CLEARINCHO'ISE ROR FEDERAL SCIL.iTFIC ANT™ ™ LICAL INFORMATION, CFSTI
DOCUMEHT MANAZEMENT B =1C.11

LIMITATIONSG IN REPRODUCTION QUALITY
Accessi & éé% ///

A§§:7 1. e rearct that leaibility of -1 document is in part
zaticfa-tory. Reproducti. a< been made from best
ivallable copy.
/ /7. h vortisn of the origsu 1 jocument contains fine detail
which may ke resding @ photocopy difficult.

/ / 5. Te original docum.nt contains color, but distr-ibution
pies ar> avajlavle i1 black-and-white reproiuction only.

4 J 4. The initial jistribution copies contain color which
will be shown in black-and-white when it is necessary to
roprint.

A ; 5. Lim‘ted supply on hand; when exhausted, document will
pe available in Microfiche only.

[ / ¢. Limited supply on hand; when exhausted document wiil not
be available.

Z::7 7. Document is avail-ble in Microfiche only.

/_/ 8. Document available on loan from CFSTI (TT documents only).

Procescor:s /
Ay D
PPy
—

NBS 9/64



Best

Copy

Available



P coy 7 604711

THE ELIMINATION FORM CF THE I%VER3E
AND ITG APPLICATION TC LINEAR PROGRAMMING

Harry Markowitz

P-6€0

£ April 1955

Approved for OTS rekeasd

. Zkv

CoPY £ OF _«

HARD COPY

RIS e B
':I {c

l-; NS [

$.2 00
§. 0.5
- e ‘ DDC
1
AUG v 7 1964
DDC-IRA D

7 RN D ponpran

1700 MAIN ST + SANTA MONICA « CALIPORNIA




- P=680

ACKNOWLEDGEMENT

The writer is indebted to George Dantzig and Alan Manne for

valuable suggestions.



P-680
=

THE ELIMINATION PORM OP THE INVERSE
AND ITS APPLICATION TO LINEAR PROGRAMMING

The inverse (A-l) of a matrix (A) is valuable when a number of sets
of equations AX = b are to be solved ueing different b's and the saze A,
A'l, like any matrix, may be expressed as the product of other matrices

SEE N SR

in an infinite number of ways. E.g. (2) = (1/2) (&) = (1/8) (16) etc.
If we have such Hl' e o oy My we can solve AX = b, X = A~lo tn a series

of steps:

0D IV

x(2) (1)

£ = M; x(n-l)

The expression Hn 0 0 g Hl is referred to as a "product form" of inverse.
In some problems there may be Mi which are easier to obtain and apply than
A7 fteelr.

This paper will discuse a particular product form of inverse which is
closely related to the Gaussian elimination method of solving a set of simul-
taneous equations. This "elimination form of the inverse,” as we shall call
4, is especially valuable when A has a large number of zero coefficiente.

If A has no gero coefficienta, on the other hand, the elimination form of
1

inverse is still generally as convenient as the conventional A .

The elimination form of inverse can be illustrated in temms of the
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solution of three equations in three unknowns:
1 X ) G
A PR PR T
R T PR P PR Tl

3) LS9 x1 ¢ .5, X2 'a” 13 - r-3

Por the moment we will let the k"h diagonal slement be the kth pivotal ele-

ment. PFrom equation 1) we get the first equation of our back solution
?

%2 ‘
Bl) L W oo I - -n X
h ‘i; n ? %y 3
a
We eliminate 11 from equations 2) and 3) by adding ( - ‘—i; ) times the first
1
th

equation to the i~ aquation, thus obtaining

*»
[} * -
2') by Xyt by Xy e,

3') b32 12 \ b33 13 - r3

where /
» &
rz °r, - q;)rl

- a
1'3 - I'J rl

Similarly we get

b
1 o«
B2) - T X
x2 rzz 2 ng 3
»h
and o” x3-r3
b
»6 L g *
where r - r -5231' .
3 3 22 2
Mnally
B3) D S
) 5y |3

