—

L B Ay | s o
HARD COPY 3. ,zo
MICROFICHE  §. o s

NCTES ON TH:Z THZORY OF
DYr'AMIC PROGRAMMING—VII
| TRANSPORTATION MODELS
|
| By
, Ricnard Eellman
| '.'/
P_771

L 2 November 13E5 /

Approved tor QTS refcase

71 RUND g

1? 1700 MAIN ST < SANTA MONICA « CALIFORNIA —

_——




P-771
11-28-55

Summary

\

The purpose of this paper is to {llustrate some applications
of the functional equation technique of the theory of dynamic
programming to a general class of problems arising in the study

of networks, particularly those arising in transportation
theory. ( 3
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NOTES ON THE THEORY OF DYNAMIC PROGRAMMING—VII
TRANSPORTATION MODELS

By
Richard Bellman

§1. Introduction

The problem of determining the structure of networks which
are optimal with respect to different types of criteria is a
burden shared in common by those who work in economic, indus—
trial, organizational, communication, electironic, and computing
fields. Relatively few of the variegated aspects of these
difficult and important prcblems have been sampled to date,
and none of these yield to simple analysis. For a brief
survey of these questions see [1]. |

In this paper we wish to make a slight contribution to the
general theory by showing the applicability of the functional
equation technique of the theory of dynamic programming to some
problems in transportation theory, and by analogy to the other
fields mentioned above, as well.

The first problem we shall discuss is the Hitchcock-
Koopmans transportation problem, cf. G. Dantzig, (4], and
M. M. Flood, [b]. Next we shall treat a mult;—etage version.
Finally, we shall treat a closely related process arising in
the studies of transportation systems by T. E. Harris and
co—workers. Powerful computational algorithms exist for the

solutions of these problems, some based directly or indirectly
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upon the simplex method of Dantzig, and some upon characteristic
features of the process, as, for example, the "flooding
technique"” of A. Boldyreff, (3], cf. also D. R. Pulkerson

and L. R. Ford, [6].

The method w~e present is at the moment not applicable to
all forms of the problems cited above, due to the limited
capacity of present-day computing mechines. Since these capa-—
cities are increasing with each year, the method will cover
more and more cases as time goes on.

bven at the present time this method seems more efficient
in treating certain special cases of the general processes,
including some which occur in application. Furthermore, the
method 1s equally applicable to processes where nonlinear and
stochastic elements occur. In addition, the method is useful
in determining the structure of optimal policies, the existence
of "prices”", and so on. These points will be discussed in a

separate paper.

§2. The Hitchcock—Kocpmans Traneportation Problem

A problem whicr. has been treated in considerable detail
by a number of authors 1s the following:

"We are given a number of "sources", S, Sz, ''°, Sy» **+y 8
and a number of "sinks" or "terminals", Ty, Tg, **-, TJ, "ty Ty
kach source Si has a quantity Xy of resources which must be

transported to various of the terminals in such a way that the

total quantity arriving at TJ fulfills a demand yJ. It 1s

_ -]
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assumed that Z x, « I y. .
g 147

Given the distances, dij' between
the sources and the terminals, and assuming that the cost of
shipping a unit quantity of resources between S1 and TJ is
equal to diJ’ we wish to delermine the routing which minimizes
the total cost of supplying these demands”.

One way of formulating this problem in analytic terms is
the following: Let xiJ be the quantity of resources transported

from S1 to TJ. Then

(1) Zx,, =X

5 i) 1’

Exgg= vy %y 2%

and the total cost is given by

(2) C= 2 4

X
1,y Y

1J°

We wish to choose the qQquantities xiJ' subJject to the
constraints of (1), so as to minimize (2).

In this form, the problem has been solved numerically by
means of various iterative techniques. Of these, the simplex

method, with various modifications, seems most efficient.

3. Dynamic Programming Formulation

We now wish to formulate the problem in dynamic programming
terms. To do this, we regard the process as a multi-stage

process 1n which we first fulfill the demands of T; from the
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resources of the 81, then the demands of Ts from the remaining

sources, and so on.
As we have mentioned above, one advantage of this formulation
lies in the fact that we need no longer assume proportional
costs, not valid in many situations because of the existence
of certain "red-tape" or "set—up" costs, and we can, if we so
desire, consider cases where the cost functions are stochastic.
Por fixed demands, Y12 Yor "7 Yp» it is clear that the
minimum cost will be a function only of the quantities Xy 12 "t X

and the number of terminals N. lLet us then define the function
(1) rN(xl, Xgy xn) - Min C

To ottain a functional equation for fN(x), let us assume

that we begin by allocating the quantities X110 Xp10 "y Xy

to supply the demand at T,;. Having done sc, we have a problem
of precisely the same type remaining with N — 1 terminals and

quantities X, = X310 Xp = Xo10 "0y X, — X, at the M sources.

