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SUMMARY

- It 1s shown that Menger's theorem and the Max Flow
Min Cut Theorem on networks are applications of the duality
theorem of linear inequality theory. ( A g

AN



P-826
4-15-55

sl et

aaeil

ON THE MAX FLOW MIN CUT THEOREM OF NETWORKS

by
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D. R. Fulkerson

The RAND Corporation

INTRODUCTION

The problem discussed in this paper arises naturally in the
study of transportation networks. Roughly stated, it is as |
follows. Consider a network connecting two nodes by way of a
number of 1ntorncd1ate nodes, and suppose the arcs and nodes
can handle certain designated amounts of traffic per unit time.
Assuming a steady state condition, find a maximal flow of
traffic from one given node (the source) to the other (the sink).

For example, let the network be that of Fig. 1

Fig. 1 Fig. 2
where source and sink are denoted by + and — respectively, with

flow capacities of the arcs and nodes as indicated. A maximal



flow from source to sink 18 shown in Fig. 2. Notice that the -
quantity of flow leaving the source (or entering the sink) is
equal to the sum of the capacities of the two nodes and one

arc which are emphasized in the figure, anu that this collection
of nodes and arcs forms a "cut”" in the network; i.e., meets
every chain from source to sink.

A nonconstructive proof based on convexity arguments has
been given in an unpublished manuscript by L. R, Pord, Jr. and
one of the present writers (D. R. Pulkerson) that the maxinmal
flow value, relative to a given source and sink, attainable in
any network is equal to the minimai sum of capacities or arcs
and nodes constituting a cut. Our aim is to formulate the
problem of finding a maximal flow as a linear programming
problem (§1) and to deduce the max flow min cut theorem from
the dual prodlem (§3). In §4 we observe that a combinatorial
form of this theorem yields Menger's theorem [4, p.244] concerning
linear graphs. : .

| 1. THE PROGRAMMING PROBLEM

There are various ways of formulating the flow problem as

ja linear programming problem. One wale; converilent frem both

llA. Hoffman has given a different formulation of the problem which
also yields the max flow min cut theorem. While the techniques
employed in his approach are similar to those of this paper, he
uses an entirely different set of variables which are of interest

% in themscelves. ‘
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a'computational and theoretical viewpoint, 15 as follows. Set

up the pseudo transportation array

Totals
Xo0o Xo1 Xo2 °°*  Xgp 0 -
1o X113 X3p X, | O
X20 Xp3 Xpp vt X5 | O
o *n1  *n2 ~Xnn @
b -l
Totals (o] 0 0 coe 0
schematizing the equations
(1a) Xy *+ 3 Xy =0 (1=0,1,...,n)
3, %1
(lb) -XJJ + Z xiJ =0 1."031,"-)“)’
1,14

where x“ >0 (4;9=1,...,n; 1#J) denotes the flow from node
1 to node J, X4 20 (1=1,...,n) represents the total flow
through node 1, Xoq 2 0 (J=1,...,n) 18 the flow from the source

to node J, and x,, > 0 (1=1,...,n) the flow from node i to the
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sink. Thus X,o 18 the total flow through the network and the
problem is to maximize X, o Subject to (la), (1b), and
(2) . xu#-xdis_cu (ciJ-ch)
(3) xii S cii (1).’ - 1,0.-,“)
x1c>5 ®10
X0y £ C40°
(") : xiJ Z 0 > (10J b d °:°°‘on)o

where the c's are given nonnegative constants. We have formally
included all variables xiJ in the problem; arcs not present in
the network have 4y = 0.

Because of (2), we refer to this as the undirected problem;
that 1is, except for source and sink arcs, the direction of flow
is not specified in the arcs.

