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Sununary 

t is shown tliat some problems arising in the determination 

of economic lot size lead to the analytic problem of determining 
n 

the maximum of the function R(x,, x«» •••* x ) - X fl^(x ), sub— 

n 
Ject  to a number of constraints of the  form    Z h11(x1)  ^ c** 

j«l J-J  J    * 

1 - 1, 2, 3. 

These problems are reduced to the determination of a 

sequence of functions via the functional equation approach of 

the theory of dynamic programming 1 
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MULTI-DIMKNSIONAL MAXIIÜZATION,   DYNAMIC  PROQRAMMINO 

Arro ECOMOKic LOT SIZE 

Richard Bellman 

1. Introduction 

Vfhat to produce, and in what quantity? We propose to dla- 

cuaa this fundamental question continually facing the entrepre- 

neur, using the techniques of dynamic progranmlng, with parti- 

cular emphasis upon the problem of "economic lot size". 

In order to make the paper as sell—contained as possible, 

we «hall begin by formulating some general allocation processes 

which include the particular one mentioned above, and indicate 

the application of the techniques of dynamic programming to the 

analytic and numerical treatment of these problems. 

Following this, we shall treat. In turn, economic lot size 

problems involving constraints upon capital alone, upon capital 

and capacity, and finally upon capital, capacity and labor. 

In the concluding section of the pa^-er we shall discuss 

similar problena Involving mutually exclusive activities. 

2. Allocation Frocesseü— One Dimensional. 

Before proceeding to .-'cneral multi-dimensional processes, 

let us consider tne one-dLmcnslonal proceas.  We begin by 

assuming that we nave a quantity of money, x, which we divide 

into n parts, x., x0, .... x , with the 1-th part allocated to 
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the 1-th of n activities.  From this 1-th activity, we obtain 

a rttum of g1(x1), whose units we may consider also to be 

dollars. The problem Is to determine the allocation policy 

which maximizes the total return. 

Mathtmatlcally, this Is the problem of maximizing the 

function 

(1) H(x1, x2f ..., xn) - g1(x1) + g2(x2)  + ... + Zj^S) 

subject  to the constraints 

(a)      x,   -f x« +   ...  -f x    - x, 

(2) (b)       x1 ^ 0. 

We shall discuss the numerical aspects of this problem 

below. 

3. Allocation frocesses-Multl-Dlaenalonal. 

Conalder now the multl-dimenalonal version of the fore- 

going.  Let there be k different resources. In quantities x,, 

x«» ..., x, , respectively, which are to be utilized to produce 

n different types of products.  Let 

(l)      xi 1 " the Q^flt^ty 0^ the 1-th resource utilized to 

produce the J~th product, 

g.(x, ., ^t' •'•' \i\^  " the return obtained from the 
allocation of the quantities 

x^ . to the production of the 

j—th product. 
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The mathematical problem Is that of maximizing the total 

return, 

(2) VX1J>  " J^J^IJ'  X2J ^j'' 

subject to the conatralnta 

n 

(3) 
J-l 1J      1 

(b)   x^ > 0. 

4. Dlacuaslon. 

A first approach to these problems is by way of the method 

of Lagrange nrultlpliera. l^hen effectlre, this method resolves 

the above problem in an ideal fashion. In practice, however, 

a number of difficulties occur, which we shall discuss briefly. 

a. Non—dlfferentiable functions. 

The method of Lagrange multipliers requires that partial 

derivatives of the various return functions be formed.  Two 

types of difficulties arise.  In the first place, the functions 

may be of complicated analytic form, raaking the variational 

equations of little value; in the second place, the functions 

may be known only approximately, making the derivatives of 

little significance. 

b. Comer Maxima. 

In most  economic processes,   ther« are constraints of var- 

ious  types  upon the  Independent  variables,   as  in  the above 



maximization procesaea.  Consequently, It frequ«ntly happenB 

tiiat aeyeral of the variables attain their upper or lower 

bounds at the majdmura. This means that the maximum point can- 

not. In general, be obtained by setting partial derlratlTes 

equal to zero. Rather, one has to employ a systematic search 

nethod, setting some variables equal to their bounds, and 

taking partial derivatives with respect to the others. This 

li an Inefficient and time-consuming nethod. 

