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Summarx

f_')«.‘.'.—L,L

# this paperAw two generalizations of the

Riemann-Stieltjes integral arising from the study of positive

definite matrices.
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LIMIT THEOREMS FPOR NON—COMMUTATIVE PROCESSES—II
ON A GENERALIZATION OF THE STIELTJES INTEGRAL*

By
Richard Bellman

§1. 1Introduction

If r(t) 1s a continuous function of t over the interval
[b, i] and g(t) i{s a bounded monotone increasing function of

t over the same interval, we know that the sum

N-1
(1) Sy = %, fley) [ e(ty,,) - elt,)],
where O = to < tl < t2 < *°° (K tN = 1, converges to a linear

functional, which we may write /’l f(t)dg,as N — ® and
0

":‘ (ty,) - ) 20

This integral, the Riemann-Stieltjes integral, has been
generalized in many different directions, cf. Bochner, Eﬂ.
We propose here to discuss two new generalizations arising

from the study of positive definite matrices.

§2. First Generalization

Let x(t) be a matrix-Tunction of t for O { t < 1 possessing
the property that x(taz) — x(t,) is non-negative definite when—

ever 1 > ta > t; > O. Let us now consider successive sub—-divisions

*The first paper of this series is [2].



P-772
11-28-55
~D=

of the interval [0, 1] which are refinements of the preceding,
and to simplify the notation—since the essential difficulties
do not lie in this direction—assume that t, , — t, = 1/2N

th sub-division.

for the N
Define Al(ti), Ae(ti), cee, AN(ti) to be the characteristic
values of the matrix x(t1+l) - x(ti) arranged in decreasing
order of magnitude,‘Al(ti) > Aa(ti) P IR ERNS ] AN(ti) > 0.
Our first result is

Theorem 1. Let f(t) be a continuous function of t in [b, 1].

For each k the sum

N-1
(1) Sy = 120 r(ti) f\((ti)

1l
approaches a linear functional, which we write u/’ f(t)d/\k,
o

as N 9D o.

§3. Proof

The first part of our proof consists of showing that 1t
is sufficient to prove the theorem for the case where f(t)
1s a constant.

Divide the interval [0, 1] into the 2¥ intervals
[ r2_k, (r + 1)2—k], r=0, *°°, oK

sufficiently large so that

— 1, where k 1s chosen

(1) i£(t) — r(e)| < eforr2™® ct, t, ¢ (r+1)27™

Then, for any N > 2k,
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ki-1 k-1
(2) IS, — £(0) £ A (t,) - () = A (t,) -
N 1 =0 k''1 fak, k'’
( K )o- (n+l)k1-l ( Y N-1 ( )
f{2" - 1)2 z A (t <€ I A (t,.).
i=n,k, ke - 1=0 k'l

Here k; = 2N-k, Ny = 2k.

Since
n
(3) 2 Aty ) = er(x(ty )-x(t,)),
we have
N-1 n N—-1 / \
e 150 <kfl Ak(tib i 1}.:0 e \x(t“l) - x(til)

- tr <x(1) - x(O)).

This result, combined with the non-negativity of the Ak(ti),
enables us to conclude that the right—hand side of (2) is bounded
by € tr (x(l) —x(O)). "
Consequently, if we mhow that every sum of the form 1:‘:M/\k(ti)
converges as N D ®, 1t will follow that SN converges as N — @ .

In order to establish the convergence of these sums, we

shall consider tne auxiliary sums

(k) i} M k
(5) z . fM<s§1 f\s(‘1)> :
for k =1, 2, *° ', n.

§4. A _Theorem of Ky Fan

The result we shall employ is
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Theorem (Ky Pan): Let the characteristic values of a pymmetric

matrix H be arranged in decreasing order, Al > A2 D D An'

q
For any integer q, 1 ( q < n, the pum Z Ai is the maximum
{m

q
of ¥ (Hx,, x,) where the vectors x
J-l J v J

range over all sets of

q orthonormal vectors.

The proof of this result may be found 1in [}].

§5. Contlnuation of the Proof

Using the result stated in {4, we wish to show thst

(l) £2(k) S S, S zﬂ(k) S. 2N+1(k)---

This monotonicity, taken together with the uniform boundedness
of the sums, cf. (2.4), establishes convergence. Without loss
of generality we may assume that the t-interval is [p, 1]

in any particular sum we consider.

