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Summary 

The purpose of thl» expojitsfy paper is to furnish a simple 

introduction to the use of the theory of dynamic programming 

In treating multi-stage decision processes. 
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Some Aspects of the Theory of Dynamic Programming 

By 

Richard Bellman 

§1.  Introduction. 

In recent years, a number of mathematical problems of 

novel and unconventional type have arisen from the study of 

economic, engineering, Industrial, and military fields to 

challenge the mathematician. A particular class of these 

problems are these we may call "decision processes". These 

Involve the planning, scheduling, or programming, all equi- 

valent terms, of sequences of operations. 

Many nrw techniques have been devised to solve these 

problems, and the very concept of a solution has been altered 

as a consequence o" the availability of modern compttlng 

machines. The purpose of this paper Is to present some of 

the basic concepts of one approach to these problems, the theory 

of dynamic programming. 

We shall Illustrate this approach by considering two 

simple examples, one a maximization problem of conventional 

type, and the other a decision process involving random or 

chance events. After discussing bctn of these problems, we 

shall attempt to synthesize our results and abstract the 

common element». 

62.  The Arithmetic Mean—Geometric Mean Inequality. 

Probably the most well—proved inequality In analysis 
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is the arithmetic—geometric mean Inequality which asserts that 

n n 
(1) I        x./n >    ^XiXf ..,x  , 

1-1      1      " n 

fur any n ncn—negative quantities XitX|f...#x • 

An equivalent form of the inequality is 

(2) Max xjxa.-.x,, - (l/n)n, 
R n 

where R Is the region defined by 

(3) a«  x1 > 0, 1 - 1,2,...^, 

n 
b.  2   x. - 1. 

1-1  1 

One may ask:     What does an n—dlmenolonal maximization 

problem have to do with programming a sequence of operationt? 

The answer resides in the fact that the choice of a point in 

n-dimenslonn   (xi#Xa,...,x  ) may be considered to be a  single 

operation,  namely  the choice of one point,  or as a sequence 

of operations,   requiring first the choice of X!,   then the choice 

of Xa# and so on.     It Is clear that  there should be some 

analytic and computational advantages derived from replacing 

an n-dlmensional operation by a  sequence of n one—dimensional 

operations. 

We begin with the observation that the maximum of XiX|...x 

over the region H is a numerical quantity depending only upon 

n,  the dimension.     Let us  then define 

(U) un  - Max    XiXa«..xn 
n 
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for n ■ l,2f3»**> Clearly ui ■ 1. 

If we choose Xi as fixed, and consider what the other x. 

must be, we see that to achieve the maximum value, u , we 

must choose Xafxs,...fx so as to maximize the remaining 

product X2Xs...x subject to the constraints 

(5) a» x1 2 
0# 1-2,...,n 

b.  xa^Xj^o. .«1—xi. 

Now this Is a problem quite similar to the original, except 

for two facts.  The dimension is now (n-l) and the sum In 

(5b) is 1—xi, In place ^ 1, as In (jb). 

Let us then generalize our original problem by con- 

sidering the problem of maximizing P(x) • XiXt...xn subject 

to thi constraints 

(6) R:  a.  x1 > 0 
n 

b.  2   x. « a > 0. 
1-1  1 

The maximum of P(x) will now be a function of n and a»  Define 

the new function 

(7) f (a) - Max P(x), 
n      R 

for n - 1,2,... 

For any choice of xi in the range 0 ^ «i ^ a, we see that 

xa»x9....,x must be chosen so as to maximize xaXs...xn 

subject to the constraints 
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(&)     a.  x. > 0, 1-2,3,...,n 1 ^ 

b.  Xa+xj*.. .-»-x^ » a-«i n 

It Is clear that xi + 0 or a. By definition of the functions 

|fn(a)| , we have 

(9) X2Xs...xn - fr_1(a-xi). 