Hence, we obtain the functional equation

n
(2) fN(xl’ X2, *° xn) = Min [: z dilxil + fN—l(xl -

{xgf 11
Xll, X2 - x21) 0y xn - xnl)]l
where the minimum is over the region

(}) xil 2 o, Z xll =¥y
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for N > 2, with
(¥) F1(xys X =00y X ) mdgpx) + doyxy 4ot 4 AX

The sequence fN is now determined recurrently via (2).*
An important observation for computational purposes is

that the dimension can always be reduced from n to n — 1 since

() n N
(5 I x, = X y,.
1a1] 1y 7

Hence, for fixed yJ, it 1s sufficient to apscify the quantities

xl, Xos *°Xp q- T us wy may write

(6) rn(xl’ 121 ) xn) 2 ru(xlt X2, Tty xn_1)°

Consequently, the case of two sources reduces to r one—dimensional
problem, three sources to a sequence of two—dimensional
maximization problems involving functions of two variables,

and 8o on.

With the inevitable improvement in the "memory" of comput—
ing machines, we shall be able to handle the case of more and
more sources in this fashion. The important point is that the
utility of the method depends only upon the number of sources,
while the number of terminals may be exceedingly large.

This method is particularly applicable when the functions
fN are desired for a large set of values of the X, . This 1is

the case 1 the x1 are stochastic variables and we wish to

*This 1s an application of the "prinoiple of optimality”", cf. [2]
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determine the distribution of the minimum cost, or if we can
determine the distribution of the xi's S0 a8 to minimize the
total cost, assuming that we have some degree of freedom in

assigning the quantities at the S1 at the beginning of the process.

Q4. A Multi—Stage Transportation Problem

Now consider the situation where we have a sequenc of

sources
fp Al Ay Ay T
(1) B, B, B, ... By T,
G, G Cy Ty

¢ the sources Ai' Bi’ C1 we have quantities xl, yi, and zy

r

respectively, and at Tl’ T T, we have demands ry, T

2’ "3 2’ '3
wlhiere
(2) vy +r, + ry = f x, + f vy  +Z Zy -

The process proceeds in the following manner. We write

X + X + X

1N 12 7 %13
(}/ yl = yll + yl2 he yl}

= X
2] =211 * It 2 1g° Y1y 215 2 0

—
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where X1 *¥pp t 2y, goes to A2, X150+ V10t 2y to B2 and

X13 + 13 + Z13 to 02. Starting with the new quantities

X, + X11 YY1tz at A2, Yo + X5 + Yio +z, at B2,
z, + X3 + Y13 + 21) at 02’ the process continues in the same
fashion.
Given the distances between the parts, the problem 1is
to determine the routing which minimizes trne total cost.

Let

(4) fk(x, Y, Zz) = the cost incurred starting with x at
Ak’ y at Bk’ and z at Ck’ and employing
an optimal policy.

Then rN(x, y, z) 1s determined as the solution of the usual

Hitchcock-Koopmans transportation problem, and

(5) fk(x, y, z) = Min [ Z (dli(k)x11 + dm(k)y11 + d}i(k)
x1J |
+rk+1(x + xll(k) + yll(k) + 2y,
Ty 2 + x13(k) + le(k) + 21)

where the minimization is over the region described by P).

§5. Railway and Communication Nets

An analogous class of probiems arises from the study of

railway and communication networks. Here we have networks
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similar to those appearing in the previous section, with the
difference that there are now capacity restraints on the flow
between any two Jjunctions and, sometimes, capacity restraints
at tr.e junctions.

Consider the foll~wing simple network:

Assume that trains at A1 and B1 can be sent eitl.er to A1+1

(1)

or Bi+l with the maximum r'lcw between Ai and A1+l gliven by 11 P

(1) )

. (1
between A1 and B1+1 by ¢1o , between B1 and A1+1 by 51 )

, (1) R
and between B1 and Bi+l by Csp , fori1 =1, 2, , N 1,

and finally the maximum {low from An to T given by dl’ and from
Bn to T by d2.
Starting with x trains at Ak and y trains at Bk’ let

(1) rk(x, y) = the number of trains arriving at T,

using an optimal policy.

Clearly

(2) r.(x, y) = Min (x, d,) + Min (x, d2),
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and
(}) fk(x: Y) - H;X [fk+l(xll + yel’ xl? + )'22)]’

where the maximum is over the region

() (@) xp) + x)5 <X, oy + Uy LY

(b) ©
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