^ Integral Requirements. 

In a r jiber of processes^ the allocations are not contln- 

uoua, since the quantities may be required to be Integral. 

This means that the ontlnuous varlatlonal method Is, at best, 

an approximation. Sonetlmes, this approximation Is adequate, 

and sometimes not. 

We see that any numerical approach to these problems must 

be able to overcome the difficulties sketched above.  However, 

more is required of a numerical method.  In general. In formu- 

lating these problems, we are not so much Interests In the 

numerical solution of any particular problem, as we are In the 

solution of the family of problems obtained by allowing certain 

paitanters to range over a domain of values of Interest. In 

other words, we are Interested In a sensitivity analysis' of 

the solution. 

The purpose of this sensitivity analysis Is to determine 

the structure of efficient allocation policies, which Is to 

say the dependence of these policies upon the parameters defln- 
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livg the proceea. 

As we ehall see below, the theory of dynamic prograaaalng 

fumlshei ua a method which la not disturbed by the difficulties 

cited above, and. In a sense. Is more efficient when some of 

them are present.  Furthermore, the method automatically yields 

a sensitivity analysis, and la designed specifically to study 

the dependence of efficient policies upon the essential para- 

meters. 

5.  Dynamic Progremgalng Fomulatlon. 

Let us now show how probleius of this type may be treated 

by meana of the theory of dynamic programming.  A detailed 

account of the theory may be found in JjJ, and in a forthcoming 

book, pQ . 

Although the proceas of allocation is atatic, a single— 

sta^e process, it can be reinterpreted to be a dynamic multi- 

stage proceas. Thia we do in the following way. In place of 

making the allocations,x,, x^, ..., ^. elmultaneously, let us 

think of choosing first x , than x ,, and so on down to Xp, 

and finally x,.  Having decided upon this, let us see upon 

what the choice of x. la dependent. At each stage of thia 

multi—stage process we liave concocted, the two parameters 

which specify the state of the process are 

(l)      a.  the number of stages remaining, lc# 

b.  the quantity of resources remaining for allocation, x. 

It is clear that the maximum return obtained from th<» c 
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remalnlng stages will be a function only of these two paraaeteri. 

Let us than define  the following sequence of functions: 

(2) fir^x^  " the return obtained fron k remaining stages 
when a quantity x of resources remain«  and 
an optimal policy ii used. 

By a policy,  we mean any set of admissible choices of 

x. «...«z, .    An optimal policy is a policy which yields the 

ixiiM return.    Note that  the maximum return is uniquely de- 

fined,  but that there may be many optimum policies. 

Beginning with the obyious relation, 

(3) f^x) - gjU), 

assuming, as we shall, that all the functions gi.(x) are monotone 

inoreaslng« we shall derive a recurrence relation connecting 

fk(x) with fk-1(x). 

Suppose that a quantity x. is allocated at the first stage 

of a k—stage process. A return of g,(x, ) is obtained, and a 

quantity x-x^ is available for allocation during the remaining 

x   k-1 stages of the process.  It is clear that whatever the initial 

allocation x.   ,  the remaining allocations must be made in such 

a way as to maximize the total return from the k—1 remaining 

stages, 'nils is a particular application of the 'principle 

Of optinallty , cf. [l]. 

Hence the total return from a k—etage process due to an 

initial allocation of x. is given by the expression 
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Slnce fk(x)   la the majclraum return from a k-stage process,  we 

obtain the relation 

(5) fk(r) "o^Xx  k*'**' + fk-l(Xr^)] 

for k - 2,   3#   • • •»   • 

This relation determines the sequence recurrently,   since 

f,(x)  is known. 

6.     Dlacussion. 

The solution of the original n-dimenslonal maximization, 

subject to the constraints,  has been reduced to the solution 

of a sequence of n one-dimensional problems.    Each of th»ae 

problems can readily be solved computationally on a digital 

computer.    Furthermore,  there are simplo methods available for 

the hand computation of the solutions,   using only the graphs 

of  the  functions  involved. 

A digital conqpmter yields not only a table of values of 

each of the  functions  fjjx)  for x in a prescribed range 0^ x ^ X, 

but also a graph of the optimal allocations x.   as a function 

of x in this range. 

