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3 The problem of wave propagation in a medium with fluctuating refractive
index is considered, this problex being of interest from the standpcint of
the theory of twinkling of stars and atmospheric acoustics. The problea is
reduced to linearised equations satisfiei by the phase and loparithmic
amplitude of the propagating wave. Limiting cases are investigated and
particular examples are considered tc indicate ths limits of validity of
the seometric optics treatment and the nature of the corrections reQuired

to take account of diffraction effects. ;o
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Small atmospherie inhomogenieties arising from turtulence exert a
profound influence on propagation cf sound and 1ight, causing the character-
4stic fluctuations of tl) associated field. V. A. Krunnikov{” ’ 2 has
investigated experimentally phase and amplitude fluctuations of sounc waves
propagating throvgh the atmosphers. Similar fluctuations of light waver are
exhibited, for instance, by the phenomeron of twinkling of stars, which are
evidently closely connected with turbulent fluctuations of atmospheric
t.cuporat,ux-o.[3 ’ l‘}'

References 1, 3 and B contain some computations of the phase and
auglitude fluctuations of a wave propagating in a turtulent medium for
oblique incidence. However, this work is based on the geomatric optics
(acoustics) approximation, which evidently in certain cases is inadequate
and gives rise to a discrepancy between somputed and experimantal values.
Por instance in tha peametric optics approximation the amplitude MNuctu-
ations are proportiunal to the 1/2 power of the (turtulent) layer tuickness,
uwnereas observations generally {ndicate & considerably lower order o grcwth.

In the present paper an attempt 48 made to consider the jrcblem of
amrlitude anc phase fAuctuations cf a scalar wave field on & more general
basie and by means of more accurate approxmations taking into account
diffraction effects, to thus clarify the tim.ts validity <f the geometric
optics approximation.

1. Derivation of the Basic Bquations.

Let uc consider a scalar wave field piven by ¢ilx, y, 8, t) = ¥irt)

which satisfies the equation

s
14 - 4
I Vi 50) (1)

*
A theoretical analysis of turtulent fluctuations <f tne atmespneric
temperature and certain related experimertal data can be founl! in refereices

s-1
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.
where the propagation-velocity ¢ of the wave is a functicn of position.
The time dependence of c will be neglected, assuming that ths characteristics
of the medium are slowly-varying in time (i,s., with respect to the carrier

frequency). Purther it will be suprosed that the deviations of ¢ from some

mean value e
, (2)

are small everywhere in the modium and for all time. The refractive index

n fluctuates around unity
nelep, (w<<) (2%

(in this case it is possible to speak of a slightly inhomogensous med.um).

Let us suppose that the half-space x < 0 is homogeneous (i,e., n = 1
far x € 0) and that plane waves are incident at the plane x = O from the
direction ,f the negative x-axis. The problem consists of determining the
characteristics of the wave field in the plane of observation x e L, Tt i=
clear that this prohlem is closely related to the proulem of diffraction of
l1ipht by ultrasonic waves, which has been investigated by S. M. Rytov[zl
but however differs in that we canrot assume periodic variation of tue
refractive index,

Coneidur the case when @ r, t) 1s a mcncchromatic wave of frequency Wi

{[(r, t) = A({) exp <i [ut - S({)]}, (3)

-

.
For the (n~tical problem (e.g., twinkling of stars) the scalar equations

apply i1f palarisaticn effects may be neglected.
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with amplitude ‘(E) and phase S(r). It is appropriate to introduce a

complex function

¥(r)=8etingf, (L)
[+]

so that

3

Plr, t) = A oxp{i[% - %(;_)]], (5)

where Ao 1s the amplitude of the (unperturbed) incident wave. We have thus
passed from equation (1) to the eikonal equation (sig)

2

(V)" « i d¥ = £n) /,

i
S IE

(6)

In the case of a hamogeneocus medium we would have in place of equation

(6) the equation
2 ' 2
(V%) + ¢ A¥ = &, (6 )
(yfo 1s the equivalent of ¥ for a homogenecus medium). Subtracting (6/) from
(6) ylelds

