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Summary 

l»-tWi-ft paper wA-3stabll3h5existence and  uniqueness  theorems 
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61. Introduction. 

In tne preceding papers of this series [l], [^J, we have studied 

two particular classes of f motional equations which arise In the 

theory of dynamic programming. The first paper, [l J, presented 

some results concerning the equation 

(1)      f(P) = Max  [R(P,Q)+h(P,Q)f(T(P,Q))J, 
Q 

(a detailed exposition Is to be found In [2]),  while the second paper 

of the series, [3J , was devoted to a discussion of equations of the 

form 

('>      ^1 - Max f1{x,,xa,...,xn,t;Q),x1(0)-c1,l-l,2,...n. 

dt    Q 

Equations of the first type arise from the study of discrete 

processes, while equations of the second type arise from the study 

of a certain class of continuous decision processes.  Partial differen- 

tial analogues of (?) arise fro:n the calculus of variations, and 

from the theory of Integral equations, cf W»^5]• 

All of these equations pertain to one—person decision processes. 

In this paper, we shall study a class of functional equations arising 

from the theory of multi-stage games. The equation we shall use to 

Illustrate our techniques Is 

(5)     f^P') » Max Mln [(/V  [R(u,v)+h(u, v)f (T,T')JdG(u)dO'(v)] 
G  G«  D(P,P') 

= Mln Max [ ... J , 
G' G 

where T - T(P,P,;u,v), T'-T1(P,?1;u,v), and G(u),G'(v) are distribution 

functions for u and v respectively over the allowable regions. To slmpl 

fy the notation, we wr^te R(u,v) and h(u,v), althougn we actially allow 

these functions to depend upon P and P'. 

(2) 
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The precise reetrlctlons we shall Impose upon the functlc »s 

which appear will be discussed below. 

The earliest formulation of multi-stage games In terms of 

functional equations, of which we are aware, Is contained in 

R. Bellman and J. La Salle, [ 11 J, and R. Bellman and D. Blackwell, 

f 10 J , where "games of survival" are Introduced. Following this, 

further studies of the existence and uniqueness of the solution, 
M. 

together with properties of the solution, are contained In/Pelsakoff 

C ^5 J » and uellman, £6 3« The first paper stating some general 

existence and uniqueness theorems for other classes of multi-stage 
L. 

games is that of/Shapley, [15 J•  Since then, a number of papers 

have appeared on the subject of multi-stage games.  The subject has 

attracted a great deal of attention, and deservealy so, since tne 

theory of multi-stage games constitutes a natv-^al extension of tne 

Von Naumann-Morgenstern thecry.  In some sensp, *e may even consider 

the multi-stage process as basic, giving rise to the single—stage 

theory as a limiting case corresponding to a "steady state'1. This 

Is a clear inference from the E.own—Von Neumann iterative solution 

uf games. A concept of this type is useful In discussing tue play 

of n—person games and non—zero sum games.  For an application of 

this idea, see £ c J, wnere the idea is applied in a neurlatlo fashion. 

We shall begin our discussion in the fclicwlng section wit;, tne 

description of a mulLl—stage game arising from the Ftuoy of two-person 

allocationfrccesses.  The "principle of optlmality", [7], will be useJ 

to show that we may reduce the study of the N-stage pre cess to nhe 

study of a certain system of recurrence relations. We snail then con— 

(3) 
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slder.   In turn,   the corresponding process  Involving an unbounded 

number of stages,  the process  where the  Interaction Is stochastic 

rather than deterministic,  and   finally,   seme time—dependent  cases. 

In  this  way we  shall  be  ^ed  to  consider the equation In  ()). 

Using  this equation as cur model,  we shall  turn to a discussion 

of existence  and uniqueness,  under various hypotheses concerning 

the  coefficient  functions.     Our proofs will depend  upon the method 

of  successive, approximations,   and  a lemma  which exploits  the 

quasi-linear aspect of  the functional equation. 

We  shall  demonstrate/the  strategies determined  by the functional 

equation are  effective,   and consider the stability of the solution 

under changes   In R(u,v). 

The method  we shall  employ  in presenting the  results sketched 

above  Is  also  applicable  to  the  one—sided  functional  equation 

(4) f(P,P')-Max    Mln     [R(u,v)+h(u,v)f(T,?')], 
u v 

as was pointed out to ua by W. Fleming. We shall also use a 

cruder method to treat tnls problem. 

Finally, we shall discuss some other classes of multi-stage 

games, such as "games cf survival" and "pursuit games", which lead 

tc functional equations amenable to the same analysis. 

62.  Description of a Multl-Stage CLT.P 

•Let us now describe In detail tne multi-stage game we wish to 

analyze.  Two player«", whom we may rather prosaically designate by 

A and h,   possessing,respectively,resources which we may represent 

as H-dlmenslonal vectors, P and P', are engaged In a multi-stage 

CO 
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procesö carried on  in the following manner.    At  the beginning of 

each stage of an N-stage process, A allocates a certain quantity of 

hla resources, a vector u, and B a certain quantity of his resources, 

a vector v;   this will  be represented  symbolically by the  notation 

0<u<P, 0<v<P'. 

