 | 8 | A | (blaz | k) (Inversion or arbitrary trans.) | | 15. | BASIT INVERTED | | | B | TE R | (proper termination for inversion, no stop until after 9) | | R4. | THETA AT MAXIMUM | | | В | | (the other possible PLP termina-
tion, similar to 8; no stop
until after 9) | #### BENER SWITCHES (if on) - 1. Force end-of-stage and halt. - 2. Omit the d_j check in Code 5. - 3. Put all print output on tape 6, including any printed on-line, and do a cycle print (to tape) every iteration. - 4. On-line cycle print. - 5. Recognize "curtain" marks in a . - 6. a. While loading or after stops 2 or 3: load value of f from card. - b. While running: perform a check print at end of iteration and halt. (This is independent of cycle print and fellows it.) - c. When using Code 19 (automatic pick-up), load new MCR and halt. # HENCE STOPS AND OTHER BALLES There are many error stops built into the codes. In order to facilitate de-bugging of problems, they have been left separate and distinct and identification with a masher. Due to the way the codes are organized, it is not feasible to identify these stops by the BSS location. In any event, this would not permit easy reference. Instead, the stops are all "Balt and Proceed" erders with the stop number in the address. Hence when the machine steps, the identifying number appears in the address part of the Storage Register. All references to these stops are in octal. # Error Stops in Data Assembly Program that Tape 6 (input) will not read properly after 5 tries. 5252 Zero everpunch on non-zero digit in a.j. 6666 $|a_j^1| \ge 8192$. 7700 i>m for aj,. 7770 i>m for b^i or c^i . 7777 i>m for basis heading. 10421 Tape 5 (just written) will not read properly after 5 tries. This is only checked when the matrix is punched in cards. # Error Stope in Main Routines and Other Halts The se are systemized as follows. Less than 100 - Legitimate stops in the MCR 100 series - Error stops in the MCR 200 series - '' during pricing operations (Codes 4, 5) 300 series - '' in Code 7 (transformation of column) 400 series - " in Code 9 (making change of basis, etc.) 500 series - '' in Code 11 (recomputing right hand side) 600 series - " during loading. 700 series - '' from tape check failures. The complete list is in the following table. The abbreviation e-o-s is used for end-of-stage and "5-x/START" for "Put Switch x down before hitting START button." | Octal
Number | Reason for Stopping. | Result of
START | Region
of Stop | |-----------------|---|--------------------|---------------------| | 0 | Bwitch 1 down, e-o-s finished. | Contime | MCR (exty) | | н | End of a Phase I, e-o-s finished. | Court Invo | COMM NCR | | 8 | No feasible solution with present fr; no e-e-s but fr set to zero. 8-6/SIART | Continue with | COM NCR | | | if a different value of f, is to be loaded from card. | Bov f | | | M | Peasible solution but f = 0; no e-o-s but f set to 1. S-6/START is a dif- | Continue with | COPE NCB | | | ferent value of f is to be loaded from card. | new f | | | न | Absolutely no feasible solution (Terminal 1 or $f_0 = 0$ with $\lambda \neq 0$); e-o-s done. | Nothing | COMM NCR | | 5 | Solutions unbounded (Terratine 3), printing done. S-1/9TMRT. | Do an e-o-s | COM NER | | 9 | Optimal solution for this phase, both printings and e-e-s done but more phases. | Court Inne | CODE NCB | | 7 | Some as 6 but no more phases. (All 4 lights also on) | Nothing | COPPL NCTR | | 10 | Check print completed. (Britch 6 down) | Court Inve | MCB (exty) | | 15 | Right Hand Side Open (in PLP), printing dowe. S-1/START. | Do an e-o-s | PLPM NCR | | 17 | Thota at Maximum, both printings done and e-o-s finished. (All 4 lights also on) | Nothing | PLFM MCR | | 23 | Inversion rum all completed (printings, tapes, e-o-s dome.(All & lights also on) | Nothing | INVA NCR | | 101 | Arbitrary transformation called for but no negative Jn. (Clerical or machine err) | Nothing | CODE NCR | | 188 | Specified matrix (arb. trusfms.) singular, printing dome. S-1/START. | Bo an e-o-s | CONT NCR | | 103 | No vector corresponding to negative in. | Nothing | COMM NCR | | 104 | Monotonicity check on \$P failed. | Nothing | COM NCP | | 22 | On restart of inversion run, maker of negative in disagrees with number of | Notaing | SIM sub-ACR | | | transformations yet to be done. (Clerical or machine error) | | | | व्य | And of file indication when trying to read record containing vector to be | Nothing | THYM MCB | | | | | | | 223 | Specified matrix (for inversion) singular, printing done. S-1/START. | Do an e-o-a | ý. 46
E3
HAMI | | | | | | | Octal
number | Reason for Btopping. | | Result of
START | Region
