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SUMMARY •    .,*...,   U 
y,- f' ' 

Li  Lliis pauti  we^'^onsider, a particular clasB 

of games with partial Information.    Generalized 

subgames are defined.    These subgames give  rise to 

functional equations whose solution permits a 

recursive construction of the optimal  strategies.C ^ 
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QAMES WITH PARTIAL INFORMATION 

H. B. Scarf 
L. S. Shapley 

I.  IKTRCDUCTION 

In this paper we shall discuss a particular class of games 

with partial information. The characteristic feature of the 

information pattern In these games Is that each player la 

Informed of his opponent's moves a fixed amount of time after 

they are made. More specifically, the players each make a 

sequence of choices, a,, a2, ... and b,, bp, ..., respectively, 

from fixed finite sets A,, A«, ... and E,, B2, ..., In the 

order a,, b,, a«, b2, ... . The condition on the Information 

pattern Is that Player 1(2) In selecting an(b ) Is Informed of 

his opponent's moves up to and Including bn_i/(
a
n *)* a3 well 

as his own previous moves.  It Is necessary that k be positive 

and i nonnegatlvc. The payoff Is defined to be some function 

of the two sequences of choices.  A general theorem Is proved 

In [9] which Implies that for games uf this type continuity of 

the payoff Is a sufficient condition for the existence of a value 

and optimal strategies for both players. 

The number A-k+i—lis defined to be the time lag of 

the game. The case of perfect Information is given by Ä ■ 0. 

This case has received a considerable amount of attention 

[2,  4], and the purpose of our paper is to generalize soro of 

the properties of games with perfect information to games 
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with poaltlve time lags.  In order to Illustrate the properties 

that we wish to generalize, let us assume for the moment that 

the payoff function Is continuous. Let us define V (a,, ..., b ) 

to be the value of the perfect—Information game In which the 

first n moves of both players have been fixed to be a,, b., ...» ^n» 

the payoff being the same as the payoff In the original case. 

The subgame p-operty of gameia with perfect information Is 

expressed by the fact that the game which terminates after 

b , and whose payoff function Is given by V (a,, ..., b ), has 

the same value as the original game, and that the optimal 

strategies in the terminated game may be directly related to 

the optimal strategies of the original game [2] , 

The point about optimal strategies may perhaps be seen more 

clearly If we briefly describe the functional equations associated 

with these subgames. These equations will be treated In more 

detail In the body of the paper. An example of the functional 

equations for perfect Information games Is 

V*^,...^) . Max Mln VV, bn,an+i.bn+1) , 

•n+l Dn+1 

and their relationship to optimal strategies is expressed by 

the fact that If Player 1, when informed of the specific choices 

of a,, ...,, b , plays the choice of a , which maximizes 

Nin V^a,, ..., b , anj.i# 
bn+l^' then thl8 8trate8y constitutes 

bn+l 
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an optimal strategy.    The optimal strategies for Player 2 are 

derived from a corresponding set of functional equations which 

have the form 

^l VW  -    *,ln a
Max ^^1 bn+r

an^)   ' 
Dn+1 an+2 

The  case k ■ 1,  i ■ 1,  and X » 1 is a so—called "simul- 

taneous game."    In this case  the subgame property may be 

expressed by the functional equations 

pv n«fl'    q^ n+1' a^ 

bn+l 

« Mln Max   ... 

where the p's and q's are probability distributions, and 

V(a,, ..., b ) Is defined to be tue value of the subgame in 

which the first n moves of both players have been fixed, and 

the game proceeds as a simultaneous game toward the same payoff. 

If Player 1, when infomed of the specific choices of a,, ..., b , 

plays a  , with a probability distribution p(a i) which maxi- 

mizes Mln ^2  p^an"»-l^al' '**' bn+l^' then thls collection 
bn+l an-H 

of distributions, called a beaavlor strategy, constitutes an 

optima", strategy.  A similar remark is valid for Player 2. 