B3) gives us X3; X; and B2) give L,; X,, Xy and Bl) give X.
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Consider the transformations whioh oceurred to our original right hané

First we formed

side.

g
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-/ 0 \n
\0 0 | /
1 0 0 /1 0 0 'r
1
. 0 1 ) S 0 ;
1 <
b

32 B\
0 - 1 0 1 r
% ._ .11 / 1\\3
Sinoce the QU !:1.1 °1J do not depend on the r, we have
1 - Y ;
— - 8 5-3\ 0 0
11 11
1 ‘a
A" - 0 -— 1 0
11
a
0 0 )l
tii

Similarly if A is any = X m non-singular matrix we have
31’2...%&°1...R1

vhere l\r is a matrix of the fom



and Bk is of the form

1
BT TR
’ 1

Although this elimination form of inverse sonsists of 2m-1 matrioces
it contains only nz numbers which are not kmowmn a-priori to be Oerl. 1It
requires the same number of multiplications and additions to apply the ali-

mination form as 1t does to apply the conventional A2, The aritmmetic

oponumuro(uirodwobuinthofsl...ﬂ' F‘_l...ledt.ocpply

them once are exactly the same as those required to solve a set of linear

equations by Gaussian elimination.
Suppose that the kth pivot is not "k‘k but vikJ (where V:J is the value
oo
of the parameter of g th equation J"h variable at the kt'h step). This step

transforms the right-hand eide by

1 8
, new . 1 old
 r ) - . . ( r )
‘a 1
where at least k-1 of the 7, = O and where the /7 vector is in the 1°t'h

column of the matrix., The ktP step also gives rise to a back solution

X ._L ﬂk * x
O e N
o O

where at lsast m-k of the Ty equal sero.
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The elimination form of the inverse in this case is
-1
A .BloooB-P&_looonl

vhere

and P is permutation matrix such that if )1‘,1 is a pivotal element P makes

the old 1M component of (r) become the new Jt'h component of r.

™at Al e B L PL L R, L., that AX = rimplies X =B, . . .
Fooo .1 r may be seen as follow. The transformations Rn-l' N 5 Rl r
give the right hand sidee of the back solutions in the original equation
order. We can imagine reordering the equations so that new firet back solu-

tion is the one ¢f the form
e A B
i1
and similarly the new k*! back selution is the one in which I was eliainated.

This rearrangement changes the order of the r, exactly as does P. The last

1
back solutien is of the fom

)
X ® e
Y o

n n



Since r, 1s now the j th component ef (r), B (as desorided above) will

a
transform (r) into a veeter with 11- in the J _th spot. The next baeck solutien

is of the form

X [} .1 r * y’ X
a1 Y laa h
Since, thanke to B. and P, r

is the j.-lt.h component and X, 1is the J.th

m-l Jl
component of (r), Bn-l transferms (r) into a veetor with XJ . in the J._lt.h
-

spot as well as X.1 in the Jgth spot. And so on.
n
In recording Bk or B'k in, say, a hand computation it is not necessary

to write out the entire matrix. In the case of an &‘ it is only necessary

to record the i eliminated and the non-sero I’i. In the case of a By it only

is necessary to record the j eliminated, the non-sero n

1
If, for example, the pivotal elements v13, ';1'

3 x 3 matrix, the elimination form of the inverse might be recordsd as in

3 and 1/pivotal element.

7322 are wsed in inverting a

Table 1.
Table 1.
Right Hand 3ide Transformations

i
k eliminated i 7 i r
1 1 2 6.42 3 8.15
2 3 2 9.10
3 2

m DBack Solution

k olinimtod 1/(pivotal element) 3 n J |
1 3 -84 )| 1.08 | 2 | 6445
2 1 5.92 2 3.18

3 2 1.08

In machine computation as well only the non-trivial parts of B, and R, need

be stored.



