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Summarx

\\\kt is shown that some problems arising in the determination

of economic lot size lead to the analytic problem of determining

n
the maximum of the function R(x,, X5, ..., x_) = % 2,(x,), sub-
| 2 n 1=1 1'71
n .
Ject to a number cf constraints of the form JtlhiJ(xJ) < cys
i=1, 2, 3.

These problems are reduced to the determination of a
sequence of functions via the functional equation approach of

the theory of dynamic programming .
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MULTI-DIMENSIONAL MAXIMIZATION, DYNAMIC PRCGRAMMING
AND ECQNOMIC LOT SIUK

By
Richard Rellman

1. Introduction

What to produce, and in what guantity? We propose to dis—
cuss this fundamental question continually facing the entrepre—
neur, using the techniques of dynamic programming, with parti-
cular emphasis upon the problem of "econonic lot aize".

In order to make the paper as seli—contalned as possible,
we shall begin by formulating some gzeneral allocation processes
which incliude the particular one mentioned above, and indicate
the application of the techniques of dynanic programming to the
analytic and numerical treatment oI these problems.

Pollowing this, we shall treat, in turn, economic lot size
problems involving constraints upon capital alone, upon capital
and capacity, and finally upon caplital, cepacity and labor.

In the concluding section of the paper we shall discuss

similar problens involiving mutually excluslive activities.

2. Allocation Processes— One Dimensionel.

Before proceeding to ~eneral multi—imensional processes,
let us consider the one-dimensional process. We begin by
assuming that we nave a quantity of money, x, which we divide

into n parts, x4, X,, ..., X, Wl'n the 1-th part allocated to




P83
435
D

the 1-th of n activities. Prom this 1-th activity, we obtain
a return of gi(xi), whose units we may consider also to be
dollars. The problem is to determine the allocation policy
which maximizes the total return.

Mathematically, this is the problem of maximizing the
function

(1) R(xys X500 voey X)) = By(xy) + go(x,) + oo+ g (x))

subject to the constraints

(a) Xy + Xy b oo 4 X=X,

(2) (b) x, > O.

We shall discuss the numerical aspects of this problem

below.

3. Alicvcation Processes—Multi-Dimensional.

Consider now the multi-dimensional version of the fore—
going. Let there be k different resources, in quantities xl,
Xos v xk, respectively, which are to be utilized to produce
n different types of products. Let

(1) X, . = the quantity of the i1—th resuurce utilized to

1)
produce the J—th product,

gJ(xlj' Xogr oo ka) » the return obtained from the
allocation of the quantities
x1J to the production of the
J—th product.
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The mathematical problem i1s that of maximizing the total

return,
n
(2) R (X,,) = = 8 . (Xqus Xqusr =c03 X o)y
AP Y =1 JREA SR kJ

subject to the conatraints

n
(a) J§1x1J R 4m 1502, e, Ky
(3)

(b) Xy Z 0%

4. Discussion.

A first approach to these problems 18 by way of the method
of Lagrange multipliers. Wwhen effective, this method resolves
the above problem in an ideal fashion. In practice, however,

a number of difficulties occur, which we shall discuss briefly.

a. Non—differentiable functions.

The method of Lagrenge multipliers requires that partial
derivatives of the various return functions be formed. Two
types of difficulties arise. In the first place, the functions
may be of complicated analytic form, making the variational
equations of 1ittle value; in the second place, the functions
may be known only approximately, making the derivatives of

little significance.

b. Corner Maxima.

In most economic processes, there are constraints of var—

ious types upon the independent variables, &s in the above
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maximization processea. Consequently, it frequently happens
that several of the variables attain their upper or lower
bounds at the maximum. This means that the maximum poiﬁt can—
not, in general, be obtained by setting partial derivatives
equal to zero. Rather, one has to employ a systematic search
method, setting some variables equal to their bounds, and
taliing partial derivatives with respect to the others. This

is an inefficient and time—consuming method.

c. Integral Requirements.

In a 1 nbe: of processes, the allocations are not contin—
uous, since the quantities may be required to be integral.
This means that the ontinuous variationai method is, at best,

an approximation. Sometimes, this approximation is adequate,
'and sometimes not.

We see that any numerical approach to these problems must
be able to overcome the difficulties sketched above. However,
more s required of a numerical method. In general, in formu-
lating these problems, we are not so much interest.i in the
nunerical solution of any particular problem, as we are in the
solution of the family of problems obtained by ;1lowing certain
paramiters to range over &8 domain of values of interest. In
other words, we are intereasted in a 'sensitivity analysis’ of
the solution.

The purpose of this sensitivity analysis is to determine
the structure of efficlent allocation policies, which 1s to

say the dependence of these policlies upon the parameters defin—




ing the process.