of Stop | |-----------------|--|---|--------------------|-------------------| | 123 | And of file implication when searching for vectors in basis to be inverted. | vectors in basis to be inverted. | Nothing | SIN sub-ACR | | भटा | (Same as 121 but before proper tape record ! | rd has been reached.) | Nothing | INVK MCR | | R | Same unit vector given as legitimate and artificial. | artificial. | Nothing | INVA MCR | | 921 | Machine lost track of position of tape 5 during inversion. (Machine error) | during inversion. (Machine error) | Nothing | THEN NCB | | 240 | Overflow in forming $\pi_i^{(T)}$ ($\geq 2^{25}$) | | Nothing | Code h | | 745 | Some $\left \eta_{1}^{1}(t)\right \geq 2^{25}$ in forming $\pi_{1}^{(T)}$ | | Nothing | Code & | | 320 | Overflow in computing $d_j^{(T)} (\ge 2^{25})$ | | Nothing | Code 5 | | 257 | d, check in Code 5 fails for some basis vector. Vector name | betor. Vector name in Accum. in BCD | Mothing | Code 5 | | 310 | DP Ing point overflow on addition. ($\geq z^{127}$) | $(\geq 2^{127})$ | Nothing | Code 7 | | 88 | Some as 310 on multiplication. | | Nothing | Code 7 | | 100 | writes: 410 mib-eeries for orderflow on 100 flo | stine addition | Rath Inc | 0 400 | | | | | Nothing | | | | 130 " " underflow " | '' division | Nothing | Code 9 | | 114 | $\beta^{4} + \beta^{2} \eta_{2}^{4} = \cos \gamma^{4} + \gamma^{2} \eta_{2}^{4}$ | ESO THE STATE OF | | | | 413 | $\beta^4 - \theta_r \gamma^1$ (Fig. | 121 15 15 OF 7" 12 | | | | 415 | $b^4 + \theta_r c^1$ (FIP) | $\frac{1}{\sqrt{r}} - \frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \qquad (FLP)$ | | | | | i | $he_3 - \theta_r \tau^4 \qquad (FLP)$ | | | | 430
0 | er (11ght 1 ofr) | $h25 ext{ } heta_{\mathbf{r}} c^1 ext{ } ag{PLP}$ | | | | | -1 (11ght 1 cm) | | | p. 47 | | Octal
Number | Resson for Stopping. | . Regult of BEART | Region
of Stop | |-----------------|---|---|-------------------| | 510 | DP floating point addition overflow in computing & | Nothing | Code 11 | | 220 | Same as 510 for multiplication. | Nothing | Code 11 | | 277 | Camor find all what in a matrix. | Start Code 11 avain | Code 11
 | 8 | Check sum error in loading code from cards. | Continue ignoring error | CO CO | | 15 9 | Routine just leaded into HSS from cards is too long for remaining space on the drums. | Ignore this routine and continue loading. | CLT: | | 610 | Check aum error in data cards. | Continue ignoring error | Code 1 | | 700 8 | the record
se the same
avail save | has already been tried (read)
record to be tried again,
in exceptional cases. | | | 200 | Advancing tape 2 (n _x (cervard) during inversion. | | INVH HCR | | 101 | Reading tape 3 (locations of basis vectors on tape 5) during inversion. | ė | INVN MCR | | 202 | Reading tape 2 to prepare backward tapes after inversion. | | DIVIN NCR | | 703 | Searching tape 5 for a (m) for arbitrary transformation. | | COM NCB | | 3 | Reading a matrix from tape 5 during inversion. | | INVM MCB | | 706 | Reading at matrix from tape 5 to propare tape 3 for inversion. | | SIM sub-ACR | | 724 | Reading tape 3 or 4 in forming x(T) (nr backward) | | Code & | | 725 | Reading a matrix from tape 5 in forming d(T) or loading a s(T). | | Code 5 | | 8 | Reading tape 2 to compute diff. | | Code 7 | | 8 | Reading a matrix from tape 5 in computing 6 . | | Code 11 | | 36 | Advancing tape 2 ready to write now record (end-of-stage) | | Code 13 | | | | | | [.] A check sum error in the loading of LFBASE will cause a halt at 7776 retal with no special indiantion. Hit START to continue loading, ignoring error. The emount of error is in the Accumulator on all check erm stops. Uning Code 19 to load a new MCR (special switch-ower procedure), a check sum error in the cards causes a stop with no special indication. Should this occur, it would easily be overlooked. The remainder of the tape check error stops occur in Code 15. Hitting START after these stops causes the progress to continue as though there had been no error, at the operator's risk. - 762 New record just written on tape 2 will not read correctly. - 763 Newly written tape 3 may be no good (tape check on tape 4) - 764 11 11 11 4 11 11 11 11 11 11 13 - 765 762 and 763 combined. - 766 762 and 764 combined. There are two other error stops. - 77777 Automatic restart from drum (Code 19) tried too early during inversion rum. Reload deck. - 717777 Cede 19 got a check sum error in restoring HSS from drums. This check sum is carried on K-, H-, and V-regions only. The first 7 in this error number is in the tag field of the Storage Register. #### RUMNING TIMES It is impossible to give any realistic time estimates on a job. Time per iteration goes up with m, with n and with the number of iterations already performed. Elaborate formula have been worked out for this but they are not worth writing down although they have provided some comparative information. Nor is past experience a reliable guide. An inversion run on a 195 order system (m = 195) has been observed clipping along at 1 1/4 secs. per iteration. A 51 order system took 20 mins, to reach an optimal solution. Clearly these numbers de not beer a simple relation to one another. One of the critical factors is the density of the matrix. The following statements can be made, however. - 1. The inversion MCR is the fastest in speration, at least twice as fast as the COMM MCR for a given problem. - 2. The COMM MCR performs simplex cycles faster than any other known code considering the size of problems allowed, the accuracy maintained and the flexibility provided for. - 3. FLP is invariably slower after a given number of iterations than the COMM MCR. It is probably wise to re-invert the optimal basis obtained by the COMM MCR before beginning extended calculations with FLP.