As a result of  this allocation,   there are  two consequences.     A 

receives a pay-off of R(u,v),  a scalar  function,  and B a  pay-off of 

-ä(U,V).    Furthermore,  their resources  are altered,  P  is   transformed 

into ?(?,?';u,v) and  P1  becomes Tf (P^* ;u,v).    The process now continues 

in the same  fashion  for (M-l)  additional stages. 

The total  return  to A of  the N-etage {.rocess  is aasurr.ed  to be 

additive, 

(1)       RN-RN(u,Ui ,. . . .u^jv^i ,. . . .v^ )-R(u,v)>F(ul ,Vi )^.. .■►R(uN_1 .v^), 

There are  t*o ways of treating tne  N-etae.e  process.     We can either 

consider the N-stage  game as a  single-stage gamo  of complicated type, 

requiring a choice  of  the set of vectors   (u,^,...,uN . )   by A,  and  the 

set  {vtVi ,,,, fV*. -)  by B,  where  the choice of u    and v.   depends upon the 

choice of u .uj ,... »u. _. ,v,Vt ,... .vk_i »   or we can u8e  t'ie   functional 

equation approacn of dynamic  programming,   [6J,   [f]$  and  thus reduce  the 

dimensions of the  procesa.    For  the  case of unbounded processes,  or 

processes  involving  stochastic   interaction of u and v,  whicn we shall 

discuss below,   the  recurrence  relation  technique  seems  to be tne only 

feasible one,  while   in the  case  of finite deterministic  processes,  this 

technique  Is  simpler analytically,  conceptually,  and computationally. 

Let us now mane  some assumptions  of continuity.     We   snail  take 

R(u,v) and n(u,v)   to be a continuous  function   3f u,  v,   P and P'  over 

(5) 
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any finite   {?t?*i\i,v)- region, and olmllarly for T{?,?' ;\i,v), T* {?,?'iu,v) 

to be continuous  functions of P.PSu and v.     The case where P,?*,\i,vt 

R(u,v),T,T',  assume only finite sets of values  Is also Interesting and 

may be  treated by the same general techniques. 

The value of the N-stage game described above is given by the 

expression 

(2) vN-Max Min       [// RNdG(u,u, .... ^u^ )dG' (v.V!,.. . .v^ )] 

-Min Max       [...], 
G«     G 

where  G and  G1  are distribution functions over regions of quite 

complicated   form defined  by  the inequalities 

(3) OCKP,    0<v<P', 

0<Ui<T,   O^Vi^T«, 

Note  that T and T'  depend upon P,?', u and v, T^Ti'  depend upon 

P,?% ,u,v ,u\ ,Vi, and so on. 

Obsrrvlng that  vN depends  upon P and  P',  the  initial  states, 

and  only upon these quantities,   let us define  the sequence  of  functions, 

fj^PjP') f   ,  oy means  of tht   relation 

{*) f^PiP')   - vN,   N-1,2,... 

53-     The  Principle of Optimality. 

In   [7],  we enunciated a  principle  which yields the   functional 

equations  of  the  theory of dynamic  programming,   namely the 

Principle of Optimality.     An  optimal policy has  the property that 

(6) 
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whate/er the initial state and Initial declalons are, the remaining 

decisions must constitute an optimal policy witn regard to the 

state resulting from the first decisions. 

Applying this to the multi-stage game, we obtain the following 

recurrence relation 

(1) fi(P,P')-Max Min f     if   R(u,v)dG(u)dG'(v)-Mln Max [ ... ] 
G  G'  0<u<? G'  G 0<u< 

0<v<P• 

fN^i^P'P^"Max Hln  L ^ (Z7 [R(,J>v)+fM(^^')JdG(u)dG'(v)] 
w+1       GO«    O^u^P N 

0<v^P' 

" Mln Max ([ • • • J • 
G •  G 

That the above principle is valid fcr one-person processes where 

we are attempting to maximize a return or minimize cost Is clear 

by contradiction.  Since its validity may not be as obvious for ^ame 

processes, let us present a brief proof for the sake of completeness. 

The recurrence relation in (1) provides a sequence, not neces- 

sarily unique, of pairs of distribution functions, j G^u,?^') ,0'^,?,?')j 

which furnish the sequence ^(P.P1) f .  In order to show that the 

function fviCF^P') Is actually the value of the N-stage game, It is 

sufficient to show that A can guarantee an expected return of f^lP.P") 

if he chooses u at the first stage of an N-stage process In accordance 

with the distribution function GN(u,P,P'), when the states of A and 

B are described by P and P', respectively, and similarly that B 

can guarantee an expected loss of not mere than —f^P^'). 