’ . ,’_ ) 2 (g' Y
Z(VV;OVV)"“AY —.,/44‘0 +L/4l ‘o (VV)_])

V= pov v = P -V,

/
Having assumed that W is of the order of u, one has a basis for

neglecting terms of arder “2 in the square brackets cn ths right. We then

l4
obtain a linear equation in ”
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2W V¥ + i a¥ = 2ukg )

which will serve as a basis for the further analysis. Similar linearised
cikonfl equations were employed for the first time in the woik of 3. M.
Rytovd) 1n 1537. ) |

We note that X W = 8 - S, 18 the fluctuating (perturbeu) phase of
the wave broupht about by fluctuations cf the refractive index n, and
— v'”' 1n (A/Ao) is the logarithm of the ratio of the amplitudes cf
perturbed and incident fields. Because in the derivation of equation (7)
we have supposed only that Vf‘/"r, <~ 1, 1t is clear that no requirement
of smallness of phase and amplitude perturbations (with respect to m and
Ao respectively) has been imposed. What is required is that the change
of phase and logarithmic amplitide over one wavelength (in an artitrary
direction) be sufficiently small." This condition is satisfied for instance
by the refraction of the primary ray at small angles or by diffuse radiation
provided the energy of the diffuse component is small in comparison with
the energy f the primary field.

1f one substitutes in (7) the function ’\ﬁ = kX, correspording to a
Plane wave pr pagating in tne direction cf the jcsitive x-axis, there

results the equation

.:ho ,(-—v."“ldvl: guko‘ (8)

ar
Fr = this equation it i= possible to obtain the geometric optics

*de note that the classical methou of solving the wave equation (1) by
means of ¢ metho! of rerturbation ti.eor:, which is often apylied in
scattering~ problems, becomes {nap;licatle at large ]. becauss (f "phase
piline up" to values ccmparable with w (cf, [30] .
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approximation in ths way used by V. A. lralilnikovLE]. Let us introduce
/ ’
the optical path length 0 = S /k° and se =-ste real and imaginary parts of

(8), having previously divided the whale equation through by 2k°2.

207 ' . A _
F-greg) = X
WLABD) a0)

Dy

’
Assuming that for ko —p oo the quantities © and 1ln (A/Ao) tend
toward finite limits, cne obtains in the limit the equatians of V. A.

Krasilnikov:

«p/
— = «
o

)

that is

/
6° = J‘ W Aa (11,

A ot
/ﬁ ; = ’41)40 &41
. (12)

or, substituting (11) inte (12), L s :
- ! / K o u
[d] =" Lut ] =4 [0 (557 SeMe
L
~ —'/lf(L-K)A,/J ‘f) (13)

(2]
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vhere 4, = —‘+a-(; 1s the "transverse® laplace operstor. Retaining the

diffraction term — i’— AL A/Ao) in equation (9) makes possible more
“%o

general results by approximating the vave effects and thus permits one to

obtain estimates of the lirits of Krasilnikov's theory.

A solutiin to equation (8) will be sought of the form
/
V= *"f(""o“) w. (14)

Substitution of (14) into (8) shovs that v satisfies the inhomogeteous

wvave equation

dw+biw = = 0,9 (15)

vhere
I .
f = 2./4 L‘ C"P("’o‘).
It s well krown that the solution to equation (15) can be writtea in

[ ]
the form

v(P) :4-”’— /// _f_‘,r_./'_"—) fiM)ay (16)
T

1)

vhere T is the domain of integration and

P 2
r= //(l- ()24» /7~7)+/r-(')

16 the distance betwmen the point of observation P{x,y,s) and the variable
/

point M( ¢ ,n,5 ). If 48 nov pass back to the function v , Yo find

[ ]

