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SUMMARY

N
A simple computational method, based on

the simplex algorithm of linear programming,
is proposed for the following problem:

;Conlider a network (e.g., rail, road,
communication network) connecting two given
points by way of a number of intermediate
points, where each 1link of the network has a
number assigned to it representing 1ts capacity.
Assuming a steady state condition, find a maxi-

wal flow from one given point to the othor.“
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COMPUTATION OF MAXIMAL FLOWS IN NETWORKS

by

D. R. Pulkerson
G. B. Dantzig

The linear programming formulation of the network-f1low
problem given 1n [i] 18 not only useful a8 a theoretical tool:
When suitably interpreted, it provides in addition a simple
and efficient hand-computing scheme. It 18 our aim in section I
to deacribe this computation for networks with capacity con-
straints on arcs only. It is unnecessary to use programming
terminology in this description, and so we dispense with 1{t.

A direct proof will be given in section II that the computational

method assures one of finding a maximal flow in an arbitrary

network.

I. Description of Method

o =

The problem (see (1], L?]) may be stated as follows:
One 13 given a conrected network of arcs and nodes with two
distinguished nodes, called source and sink respectively.
All other nodes are called intermediate. Each arc in the
network has associated with it a positive integer, 1its [low
capacity. The direction of flow 18 assumed to be away from

the source in arcs having the source as endpoint, and into
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the sink In sink arcs; otrerwise no {low direction 1s specified.
Subject to the conditlions that the flow in an arc Jdoes not
exceed 1ts capacity, and that tle total flow i(nto any inter—
mediate node lu equal tu *he flow out ot 1%, It is desired
to find a maxlmal {low 11 the ietworx, 1.e., a 'iow which
maximizes trhe sum of the "lcws in source (or sink) arcs.

In order (o i1llustrate the computin. metrhod, let us consider

a simple examnle. Suppose we have the network of Fig. 1 with

source A,

Fig | Fig lo

s8ink B, and arc capacities as indicated. To start out, sele:t

two trees® of arcs, one branching out from A, the other from B,

»
A tree 18 a connected llnear graph without clilrculits; that 1is,
there 18 one and only ore chaln of arcs Jolning each palr of nodes.
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so that every intermediate node !9 reachied ty Juat one of the
treea. Call these TA and TB' For example, TB migh.t consist
of i alone, and T, right be the set AC, CD, DE, EF (sec Pig.
la). Notice that since the network 13 connected, 1t 135 always
possible to select two 3such trees. Next introduce any arc
which leads from TA to TB' Tt.ere will then bLe Just one chaln
from A to B; flow as muct. as poasible along this chain. In

the example,EB 1s such an arc, and we have then the flow

diagram of Fig. 2 with all of the arcs AC,

(c —=®
o
( ) Ii)
Fig 2 Fig 2a

CD, DE saturated. Select any one of these saturated arcs,
say AC, and place some identifyling marw orn 1t for luture referernce.

In Fig. 2 we have ugsed a bar (l ) ; this syntol will te used

It 13 clear that arcs may be removed until a tree {8 leflt.
There 13 then a unique chalin Joining A and B. Elimination of any
arc of this chaln gives two trees of the kind descrited.
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throughout to designate a subset of the saturated arcs. HNow
observe that 1f the barred arc is dropped from the plcture,

we again have two trees (Pig. 2a) T, = A and T, = EB, ED, DC,
Again Introduce any unbarred arc leading from TA to TB' say

AFP. This creates a flow along the chain AF, FE, EB of 10 units

and saturates each arc of this chain. Select one of these,

say AP, and bar 1it. We now have the following diagram (Pig. 3),

and we have achleved u [lnow of ¢0. Dropplng barreu arcs ,iveg
the same trees as 1n Flg. 2a. Introduce arc AE from T, t TU'
This leads %t¢ a situation we have not met previoug.iy in that

the chain tlhwus constructed, namely AE, EB, can nol taxe any

EF



nore f{low because B, thousi. untarred, 1s at tts up;er Jini,
var e ani leave AE 1r with o flow of rerc, ~otaintng gl U

Wwitl, new trees 13 siown In Fig., 4a.

Flg 4 F:g 4aqa

Introduce DB to get the chain AE, ED, DB. This time we can
get an increase even though DE 18 saturated, since the [low
in Pig. 4 18 from D to E. Thus if the flow from A to E 1is
increased by « > O, the flow from D to E must be decreased
by + , and the flow from D to B increased by - (see Fig. ub)

in order to preserve the conservation equations at E and D.
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Fig 4b

The largest possible value of € 18 10, since the capacity of
DB (and of AE) 18 10. This cancels the flow from D to E, Bar
DB and proceed.