As soon as wa begin to discuss the case in which the time 

lag Is greater than one, the subgame properties no longer exist. 
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The basic reason for this failure Is that if we fix the Initial 

moves of both players and only Inform the players of the moves 

of their opponents which they are entitled to know, then the 

Information available to each player will be different at all 

times from that available to his opponent. We will never 

arrive at a situation which looks like the beginning of a new 

game, and subgames will therefore not exist. 

In order to clarify this remark, let us Introduce a set 

of diagrams describing the different types of Information 

patterns. The meaning of the diagrams will be clear from the 

examples. The diagrams for th^ case of perfect Information 

will be 

a1      a2 

\ / \ - 

whereas the diagram for the game k ■ 1, / - 1, and X » 1 la 

al .     *2^ *? 

b1       ^»v       *b5 

The diagram for k «- 2, / - 1, and X ■ 2 Is given by 

. 
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The subgames In the first diagram occur after any Initial 

aequance of moves; In the second diagram they occur after 

any initial sequence which terminates with a move of Player 2. 

It is easy to see that these represent places in which both 

players have a commcn fund of Information, and the last diagram 

points out the fact that in the game with time lag 2,  there is 

no place in which both players have the same fund of information. 

As we shall see, it is possible to introduce a collection 

of games associated with a game whose time lag is greater than 

one, which play somewhat the same role as the subgames described 

for the cases X ■ 0, 1, and which give rise to more complex 

functional equations than the ones mentioned above. It will 

also be true that every time—lag game will have associated with 

it two functional equations from which the optimal strategies 

of either player may be deduced. We should point out that 

these functional equations have been discussed by Isaacs 

[5, &] ,  Karlin [5, 7], and Dubinis [5] for a particular game, with 

time lag 2. 

II.  TOE QSNERALIZED SUBOAKBS (k - 1, i - X > 0) 

We shall fix a specific value of X > 0, and consider the 

case k « 1, I • X.  It is clear that any other information 
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pattern with the same time lag can be transformed into the 

above ^ase by a renumbering of the tioveB of one of the players, 

and the addition of several vacuous moves at the beginning of 

the game. We shall find It convenient, however, to discuss 

different combinations of (k, i) with the same time lag 

separately (Section IV), and to introduce a particular set of 

functional relations for each combination. What this means, 

of course. Is that any particular game will have several types 

of euogames and several sets of functional relations. In 

particular, the subgames and functional equations that we 

discuss in this section (!: «1, i « X) will apply with the 

appropriate renumbering to an arbitrary game with time lag X. 

The diagram for this case is given by 

an-fX+l 

The generalized subgame t:iat we pre going to introduce will be 

described by a collection of parameters, which will summarize 

the information available to both players at the beginning of 

the subgame. This information consists of two parts: 

1. The complete set of information that would be available 

to Player 2 after he makes his n—th move in the original game. 

This collection of information which we denote by I consists n 

of a specification of the first n moves of Player 2 and the 
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flrst n ~ X «f 1 moves of Player 1.  As the above diagram shows, 

this Infomatlon would also be available to Player 1 at this 

time. 

2. A Joint probability distribution on the moves 

a x^2, ..., an which we represent by ?„(*)• 

The diagram for this subgame Is as follows: 

p (•)        moves for Player 1 
In subgame 

A 
a ftn-X+l-_ /n-X-f?    n^.. ^n4-l ^n+X+l 

•   moves for Player 2 
In subgame 

A 
The notation b , etc.. Is used to Indicate that these are fixed 

choices and are Involved In the specifications of the subgame. 

The subgame proceeds as follows: The moves ä^X.O» •••* an 

are randomized from Pni
m)  and told to Player 1, but not to 

Player 2. Player 1 then makes a choice of an+Tf followed by a 

choice of b +1 by Player 2. The choice of *« wp *hich occurred 

as a result of the randomization Is announced to Player 2. The 

choice of b , Is told to both players after It Is made; but, 

according to the Information requirements, the choice of a , 

is kept secret from Player 2 until he Is ready to make move 

b j.,. We then have a choice of an4.2 
&na ^+2' re8Pect-vely» 

and *„>.!.» ifl then  announced to Player 2. This sequence of moves 

proceeds until all of the chance moves have been announced, and 

then continues using the Information pattern of the original game. 
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The payoff Is defined to be the same payoff as for the original 

game. When we have occasion to refer to this suogame, It vrlll 

be denoted by 0n - 
0
n(*n' Pn( '))•  Clearly 00 Is the original 

game. 