Tnus, for any choice of xi in [ 0,a ], we have 

(10) xixa.,.xn - xifn__1(a-xi)l 

If we are trying to maximize<>  Since X| Itself is also to be 

chcsen to maximize the final result* we obtain the basic 

recurrence relation 

(11) f (a) -  Max [xif ^a-Xi)]. 
n    O^xi^a     n'^J 

For practical purposes,   the problem would now be solved, 

since we have reduced  the determination of fn(a)   to the compu- 

tation of a sequence of functions of one variable, namely 

(12) Ma) -    Max       [xiCa-x»)], 
O^x i^a 

fa (a)  -    Max     [x »f a(a-xi)] , 
O^xi^a 

and  so on. 

If we  insist upon the  luxury of an explicit solution we 

may proceed as follows.    Prom the homogeneity of all the 

relations,  we see that 
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(13) fn(a) - anfn(l) - anun. 

Hence  (11} becomes 

(14) aV   -    Max   Xt^xJ^u    ,, 
n    O^xi^a n~i 

or 

(15)        Un" C^ ^-y^^rv-r 

nn    ■       urwl 

Starting with ut  • 1, we obtain   \i)  inductively. 

§3»    A Oold-Mlnlng Problem. 

Let us consider a problem which can more legitimately 

be considered a programming problem. 

Suppose  that we have two gold mines,  Anaconda and Bonanza, 

and a rather delicate gold-mining machine.    The properties of 

the machine are such that if ured to mine either Anaonda or 

Bonanza It will bring to the surface a certain fraction of the 

gold in the mine,  and remain undamaged, awaiting further use, 

or it will be irretrievably damaged and mine no gold there- 

after.    More precisely, we assume  that if the machine is used 

in Anaconda,  there is a probability Pi  that a fraction r» 

of the gold there will be mined and the machine remain undam- 

aged, and a probability Qi  that   the machine will mine nothing 
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and :oe damaged beyond repair. Similarly, If Bonanza is mined, 

the probabilities are P« and Q» respectively, and the fraction 

Is r«. 

The process Is now the following. At the first stage we 

choose to use our machine In either Anaconda or Bonanza. If 

the machine Is undamaged, we make a similar choice at the 

second stage, and so on, until the machine is damaged, at which 

time the process terminates. Given the initial quantities of 

gold in the mines, say x in Anaconda and y in Bonanza, the 

problem is to choose the sequence of operations which maxi- 

mizes the expected amount of gold that la mined before the 

macnlne is defunct. 

It is clear that we cannot speak of maximizing the fmount 

of gold mined because of the probabilistic nature of the process, 

but that we must content ourselves with some average measure 

of the return. 

Let us begin by observing that the expected return from an 

optimal sequence of choices depends only upon x and y, the 

Initial quantities in each mine. With this in mind, we define 

(1)      f(x,y) - expected return obtained using an optimal 
sequence of choices when Anaconda has x 
and Bonanza I is y 

We shall solve our problem by obtaining a recurrence relation 

for f(x,y). This we do in the following way. Suppose we 

choose to mine Anaconda.  If the machine is undamaged, we 
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obtaln rix and are left in a situation where Anaconda poeseesee 

(l-ri)x and Bonanza possesses y. In this situation we will 

proceed to make an optimal sequence of choices, and hence, by 

derinition, obtain a further expected return of f ((l-ri)x,y). 

Since the probability that the machine is undamaged is Pi, 

we see that the expected return from an initial choice of 

Anaconda is 

(2) M^.y) - Pi(riX+f((l-r1)x,y)). 

Similarly, the expected return from an initial choice of 

Bonanza is 

(5) fn(x,y) - Pa(r.y*f(x,(l-ra)y)). B 

Since we want to choose the mine which maximizes the total 

return, the final equation for f(x,y) Id 

(r) f(x,y) - Max (fA(x,y), fB(x,y)) 

A:  Pi(r1x*f((l-ri)x,y)), 

- Max 

B:  Pa(riy>f(x,(l-ra)y)) 

We have tnua reduced the original problem to the analytic 

problem of solving this unconventional functional equation. 