Given an undirected problem,it is easy to describe an
equivalent directed problem. Simply replace each undirected
arc by a pair of oppositely directed arcs, each with capacity
equal to that of the original arc. That the two problems are
equivalent follows from the fact that given any x = (xiJ)
satisfying (1), (3), (4), and

(21) Xy4 < €4

X514 £ ¢4 (cgymcyy),
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,a flow x' of equal value is obtained by setting
Xio L xio (1 = 0,...,0)
xsd = on (J - o,....n)
; xiJ e« max (x1J - Xy 0) (1,3 =1,...,n; { % J)
n
X{q = Xgq - Jfl min (xij’ xJi) (1 =1,...,n).
J#1

Thus (2)‘may be replaced by (2') without changing the value of
a maximal flow.

A cut in an undirected network has been defined as a
collection of arcs and nodes meeting every chain Joining source
and sink; a cut in a directed network is similarly defined as
a collection of directed arcs and nodes meeting every directed
chain from source to sink. The value of a cut in eitmrcase |
is the sum of the capacities of all its member nodes and arcs.
One proves easily that the minimal cut value is the same for
an undirected network and its equivalent directed network.‘ Thus,
to prove the max flow min cut theorem, it suffices to consider
directed beworks only. Accordingly, we shall make no further
use of the condition gy = 41 in (2'). "

Let us now rewrite the inequalities (2'), (3), as
(5) Xgg + ¥yg = Cyq0 Yy >0 (1,3=0,1,...,n)
where, to avoid special cases, we have included a sufficiently
large upper bound of ¢ o ON the variable Xy0b for example, choose

n
(] > Z ¢

00 % i 10" Then the problem is to maximize x . subject to

(la): (lb)’ (u), and (5)
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2. BASES

We turn momentarily to the question of what constitutes

'g in order to note that the Hitchcock-Koopmans

a basis,
transportation theory carries over to the flow problem.

There are (n+1)2 + 2(n+l) = 1 linearly independent
equations in the set (la), (1b), (5), since one of the set
(1a), (1b), is redundant. Drop the first equation of (la)
as the redundant one, and denote by xiJ, YiJ the column vectors
of the coefficient matrix of the remaining epations corres-
ponding to the varisbles xiJ’ yiJ' respectively.

It is clear that at least one of xij, YiJ must belong to

any basis B. Thus the pairs ij fall into one of three classes:

A: those 1j for which x“ € B, YU € B;

f: those 1j for which X,y €B, Y, ¢B;
¥: those 1j for which X, g B, Yy, €B.

The number cf pairs ij of typeof is always 2n+l. For if there
are k of type =, hence (n + 1)2 - k of types 8 ana Y, then

2 :

- Let 2 8, 4X
jo1 13

of a linear programming problem, and suppose A = (alJ) has

rank m. A set of m linearly independent columns of A is a
"basis", the corresponding x, are "basic variables". The

vector X = (gf"°’2n) obtained by assigning non-basic variables

zero values and solving the resulting equatigns for the basic
variables 1s called a "basic solution". If X has non—-negative
components, it is termed a "basic feasible solution". Geometri-
cally, basic feasible solutions correspond to extreme points

of the convex set defired by the constraints.

= b,, Xg 2 0 (1 =1,...,m) be the constraints
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2k ¢ (n+1)2-—ke(n+1)2+2(n+1) -1, k=2n+1.
Moreover, ;t,ll impossible to find among the pairs of type < a

-

subset of the form
11J10 11J20 12121 12J3,o--. 1kav 1kJ1‘

where the 1's and J's are distinct among themselves, as other—
wise tbc column vectors xid, YiJ corresponding to chgoo;nirs
can easily be shown to be dependent.

These two ltatcnontl together imply that B can be arranged
in triangular form, just as in the HitChcock-Koopmans case.
To see this, it is convenient to associate a linear graph G
with B, and to look at the problem of finding the basic solution
corroaponding to B in terms of this graph.|2 |

Let _ FORERNL Wy bo,..., bn be the nodes of G; the arcs
of G are those ale for which {J 1is of type (. As we have
seen, G has 2n + 1 arcs and contains no cycles. It is therefore
a tree. Cnll a node of G which has only one arc on it an
"end—hodo'. There are at least two such.

