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GAMES WITH PARTIAL INFORMATION

H. B. Scarf
L. S. Shapley

I. INTRODUCTION

In this paper we shall discuss a particular class of games
with partial information. The cha-acteristic feature of the
information pattern in these games 1s that each player is
informed of his opponent's moves a fixed amount of time after
they are made. More specifically, the players each make a
sequence of choices, ays 85, «on and bl’ b2, ..., respectively,
A and B,, B

from fixed finite sets A in the

17 Aor .- 17 Bos oo e
order &), bl’ 85, b2, «e. « The condition on the information
pattern 1s that Player 1(2) in selecting an(bn) 18 informed of
his opponent's moves up to and including bn-k(an—z)’ as well
as his own previous moves. It 1s nece.sarv that k be positive
and 4 nonnegative. The payoff 1is defined to be some function
of the two sequences of cholices. A general theorcm 1s proved
in [9] which implies that for games uf this type continuity of
the payoff 1s a sufficlent condition i'or the exlstence of a value
and optimal strategies for both players.

The number A = k + § — 1 18 defined to be the time lag of
the game. The case of perfect information is given by A = O,
This case has received a considerable amount of attention
[2, 5], and the purpose of oui paper 13 to gencralize sor.2 of

the properties of games with perfect information to games
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with positive time lags. In order to illustrate the properties
that we wish to generalize, let us assume for the moment that

the payoff function is continuous. Let us define V+(a1, cee bn)
to be the value of the perfect—information game in which the
first n moves of both players have been fixecl to be ay, bl' cunpy B
the payoff being the same as the payoff in the original case.

The subgame p—-operty of games with perfect information is
exy.essed by the fact that the game which t:rminates after

b, and whose payoff function is given by V+(al, Sy bn),has

the same value as the original game, and that the optimal
strategies in the terminated game may be directly related to

the optimal strategies of the original game [2].

The point about optimal strategies may perhaps be seen more
clearly if we briefly describe the functional equations assoclated
with these subgames. These equations will be treated in more
detall in the body of the paper. An example of the functional

equations for perfect information games 1s

+ +
' (al,...,bn) = Max Min V (al""’bn'an+1'bn+1) y

‘n+1 bn+1

and their relationship to optimal strategies is expressed by
the fact that if Player 1, when informed of the specific choices

of 8ys ooy bn’ plays the choice of 841 which maximizes

Min V+(nl, Ei ey B bn+1)' then this strategy constitites

n+l

b n’ an+1'
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" an optimal strategy. The optimal strategies for Player 2 are
derived from a corresponding set of functional equations which

rave the form

v(a,,...,b

170 n’an+1) = Min Max VF(al,...,bn+1,an+2) .

bn+1 an+2

The case X = 1, £ =1, and A\ = 1 15 a so—alled "simul—
taneous game." In this case the subgame property may be

expressed by the functional eQuations

V(al,...,bn) -p(:ax ) q(gln ) 2 p(an+1)q(bn+1)v(a1,...,bn+1)
n+l n+l an+1
bn+1
= Min Max ...

where the p's and q's are probability distributions, and

V(al, ..., b ) is defined to be tiie value of the subgame 1in

n)
which the first n moves of both players have been fixed, and

the game proceeds as a simultaneous game toward the same payoff.

If Player 1, when informed of the specific choices of Byy cees bn’

plays a_,, with a probability distribution p(an+l) which maxi-—
mizes bMin g;: p(an+1)V(al, e bn+1)’ then this collection
n+l n+l

of distributions, called a be.uavior strategy, constitutes an
optima” strategy. A similar remark 1s valid for Player <.
As soon as wa begin to discuss the case in which the time

lag 18 greater than one, the subgame properties no longer exist.
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The basic reason for this failure 1s that if we fix the initilal
moves of both players and only inform the players of the moves
of thelr opponents which they are entitled to know, then the
information available to each player will te different at all
times from that available to his opronent. We will never
arrive at a situation which looks like the beginning of a new
game, and subgames will therefore not exist.