In this case also, we xti  solve explicitly.  It can be shown that 

the rule which determines the choice of Anaconda or Bonanza 

is the following: 
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Pirix P«riy 
a.    If       >  ,  choose Anaconda, 

1—r i l-ri 

Ptrix Party 
(5) b.    If       <  ,  choose Bonanza, 

1-r i l-ri 

Pirtx Ptr«y 
c.    If *- m   ,  choose either. 

l—r i l-rt 

Observe that what we call the "solution", Is not an 

analytic expression for f(xly}f which Is relatively unimportant, 

but a rule for carrying out the optimal sequence of choices, 

which Is, after all, what we wanted. The functional equation 

merely serves as an Intermediary for the determination of the 

optimal sequence of choices. 

§4. Analysis. 

Let us now see If we can extract the common features of 

these quite dissimilar problems.  In so doing we shall be able 

to recognize other problems which may be treated by the same 

techniques. 

In each problem the status of the process Is described 

by a small number of parameters. In the maximization problem 

these were the number of variables remaining to be chosen, and 

their sum a; In tne gold-mining problem these were the 

quantities of gold available In the two mines at the begin- 

ning of any stage.  Furthermore, at each stage of either 
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procese, we had a choice of decisions.  In the maximization 

problem, we had a choice of xt between 0 and»a; in the gold- 

mining problem, we had a choice of a mine essentially a choice 

of A ov B. The effect of these decisions was to transform 

the descriptive parameters into another similar set.  In the 

maximization problem, we reduce it to a—xi by a choice of xi 

and reduce the number of stages remaining; in the gold-mining 

problam, we alter the amount of gold in one ine or the other, 

if the machine is undamaged. 

The essential feature of these problems is a certain 

invariance, in the sense that at each stage we are confronted 

by a situition of the same general type. Only processes 

pessfssing this symmetry over time can be treated by the tech- 

niques of the theory of dynamic programming. For processes 

escaping these methods, there remain the computational 

algorithms of linear and nonlinear programming, Monte Carlo 

techniques, and, occacionally, for want of better, the brute 

force of computing machines. 

S5» Abstraction. 

We can describe this Inyariance in the following way. 

We have an abstract system, S, whose state is characterized 

at any time by the vector P - (Pi,Pa»•••,Pn)•  At each stage 

of the process, we have a choice of a number of decisions, or 

transformations, which convert P into a new vector T(P,q), 

where q symbolizes the decision we make. The purpose of the 

multi-stage process is to maximize some prescribed function 
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of the final state, with the problem that of determining the 

sequence of decisions which produces the maximum. 

Let us call any sequence of allowable decisions a policy, 

and a policy that yields the maximum an optimal policy. 

The fundamental aim of the theory Is the determination of 

the structure of all optimal policies. In order to obtain an 

analytic hold on the problem we Introduce the return function 

f(p), the total return obtained using an optimal policy 

starting from the state P. 

The recurrence relations obtained In the previous sections 

(2.4) and (2.11), are both consequences of the following 

Intuitive and plausible principle: 

Principle of Optlmallty. An optimal policy has the property 

that whatever the first decision, the remaining decisions 

must constitute an optimal policy for the state resulting from 

the first decision. 

Using this principle, the functional equation governing 

t^e general procese described above Is 

(1)      f(P) • Max f(T(P,q)). 
q 

Applications of this technique have been made to various 

parts of mathematical economics, to the theory of control 

processes, and to such fields of mathematics as the calculus 

of variations and the theory of differential equations. 
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Those Interested in further details may consult the following 

two articles: 

•tfm._ mi _J. rw J ^ n J « 1. The Theory of Dynamic Programming , Bull. Amer. Math. 
Soc, Vol. 60 (1951*), PP. 503-516. 

2. "Dynamic Programming—A Survey", Jour. Operations Research 
Society, Vol. 2 (l^h PP- 27^-289. 

where many further references will be found. 