The techtnlques of [9] may be used to show that the game 0 

Kill have a value and optimal strategies If the payoff function 

Is continuous, and In this case It Is easy to see that the value 

will be continuously dependent on the Joint probability dletrlbu 

tlon specifying the game. TV>e next section of this paper will 

be devoted to a derivation of the  inctlonal equations associated 

with these subgames, and we shall assume In this derivation tnat 

the payoff function Is continuous. Later on we shall dlscust 

the relevance of the functional equation In other cases. 

III.  THE FUNCTIONAL RELATIONS (k - 1, i - X) 

Let the value of 0 be denoted by V(l ; ?(•))• Let ue 

define a specific strategy for Player 1 In ^h^s game In jhe 

following way.  Let him make his first move a  - according to 

the probability distribution x(an+i'
a
n_x42' '* *» a ^*  ^We 

Indicate the dependence o^ these moves upon the result of the 

randomization In the obvious way.) After Player 2 makes the 

move b , f and If the randomized value of a , « Is denoted by 
A 
an—X+2'  then  Piay6^ 1 hÄ3 complete knowledge of  In+1 ■ 
, A A A Ä 

(a,,   ...,  an__\+2' ^1»   •••»  bn4.i''  Pluß»  of course,  the other 

randomized values of a.    Let him then continue his strategy by 

playing an optimal strategy In  the game ^^1(^+1*  pn+l^ *' V-X-»^^' 
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where Pn+i(' ^n^x+p) 
l8 ,neant to t)e the Joint distribution on 

A x ,, ..., a , which Is formed by combining P^*) with 

X(ä ,1a   2, ...» a ) and conditioning this Joint distribution 

by »p^xo * Än—X-f2* ^et U8 8ee what Player ^ can obtain by 

using a strategy of this form, if he tells Player 2, at the 

beginning of 0 . that this Is the strategy he will be using. 

In this case the common fund of information after both players 

have made their Initial moves in 0 . and after *- x.2 
l8 tol<i ^o 

Player 2, is precisely I , and Pn+i( * l^r-x^^» ar,<1 thl8 l8 the 

common fund with probability p(*n \+2) 
d9rived ^rom Pnl')« 

Player 1, of course, also knows the other results of the 

randomization. The  way that we nave chosen Player I's strategy 

shows that he will get at least 

^W Vl(-lSn-X+2)) 

Player 1 cannot determine the result of the  randomization for 

a    .   p,   80 thftt Ät the beginning of 0    he  can guarantee himself 

only an expected value of 

£ p(in->,+2
)V(W pn+l

(-IV-M.2)) " 

A 

Again, Player 1 cannot dictate the choice of b ,, so that he 

can only be sure of 

"^ZXV-X^WW Pn+1< an-X-»-2^ ; 

n+l 
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and finally If he picks x(an+il
Ä

r>«x^2' •,•, *n^ Judiciow8ly» w« 

oan conclude that 

v(ln;pn(.)) 

X(Ä. 

Max 

n+1' n-X-»-2 
«^i:P(^X+2)