The question of what conditions to impose on v to exclude singular
solutions will not detain us here. In concrete sxamples it is not difficult
to verify that other solutions (which contain terms of "advanced poterntial®
type) lead to physically absurd expressions for V'
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, lr -,/. r—{a- ?)] (17)
'I'
Thus we are successful in obtaining an exact solution to equation (8),

the sourocs function being of the form
f X[)é—“zr- )-f)]}
4 r
Por the further investigation we restrict oursslves to the cass wvhere

the wvavelength, though finite, 1s ssveral times smaller than the charecter-
istic dimsnsions of the perturbation, that is, o Fresnel diffraction. In
this cass obe naturally assumes that the field at the point (L, O, O) results
only from the contributions of the medium inside & narrov oone with vertex
angle ¢ ¢ < { and vertex at the source; in other words it is possidle to

[ ]
Deglect the scattering at large angles (in particular, the backvard scattering).

Setting

4 Pl / 2 )2
- — Z/ - + -
N ) + f ) l[) = /j 7) (z S ) )
ons sees th-' our assumptions msan that the essential contribution to the

integral (17) comes fro: that region for whioch

x— € 20 and /z((“i‘)
1., p/x~¥& ¢l

It then follows that

r = /xvl') + (18)

\

2(x-%)

[ ]

Admissibility of values of ¢ can be decided by means of the scattering
indicatrix. Por the case L/\ >1 and weak parturbations this can be computed
by the method of K. S. Shifrin.
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If one replaces 1/r in the integrand of (17) by ;—_I-E end r-(x-¢) by
the ssoond order terms of equation (18), then in the region of important

contributions to the field at (L, O, O) one has approximately
. 2
_ i ﬁ,f ]
; "'PZ 2G-¢) (19)

[
The expression for Y (1,y,8) can then be written approximately as

;"ex/') g-—:loi/‘- (,n-g‘)]} T o

V’(~,7, /// wxpt zfxvtijl/qu).J;/C:/{ (20)

vhere T' is the region such thnt x- £ 3 0 (1.0., situated between the souroce
[ ]

of the vave and the point of obssrvetion). We remark that formula (20)

sonstitutes the exact solution to the equation

~ X 2O o
- R ; . [ 2 ¥ -
2k 24 i (5T * 5 2uko,

/
vhich differs from (8) only in that the "transve-se" laplace operator Al‘é‘

L 34

appears instead of A‘V (i.o., the term in g-!; is omitted). The effect
X

of meglecting the term .}Y) has an effeot on the sclution similar to that
for the purely periodic perturbation justified by 5. M. Rytov [i] .

As & means of cozmring the results given by the formula .20) with those
following from the geomstric optics approximation we compute the phase and
anplitude perturbations at the point (L, O, O) for the following incremsent

to the refractive indexs

5 .‘l‘l- .tl -
M=y [~ T)"’I.J' (2)

L]

We can nov sxtend formally the integration over the whole space T', not
only in the interior of the control cone, because outside this cons the
nource funotion (both approximate and precise) rapidly oscillates, so that
integration over the space outside the cone ylelds negligible contributior-
for sufficiently smooth variation of u(x,y,s).
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(The ncale ¢ evidently characterizes the transverse dimension of the perturba-

tion.)
Performing the integration in f and G in (20) yields
L /
= [ bt ill-§/¢°
Y(Loo) = [ _fot !\t
o) 1+ (L=8)%/k; ¢ pl8)1E.

In viev of (21) this expression can be put in f forms

WL o) = / ke e uff A = (22)
01"“"'{)/(%(4) -'/L L -

Ll t-g
-1 T Ay oo e

The phase fluctuations are given by the first summand on the right-hand
side of this expression and the fluctustions of the logarithaic amplitude by
the second sumsand. This result diffsrs from formulas (11) and (13) obtained
under the geometric optics approximation by the presence in the integrand of
the factor 1/ [1 +(L-¢ )z/kzl‘)_] . It follows that the geometric optice
formulas give the correct result for the case L/(k012)<( 1. Introducing the

wavelength A\ = 21|/k° enables ome to write the criterion just given in the form

V-L:/\(l”’z{l. .