As we shall see below, the theory of dynamic programming
furnishes us a method which 15 not disturbed by the difficulties
cited above, and, in a sense, 1s more efficlent when some of
them are present. PRurthermore, the method automatically yields
a sensitivity analysis, and 18 designed specifically to study
the dependence of e¢fficient policies upon the essential para—

meters.

5. Dynamic Programaing Formulation.

Let us now show how problems of this type may be treated
by means of the theory of dynamic programming. A detalled
account of the theory may be found in Il]: and in & forthcoming
book, [2].

Although the nrocess of allocation 18 static, a slngle—
stage process, it can be reinterpreted to be a dynamic multi-
stage process. This we do in the following way. In place of
naxing the allocations,xl, Xns voes N simultaneously, let us
think of choosingz first X, than X1’ and 8o on down tc X5»
and finally Xq- Having decided upon this, let us see upon
what the cholice of x, 18 dependent. At each stage of thnis
multi—stage process we have concocted, the two parameters
which specify the state of the process are

(1) a. the number of stages remaining, X,

b. the quantity of resources remaining for allocation, X.

It 4is clear that the maximum return obtalned from the



remaining stages will be a function only of these two parameters.

Let us then define the following sequ2nce cf functions:

(2) rk(x) = the return obtained from k remaining stages
when a quantity x of resources remain, and
an optimal policy 1s used.

By a policy, we mean any set of admissible cholices of
XyseeesXye An optimal policy 18 a policy which yields the

maximum return. Note that the maximum return is uniquely de—
fined, but that there may be many optimum policies.
Beginning with the obvious relation,

(3) fy(x) = &,(x),

assuming, as we shall, that all the functions gk(x) are monotone
inereasing, we shall derive a recurrence relation connecting
rk(x) with rk_l(x).

Suppose thut a quantity X i3 allocated at the first stage
of a k-stage process. A return of gk(xk) 1s obtained, and a
quantity XX, is available for allocation during the remaining
k-1 stages of the process. It 1s clear that whatever the initial
allocation xk » the remaining ellocations must be made in auch
& way as to maximize the total return from the k-1 remaining
stages. This is a particular application of the 'principle
of optimality", cfr. [1].

Hence the total return from a k—stage process due to an

initial allocation of X is given by the expression

(%) R = g (x) + £, ,(x=x).
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dince rk(x) 13 the maximum return from a k-—stage process, we
ocbtain the relation
(5) £,.(x) = max  [g (x) + £ (xx )]

for k =2, 3, ...,

This relation determines the sequence recurrently, since

fl(x) is lmown.

6. Discussion.

The solution of the original n-dimensionsal maximization,
subject to tile constraints, has been reduced to the snlution
of a sequence of n one—dimensional problems. Each 0f these
problems can readily be solved computatioenally on a digital
computer. Furthermore, there are simple methods avallable for
the hand computation of the solutions, using only the graphs
of the functions involved.

A digital computer ylelds not only a table of values of
each of the functions fk(x) for x in a prescribed range 0¢ x < X,
but also a graph of the optimal allocations x, 88 a functioén
of x in this range.

For a given x and an n—s8tage process, the set of n optimal

allooations is8 given be the equations

(1) x, = X, (n),
-1 ° xn—l(x - xn)’
M2 = XpolX - Xy =% 4),
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Xy = Xp(X = X =X ) = v = X3),

Xy = X=X —X 1= ... = X5

Observe that the solution 1s given in a form which makes
& sensitivity analysis immediate.

Let us now turn to the difficulties discussed in section
4, under the headings a, b, and c.

Since the machine finds the maximum of the function by a
systematic search method (which can, in some cases, be greatly

speeded up, cf [3]), no difficulty arises from the appearance

of non—analytic functions such as Max{ ax+b,0), or |ox+d].

Again, since tne machine determines the maximum value by
a search method, constraints of various types aid in this search,
rather than hinder, since they narrow down the region of inter—
est. PMurthermore, the restriction to integer values similarly
aids in the search for a maximum by once again narrowing down
the domain of admissible values.

We see that precisely the features which made the varia-—
tional methods of calculus difficult to apply actually aid the
computational solution by means of the functional equation.

let us show, however, that under certain circumstances,
the computation of the solution can be greatly simplified.
Suppose that we know that the maximum occurs inside the region
of variation for each k. In this case, a maximizing X, is
determined by the cqu?tion
(1) gr(x) = _,(x-x)
and

(2) fk(X) - gk(xk) + rk—l(x - xk)’
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for this value of x = xk(x).
Differentiating, we have
' ' ' dxk 1
x

- fkll(x - Xk)'

Referring to equations (2) and (3), we see that only the
sequence {;k'(x)} need be computed if we wish only to deter-

mine optimal policies.