V(1n+l
,Pn*l(- iv-X+2 )) 

n' n+1 

The next step is to replace this inequality by an equality, 

and this is accomplished by the following reasoning.  Let 

x ^an-fl'an-X+2' ,•,, an^ t>e the initial component of an optimal 

behavior strategy for Player 1 in 0 . Since the otrategy is 

optimal, it can be told to Player 2 without degrading Player I'a 
A 

expected return.    Let Player 2 choose b    ,   so as to minimize 

zx* n-X+2 )V(I n+l' Pn+l1 n-X+2 ))   , 

where Pn+i (' lan+x_p)  is compounded from ?„(') and 

x (a +1|a    x p,   ..., a  )  in the  obvious way.    Then with probability 

p(a    x p)  the  common fund of information available  to both players 

is In+1.    Now if  Player 2 continues his strategy by pleying an 

optimal strategy in Q^Uj^i  Pn+i^ * l*n-X+2^'  lt l8 clear that 

he will prevent Player 1 from getting an expectation greater than 

zx* n-M-2 '^W  Pn+1(-I£ n-X+2 )), 
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whlch from the way that b    ,  was  chosen  Is equal  to 

A' 
bn+l 

Sine«* Player 1 wae assumed to be playing optimally, this last 

quantity muat be no less than V(l ; Pn(*))» and w« obtain 

V(ln;Pn(-)) <     Max     Mln Y: PtSn-^'^^l'Pn+lM^n-X^)) 

Combining this with the  previous inequality, we obtain  the 

desired functional   relationship. 

Theorem 1.     Let G0 be a game with  time lag X  (written in 

the  form k « 1,  I - X),  which has a continuous payoff.     Let 

V(I   :   p (•)) be the value of the  subgame  in which both plaiyers' 

information about  the past is In ■  (ai»   • • •» an—x+i'  ^i'   * * *'    n^ 

and  in which Player I's previous  X — 1 raoves are governed by the 

joint probability  distribution Pn( *)  ■ P(an_x+2'   *' ''  an^'     Ttien 

v(ln;Pn(.)) 

*    (*      I    ^ ft   x^^P^n-X^^W^n^l^^n-X^))   ' 
xUn-H,an-X+?'--"an;  bn-H 

whf- re 

Ptan-x+C'  " 21 P(^n-X+2"--' n) 

an-X+3'•"' n 
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and 

Pr^J-l \ '  I *r^\±Of    * """^  /A ————— 

P<an-X+2^ 
'n-»-lv '•n-X'f2' 

IV. OPTIMAL STRATSQiaS ypR PLAYER 1 

In this section, we shall show that a class of optimal 

strategies for Player 1 In the game with time lag X can be 

derived from the functional equations that we have established 

in the preceding section. As before, we assune that the game 

is represented in the form k«lli«X>0. Optimal Strategie! 

for the case X - 0 are obtained by the process outlined in the 

introduction. 

The first of the functional equations relates the value 

of Q0 (the actual value of the game itself) to the value of 

01(l1;p1( •))« Por* x ^ 2 the first equation is 

V - 
x 
Max Min V(l1;p1(.)) 

with I,  - b,  and ?-,(•) - x(a,).    Let us define the components 

of a behavior strategy for Player 1 in the following recursive 

fashion.    Let x(a1) be chosen so as to maximize 

Min Vd^p^.)) 
b1 
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Call such a maximizing distribution x (a^).    In general.  If 

x*(a1), x*(a2|a1j  b1),   ... x*(an|A1,   ..., afwl; b1,   .... bn-1) 
# A A A A     . 

are knovm, then for each I •• (a,, ..., an_x+i» "i* *••» bn' 

we form the Joint probability distribution p (*) given by the 

following product of X - 1 factors: 

• .   .A        A A        C    N 
*  ^nl'i'-'-'^x^l'-'-^n-l^ ^""^n-l^ 

*/     iA    A     A    A    \ 
••• x ^An-X-»-2'al',,,,Än-M-l; bl,*,,'bn-X^lJ * 

Then x U^Ja^   ..., an_x+1,   ...,  an; b^   ..., bn)  Is chosen 

equal to any x(A
n^](l

a
n_x+2'   "•' an^  thftt rnaxlnlizes 

Mln2:P
#(^x+2)V(ln+1;  P^^-IÄ^^))   . 

bn+l 

As I takes on all conceivable valueJ, we obtain n 
x#(Vl|Äl' ••' ani V ••*' ^^ 

We want  to show that this method for selecting  the  components 

of a behavior strategy for Player 1  leads to an optimal strategy. 