This means that the first Fresnel rone ought to be considerably less than the
tranuverss dimension of the perturbation. For a given wuwelength A the geomstric
vptice approximate formulus hold only for distances consiierably less than the
critical length Lor E 2!(2/X. The absolute magnitude of phase and amplitude
fluotuations are, as one expects, less affected in theory by diffraction effects
than {n the geometric optics spproximation. We shall return to this matter

after a statistical treatment of .he problem.
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2. Statdatdcsl Ireetaent of the Problem-

Up till nov w hawe supposed that the valuss of ths refractive index
n(x,y,s) constitute a known function of coordinates. In fact, however, all
characteristics of the medium (including the refractive index n) are constantly
undergoing chaotic changes in time and space, so that a proper definitiom of
n(x,y s,t) can only be made on a statistical basi.. The role of the "impossible"

valus B = ]1 will be that of the mean value of the refractive index, i.e.,

nzx.y,:, =, p= n-n.

In view of the sta.istical chiracter of the refractiwe index fluctuations

p(x,y,8) = (M) ws introduce the corresponding covariarce function

B(M, W) = p(HIw(K,) . (23)

In the sequel it will be assumed that p(M) 1s a stationary process so that

B("l’ ltz) can be written as B(r), vhere r is the distanoce between the points

M, and M,
A special notation for the real and imaginary parts of ths kernsl of the

intagral (20) will now be introduced:

2 1

(a,):»’ 'lllﬁ (’?)tl,,)):"'{—-‘f(/Sﬁ
ALY F02) =

.ma .a ) ma 24

Then the integral (20} can be written :s
L - -

N, /(_/( J) o= N V'/: &0}; [ i ’I’(-L:*'r ,f)’/‘ /\{.7,:)/\{‘//‘/(’ (24)

Lo

A e / ! i (- r £ C ‘
[”/T: = (Y —‘-kQLJ fI:(T:,f)/l//t/'/()('/{z/'/flg (25)

'LL(‘)
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Squaring right and left sides of (24) and (25), aweraging and replacing
the lengths L, p and 80 on by the dimensionless valuss 1= koL, ; = kop
and 80 on (4.6., \/2% ls unit for all lengths), we obtain the following
expressions for the statistical parameters of the phase and amplitude

fluctuations:

Ll
s’u},:? . {) [ | J_/ Pil-i D /3) B4 dE dy 45,44 ()
e AT :;L/L":f P VU
AT JO/_JO;J it f,.f,)@(L ‘-1f)/)/')‘l\fd;‘l,}‘lj‘K"JC‘.(27)
ware _

_,='/‘,';‘, 5-7".“\’_}

A e A AR ]

The change of variables y = 1/2 (;1 * ;2); n= '-‘1 - ;2; s =1/2 (C.l ’E»z)‘
(_; = :1 -:2 makes it possible to perform the integrution in y and s. Por

that purpose v may employ the familiar expression from probability theory

L AL L A R SR PO
4” »( ) i‘ PL\ L' . /J [& . g ==
! A 2R )" /

("The result of convoluting two Guussian lavs s agair a Gaussian lawv.")

Suvstituting first in this expression y, =y, = N/2n; 3, =8, = 1/2 G
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8, =103 S, = - 1a,; and then y, = 7, c(1/2n; UL P /20 8 =143
S, = 1a2: adding and subtracting the resulting tw equations and splitting

off in both cases the real parts, one is led to the expressions

e

R TR ARy AR TR

/c/(:

(28)

AR (29)

where 92 = Qz + qz.

