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Summarz
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The purpose of this paper is to show how the functional
equation technique of the theory of dynamic programming ylelds
a very simple computational algorithm for the solution of
mathematical models arising in stock level studies.

A numerical solution of these problems relying upon linear
programming techniques had previously been given by Charnes

and Cooper.
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NOTES CN THE THEORY OF DYNAMIC PROGRAMMING—YVI
THE WAREHOUSING MODEL

By
Richard Bellman

1. Introduction

In a recent report, [2], Charnes and Cooper present a
solution by means of linear programming techniques of one
version of what is called the "warehouse problem”". As formulated
by A. Cahn, [1], it reads

"Given a warehouse with fixed capacity and an

initial stock of a certain product, which is subject

to known seasonal price and cost variations, what

is the optimal pattern of purchasing (or production),

storage and sales?"

The purpose of *his note is to indicate how problems of this
general nature may be approached by means of the functional
equation technique of the theory of dynamic programming, and
thereby reduced to a very simple and straightforward compu—
tational problem.

In order to compare the two approaches more readily,

we shall use ths formulation and notation of Charnes and Cooper,

(2].

§2. Analytic Pormulation

Following the report of Charnes and Cooper, let
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(1) B = tho fixed warehouse capacity
A = the initial stock in the warehouse
Consider a seasonal product to be bought (or produced)

and sold for sach of 1 = 1, 2, ..., n periods. PFor the 1th period,

let
(2) ¢, = cost per unit
Py = selling price per unit
x, = amount bought (or produced)
y, = amount sold
The constraints are as follows:
(3) (a) Buying constraints: The stock on hand at the
end of the 1th period cannct exceed the ware—
house capacity
(b) Selling constraints: The amount sold in the JED
period cannot exceed the amount available a“
the end of the (i — 1)'t period ¢
(c) Non—-negativity constraints: Amounts purchased
or sold in any period are non-negative
Analytically
1
(&) Buying constraint: A + Jfl (xJ — yJ) <B, 1 =1,2, '+, n,
(1-1)
Selling constraint: y1 < A+ Jfl (xJ - yd)‘ 1 =1, 2,

for 1 =1, this 18 y:1 A

Non—negativity: Xy: Yy > 0.




The problem is to determine the quantities Xy and ¥yq

80 as to maximize the over—all profit
n

(5) P = Jfl (prJ = chJ).

§3. Dynamic Programmning Treatment

It 18 clear that the maximum profit will be & function
of the original quantity of stock, A, and the duration of the

process n. Define
(1) £ (A) = Max P,

where the maximum is taken over all admissible values of the

X, and Yy- We have
(2) f1(A) = Max (p.ys — cix4),
over all x,;, y, satisfying

(3) () y1 <A
(b) A+ (21 - yi1) <B,

or
(&) r1(A) = piA.

We now wish to derive a recurrence relation connecting
fn(A) and rn+l(A)’ If x;, y; are chosen, the ccnstraints

on the remaining variables are

r
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(5) (a) z (xiﬁyi)SB—(A+(xl_yl))’
=2
’ i-1
(b) vy < (A+ (x1 = yi)) + Jfg (x, - 5,).
Hence, for n 2 2.
(6) fn(A) = Max [ piy:i — Cixy + fn-l(A + x1 - yi)],

X1,¥1

where the maximum is taken over the re,ion

(7) (a) yi1 <A
(b) x1 - y1 <B-4, x1, y1 >0,

The variable A assumes all values in the interval [O, B].

4. Discussion

Let us now discuss the actual computation of the solition.
As far as the memory and tabulation problems are concerned,
we are dealing with a sequence of functions of one variable.
Consequently, no difficulties arise from this direction.

The maximization, lowever, 1s over a two dimensional
region, and a variable region at tnat. Hence, we might
expect that the computation would be glowed down by this fact.
Portunately, we are rescued by the linearity of the process.

Consider the region defined by the equations in (3.7)

b Xy — y1r =B - A

/ﬂ
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We suspect that the maximum will cccur at one of the
vertices, and this may be established rigorously in several
ways, either Jdirectly from linear programming, or in an
inductive fashion. In the figure above, we have assumed that

A >B - aAor 2A>B. In this case, the vertices are
(1) Py(0, O0), P2(0, B —4), Pg(A, O), Pe(A, B).
It ACB - A, there are only three vertices

(2) P.(d, 0), Pa(0, B —A), PS(B — A, 0).

Taking all five vertices as possible maximizing points,
which takes care of the two cases B — A 2 A at one time, we

can reduce (3.6) to

(3) r (a) = Max[ 1. r_;(A),
2. —cl(B — A) + fn_l(B),
3. PpaiA
4. pA-cB+ fn_l(B)
5. pl(B - A) rn_l(QA - B) J

for A > 0, with fn(A) = O for A ¢ O.

This computation 18 now a very simple one. The qQuantity

B 18 taken as fixed, and A assumes all values in the interval

(0, Bj.
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