Suppose  that such a sequence has been chosen.    Let us define the 

sequence of functions V (I  )  to be equal to V(I  ;  p  (•))•    They 

have the property that 

I.    Min 2> (Än-X42ial"-"an-X^r bi--"Vx+i)
v (W - V ^n^   ' 

bn+l 

II.    Min V*^)  - V , 
bl 
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And 

III.       lln    V#(I  ) - M(a,  b) 

uniformly,  where M Is the payoff function. 

Property I Is a direct consequence of the definitions. 

Property II follows from the application of the Initial functional 

equation.     Property III Is a direct consequence of the continuity 

of the payoff function, which Implies that the values of the 

subgames approach the payoff function for large fixed Initial 

segments. 

Now let us suppose  that the strategy ^x  j Is played against 

an arbitrary mixed strategy for Player 2,  which Is represented 

in behavior strategy form by  the sequence of conditional distribu- 

tions y^n+il*!»   •••! &r>_x-»'li  bl*   •**' bn^*    TheBe two strategies 

give rise  to a measure on the space of all sequences of a's and 

b's with the property that 

prob (a1,...,an,b1, ...,bn)  - x  (a1) 

• .A A A A A v       /A      v 
...  x (an|a1,.. . ,an_1;b1,...,br>_1)y(b1) 

A A A A A 

••• y^n'^l'*'*'an-.x'bl',"'bn-l^   ' 

and the functions V(l ) become a sequence of random variables. 

Then 
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^n-X+S' *'' '*n+l    P™^*!'''' '*n-X+l'bl' * * * 'bn) 
V «W) 

Ab n-M 

which in turn is equal to 

«. A 

21   x ^Än-X>2'ftl',,,,ar>-X-H;bl',,,,br>-X+1^ 
n-X+2 

n-fl 

y(^J.1la1,...,a^_,x,;b,,.,.,bn)V (l .,)  , 'n-H'"! n-X+l'^l n'     ^n-fl 

btoause I    ,   doei not depend on a^^,,   ..., *n+i'     Property I 

tells us ^hat thli» last expression is not less than V (In), 

and we obtain 

^(WV i^n)   ■ 

If we Integrate out the conditioning variables and apply 

Property II, we obtain 

E(V#(ln4l)) ^ V ; 

and applying Property III yields 

B(M) ^ V , 
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which tells us that our strategy Is optimal. 

There may be some question at this point as to which 

optimal strategies of Player 1 are obtained from the functional 

equation by the procedure outlined above.     It is quite easy  to 

give examples In which not all of Player I'c optimal strategies 

are obtained in this way.    It is true,  but we shall not prove 

it at  this point,  that the class of strategies obtained from 

the functional equation will Include the class of "beet" 

strategies for Player 1   [8, p.  84]   (if we disregard those 

portions of a strategy that refer to situations of measure 

zero). 

Theorem 2.     If the  components of a behavior s* rategy for 

Player 1 are chosen recursively in the way outlined above,  this 

strategy is optimal. 

V.     OPTIMAL STRATEQIK3 FOR PLAYER 2 

To obtain optimal strategies for Player 2, the game must 

be represented in the fonr k-X + l, i-0. The diagram for 

the n—th subgame in  this  case Is 

' moves for Player^l in thie  subgame 

q (•) '    moves for Player 2 In this subgame 
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The game Is specified by In - (a^   ...,  an+1#  bll   ...,  
b
n_x.n)» 

And <!„(•)  ■ prob  (bn__x>(.2'   •*•»  ^^    We notlce  that the flr8t 

move in  this subgame  Is made by Player 2.     If we denote Its 

value by V(l  :  q  (•))*   the  functional equation  is 

v(In;qn(.)) 

Wh       I. ^ .   ^  ^ i:^bn-X+2)V(In+l^n+l^lbn-A^))   ' 
y(bn+l,bn-X+2"--bn)  an+2 

and by using the same techniques as In Section  IV,  It Is possible 

to compute an optimal strategy for Player 2  In a recursive fashion 

from this functional equation. 