For a given x and an n—stage process,   the set of n optimal 

allocations  is given be  the equations 

V-i ö V-i^-V' 

^2 - xr>-^x -^i" V-l)' 
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x2 - x2(x - ^ - xr^_l  - ... - x3), 

x1 - x - xn - xn_1 - ... - Xg. 

Observe that the eolutlon Is given In a form which makes 

a sensltlTity analysis Immediate. 

Let us now turn to the difficulties discussed In section 

4, under the headings a, b, and c. 

Since the machine finds the maximum of the function by a 

systenatlc search method (which can, In some cases, be greatly 

speeded up, cf [3])# no difficulty arises from the appearance 

of non-analytic functions such as Max( ax+b,0)., or |ox+d|. 

Again, since tne machine determines the maximum value by 

a search method, constraints of various types aid in this search, 

rather than hinder, since they narrow down the region of inter- 

est.  Furthermore, the restriction to integer values similarly 

aids in the search for a maximum by once again narrowing down 

the domain of admissible values. 

We see that precisely the features which made the varla- 

tlonal methods of calculus difficult to apply actually aid the 

computational solution by means of the functional equation. 

Let us show, however, that under certain circumstances, 

the computation of the solution can be greatly simplified. 

Suppose that we know that the maximum occurs inside the region 

of variation for each k.  In this case, a maximizing x. is 

determined by the equation 

(i)        «i^) - f^u - xv) 
and 

(2j     fk(x) - gk(xk) ^ r^U - \)* 
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for this yalu« of x. - x, (x). 

Differentiating, wo haye 

(3)      fk(x) - [g^^) - f^Cx - x^)]— + f^tx - xk) 

Referring to equations (2) anü (3), vve aee that only the 

aequenc« -ff. (x)j need be computed If we wish only to deteiv- 

mlne optimal pollcleo. 

7-  Multl—Dlipenslonal Proceaaea. 

Turning to the multl—resource proceas described In ^3, let 

us define similarly the sequence 

(l)      f (x., x , .. ., x, ) • the return from an M—otage 

process starting with Initial 

quantities x, , xol ..., of the 

k resources, N - 1, 2, ... . 

As above, the N—stage process condists of allocation only to 

the flrat N Items. 

We have 

(2j      f,(x., Xp, •••, ^i,/ m  ^^(^i» xo» •••» ^i»/* 

sind for K^Z, 

(3)       fN^Xl' X2' * ' # ' ^^ " ^^ *■  SN^X1N' X2N' ***' ^ScN) 

» 

+ fN-l^Xl ~ X1N' X2 ~ X2N 

where R Is the region 

(M      0 ^ x1N ^ x1 , 1 - 1, 2, ..., k. 

r        • • 
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In theory, ther« is no limit to the diownslon of the 

; rob]«ma that we oan resolve In this way.  In practice, we are 

United by the edacity of present day digital computer«. 

There are a number of ways of circumventin« these difficulties, 

which we shall not dlacuss hoi-e, since the applications we shall 

discuss involve at most three resources. 

It is iiqportant to note, however, that there la n^ver any 

restriction upon the number of stages, which is to say the 

number of activities. 

8. Bconoed.c Lot Size-Capital Constraint. 

Having disposed of these preliminaries, let us now turn 

our attention to the problem of economic lot size. We shall 

consider the problem in the following form: 

life have an amount of capital x and a choice of the pro- 

duction in varying quantities of N different products. We 

assvuM initially that there is an unlimited supply of labor 

and machines for the production of any items we choose, in any 

quantity we wish. 

If w» decide to produce a quantity x.   of the 1  item, we 

incur the To]lowing costs: 

(1)      (a) a^ - unit cost of raw materials required for the 

4 th .. i  item 

(b) b.   ■ unit  cost of machine production 

(c) c.   - unit  cost of labor Involved 

(d) C.   - a fixed  cost,  independent of the amount 

produced,   if x.^O. 
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We also asBUBM» a  selling price of p.  per unit for the  i 

item.    The total cost  of producing a quantity x.  of the  i 

lt«m will then be 

(2) z    g.U  )   , 
1-1    1 

where 

(3) g1(x1)  -  (a1   f bj^   K c1)x1 + C1,    x1 > 0, 

-    0, x^^  - 0, 

a dlscontlnuouu fuxicclon at x.   - 0. 