If the matrix A has a large nusber of sero oy T the elimination form of
inverse may have appreciably less than n2 non sero y s and 1 s. This may be
80 even though A"l has no seros. Thus the matrix

1 0 0 -1/2
-1/2 1 0 0
A=
0 -1/2 1 0
0 o -1/2 1
has a conventional inverse
1615 2/15 L/15 8/15
1. 8/15 16/15 2/15 L/15
A/15 8/15 16/15 2/15
215 L/15 8/15 16/15

and has an elimination form, using the diagenal elements as pivots, of

t Hand 3ide Transformgtions

k -
i elim, 1 7
1 2 1/2
1 3 1/2
1 A 1/2
Back Jolution
J og.\;. 1/pivotal elea. 3 0!
1 1 b 1/2
2 1 b 1/
3 1 b 1/8
4 16/18

Thus while A has 8 non-seros, A1 has 16 nen-seros and the eliminatien form

has 10 nen-seros.



The number of non-zero n and 2" in an elimination form of inverse may
depend on which pivotal elements are used. Suppose the *'s below represent

the non-gero elements of a 5 x 5 matrix.

* % B
*» »

* & ¢ x5

g 0&1 is the first pivotal element the non-zeros at step two are (barring

accidental zeros) as follows

% 8 %
% B & 8
LK 2R BN
L K BN BN

But if 0.5 or 051 is the pivotal element the pattern of non-zeros is

L BN BN
%

* & ¢ »

A table indicating tero and non-sero coefficients is a valuable aid in
the choice of pivotal elements. Prom such a table an agenda (i.e., a complete
set of pivotal elements) can be chosen before computation begins. This separa-
tion of the choice of the agenda and actual elimination is convenient both in
hand and machine computation. There are, nowever, two dangers attached to
deciding on an agenda beforehand. Some pivotal element may accidentally become
zero, in which case the agenda cannot be followed to the end. Or some pivotal
element may turm out to be so small that its use would adversely affect the
accuracy of the result.s., The solution to these difficulties seexms to be to
have some test of the acceptability of a pivotal element; form the agenda
beforeshand ani follow it as long as each pivotal element meets the test, If

& pivotal element fails the test, a new agenda can be worked out for the
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remaining equations and variables. wWhen A has many azero coefficients the
accuracy of the and is improved by the fact that less operations are
required to obtain them.

An example agenda is presented in Table 2, The X's represent the original
non-zero elements of the matrix, The M's represent coefficients which began
as sercs but ended as non-zeros. The numbers k = 1, . . .,43 in the matrix
indicate the kP pivotal element. The number (oi) at the right of each row
indicates the number of elaments of that row which were not already eliminated
when the row was eliminated. The number © ; at the bottom of each column
indicates the number of elements of that column which were not already elimi-
nated when the column was eliminated., One of the by-products of making an
agenda beforehand is foreknowledge of all the variables which will appear in
any equation and all the equations in which a variable will ever appear.

The matrix which Table 2 represents was the optimum basis of a linear
programming problem involving a 43-equation model of petroleum industry.

This lltrix_has 197 non-zero elements. As compared with a possible (L3)2 -
1849, the number of non-zero elaments in the elimination form of inverse is
Lpy *L (oj-l) Lo+ Loy- 43 = 201, To derive this inverse requires

) 4 °J = 247 multiplications or divisions and samewhat less
(1,3 pivotal)

additions or subtractions.

It would be desirable to choose an agenda so as to minimize the number
of zeros which become non-zero., In some cases it is harder to find euch an
"optimum" agerda than to invert a matrix. An altermative is to choose at
each step the pivot which minimizes the number of zeros which becoxe non-zero
at that step. A still simpler alternative, which seems adequate generally,

is to choose the pivot which miri!mizes the number of coeffigients modified at

B O Ml
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each step (excluding those which are eliminated at the particular step). This
43 equivalent to choesing the non-serc elsment vith minimwm (p, - l)(crj -1).
Pigure 1 {llustrates matrices v&‘h the ."ollwing propertiest

a) all diagosal elements 0,4 AT¢ non-serv

th

b) 4f an element %y °F %y in the k column or row is non-zero, then

¢ll elememts between %\ (or dw) and of, are non-serc.

l’\. 1s trivial to find an optimam agenda for such matrices. If the K" N
dml element is used as the k*® pivot, no sero coefficient will became
non-sere. If a matrix is almost of the above form except that a few zerve
are mixed im with the non-teros, then using the Kb diagonal eslement as the

k' pivot may cause the ™misplaced" seros (and only these) to become non-serv.