VI.     THE QSNERALIZED SUBQAMES  (OTHER VALUES OF k AND i) 

In this section we  consider the representation of our game 

with time lag X for general values of k and i  (k > 1,   i > 0, 

X - k + i — l).    For each value of (k,  I)   there will be two 

classes of subgaraes,  depending on which player moves  first. 

These will be generalizations of either tht.   games discussed 

in Section III or those discussed in Section V.     In what follows 

we shall  restrict our attention to  the  former. 

The  diagram for the n-th subgame  is given by 
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n-i+1 

A 
b 

V7) 

moves for Player 1  In the subgamt 

'n+1 

loves Tor Player 2 In the subgame 

This aubgame 13 described, first of all, by the fund of 

information known to both players after Player 2 has made hla 

n-th move.  In this case it will be a apscificatlon of Flayer 

I's first n - 4 -f 1 moves, and Flayer 2'a first n - k ♦ 1 moves, 

say (Sj, ..., £„_!+!» ^1,   •••# ^n-k-H^ * 
In* We al80 have 8lven 

am arbitrary pair of Joint probability diatributions Pn(*) ■ 

prob(ai>_je^2, ..., an) and qn(-) - P
rob(bn_k+^» •••» bn). The 

game will be denoted by Qn(In; Pn(*)» qn(•))* and it proceeda 

as follows: The moves a^ -J~, ..., a are randomized from p (•) n—1+2' n ^n 

and told to Player 1 but not to Player 2.    Simultaneously, the 

moves b    . .g,   ..., b    are randomized from Qn(*) and told to 

Player 2 but not to Player 1.    They then proceed as they would 

in the original game,  with  the  same payoff M(a,  b).    We  still 

assume that this payoff is contlnuouo,  so that the general 

theorem of   [9]   applies and  the game has a value,, which we 

denote by V(ln;  Pn(-), ^(O).    As before,  there exists a 

sequence of functional  relations.     They take  the form 
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v(in;pn(.),qn(-)) 

Max Mln 

- Mln Max ... 

The proof la quite similar to the proof given In Section III 

and we shall not repeat It here. 

We would like to Indicate the major difference between the 

functional equations In this case and the functional equations 

thst were discussed In Sections III and IV. In those sections 

we showed how an optimal strategy for Player 1 could be computed 

recursively from the functional equation. The corresponding 

procedure for the present case would be the following: Suppose 

that x*(a1) ... x*(an|a1, ..., an_1, b.^ ...» bn_4() have been 

computed. Then for any In - (a^ ..., a^^, ^i •••# brV4C+3)' 

we would consider a game ^(^'Pr^*)* q^')) wlth pn(*J defined 

by 

pn(,) " x ^n-i^^l'-'-^n-i-H^l'-'-^n-X-fl5 

* /  iA K     ^  \ . . .  X  ( a  I Ä - , . . • f *__,2 ' ^ I » • * * » "n \r f       » 

and for some ^A')  which for the moment we leave undefined. 

Then x(an4.il
a

rv_«j.2» •••» an^ would t)e chosen so as to maximize 
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vrh      lhMln h  ^P^n-i^^tVl^: 
y^n>llbr>-k4.2'--   'bn) 

^W^n^l^^n-I^^Vl^^n^+S^   ' 

It io clear that this diolce would depend on q (•)# ^nd we would 

therefore only be able to show that the strategy we have chosen 

Is optimal against a particular choice of Player 2,s strategy. 

This means that In order to obtain an optimal strategy for 

Player 1 In an arbitrary (k,  i)  Representation  (X > 0), we must 

transform this representation Into k ■ 1,  I ■ X by renumbering 

the moves of one of the players and the addition of several 

vacuous moves at the beginning of the game, and then apply the 

method of Theorem 2.    To obtain optimal strategies for Player 2, 

we must transfom Into k-X + 1,  i«0. 