In order to clarify this remark, let us introduce a set
of diagrams describing the different types of information
patterns. The meaning c¢f the diagrams will be clear from the
examples. The dlagrams for thr case of perfect information

will be

4, &2
\ / \ e a0 ’
by b,

whereas the dlagram for the game k = 1, f =« 1, and A =» 1 18

1 e 3

The diagram for k = 2, £ = 1, and A = 2 18 given by



P-T97
1-26-5()

The subgames in the first diagram occur after any initial
sequence of moves; in the second diagram they occur after
any initial sequence which terminates with a move of Player 2.
It 18 easy to see that these represent places in which both
players have a commcn fund of information, and the last diagram
points out the fact that in the game with time lag 2, there 1s
no place in which both players have the same fund of information.
As we shall see, 1t 1s possible to .ntroduce a collection
of games associated with a game whose time lag is greater than
one, which play somewhat the same role as the subgames described
for the cases A = 0, 1, and which give rise to more complex
functional equations than the ones mentioned above. It will
also be true that every time-lag geine will have &ssocliated with
it two functional equations from which the optimal strategles
of either player may be deduced. We should point out that
these functional equations have been discussed by Isaacs

[5, 6], Karlin {5, 7], and Dubins [3] for a particular game, with
time lag 2.
IX. THE CENERALIZED SUBGAMES (k = 1, § = A > 0)

We shall fix a specific value of A > O, and consider the

case k = 1, 4 = A. It is clear that any other information
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pattern with the same time lag can oe tranaformed into the
above ~ase by a renumbering of the moves of one of the players,
and the addition of several vacuous'moves at the beginning of
the game. We shall find it convenient, however, to discuss
dirfferent combinations of (k, #) with the same time lag
separately (Section IV), and to introduce a particular set of
functional relations for each combination. What this means,

of course, 1s that any particular game will have several types
of supgames and several sets of functional relations. 1In
particular, the subgames and functional equations that we

discuss in this section (!: = 1, $ = A) will apply with the
appropriate renumbering to an arbitrary game with time lag A.

The diagram for this case is given by

The generalized subgame that we ere going to introduce will be
described by a collection of parameters, which will summarize
the information available to both players at the beginning of
the subgame. This information consists of two parts:

1. The complete set of information that would be available
to Player 2 after he makes his n—th move in the original game.
This collection of information which we denote by In consists

of a specification of the first n moves of Player 2 and the
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first n — A\ + 1 moves of Player 1. As the above disgram shows,

this information would also be avallable to Play:r 1 at this
time.

2. A joint probability distribution on the moves
..+, & which we represent by pn(').

8 n—re2’
The diszram for this subgame 1s as f{ollows:

p,(-) moves for Player 1
' in subgame
A f N\ g A— -
an-x+1_i;;7£Etjtfl- n n+1l n+i+l
i;;'r'.h--llt.-rl %n' bn+:ﬂhhib;;h
o — v e
i moves for Player 2
in subgame

A
The notetion bn’ etc., 1s used to indicate that these are fixed
choices and are involved in the specifications of the subgame.

The subgame proceeds as follows: The moves a e vy &

n=—A+2° n

are randomized from pn(-) and told to Player 1, but not to

Player 2. Player 1 then makes a clioice of a followed by a

n+l’

choice of b Ly Player 2. The choice of a shich occurred

n+l nN—A+2
as a result of the randomization is announced to Player 2. The

choice of bn+1 is told to both players after it is made; but,
according to the information requirements, the choice of a4
is kept secret from Player 2 until he 1s ready to make move

We then have a cholice of a , respect._vely,

b 5 ana b

n+ n42
is then announced to Player 2. This sequence of moves

nEA+l "’

and ‘n—x+}

proceeds until all of the chance moves have been announced, and

then continues using the information pattern of the original game.
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The payoff 1s defined to be the same payoff as for the original
game. When we have occasion to refer to this suogame, 1t vill
be denoted by G = On(In; pn(')). Clearly G, is the original
game,

The techniques of [9] may be used to show tha® the game G
will have a value and optimal strategies if' the payoff function
is continuous, and in this case 1t is easy to see thav the value

. will be continuously dependent on the Jjoint probability distribu-—-
tion specifying the game. The next section of this raper will
be devoted to a derivation of the inctional equations associated

with these subgames, and we shall assume in this derivation taat

the payoff function 1s continuous. Later on we shall discuss

the relevance of the functional eQuaticn in other cases.