Pigure 1,
. .n .es X
X XX R » 3
s00 s 00 “e e RN
XN W XX sernan . ’
snone X R snaens e
semanas » RN NN »
TION 10 R G

| R

The Aiphdbex method for selving linear programming problems has a number
of variants. A recent nnicn’nqum the solution of two sets of equations.
The firsts set of equatiome

P'A =)' or A'p =/ ' ,
yields prices p which are used to selest a variable X, currently equal to |
sero, to be increased until some "asis™ variable becomea sero. The second .

oot of equations ie

Ae = P, -
where P, 19 a eolumn vestor associated with the variable I . e is used to =,
R
#Q. B, Dantiig, Alex Ordem, & Philip Wolfe, "The Generalised Simpleg '{.,/i.
Methed,™ RAND P-392-1, & August 1953, v.*,’g-‘;tf,r
. B
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determine which basis variable Xr first becames sero as l‘ is increased.
The matrix A at one iteration differs from that at the next only in that

the column vector P_, which we will assume to be the rth column of A, is

re

replaced by the solumn vector P.. I.e.,

(x)
A (PJl S S PJ.)
becomes
(k+l)
A (le. M PJ-)
Or
(ke1) | .
A (PJl o w0 Puv o PJ-) L
.?r
0% .1
1
letting E = 1 :1 we have
: il
Oy
A1) g

T™he inverse of A(k'l) i
a -1

where
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1)'1

In an early wariant of the simplex method the new inverse A(h was

obtained st each step by multiplying out !(k)-l A(')-l.' In a more recent
veroion the l(k)-l are carried along and used as product form of Lnnru."
If the first iteration starts with the identity matrix then

N U D L O

1f tne product form of inverse is used, as k increased computing time
required per iteration also increases. A point is eventually reached when
it is desiredle to reinvert the current basis A(ko) and let

A(“o").1 - 1:("0""1).1 == 1!("0).1 A (“o).1
At this point the elimination form of inverse can be of ‘mlue, especially
if A has a large number of seros, since this form requires less time to
obtain and apply.

Reinverting A is only part of the opsrations involved in solving a
linear programming problem. We therefore cannot expect to obtain, by the
190 of the elimination form, the same percentage reduction in computing time
for the whole linear programming problem as we obtain for the reinversion
of A, V¥When a more convenient. form of inverse is available it may be desirsble
to reinvert more frequently. To see the effect of a more convenient form
of inverse on the frequancy of reinversion and the time required to solve a
linear programming problem, we must explore the question of optimum rein-
version policy.

We will first derive some neat results under several restrictive assump-

tions. Afterwvards we will show computing procedures for obtaining an optimum

reinversion policy under more general assumptions.

#3¢0 George B, Dantsig, "Maximisation of a Linear Punction of Variables
Subject to Linear Inequalities,” pp. 339-3(7, and Robert Dorfman, "Application
of the Simplex Method to a Game Theory Problem,” p. 356 in Activity Analysis
of Production and Allocation, T. C. Koopmans, Ed., New York, 1951

##3¢e Qeorge B. Danteig, "The Product Form for the Inverse in the Simplex

Method,” in Mathematical Tables and Other Aids to Camputation, VIII, No. 46,
April, 195%.
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It has been observed, with stop watch as well as theory, that, with
the RAND linear programming code for the IBM 701, the computing time required
per iteration increases linearly with the number of iterations. Let us assume,
for the moment, that (a) the problem starts with a first basis to be inverted;
{b) the time required for this first inversion is the same as that for any
subsequent reinversion; (c) the computing time required since the beginning
of a (re)inversion is a quadratic function of the number of iterations since
then. t =0+ 81>~ )’12 vhere o, B8,/> 0. Let us further assume, for the
moment, that the mumber of iterations ¥ required to solve the problem is
mewn beforehand.