VII.    SOME RgMARKg 

In our discussion we have consistently assumed that the 

payoff function Is continuous.     This has permitted ue  to say 

that each subgame under discussion has both a value and optimal 

strategy for either player,  and there is at least one point In 

the proof that we have given for the validity of the functional 

equation In which the existence of optimal strategies was 

specifically used.    There are other condition? under which 

our subgames may be shown to have a value.    For example, as 
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is shown In [9], If the ptyofT function lu upper (lower) nemi- 

contlnuous, then each eubgaime has a vaiuo an! opllmnl Htrategies 

exist for Player 1 (2).  The queation arisen as to whet.her the 

functional equations relating the values ol" lies« aul «ames are 

still valid. It can be shown that a modlflratlon of tic arg\iment 

of Section III yields this same functional equation, with Max Mln 

replaced by Max Inf (Sup Mln).  It Is also true that optimal 

otratcgltJ for the player who has them In the seml-oontinuous 

case can also be generated by ny ins of the functional equations. 

On the other hand, very little can be said about the other player's 

strategies from the functional equation.  To Illustrate this point, 

let us assume that the payoff Is lower semi—continuous, so that 

the maximizing player does not necessarily have an optimal 

strategy.  Let us recursively pick strategies for Player 1, by 

choosing an x(:,
n+il

a
n_x+2' *•,, an^ whlch ls  £/2 -effective 

In 

Mln i:p(an^+2)
V(In+l'Pn+l(-l

Sn-X+2^ ' 
bn+l 

and, as before, define V*(ln) - V(ln; P*(*)). Then It will 

be true that against any strategy for Player- 2 we have 

E(V*(In+l)|In) ^ ^(U - i/2n>  emd thererore E(V*(ln)) 2 V -€ 
But lower semi—continuity weakens Property III of Section V to: 

t —— , A       A   . —— * , . * y . .,   A      A 

III 
a 

llmA       M(a,b)  > Urn    V (ln)  >  Urn    V (Ij ^ M(a,b)   . 

As a result, we can conclude that E(     llmA    M(a,b)) ^V - t, 
a,b-^a,b 

A    A 
but not that S(M(a,b)) ^ V - e. 
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Even without the conditions of semi—continuity on the 

p«yoff function, It la etlll meaningful to talk about the 

functional equations. Without any conditions on the payoff 

function, if we can find a solution of the functional equations 

v(iniPn{-)) 

x<an+l 

Max 
ln-Vt-2 #•••#*_)   D 

Mm £ p^^Mi^-.P^i-l^^)) 
n n+l 

with the property that V(I ;p (•)) ->M(a, b) (say boundedly), 

then the strategy for Player 1, which Is generated recursively 

from these equations, will guarantee Player 1 at least V(I0) 

against any strategy of Player 2. 

Ajj BXAMPLB 

It nay be instructive to show how the above techniques can 

be applied to the celebrated "bomber-battleship" game to yield 

functional equations. (References [3], [ß],   [6], [7] .) We shall 

do this in two ways, according to the two arrangements 

Case I 

lr>-l 

Vc - 1, i - 2 

n-fl 'n-1 

Case ZI 

k - 3, i - 0 
(a* ad a2 vacuous) 

n-»* 
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Ttit b. will eaoh b« 0 or Ij the a. will each be 0, 1, 2,  or 

0 (paes). The first a^ ^($)le Interpreted as a prediction that 

bn * b
B*l " «n or bh-2 * Vl " an 

(in case I). (in Caae II). 

The payoff is 1 to the a-player for a correct prediction, 0 for 

an incorrect prediction or no prediction. This payoff is lower 

•eml-oontlnuoua, ao optimal Btrategies are assured only for the 

b-player. (This formulation follows Blackwell [l] .) 