' ) < ) (30)
L[ Il. i(i——(;—(-)-)'} = :"_(11 ’_Iz)) (31)
where o
L .
1= | Eop) By s ag 4
iu - ,,® f) (32)
-
[ = /

2T _J,@'(ii’/ﬁ'«fhf>> Fr) dy d ¢l A8, )
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The forsulas obtained seem to be rather general and can be used to ocompute

phase and amplitude fluctuations for correlation functione B(r) of arbitrary

form. As an example let us consicer the following correlation functions

2
B(r) = w(HJp(K) =B, exp | - —ili- , (34)

vhere B, = “2 and r is the distance between the poirts M, and M.

One may think that asymptotic lavas which are appropriate to such &
correlation function hold also (vith precision to valuss of numerical co-
efficients) for any other sufficiently smooth oorrelation function B(r)
which decreasss sufficiently rapidly at 11 findty.

Substituting the function (34) into formulas (32) and (33) enables one
to explicitly perform the integration in n and .

Returning nov to the previous dimensional quantities, we find

!

Lo ,
. . / »
- ) [ ! g T s ) “/‘I’/ /
=41 A AR (35)
ol ey !
S
[
_ : ' / 1 .
[ =r k. . B N R
’ - fp et fut il oo SRR (36)
‘0 ;l
One observes that the factor exp ‘-;. o) ! inside the integral

represents the correlation function of the fluctuating index of refraction
slong the x-axis (i.e., along tle direction of propagution of the incident
wave).

For L >> &4 the double integral appewring in (35} and (36) cun be

reduced to a single integral by using the fact that the function dirfers

r
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seneibly from rero onl 1in a parrow strip about the line 'fl = $‘2. The
corresponding asyn;totic representation is easily obtained by a change to
the variables x = l/2<§1 + -§2> ad ¢ = §1 - 52. If L>2> ¢, the

S - integration can be extended to the whole real axis with negligible
error. If it even happens that kol.1>> 1, then it is possible to neglect
the sumaand () = &,) %% ith reapeot unit.y[boo‘uu of the
exponential factor the contribution of the denominator for (51 - g'z))) Y
is small 1in gonortl} . Hence there easily follows the following asymptotic
representations of the integrals I, and I, for L>>4 and k,¢,>>1 (i.0.,

4y >> V2w) )

Lo~ ur Bk L (37)
- 7,3 F 2L
I, ~ IV: b,, (, L(O arctan (-L’I‘l> (38)

ot

We remark that we introduce the dimensionless parameter

D= _kng_ , (39)
!
vhere it hus naturally besn assumed that L >>{ and ll>> A, and that it can
in general be allowed to take arditrary valuss in computing the asymptotic
representations of I1 and 12.
Prom (30), (31), (37), and (38) followvs the asymptotic expressions for

the mean square fluctuaticns of phase and logarithmic amplitude:
—_— {
. — tam
2 ~pE 5,'<0L<’*‘_D"< mD), (40)

(AZA')) - I’? b L E*D) (a1)

0
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Instead of the oconventional "radius of correlation® "l it 1s possible to
introduce the "integrated scale of the perturbation,” i1.e., the integral of

the correlation furction along the ray

s p‘: [;(x".)‘/f :/o;'/)(«;/?)'{{ = /41?/, (42)

Replacing beside. the wave number k by the wvawelength \ = 2I/k°, one

oan write the paramester as
i (43)
242
and the formulas become

/ -f—b" ¢ f‘?ﬂ "D)/

(44)

9|

20

.

7
Uk

gl
x.’*\1

3 L (45)
AV s st ta D)
e R
We recall that here Bo = “2 = (n-;)z 1s ths msan square of the refractive
index fluctuations.
Let us nov consider the limiting casvs. For small values of the parameter

D (for D<< 1)

arctan 0 D, 1--DL u-auaDt-%—Dz

and the ocorresponding msan square values are

R T (i 1)‘ AR
)t ) Ao -9 ‘o "

N (46)
A H /L /;
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2.
o . [L
Lumy H5 o\ 7 (47
(c.,, ‘ln(L/Ao)' d“ Are mean square values of the respeotive quantities).
As ome expects, these are wll knovn formulas of geomstric optics (expressions
(46) and (47) agree with those obtained by V. A. Krasilnikov [8 1)e The ocase
D«<{1 ocorresponds to comparatively small vaiues of tts distance L, vis.,