III. THE FUNCTIONAL RELATIONS (k = 1, £ = 1)

Let the value of G  be denoted bty V(In; pn(-)). Let ue
define a specific strategy for Player 1 in this game in che

following way. Let him make his first move a 1 according to

n+
the probability distribution x(amllan_MQ, S Bk § an). (We

indicate the dependence o” these moves upon the result of the

randomization in the obvious way.) After Player 2 makes the

A

move b and 1f the randomlzed value of a  , ., 18 denoted by

n+l’

A
a8 ., then Player 1 has complete knowledge of I .. =
A A

A
(8), «ovy @y p4p0 By
randoriized values of a. Let him then continue his strategy by

A
ceey bn+1)’ plus, of course, the other

A
playing an optimal strategy in the game Gn+1(In+1; pn+1('|an-k+2))'
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where pn+1(-|a ) 1s meant to be the Joint distribution on

N—A+2
8, 2437 +-es 8,4 which is formed by combining pn(°) with
x(an+1|an_h+2, L an) and conditioning this joint distribution

A
n—A+2 " fn-ae2°

using a strategy of this form, if he tells Player 2, at the

by a Let us see what Player 1 can obtain by
beginning of Gn, that this is the strategy he will be using.
In this case the common fund of information after both players

have made their initial moves in G, and after a is told to

N—A4+2

A
Player 2, 18 precisely I and pn+1(°|an_x+2), and this 18 the

n+l
common fund with probability p(ﬁn_x+2) derived from pn(-).
Player 1, of course, also knows the other results of the
randomization. The way that we have chosen Player l's strategy

shows that he will get at leact

A
V(In41i Praa(cla, 40)) -

Player 1 cannot determine the result of the randomization for
& 4o BO that at the beginning of Gn he can guarantee himself

only an expected value of

A A
2 pla V(T 3 Py (18 40))

A
Again, Player 1 cannot dictate the choice of bn+l’ so that he

can only be sure of

A A
Alin Z p(‘n—k-o-Q)v(In-O-l; pn+1(‘|an_x_._2)) ;

bn+1
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and finally if he picks x(an+1|an_k+2, 2R} an) Judiciously, we

can conclude that
V(I ip,(*))

~ A
Max nMin 57 p(&), o) V(Tn, 3P0 (la 3 40)) -

x(‘n+1|‘n—>\+2""'an) bn+1

The next step is to replace this inequality by an equality,
and this 18 accomplished by the following reasoning. Let

»
X (an+l!an—x+2’ «o) an) be the initial component of an optimal

behavior strategy for Player 1 in Gn‘ Since the strategy 1s
optimal, it can be told to Playe:: 2 without degrading Player 1l's

A

expected return. Let Player 2 choose b 80 a8 to minimize

n+l

A * A
2o p(a V(T s g (flag 300))

* A
where pn+1(-|an+x_2) 1s compounded from pn(°) and

»*
x (an+l|an-k+2’ . an) in the obvious way. Then with probability

;(Sn_k+2) the common fund of information available to both players
is In+1. Now if Player 2 continues his strategy by playing an
»

A
optimal strategy 1in Gn+1(In+15 pn+1('|'n—k+2))' it 18 clear that

he will prevent Player 1 from gatting an expectation greater than

A - A
z:‘p(an_x+2)V(In+1, Pner( 180 a42)) s



which from the way that bn+1 was chosen 1s equal to

a 0 A
NS 2RIV TN S B
‘n+l

Sinc=2 Player 1 watc assumed to be playing optimally, this last

quantity must be no less than V(In; pn(-)), and we obtain

x(an+1|...an) bn+1

Combining this with the previous inequality, we obtain the

desired functional relatlonship.