7. Multi-Dimensional Procesases.

Turning to the multi—-resource process described inw§3, let

us define similarly the sequence

(1) fN(xi’ Xop woes xk) = the return from an N—otage
process starting with initial
quantities x., x,, ..., of the
k resources,LN =H1, 2,

" As above, the N—stage process consists of allocation only to

the first N items.

We have
(2) fl(xll x2! RN x'k) = F;l(xlr xgl ML | X-K)l
and for N)2,
(3) fo(xys X5 oy X ) = Max [ SN (X Nr Xons <oo0 Xpy)
* IRy T Xy Xp - Xy e el

e T NN) ],
where R 1is the region

(%) 0 Xy uX »1 =12 ..k
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In theory, there is no limit to the dimension of the
problems that we can resolve in this way. In practice, we are
linited by the cepacity of present day digital computers.

There are a number of ways of circumventing these difficulties,
which we shall not discuss here, since the applications we shall
discuss 1involve at most three resources.

It 18 important to note, however, that there 1is never any
restriction upon the number of stages, which is to say the

number of activities.

8. EBconomic Lot Size—Capital Constraint.

Having disposed of these preliminaries, let us now turn
our attention to the problem of economic lot size. Wwe shall
consider the problem in the following form:

We have an amount of capital x and a choice of the pro—
duction in varying quantities of N different products. e
assume initially that there is an unlimited supply of labor
and machines for the production of any items we choose, in any
quantity we wish.

If we decide to produce a (uantity Xy of the 1t"h item, we
incur %ne "o)lowing costs:

(1) (a) a, = unit cost of raw materlals requiréd for the
1" jtem
(b) bi = unit cost of machine production
(c) ¢, = unit cost of labor involved
(d) Cc, = a fixed cost, independent of the amount

4
produced, 1f xi)o.



We also assume a selling price of p, per unit for the 1
item. The totul cost of producing a nquantity Xy of the 1th
item will then be

N

(2) s 8y(x.)
1=1 27
where
- b
(3) gi(xi) (a1 £ by ci)xi + Ci' X, 0,
e O, X = ﬂ’

a discontinuous function at x1 - (0,

Our aim will be to maximize the total profit

X

' I o I A

(u) Pn(xlp x?’ e 00y x-N) - 121 91 1

subJject to the constralnte

(5) (2) 121 g (xy) 4 x,
(b) Xy 2 0.
Let
(6) £, (x) = 5 B e oda e
Then
(7) £(x) = py(x ~c)), (ag + by + ¢))s  x D eg,
- o0, 0Cx e
and
(3) £y (x) = L:Sg L ey + Ty (x —-zN(fo) ]

oy (xy) ox
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Since gN(xN) 18 discontinuous, we can write this
(9)  Max [ p + f x —C, — (ay+b+¢,,)xy)],
£,(x) = Max x>0 w7 e N T OANTONTON ‘N)
/
Ty (X)

It is clear that the term CN keeps Xy from being too close
to zero, and it 1s easy to see that

fyq(x) - rN_l(x ~ Cy)

PN

(10) Xy 2

This lower bound simplifies the search problem.
Although this problem may be solved in explicit terms, we
shall not give the detalls here, since we are primarily inter—

ested in the mernod.

9. S8tochastic Version.

Were actual problems as simple and straightforward as the
above, the lot of a scientist would be a happy one. +We have
assumed that the return from a production of a gquantity X of
the kth item is P X Let us now consider the more resalistic
situation where the return 18 a stochastic quantity.

Let gk(z) represent the cumulative function for the demand

z for the kth item. The expected return will then be

X xR
(1) P ;TE da, (z) + p, liFde(z)

- pKoJ z dey (z) +p,x (i - Gk(xkl).
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Supposing that we proceed 30 a3 to maximize the expected

returm, the analytic proble 1: us {8 that c¢f maximizln(
(?) .(X » Xy . A ‘ b , i )

NETY T N) - Ep 16, (z) » p‘XRQ—Ok(lk) ]

0

subject to the consatraints
(3) (a) x, 20,

(v) % g (x,)

X X .
yoy 1o

As above, this leads to the recurrence relation

XN

(4) fy(x) = Maz [ ¢ oz 10, (z) » DNJ‘N( - DN(X'H),.)

Oy (xy)<x 0
c (- gyin)) T

with
X
N l N )
(5) £.(x) =py (" 2d6(z) » px; (1 - 6,(x)))
-0

In 2 similar fashion, we can trezt the problem of deter—
mining the allocation policies which maximize the probability

of achleving at leact a return R.

10. Capital-Macnine Constraints.

We have assumecd in the foregoing that the only restriction

upon production was a limited supply of capital. Let us now
consider the case in which we have limited productive capacity

as well.
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Let the amount of capital available be x, and the quantity
of machines by y. It is supposed that the machi.nes are capable
of producing any of the N items, although not necessarily equally
efficiently.