2
L Ly, vhere L = 2°/(\/2).
Por D>>1 (i.e., for L>> Lcr) we hawe arctan Dz-g- » and formulas (40)

and (41) give
'2 ~ - < L ] - . T
S < (4”) boT' (~/ \:’T("_/Z/ , (‘8)
/ /“ —4 < CL n) F L | oy :_«Z (T ’L’[ (‘9)
(eq) ek o Ly A7

Thus for large values of L the formula for the phase fluctustions
simplifien to the corresponding forsula of the geometric optics approxima-
tion, differing fros the latter only in the numerical factor 1/ 2 (in
particular the proportionality of 9,1 t0 the square root of L is preserved).
At the same time the dependence of the amplitude fluctuations on L changes
sharply upon cross.ng the value Lor‘ in the eame fashion as with small

3/2 and i»

L-values the paremeter cln(L/Ao) increases proportionally to L
independent of wvavelength (in agreement wvith the theory of geometrio optics).
For larger values of L the fiuctuations of the logarithmic amplitude follow
the saze lav as the phase " uctuationss oln(V‘o) is proportional to ﬁ
and in addition begins to depend on vavelength.

We note moreover that, acoording to ths above formulas, in every case
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‘ln(A,/Ao) < 04 vhere

~
! f’ Tl ¢ T .D

/
- /
/ D 4+ ¢ Feoe _D

The dependence on vavelength {or frequency) given by the theory can be

Cl A

~

used to explain the pheiomenon of color changes in tvinkling stars.

In conclusion ws zhall estimate the order of magnitude of Lcr for
tvinkling of stars. Assume that the 1ight vavelength A 1s 5 x 10~° om.
and that (the ®internal scale® of the atsospheric turbulence) is 2 ca.

For these values Lcr £ 1.6 x 105 cm. = 1.6 m. The valus of _he scale so
obtained compares with the thic«ness of that layer of the troposphere where
one expects the great majority of the temperature fluctuations and con-
ssquently the fluctuations of refractive index. Thus even in the problem
of tvinkling of stars where it would appear that one should find s wery
favorable situstion for using geometric optiss methods (since A << Ll) dus
to the great thickness of the layer one sncounters diffraation effects (in
the sense of Preasnel).

Qualitative confirmation of the results of the present investigation
ocan be gleaned froa experimental data on amplitude fluctuations of sound and
lignt wvaves in the atmosphere. Thus measurerents of the scund amplitude
carried out by Krasilnikov lﬁ shov that the fluctuations of phase and
logarithmic amjlitude are of the same order of magnitude but that the latter
are somsvhat le.s. The growth of the logarithmic amplitude fluctuations
vith increasing frequency is aleo observed. We also obserwve in Krasilnikov's
resulte ['ZAJ the rﬂ-grovtb of the logarithmic amplitude fluctuations of the

3/2

sound vave for larger L {but not the lav L”/“; this latter lav of grovth

sharply oontracicts all ot servations). An analogous deduction can be drawn
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from Siedentopf's [Qj-amemontc of the intensity fluoctuations of 1ight
received from distant sources.

Only qualitative deductions from the proposed theory can be considered
here. For a quantitative comparison based on experimental results it is
necessary firet of all to carry out calculations for vhatever partiocular
correlatinn function is charscteriastic of the fluctuations of the atmospheric
refractive index. The converse problem is also of considerable interest:
To obtain estimates for the charecteristics of atmospheric turbulence
(intensity, s:ale) from statistioal analysis of observed light intensity
fluctuations (twinkling of stars) or the sound fleld characteristic of
atmospheric turbulence. Consideration of these probleme falls outside the

soope of the present papur, howwver,

USSR Acadexy of Scuience
Geophysical Institute Received 25 November 1952

WCHicag
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