We associate with node a,(b,) of G the equation —x,, +

-Q (-xJJ + L x4 0). Now locate an end-node,

p
TR 1,14)

TzThore are several alternative ways one can view the
equation solving process in terms of a linear graph. Since
the equations came from such a graph, one way would be to use
the original network. This appears to be most efficlent for
hand—computation. . Another way, in terms of the array (1),
can be developed as in [2]. A third way, the one we adont,
1s suggested in (Ab]. all of these, the notion oo .
"basis” 1in the programming sense 1is closely related to the
notion of "tree" in the graph sense.
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say a,, and let its arc be akb‘. Since for pairs 1J of type ﬁ,
yiJ -0, x1J - °1J’ and similarly xiJ » O, y1J = qu for pairs

of type 4 , all the variables of the equation —x,, + Z x ,.=0

are determined but one, X t? and thus its value may be found
immediately. Then use (5) to get Yes ™ Skt — Xig- Delete
a, and akb‘ from G, leaving a tree, and repeat the prpcedurc.

After 2n + . steps, the values of all variables are determined.

Notice that only addition and subtraction are required.
Thus, 1f the °1J are integral, so are the values of all variables
in a basic solution, hence in a basic feasible solution. Ve

will make use of this fact in the concluding section.

s> S

2+ SIMPLEX CRITERION AND THE DUAL PROBLEM

Let u,, Vs Wy 4 be the multipliers (dual variables)
corresponding to the equations (la), (1b), (5), respectively,
in applying the simplex algorithm. Then the conditions for an

optimal basis B* are:

(6a) v > 6y, (§ 0o=1s §3q=0 for 150)

(6b) Uy Ve > O (149)

(6¢) Wy 42 0
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nlth'pquality holding in (6a), (6b), if the correspcnding

X“ € B¢, in (6¢c) ir Y” € B*. Ignoring the redundar'xt. equatloq

amounts to taking u_ = O. Then, since X__, ¥ €Beld

Yoo * 0, \ -1. Por all other pairs 1j of type o, "1.1 = 0,

and the equations u, + vJ = 0 hocld. It follows that all U, = 0

or 1, all vy=0or -1. (A convenient way to see this is to

associate the variable “1(",1) with node ai(bJ) of the graph

G® corresponding to B® and the equations u, + vJ = O with the appropriate
arcs of G*). Substituting these values into (6a), (6b), to

determine the w,, corresponding to Y, ¢ B* and noting (6¢)

shows that all w - 70 or 1.

The dual programming problem is to minimize }:cuw“

subject to (6a) — (6¢c), and the multipliers corresponding to an

optimal primal solution solve the dual problem. Thus

(7) max x o = min }:c“uw - Z¢

00 §;1J

where O° is that set of pairs 1J corresponding to “1.1 = 1; in
terms of the network, (J-is some subset of those (directed)
arcs and nodes which are at capacity in the flow x. We claim
that C~1is a cut. PFor suppose all cu. 1) ¢ <, are increased

by € > 0. This does not change the sclution to the dual, hence

liOur choice of ¢ implies that Y €B for any B yield-
ing a basic feasible erutlon; also cleggly X "6‘ B* except
possibly in the trivial case where the maximal®flow over the
network 1s zero. The assertion is valid in general, however
as otherwise all multipliers have zero values, viclating (6a5

with § = 0.
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cannot increase the flow in the network. But 1f there were
some directed chain from source to sink not meeting (Y, the
maximal flow value would be increased by at least € .

Thus & 18 a cut, and since it is clear that no flow can exceed

the value of any cut, the proof of the max flow min cut theorem

is complete.

4. MENGER'S THEOREM

Given an arbitrary linear graph G, let Il' 12 be two
disjoint sets of ncdes of G. Menger's theorem states that the
maximal number of pairwise node-disjoint chains Jjoining I1
to.I2 18 equal to the mirimal number of nodes necessary to
separate I1 from 12. To deduce this theorem from the max flow
min cut theorem, Jjoin all the nodes of 11 to a new node, the
source, and all the ncdes of 12 to another new node, the sink;
then assign unit capacity to each of the old nodes, infinite
capacity to each érc. Menger's theorem now follows by selecting

a maximal flow x with integral components.
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