Theorem 1. Let G, be a game with time lag A (written in

the form k = 1, § = ), which has a continuous payoff. Let

V(In; pn(-)) be the value of the subgame in which both players'
A

A A A
information about the past is I = (al, A EVOT I TP bn)

and in which Player 1's previous N — 1 noves are governed by the

Joint probability distribution pn(') - p(an_x+2, ..+, a,). Then

V(1 ;p,(+))
A . . oA
" s Max . ML Soe(a, VT, 5pp (018, 4 00))
n+l!3nas2 08/ Bpyg
whe.re
(A ) ~('A )
P an—)\+’_" E " z . PA@ _a4p2---1
n—a+3?° " 03p
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A

p('p-k+2"'"'n)x(‘n+1|‘n—k+2"'"‘n)

A
Pnarl 18y p42) =

p(‘n—k+2)

IV. OPTIMAL STRATEGIZS FOR PLAYER 1

In this section, we shall show that a class of optimal
strategies for Player 1 in the game with time lag A can be
derived from the functional eguations that we have established

in the preceding section. A& before, we assume that the game

is represented in the form k = 1, § = A > 0. Optimal strategies

for the case A\ = 0 are obtained by the process outlined in the

introduction.

The first of the functional equations relates the value
of G, (the actual value of the game itself) to the value of
Gl(Il;pl(-)). For A > 2 the first equation 1s

Ve Max Min V(I ;p.(:))

1’'¥]
x(al) gl

with I, = 31 and pl(-) - x(al). Let us define the components

of a behavior strategy for Player 1 in the following recursive

fashion. Let x(al) be chosen s0 as to maximize

Min V(I;pq(-)) .
®)



P-T97
1-26-56

Call such a marimizing distribution x.(al). In general, if

L ] * L
x (al), x (a2|a1; bl)' 1 o0 X (anlal, cees B 33Dy, ey, bn—l)
A A A A
are lmown, then for each I = (al, e B 2410 By eeey bn)
we form the joint probability distribution p () given by the
following product of A — 1 factore:

-

"(a,18;,...,a j Byseansd )
Z &nal,...,an_)\+1,...,an_1, l,ooo' x*—l

A

» N % y
ese X (‘n—)\+2|al"°°"n—)\+1, bl""’bn—)\-fl) .

L A A A g
Then X (an+1|a1, e s oy &n_)‘+1, ° e 2y ‘n, bl’ e 0y n) 18 \.—hosen

equal to any x(‘n+1|‘n—k+2’ St an) that maximizes

., A » A
Snm 2P (‘n—x+2)v(In+l’ pn+1( ) lan—k+2))
n+l

As In takes on all conceivable valucs, we obtain

: | ; b b_)
x (an+1 8y, .o 85 by, ol b).

We want to show that this method for selecting the components
of a behavior strategy for Player 1 leads to an optimal strategy.
]

Suppose that such a sequence has been chosen. Let us define the
sequence of functions V.(In) to be equal to V(In; p;(-)). They
have the property that

L ) , » #
I. bmn P (‘n-me"‘l'“"an-xui bl,...,bn_M_l)V (Iml) -V (In) ,
n+l

II. Min V' (I,) =V,

by



and

III. 1in V (I.) = M(a, b)
. . n
N = C)

uniformly, where M is the payoff function.

Property I 18 a direct consequence of the definitions.
Property II follows from the application of the initial functional
equation. Property III is a direct consequence of the continuity
of the payoff function, which implies that the values of the
subgames approach the payoff function for large fixed initial
segments.

Now let us suppose that the strategy {x'} is played against
an arbitrary mixed strategy for Player 2, which is represented
in behavior strategy form by ‘the sequence of conditional distribu-
tions y(bn+1|a1, ey B 3195 Dy eees b,). These two strategies
give rise to a measure on the space of all sequences of a's and

b's with the property that

A

A A s »
prob (al""'an’bl""'bn) - X (al)
% ,A A A A ~ A
. (anlal,...,an_l;bl,...,bn_l)y(bl)
A A A A A

and the functions V(In) become a sequence of random variables.