In Case I we observe that the generalized subgane 0n(ln; Pn(')) 

Is trivial if any ^  ^0in In. On the other hand, 0n(In; ?„(')) 

and Qj-C^» Pm^')) are completely isoraorphic provided that 

pÄ • p.., bM • b... and all a4, a4 are ® (i.e., the earlier 

b., b* do not matter). Hence we may write 

W*«) * V<X0'X1'X2) ^    n I1 

where -</■ bÄ and r.    ■ p«(«).    Moreover,  sywetry tells us that n on 

^O^*©' xl' x2^ * ^i(x2' xl' x0^'    Henct the functional equations 

of Theorem 1, n ^ 1,  reduce to the single equation: 

/ . j tf0(u,v,w) + x 
(1) f0(x,y,z) -Max     Win   <     0 

u,v,w ^tf0(w,v,u) + y 

where t"l — x — y — z and u, v, w are restricted to be non- 

negative with sum <; 1. The first equation (n - 0) becomes 



V - V, Max  Min 
f0(x,y,E) 

for th« valu« of the gam«. Bquatlon (1) la the saror ai aquation 

(34) in Itaaot* paptr [6] and forma the baaia of hi» analyaia 

of €-optl«al atratagiea for the a-player. The unique "Ideal" 

(locally optimal) strategy ia given by XQ ■■ *} ■ x» ■ 0 — i.e., 

never predict — and ia clearly not optinal. 

In caae II, 0n(ln; *„(*)) i» again trivial if any al V ® 

in I , while the other games are entirely Independent of all 

bjln^ Thua, we have 

Vn(In;<ln(,)) - g(x) lf n ^ ^ 

where x • ^(O), 0 ^ x ^ 1. Syimetry givea ua g(x) ■ g(l 

Hence, the functional equatlona of Section V reduce to 

-x) 

(2) «(x) Min 

O^u^l 
0£V<1 

Max I 
with 

V - V0 - Min g(x). 
x 

xu (0) 
x(l-u) -f (l-x)v (1) 
(l-jcXl-*) (2) 
xg(u) + (l-x)g(v) m 

No Max appeara because a2 ia an automatic paaa in this case 
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This functional equation hae been studied exhaustively.  It 

develops that a minimizing x can be chosen for (5) with the 

property that, If we set x ■ x In (2), the minimum Is achieved 

at u • x , v - 1 — x . This makes an optimal strategy for the 

b-pl*yer extremely easy to describe:  always choose b , - b 

with probability x , bn+1 - 1 ~ bn with probability 11 — x . 

There is reason to believe that this phenomenon will not occur 

in other related cases, such as the X • 3 version of the present 

example, but the theory remains obscure on this point. 



F-797 

RSFEHBMCSS 

1. Blackwell, David, The  Pradlction of Saauenoai, The RAND 
Corporation, Research nenoranaun RM-i^/b, October 12, 1955. 

2. Dalkey, Norman,  nBqulvalence of Information Patterns and 
Bssentially Determinate Oames," in H. V. Kuhn and A. W. 
Tucker (eds.)* Contributions to the Theory of Qsaes, 
Vol.  II, Annals or Mathematics studies, NO.  2(5, Princeton 
University Press, Princeton, 1953. 

3.    Dublnsr/ Ltster B., A Discrete Bvasion Qaae,  to be published. 

4. Oale, Davla, and P. M. Stewart,  "Infinite Oaass with Perfect 
Information," in H. W. Kuhn and A. V. Tucker (eds.). 
Contributions to the Theory of Qaties, Vo1..  II, Annals of 
nathematios studies. No. zo, rnnoeton Uhiversity Press, 
Princeton, 1953. 

5. Isaacs, Rufus, end Samuel Karlin, A Qaae of Aiming and 
gvasion. The RAND Corporation, Research nemorandum WP1316, 
Augui't b, 195^. 

6. Isaacs, Rufus, gve Problem of Aiming and gvasion. Naval 
Research Logistics Quarterly, vol.  II,  1955» PP.  ^7-67. 

7. Karlin, Samuel, An Infinite flame with lag,  to be published. 

8. MoKinsey, J. C. C, Introduction to th* T^g^^y of flames, 
Mcflraw-Hill Book Company, inc.. New York 1952.  **" 

9. Scarf, Herbert, and L. 8. Shapley, flames with Information 
Lag,  The RAND Corporation,  Research Remorandun RII-1520, 
X^ist 10, 1)5*. 