Suppose it were decided that there would be n inversions (n - 1 rein-
versions)., Let AIi = the number of iterations between the 1"h and 1*1"h
inversion (for 4 = 1,..,n - 1). Let AL < the mmber of iterations from the

n*" {nversion to the end of the problem. Total time (T) required is

n
Te ¢ a*ﬁcﬂin{(&li)z
{e]
wvhere
OHI, =T
il .

The optimum solution must satisfy the lagrangian equatione

3L (oAl + S (A1)?) - A( &L)
g - 0

Yoy
e

. B +2 YOI, - \ = 0 for all i
"« A1 is the same for all §

We can therefore rewrite the expression for T as
T« n(o + 81 +s1%)

vhere I «AI, -1
n



Or

2
Since 4—% >0 foralln >0, and since T > o~ as n -0, any n> 0 with

dn
a7
dn * Ogives a minimum wvalue of T for all n >0, If euch an n 1s non-integral
the best integral value is either that immediately above 3, or that immediately
below n, or both

dT

Uhcn;n--o

ne 1
a

Let us assume that n is integral. Then the optimum

1ea1 - J;dr_

?-j—? Teplera I - (g2 Jar
The last expression can be used for estimating the time to be saved by using
a more convenient form of inverse. Thus--given our various assumptions--if a
new method of inversion could produce an inverse in one-fourth the time (a) and
because of {ts compactness it permitted the firet subsequent iteration to be
done in one-half the time (B, roughly), the whole linear programming problem
c¢ould be done in one-half the time,

Lat us now suppose that 1 {s not known but has an a-priori probability
distribution (derived presumably from past linear programeing problems). We

BAY a9 well also drop the quadratic assumption on t. We define



r=C00vyv

=1 8=

a = the expected value of r
1) 1)

where r
Owhen I < |

The (expected) time required to (re)invert the matrix at
i and iterate through j-1 without reinverting—if Y > J,
1)
. The expected time from the beginning of the reinversion
at it to the end of the problem if 1< I< j.

Suppose the points of reinversien are before iterations I,, . . "Il (sinee
reinversien points can be chosen with 1‘ 30 large that there is a se@o proba-
bility that this iteration will ecour, there is no loes of generality in

assuming a fixed K). Expoacted time, to be minimiged, is

Eeg ¢ a * v e s
1 LI T
L ©f I, could be caloulated if i2 were known. It is given

by the function I, (I,) which minimises '111 . .1112 for various values of I2

The optimal value of i

and which can be readily camputed.

Define

a 2 a’
8 =11 (1) ¢ L (1)1,

2/1
/1

We now only need to minimigze

E= ‘I A * e 0ot
1 1
2/11 I2 13 k-1 K

We repeat the process until we have

B-.Ix
/1
) 'IK-l

from which we get IK &3 work back through

1 (f I i otc,
-1 l). K-2 ( X 1)' c
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POSTSCRIPT

It 14 eéamon for the matrices in industrial applications of limear pro-
gremming t€ have a large propertion of sero coefficients. Wwhile every item
(raw material, intermediate material, end item, oquipment item) in, say, a
oteel plant may be in seme manner related te every other, any partisular
process uses very few of these. Thus the matrix describing steel technelogy
hes a small percentage of non-sercs. If spatial or temporal distinctions
are introduced inte the model the percentage of nen-seros generally falls
further. Thus if a ene-time period, one-place model uses m» equations and
has qQ non-sero ocoefficients, an S place, T time peried model usually has
abeut STe equations and the propertien of non-sero coefficients is roughly

__.!KJ.!L.. = I3
: 12 .2 ST
were [ is weually about 2,

If S or T is dowled it may generally be expected that the time required
per iteration by a linear programming procedure which does not take advantage
of serve will iserease by a factor of 4. If an elimination form of inverse

10 weed we may axpect 0, f and rin t = o+ I + 712 to roughly double, and

. therefore time per lteration (approximately 8 * {07 ) to also doudble.

- we