Then
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BV (I, )1T) = ROVI(L, )&, .08, 1sby,eee,D))

~ A A A
prob(al,...,an+1,b1,...,bn+1) .

b(d,,... ,ﬁn_)\ﬂ,bl,...,bn)

= 25 &
8 a4pr 08y PTO
A

bhel

which in turn 1s equal to

“_ A A A o] o)
2 ox (e aolag,een8 o gibyseeaby )
& a2
A
bn+1
A A A A A »
ZENY ORI WENRTI SPTR S Ll RO
A A
because In+1 doe: not depend on an_x+}, ceey By Property 1

tells us vhat this last expression is not less than V'(In),

and we obtain
» *»
E(V (I,)11) > V(1) .

If we integrate out the conditioning variables and apply

Property II, we obtain
B(V (L)) 2V

and applying Property III yields

E(M) >V,
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which tells us that our strategy is optimal.

There may be some qQuestion at this point as to which
optimal stratezies of Player 1 are obtained from the functional
equation by the procedure outlined above. It is quite easy to
give examples in which not all of Player 1'e optimal strategiles
are obtained in this way. It is true, but we shall not prove
it at this point, that the class of strategies obtained from
the functional equation will include the class of "best"
strategies for Player 1 [8, p. 84] (1f we disregard those
portions of a strategy that refer to situations of measure

zero).

Theorem 2. If the components of a behavior s’rategy for

Player 1 are chosen recursively in the way outlined above, this

strategy 1s optimal.

V. OPTIMAL STRATEGIES FOR PLAYER 2

To obtain optimal stratezies for Player 2, the game must
be represented in the form k = A + 1, § = O, The diagram for

the n—th subgame in this case 1is

moves for Playerﬁ&n}n this subgame

" A r
b Y qhe1 ! n+2

% b

bn—h +1- n, Lbn+1 b

moves for Playé; 2 1n this subgame

L0
3

A,‘

A d

A}
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A A

A A
The game 1is specified by I = (al, cees By DYy e, bn-h+1)’
and qn(-) = prob (bn-x+2’ 5% bn). We notice that the first
move in this subgame 18 made bty Player 2. If we denote its

value by V(In; qn(-)), the functional equation 1is
V(I 5q,())

" v(b. b Min b ) anax 2 alby 2 V(I a0, (o, 5 00))
Y\ On+1!Pn¢2? 2 °n n+2

and by using the same techniques as in Section IV, it 1is possible
to compute an optimal strategy for Player 2 in a recursive fashion

from this functional equation.

VI. THE GENERALIZED SUBQAMES (OTHER VALUES OF k AND £)

In this section we consider the.representation of our game
with time lag )\ for general values of k and £ (k > 1, £ > O,
Nek + £ —~1). For each value of (k, #) there will be two
classes of subgames, depending on which player moves first,
These will be generalizations of either the games discussed
in Section III or those discussed in Section V. 1In what follows
we shall restrict our attention to the former.

The diagram for the n-—th subgame 1is given by



moves for Player 1 in the subgame
N\

n+l = J
moves for Player 2 in the subgame

This subgame 13 described, first of all, by the fund of
information known to both players after Player 2 has made his
n—th move. In this case 1t will be a spa2cification of Player
1's {irst n — § + 1 moves, and Player 2's first n — k 4+ 1 moves,

A A A
say (11, ooy B gi1s Dyy ey B l+1) = I . We also have given
an arbitrary pailr of Joint probability distribdbutions pn(~) -

prob(a . an) and qn(-) - prob(bn_k+2, cee, bn)' The

n—A+2°
game will be denoted by Gn(In; pn(-), qn(-)), and it proceeds

as follows: The moves a ..+, 8 are randomized from pn(°)

n—4+2°
and told to Player 1 but not to Player 2. Simultaneously, the
moves b, .~ ..., b, are randomized from qn(°) and told to
Player 2 but not to Player 1. Threy then proceed as they would
in the original game, with the same payoff M(a, b). We still
assume that this payoff is continuous, so that the general
theorem of [J] applies and the game has a valuc, which we

denote by V(In; pn(')’ qn(-)). As before, there exists a

sequence of functional relations. They take the form
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V(I sp(+)sa ()