Our aim vlll be  to maximize  the total profit 

N 
( w Ml*   *'2*   *'*'   *N'   "  J^T   ^1^1   ' 

subject to the constraintc 

N 
(a) Z g (x^ ^ 

1=1 

(b) ^ 2 0 

N 
(5)      (a) 2 g, (xj . x # 

Let 

(6)      fN(x) - Max f^Uy  *2»   -",   y^x 
xl 

Then 

(7) fx(X) - p^x -Cj), (^ + i,^ 4 Ci)(  x > CIJ 

0 , 0 ^ x i ci ' 

and 

(3)      fN(x) - Max r VH + V! (x - gN(xN)) ] 

^(^Kx 
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Since ^(^u,)  Is dl a continuous,  w« can writt  this 

(9) 
fN(x)  - Max '*%; ''**»T Vi(x - C

N - 'WeN)x»i)^ 

It  la  clear that   the  term C     keeps  x..  from being too  close 

to zero#  and it  Is easy  to see  that 

(10) ^    2 
»N 

This lower bound  sloqpllfles  the  search problem. 

Although thlc problem nay be solred In explicit terras# we 

■hall not give the details here, since we are primarily Inter- 

ested  in the netrnod. 

9.     Stochastic Version. 

Were actual problems as simple and straightforward as the 

aboT*,   the  lot of a scientist would be a happy one.     tfe have 

assumed that the  return  from a production of a quantity x.   of 
th the k      item Is Pi*, .     Let us now consider the more realistic 

situation where the return Is a stochastic  quantity. 

Let S. (z)  represent  the ouaulative  function for the desund 

z for the k      item,     "nie expected return will then be 

(1) px p dOk(r)   +    p^ WdO^z) 

Pk z dflk(z) ^p^ (i - ak(iv)). 
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Supposing  that  we procft«<i   «o as   to maximize   the  •xpect^d 

r«tum,   th« analytic probler   '^clr.g  uo la that of raaxlaizinf 

subject   to  the   conitrftlnta 

(3) (a)     x1 ^ 0  , 

(b)    I    g.U )        x  . 
1-1    1    1 

AB  above,   this  leads  to  the  recurrence  relation 

(*) fN(x)   -        Max [i., z dON(z)  .  P^Cl --GN
(xlU 

+  f ^ - «N(XN)) J   ' 

with 
1 

(5) fj^lx)   - p1  T    z dQ^z)  * Pji^l - Vl*)   • 

Jo 

In s siaLilar fashion, we can treat the problem of deter- 

mining the allocation policies which maximize the probability 

of achieving at   leact a return R. 

10.    Capital-Macnine Constraintn. 

We have assumed   In the  foregoing  that  the  only  restriction 

upon production  was  a  limited  supply  of capital.     Let  us now 

consider  the  case   in which we have   limited productive  capacity 

as well. 
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Let tii« amount of capital available be x,  and the  quantity 

of machines by y.     It Is supposed  that the machi.iea  are capable 

of producing any of the N Items,  although not necessarily equally 

efficiently. 

If we decide to produce a quantity x.   of the  1       Item,  we 

Incur the following costs: 

(1) (a) ai(xi^  - co§t of rÄW '■aterlala required, 

(b) b. (x.) - cost  of machines required, 

(c) ci^xi^  " COft  of   iabor required, 

(d) C. - a fixed   coat.  Independent  of the 

amount produced. 

Purthemore,   let us assume   nhat  ».(x.)  machines  will  be 

required to produce these x.   Itesuj.     Taking a de termini c tic 

owdel,  the analytic problem Is that  of maximizing 

K 
(2) R(x1,   x2,   ...,  ^j   - 2    p1x1   , 

!•! 

subject to the constraints 

(3) (a) x1 ^ 0, 

N 
(b) Z    m  (xj ^ y, 

1-1    1    1 

(c)   i2i gi(Xi) ^ *' 

(*) ^(»i)  - ^^i^) + bi(xi)  ♦  ci^x
1^ -»■ c1  ,  x1  > 0, 

-    0, xi   " 0• 
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Setting 

(5) ttax R -    fN(x,   y), 

we obtain the recurrence relation 

(6) rN(x,  y)   -    Max   [ p^ +  ^(^ - ^i^)'  7 - S^V^  ^   ' 
u 

where D  Is   the aet of values  cietermlned by  the  ülmultaneouo 

Ineqt^alltles 

(7) a.     0 ^ ^{Xy) Lx,     0 ^ ^{Xy)  ^ y. 