Let [ty, t;, "7, ty] be the set of pointe constituting
the N®" subdivision, and let 8., S,, *** S, be the additional
points inserted at the (N + 1)"t subdivision, as below:

S s s
i 12 , 4
1 2 N-1 tN

[
o

%

P ==
c*

Using the representation furnished by Ky Fan's result, let
us write, for a point t1 in the Nth subdivision,
Kk qQ - .

Sel {x} J=1
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and for the points S, , and t, of the (N + 1)st division

K N+l q
(3) s A is)) - {x} = <["(t1+1) - x(8y,))), ’)'
3 N+1)

Since

(%) (l:x(t1+l) - x(ti)]Y, y) - ([x(t“l) - x(°1+1)]” y) +

([1(5“1) - x(t )y, y).

and Max(u + v) ( Max u + Max v, we see that

K k K
(5) 2 a2 oag® s ) 2 s,

This demonstrates the required monotonicity and completes

the proof.

§6. Second (Ueneralization

Por the remainder of the paper let us assume that x(t)
18 continuous aeg well as monotone increasing. We now wish to

consider matrix sums of tnhe form

(1) Sy 1 \[x(t“l —x(ti) P(ti)j:(t1+l)—x(t1)

where P(t) 18 a continuous matrix function over [0, 1], and

J[x(ti*l) - x(ti) is the unique non—negative definite square

root of x(t1+1) = x(ti)
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The motivation for this generalized Stielt jes sum may be
found {n [}], where a generalization of scalar probability
distributions and Markoff transformations may be found.

Ke conjecture the following result:

Theorem (conjecture). As N — ®, Sy converges to a linear

=
matrix functional wnich we may write ./ Jdx F(t) fdx .
0

We can prove

Theorem 2. The above statement is true for 2 x 2 matrices.

§7. Proof of Theorem .

Since x(t) - x(S) 1s a symmetric matrix, whose elements
are continuous functions of t and S, we may write it in the form

A(t, S) 0
(1) x(t) - x(8) -r( )r'.
0 Aa(t, S)

where T 18 an orthogonal matrix whose elements are continuous

functions of t and S, for 0 ¢ S, t ¢ 1.

Furtrermore, for t > S,

A1 0]
(2) Jx(t) - x(s) = i ﬁ;> T,

Consequently, we may write

N—1 JAx(ti) 0 }\l(ti) o}

(3) Sy = £ T (T*P(t,)T)

Tl
0 o [xE) 0 ot

As above, it is easy to demonstrate that the converger.ce
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of this matrix sum is equivalent to the convergence of the sum

N—1 f\—,(ti) 0 ~/"1(t1) 0
(4) Iy = I c ,

1=0 o Jay(t,) 0 ,/xQ(ci)

where C 1s a constant matrix. The sums that arise are I 4Kdt1),
b

z Az(ti), which we have already treated, and a new sum,
i

N-1 N-1 12
(5) Gy = 150 Ale) A (e,) = 1§o ix(ty 1) - x(e )17/ .

To establish the convergence of this sum we shall employ the

same type of monotonicity argument utilized above. We require

Lemma. Let A and B be 2 x 2 non-negative definite symmetric

matrices. Then

(6) ./|A+B| Zfl-;l- +j;3|—.

Proof: Por the 2 x 2 case, the simplest proof is computational.

Let

o (D)

It 18 easy to see that we may take one matrix in diagonal form.

Then

(8) |[A + B| = (a; + by)(as + bs) — 832.

LY = 8,89 - 822

IB‘ - b[b;.
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From this, we see that

(9) A+ B| = (8183 — a2°) + (bias + a1bg) + bibg >

(8;&3 - 3.2) + b;bg + 2/bgb3 /8;8’ - 832

is a consequence of

(.0) (biag + 8|b3)2 > 4bibg(a,ay - 8!?.
or

2 2
(ll) (bgl. - 81b3) + .bgb'ag P 0.

Using this lemma, the nroof proceeds as above.

§5. Discussion

It {8 seen from the foregoing that the proof of tne general

case reste upon establishing the convergence of sums of the form

N-1
(1) 5, (%) < s ﬁj(ti) A ()

It 18 not clear now one can use tre previous methods to treat

this general case.
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