If we decice to produce a quantity x, of the 1th itemw, we

incur the following costs:

(1) (a) ai(xi) - cost of raw materials required,
(b) bi(xi) = cost of machines required,
(¢) cl(xi) = cost of labor required,
(d) Cy = a fixed cost, independent of the

amount produced.

Purthermore, let us assume %hat mi(xl) machines will be

required to produce these x1 items. Taking a determinictic

model, the analytic problem 18 that of maximizing

N
(2) R(xlt x:)i M LN) -1§l Plxl »
gsubject to the constraints
(3) (a) x, 20,
(o) & wmfx,)
b L om, (x Y,
Yeil 1'717 -

(c) 121 g, (x,) ¢ x,
where
(%) 8y (xy) = ag(xy) + by (x;) + cylx)+Cy, xg >0,

- o, Xi = (),
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Setting
(5) Max R = 1(x, y),
Xy |
we obtaln the recurrence relation
; . e s L ~ _ \
(O) ‘N(x' J) ng ¢ pvx-N R fN_l(x %(XN)' y g"(xN)/ ]
where D 1s the set of values (determinec by the simultaneous
inequiilities
(7) a. 0.8 (x) ¢ x, O0<n(x) v

T™e stochastic version i8 treated in lixe fashion.

11. Capital-Machine—Labor Constraints.

et us now add to the above pi~ture, a constraint on the
nanpower avillable to man the machines. Set
(1) dl(xi) = quantity of manpower required to operate
tl.e machines producing a quantity x, of

g
the ith item,

anCc let z be the totul quantity of manpower azvailable.

In addition to the zonstralints of(iO.;), we 04 have the

restriction
N
e S 3 v o
(“) im] ‘1(“1) - 7

The correspondiny recurrence relatlorn i3

(.3) rN(xo Yy, Z) - ng ’P:JR, % r*‘—l(x = mﬂ(x}‘v)o y — EN(X-N):

2 = Ay ]
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12. Qoqplementary Constraints

It 1s often the case that all activities cannot be carried
on sinmultaneously, as a consequenrice of the specialized nature
of the equipment and labor required for the various activities.

Consider a very eimple case, where we wish to maximize

10
(1) 151 PyXys

ahbject to the constraints

(2) a. X, 2 0
)
b. ’
et g, (x, {c

C. x1x2 =0, 13xnx5 = 0, x6x7 = 0, xgxlo - 0.

Define the sequence of functions
10
subject to the above constraints,

8
(b) r8(c) = Max 12 PyXy

subject to g gi(xi) ¢, and the first three constraints

in (2c),

Lo,

(¢) f7(c) = Max 2

subject to Z gi(xi) . ¢, and the first three constraints

in (2¢),
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(d) r5(c) = Max I p,x
i=]
5
subject to I gi(xi) ¢, and the first two constraints, and
1=]
finally
2
(e) f.(c) = Max = PyXys
- 1=1

subject “o Z gi(xl) . ¢, and x;Xx5 = 0.
1-1 - C

Clearly

(u) r:_)(c) - Max [plxi ’ p2xc /]o
where gl(;l) -C, 8?(;2) - C.

Purthermore
(5) r(c) = ng [b$x3 t Xy Poxg + To(c - eq(xg) — g (xy)
- V,q(xr’) )]

wvhere R 15 the region

(6) a. KX Xe = 0
Bl Xgs Xys Xg 20
¢.eglxg) v gy(xy) + go(x) (e

e It 18 clear that we can reduce (5) to the equation
T Mgx (pyx, - pgxo ¢ fole =gy (x) - s (xg))]L T

(7) fs( - MaX ng b Xej P f,(c - 83(X3) = 85(15))].

Max [p.x_ ¢+ pyx, - ol — ga(xy) — gy (x))]

2
’ R’\ B
b -
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where
(8) Rytogylxy) + golxg) o0 xp, X, 2 0,
R, @ 33(x3) + gs(xs) i Cn 13, x5 2 0,
R5 : g3(x3) + gu(xu) < c‘ Xy X, 2 0.
Similarly

B . 7
sff‘?"x’,)s'.c ["7‘7 r fgle = ar(x)))] .
(9) f7(c) = Max

36??6[)5} f_'pbx6 + fo(e — g, (xg))]

J— — ’

while

(10) £, (c) = Sa?al;)ic Lpgxg + f.(c - g5(xg)) ] .

Pinally

[ vax [ P1o%1g + fylc - E10(X16)) |
glo(xln)Lc L o

(11) flo(C) = Max ' Ma ( ))
‘ _ T & =
ng(x;)gc [%‘9 gle — 8y(xg ]
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