A repetition of steps of the kind described produces the

sequence of flows depicted in Figs. 5 — 8 below.

Fig 5 Fig. 6
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Fig 7 Fig 8

Now in Mg. 8 the trees are T, = {AD, DC}, Ty = {FB, EF},
and there are no more arcs to introduce from T, to TB. At
this stage examine the barred arcs connecting nodes of TA to
those of Tp. If the flow in each of these 18 in the "right"
direction, that 1s, from TA to TB' an optimum has been reached,
because these arcs now constitute, in the original network, a cut
separating A and B (i.e., every chain Joining A and B contains
one of these arcs), and the total {low through the network 1s
equal to the sum of the capacities of the arcs forming the cut.
Hence, since it 18 clear that no flow can exceed the sum of capa-
cities of arcs forming a cut, the flow is maximal in this case.
If, on the other hand, the flow in one of the barred arcs which
Join TA to TB +8 in the wrong direction, an increase in total
flow may possibly be obtalned by decreasing the flow in this

arc. To see this, notice that the arc in question, together with arcs
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of T, an1 T,, will form a (unfque) chain Joining A 1nd P

which might loox, for example, like thic

+¢-(—¢+c'

the arrowheads denoting directions of flow. Now we may subtract
€ > 0 from the flow in all arcs having the same direction as

the barred arc, add € to the flow in the other arcs. Since
these latter arcs will of necessity include the source (and sink)
arc in the chain, the total flow will be increased provided
there i1s any slack in the chain, that 18, 1f none of the arcs
where +¢t appears 1s already saturated (though unbarred in our
procedure). In any case, locate an arc in the chailn which
determines the maximum value of « and place a bar on 1t. This
elther glves rise to two riew trees or, If the rositlior of the
bar has not Yeen changed, reverses the {low completely in the
origiral arc.

Ir the example (=ece Fig. ) the arcs DP, DE, AE, AP, CF
Joining nodes of TA to those of TB all have flows 1ir the ©izht
direction. Hence the flow shown in Pig. 8 1s maximal, and cor -~
Bequently these arcs form a minimal cut, 1.e., a cut the sum of

whose arc capacities {is minimal.
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It is clear from the preceding discusslon that the
proposed computation provides a nondecreasing sequence of flows.
All practical experlience with the method indicates that a maximal
flow 18 reached very quickly. There i3, however, the theoretical
possibility that an infinite sequence of flows having the same
value may be obtained. In the rest of the paper we shall indicate
one way of removing this difficulty. The idea, not a new one,
18 to perturdb the capacities of the arcs slightly so that the
decislon at each atage as to the placement of the bar becomes

unique, thus assuring a finite process.*®

II. Proof of Convergence

Given an arbitrary network N, let I . be a listing
of the arcs in some order and let Cyre--aCp be thelr capaclities.
At each stage of the computation, the arcs a,, i=],...,n;

are divided into four mutually exclusive classes T,, TB' S, &%

where

[ 2

From the linear programming point of view the method thus
far corresponds to the original simplex algorithm without modi-
fications to account for degeneracy, with this difference. When
"ties" occur in the method (1.e., when a bar may be placed in
one of Beveral positions at some step), we have not indicated
a unique choice, but rather have used language like "pick any
one..." If we interpret this to mean "choose at random among
the possibilities,” then we are at least assured that with
probability one the computation terminates, as we shall see.




P-677

"-“—)‘)
TA 18 a tree branching out from A,
TB is a tree branching out from B,
S consists of the barred arcsg,
& contains all other arcs,
and each node 13 an endpoint of some arc of TA or TB' Call

such a divisiorn a basic partition of N.

Theorem: PFor a given basic partition of N, let arbitrary flows
be asaigned to arcs of S and 2. Then the conservation equations
uniquely determine flows in the arcs of TA and TB' Moreover,

1f X seee,X, are the amounts of the assigned flows, then the

m
amount of flow in each arc of N is equal to bJ
J=1

XJ' where
OJ =1, O, or -1.

The proof can be made clear by considering the following

example:

Fig 9
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where the dotted flows Xys++.,Xg are assigned.

Orient each arc of the two trees in some fasnion, say
away from A in T, and away from B in Ty (as shown in PFig. 9),
the convention being that 2 positive number on an arc represents

low in the same direction as 1ts orlentation. Thus if
X, ¥y, 2 are the flows in arcs AC, CE, CF, respectively, the
equation at C1s x —y — 2z = O,

That the flows in the arcs of each tree are uniquely
determined can be seen by solving the equationg recursively 1in
the following manner. Start with an outermost node in cre of
the trees, E for example. There 1s then only one unknown flow

into E, nence its value can be found; here 1t {s x, - X

—

Similarly determire the flows in all arcs branching out of F,
G, H, and then work backward in the tree.