- Max Min
x(a 18, jense--0ay) ylop 18 1 inseeuby)

R ICRIPIPYCTURENIP 146 SRETSPY CL L SEPIVY FCIRY L SO )
- Min Max ... .
The proof is Quite similar to the proof given in Section III
and we shall not repeat it hare.

We would like to indicate the major difference between the
functional equations in this case and the functional equations
thet were discussed in Sections III and IV. In those sections
we showed how an optimal strategy for Player 1 could be computed
recursively from the functional equation. The corresponding
procedure for the present case would be the following: Suppose
that x'(al) . x'(anlal, coes B9, Dyy aeey bn—k) have been
computed. Then for any I = (31, T an_¢+1, 81, R Sn—k+])'
we would consider a game On(In;pn(-), qn(~)) with pn(-) defined

by

A

p(-)-x"a IQ 0,8 g
n ‘“n-g+2'71° "“n—g+1°

URLEFLMEWEY

A

* * A ~
. X (tnlal,...,an_l,bl,...,bn_k) .

and for some qn(-) which for the moment we leave undefined.

Then x(an+1|a ., an) would be chosen 8o as to maximize

n—A4+2’
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E A
Min 2-rla, go)alb, g.0)
ALNOILSIWPTRERILY

A A
V(Thy5Pnen (180 gy0) 8045 (410, 40 -

It A8 clear that this cholce wou:1ld depend on qn( ), and we would
therefore only be able to show that the strategy we have chosen
is optimal againast a particular choice of Player 2's strategy.
This means that in order to obtain an optimal strategy for
Player 1 in an artitrary (k, §) representation (A > 0), we must
transform this representation into k = 1, £ = A by renumbering
the moves of one of the players and the addition of several
vacuous moves at the beginning of the game, and then apply the
method of Theorem 2. To obtain optimal strategies for Player 2,

we must transform into k = A + 1, 4 = O,

VII. SOME REMARKS

In our discussion we have consistently assumed that the
payoff function 1s continuous. This has permitted us to say
that each subgame under discusaion has both a value and optimal
strategy for either player, and there is at least one point in
the proof that we have given for the validity of the functional
equatior. in which the existence of optimal strategies was
specifically used. There are other cenditions under which

our subgames may be shown to have a value., For example, as
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1s shown in [9], if the payoff function 1s upper (lower) semi—
continuous, then each subgame has a value an! optimal n'rategies
exist for Player 1 (2). The question arines aa to whetler the
functional equations relating the values o!" tlese sul gzames are
still valid. It can be shown that a modif'ication of tie argument
of Section III yilelds this same functional equation, with Max Min
replaced by Max Inf (Sup Min). It is also true that optimal
strategie. for the player who has them in the semi—continuous

case can also be generated by mrins ot the functional equations.

On the other hand, very little can be said about the other player's
strategies from the functional equation. To illustrate this point,
let us assume that the payoff 1s lower semi-—<ontinuous, so that

the maximizing player does not necessarily have an optimal
strategy. Let us recursively pick strategies for Player 1, by
choosing an x(9n+1|an—x+2' oy an) which 18 €2 efrective

in

A A
e Zpla, 5 V(T i (tla, 5 00))
n+l

» L
and, as before, define V (In) - V(In; pn(-)). Then 1t will
be true that against any strategy for Player 2 we have
*» » n 1 3
E(V (In+1)|1n) 2 % (I)) - €27, and therefore E(V (I )) > V - €.
But lower semi-<continuity weakens Property III of Section V to:

111’ Tim . M(a,B) > TIm v(I) > 1m V'(I) » M(4,b) .
a,b>a,b n> @ N>

As a result, we can conclude that E( 1im, ,M(a,b)) > V — €,
a,b-)a,%

A
but not that Z(M(a,b)) > V — €.
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Even without the conditions of semi—continuity on the
payoff function, 1t is still meaningful to talk about the
functional equations. Without any conditions on the payoff

function, if we can find a solution of the functional equations

v(1_ip ()

A A
= s ) %Min 2o play V(TP (1, 42))
2

x(‘n-i.'llan-)&?”" n’ "n+l
with the »roperty that V(In;pn( :)) >M(a, b) (say boundedly),
then the strategy for Player 1, which 1s generated recursively
from these equations, will guarantee Player 1 at least V(Io)

against any strategy of Player 2.

AN EXAMPLE

It may be instructive to show how the above techniques can
be applied tu the celebrated "bomber—battleship" game to yield
functional equations. (References [3], (5], [6], [7].) We shall

do this in two ways, according to the two arrangements

Case 1 Case II
|
an—l\ %n t Bnel
I
Pn-1 bn: a4l
' ! |
kwl, § =2 k=3, 4§ =0
(al a d a, vacuous
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The b1 will each be O or 1; the a, will each be O, 1, 2, or
@ (pass). The first a, ¥ @ is interpreted as a prediction that

bp * Ppyy = 8, o b, o +b,, =2,

(in case I). (in Case II).

The payoff is 1 to the a~player for a correct prediction, O for
an incorrect prediction or no prediction. This payoff 1is lower
semi—continuous, so optimal strategies are assured only for the
b-player. (This formulation follows Blackwell [1].)

In Case I we observe that the generalized subgame Gn(In; pn(-))
is trivial if any a8, ¥ @ in I . On the other hand, Gn(In; pn(°))
and Om(l;; pm(°)) are completely isomorphic provided that

'

Pp ® Py bn - b;, and all a,, &, are @ (1.e., the earlier

by, b;. do not matter). Hence we may write
Vn(In;pn) - t;/(xo,xl,xe) if n > 1

where +/= b and x = pn(a). Moreover, sy wmetry tells us that

ro(xo, Xy x2) - fl(xz, Xy, xo). Hence the functional equations

of Theorem 1, n > 1, reduce to the single equation:

tf (u,v,w) + x

(1) {‘o(x,y,z) = Max Min 0 '
u,v,w tto(w,v,u) +y

whére t « ] — x -y — 2 and u, v, w are restricted to be non—

negative with sum < 1. The first equation (n = O) becomes




VaVys Max Min Toizn)
X,Y,2 £olz,7,x)
for the value of the game. Bquation (1) is the samr as equation
(34) in Isaacs' paper [€] and forma the basis of his analysis
of t~optimal strategies for the a-player. The unique "ideal"
(locally optimal) stretegy 1s given by Xg = X =X, =0—1.e,,
never predict — and is clearly not optinal,.
In case 1I, On(In; qn(°)) 1s again trivial if any 8, ¥ ®
in In' while the other games are entirely independent of all
b1 in In' Thus, we have

v (T.iq,(.)) =glx) 1 n)>1,

where x = qn(O), 0¢x<1l. Symmetry gives us g(x) = g(1 - x).
Hence, the functional equations of 8ection V reduce to

[ xu (0)
x(1-u) + (1—x)v (1)
(2) g(x) = Min  Max{ (3 1y y) (2)
gi‘:-ii | x&(u) + (1-x)g(v) (@)
with
V= vo - nin S(X)-

No Max appears because e, is an automatic pass in this case,
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This functional eqQquation has been studied exhaustively. It
develops that a minimizing x can be chosen for (3) with the
property that, if we set x = x 1n (2), the minimua is achieved
at u = x', Vel -x.. This makes an optimal strategy for the
b—player extremely easy to describe: always choose bn+1 - bn

with probability x ', b .. = 1 — b with probebility I — x .

n+l
There i3 reason to believe that this phenomenon will not occur
in other related cases, such as the A =« 3 version of the present

example, but the theory remains obscure on this point.
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