The   stochaotlc  version  Is   treated  In  llice  faahlon. 

11.     Capital—Machine—Labor Conctralnta . 

Let ua  now add to  the  at>ovo pi'*tun;,   a  constraint on the 

manpower available  to man the  machines.     Set 

(l) d   (x  )   - quantity of aanpower   required   to operate 

the inachlnes producing a quantity x.   of 

the  1       Item, 

and  let  z  bt:   the  total  quantity of manpower available. 

In addition to the  constraints of (lO.j),   we  now have  the 

restriction 
N 

The  correspondlxu:  recurrence  relatlor.   13 

(3) fK^x'  y#  ^)  - «ax  [p ^  v rH-l^x ~ "S^;^  y - ^N^N^' 

z  - dN(xN)) T   . 
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12. Qoaplement&ry  Conatrainto 

It !• often the case that all actlvltlee cauinot be carried 

on Blomltaneously, as a consequence of the specialized nature 

of the equipment and labor required for the various actlritles. 

Consider a very simple case, where we wish to maximize 

10 
(1)      Z  Pixi' 

1-1  1 1 

subject to the constraints 

(2) a.       x1 ^ 0 

10 

1-1    1    1 

c.       x1x2 - 0,     *3*^*3 - 0»    *ß*~f - 0,     *o*10 - 0- 

Define the sequence of functions 

10 
(3) (a)  f10(c) - Max Z p. x. , 

subject to the above constraints, 

(b) fßU)  - Max    I    p1x1   , 

subject to    2 g.(x.) < c, and the first three constraint! 
1-1 ^^ 1 ~ 

in (2c), 

(c) f7(c) - Max i p^ , 
1 1-1  ^^ 1 

subject to 2  g.(x,)  c,  and the first three constraints 
1-1  1    1    - 

In (2c), 
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(d)     f5(c) 

5 

- MAX 
1-1 

P1x1 

subject  to    Z    g.(x.) 
1-1    1    1 

c,   and  tht  first  two  conotralntfi,   and 

finally 

(•)     fo(c) 

subject   to    S    g.(x.) 
1-1    1    1 

MSLX     1     Pi X1 » 
1=1   1 1 

c,   and x.x^ - 0 
1    c 

Clearly 

(4) 

whe 

f2(c)   - Max   [ p1xi   ,   p2x 

r« g1(x1)  - c,  gp(x2)   - c. 

3    J » 

Purthenaorc 

(5) f5(c)   - Max   [psx3  + p^x^  +  p^x^  +   f2(c  - Z^i*^)  - «^C^) 
R 

where  R  Is  the  region 

(6) 

It 

(7) 

a. x^x^x^  - 0 

b. x3,   x4,   x5 2 0 

It   1B  clear that  we   can reduce   (t))   to   the  equation 

TN^X   |jp4x4  +  p^x^ +  f2(c  - gk(x^) - g5(x5))j, 
J 

M^x   [p3x3  + p5x5 4  f2(c  - g3(x3)  - g5(x5))j. f5(c)   - Kux 

^^^   Ij>3x^ > p^x^ -  f2(c  - g3(x3) - g^fx^))' 
R. 

U 
5 



(8) R3   :    84(x4)   ^ g5(x5)  ^ c, xv   x^ > 0, 

«4   «    «3(x3)  + «5(x5)   \ c x.» x^0- 

^5   :     g3(x3)   + g4(x4)   < c xv   x4   > 0. 

P-83' 

^ 

Similarly 

(9) f7(c)   - Max 

^)vc   rP7x7.f3(c-g7(x7))J 

Max 

«6^6 
Max r 
UJM:   LP0^ '   f3(c - M^J 

L 

whllt 

(10) fk<'0)  -      Hax 
g8(^Kc LPa^^V-^^))]- 

Finally 

(11)       f10(c)   - Max 

^(x     )<c   [WlO  ^8^-^10^10^ 

Max Pq^g   ^    ^(C   -  gjxj) 9X^) 
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