For the last assertion of the theorem, it 1s convenlert
to solve tne equations in another way. Select any one of the
assigned flows Xy - There are two cases to consider. Eiltner
the arc with flow Xy Joins two nodes of the same tree or not.
Suppose 1t Joins two nodes of T\, as CF Jdoes, for instance.
Since there 18 a unique -hain joinine E and P 1n TA, namely
FC, CE, the flow x. in EF can bte taren rare of by assiening
+ x- appronriately tc the arcs »f tr1s ecnain. Here the as3ign—

Tent 18 + x- to CF, — x. to CE. Or, the other hand, 1If the are
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in question Joins TA to TB' as x, does, consider the chain
jJoining A and B and having this arc as one of i1ts links. Here
it 1s AC, CE, EI, IL, LB, and the assignments are X1, Xy, X9, =Xy,
Xy respectively. If we continue in this fashion, it 1is evident
that a solution to the system of equations will bte built up

having the form described iIn the theorem. For the example,

the solution i1s shown in Fig. 10.

Fig. 10

In the algorithm outlined in section I, arcs of S are

saturated and arcs of Z have zero flow. Hence we may state
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Corollary: Suppose S consists of arcs ail,...,a1 at any
8
given step. Then the flow in each arc of N 18 given by a
]
sum of the form Y 8, ¢, , where 6, =1,0, or -1.
kel k "k k

Let us examine in more detail how ties occur in the
decision as to which erc to put into S in going from one step
to the next in the computation. BRach step is of one of the
following two types:

(a) @ flow from T, to Ty 18 introduced along some arc
a of Z, thus shifting one of the arcs of TA or TB, or a itself,
into §;

(b) a flow from Ty to T, along some arc b of S 1s decreased,
again shifting one of the arcs of TA or Ty into S, or leaving
b in S with its direction of flow reversed.

It suffices to consider (a), since (b) 1s essentially no

different. We have then a chain from A to B
+ & + € - € 4+ € - € + €
WD)—O—=O—"C"O—7—O=—"_"O0—0®

consisting of a and arcs of T, and Ty, with flows in one
direction or the other in each arc of the chain, the direction
of flow in the source (sink) arc being away from A (into B).

Suppose the arcs in the chain are aJ s aJ i e

1 2
and let S consist of 111, ceey By
s
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By the corollary, the magnitude of flow in a, I8 glven by
<k

38
z 51%‘:1 . It follows that we may increzae the {low 1n arc
kwml K K

a by an amounc

8
¢ mmin (c, + 5 0 VR )
5 TR b

where the plus sign 1s taken if aJ has flow directed towaird
i

A, the minus sign otherwise. Since the cJ are integers, it
)
is clear that 1f, instead of uslng the original capacities,

we had altered them to begin with by sgetting

the minimum would be achieved for Jjust one J‘ Then at no stage
do ties occur, and consequently arcs not in S will, at each step,
be unsaturated. This means that the total flow through N i3
increased with each iteration, and hence, by the theorem, no
basic partition having the same directions of flow in arcs of

S can reoccur. Since there are only a finite number of basic
partitions, the procedure terminates for the perturbed problem.
Thus we must arrive at a flow in which all arcs of S leading from
TA to TB form a cut and are in the right direction; hence the
flow 18 maximal. Once an optimum has been attalned, a solution
to the original problem 18 given by rounding each arc flow to

the nearest integer.
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Notice that the theorem (see (1), [2]) which states that
the maximal flov value Iin a network 18 equal tc the minimal cut
value 18 apparent from the algorithm just outlined, Bince the
d'!gi at which the computation terminates occurs when some cutl
in the network 1s saturated vty fiows In the right dire:-tion.

We alasoc point out, for what it may be worth, that tne
assertion in the footrnote on page 9 can now be verified. To see
this, let us define a state of the system to be any flow cor—
responding to a basic partition, where the arce of B8 are
saturated and those of Z have zero flow, i.e. a state i8 any
flow that might conceivably be¢ reached in the computation.

There are only a finite numper of states, say Gysv )0 Thus,

L
if we start with any state di and randomlize among tles at each
step, there is8 a positive probabllity Py of reaching a state
satisfying the maximality criterion within t steps, since the

poasibilities at each sStep include the one which would be

selected in the perturbed problem. Let p = min Py > 0. Then
i

the probability of not terminating 1s 1im (l—p
m-

)™ w0,

For anyone who may be interested in computing maximal flows
in networks bty t..13 method, we do not recommend altering the
capacities as described 1in this section. All empirical evidence,
both in th!s particular problem and with the simplex algorithm
in general (of which this 18 a specilal case), indicates that

the insurance bought in this way 13 not worth tiae effort.
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