(7) 
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To demonstrate this, consider the one—person N-stage process 

In which A employs the fixed strategy represented by the sequence 

of distribution functions, 5 G^lu,?,?'H, k=»l,2,... ,N, and B attempts 

to minimize A's expected N-stage return.  It Id sufficient to consider 

this process, since any other policy employed by B yields a larger 

expected return for K.  Let 

(2) w^P,?') • N-stage expected return to A when A employs 
the fixed strategy ^«(u.P,?')^, B employs 
a minimizing strategy, and A and B are in the Initial 
states P and P'. 

Then we have the recurrence relations 

(3) wi^P') - Inf  (/   [  (/»   R(u,v)dG(u,P,P')]dG'(v)l 
G1 0<v<P'   0<u^P 

»W^P1) - Inf  /   [S   CR(u.vhwN(T,T')JdG  (u,P,P')JdO<v 
^^ G« o<v<P' ü^u<P       N        N + 1 

upon employing the principle of optlmallty for the one—person process. 

Considering the origin of the function Pi, we see that the 

minimum in the relation for wi(P,Pl) in (5) is attained by the function 

G'-Gi', not uniquely in general.  Hence, 

(4) W|(P,P') - vt^P'). 

Since w^vi, the relation for w2 yields in the same way the fact 

that W2»v2, and thus, inductively, we see that 

(5) ^(P,?1) H vN(P,P'). 

In precisely the same way we snow that if B employs the 

strategy fG'^v^.P« ) |, A cannot ottain^flan vN(P,P')-  Hence 

VJ.CPJP
1
) is the value of the N-stage gfme. 

64.   Related Clasres of Garnes. 

Proceeding formally for the moment, without regard to the 

existence of the quantity we define, let us consider the unbounded 

(8) 
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process.    Define 

(1) f(P,Pl) - the value of the Infinite  stage process to 
A when A has  P Initially,  B has  P», and both 
players employ optimal  strategies. 

If fCP.P')  exists.  It satisfies  the equation 

(2) f(P,P«)  - Max Mln     [/    /    [R(u,v)+f (T,T')]dG(u)dO'(v)] 
G       0•        0^u<P 

0<v<P' 

- Mln Max     [ ... ] , 
0'     0 

provided  that Max-Kin - Mln-Max.     The  legitimacy of  ^hls will be 

discussed  In the   following sections,  under suitable assumptions. 

Let us,  however,  observe  briefly how more  general processes 

can give  rise  to various extensions  of  (2).     if we allow the process 

to be    time-dependent  In the  sense   that  tnc  return  from the k— 

stage, as well as the  trans format Ions T and T',   depends upon k. 

In place  of  the   function defined  by  (1),  we must consider the  sequence 

of functions 

(3) fCP,01;^)  ■ the value  to A of the  Infinite  process  begin- 
ning at  the k*"^ stage when A possesses  P 
at this  Htage and B possesses  P', and  both 
employ optimal strategies. 

This  sequence  satisfies  the  recurrence relation 

(4) f(P,P';k) - Max Mln     {/    / [R(u,v,k)4f (T ,T'   ;k+l )]dg(u)dQ'(v) 
G      0«       0 <u<F 

0 <v<P' 

- Mln Max     [    ...    ]. 
0      0» 

Let us  now comollcate  the  process to a  further degree.     We  have 

assumed  In the above formulation that the  Interaction between the 

players was perfectly determined once u and v were chosen.     It  Is 

interesting occasionally to consider more general processes  In which 

(y) 
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a  choice of u and  v merely determine a distribution of outcomes, 

denoted  by  the  function  K. (z,t,t'; u,v),   which depends  upon  the stage, 
is 

where z/the value of  R{u,v),   t  the  value  of T,  and   L'   the  value of 

T'.     Then   (4)   Is  replaced   by 

(5) f(P,P';k)   -Max Mln   \ {/ {f   (/^ [z-^f (t,t • ;k+l}]dK. (z.t ,t •;u,v)3 

"      ^    ^P dO(u)   d0.(v)] 
O^v^P• 

-Min Max t    •••    1 • 
U'      G 

Finally, let us consider the case where we are not interested 

In the sum of tne returns, but In some nonlinear function of the total 

return.  A particularly Important example is the probability of 

achieving a return of at least R .  This Is the expected value of 

the function defined by 

(6) 4 (u) - 0, 0^u<Ru, 

- 1, u>Ro. 

aR 
Another  Interesting  utility  function  is  e 
describe the  general non-linear 

To    /      situation,  we must  introduce an additional  state 

variable,  a,   the return obtained  by A  from ♦'.he previous  stages 

of  the process.    Defining  f(P,P,,a;k}   essentially as  In   (3),  we 

obtain  the  functional  equation 

(7) f(P,P'a;k)-Max Kin     IS   if    I  </" f (t, t • ,a fz; k + l)dKk(z,t, t' ;u, v)J 
G       G«       0<u<P 

0<V<P. da(u)d0'(y) 

« Hin Max    [    ...    j 
G«     G 

We  shall net  consider any of  these more complicated   functional 

equations since the  basic  approach is  the  same  'n all  cases,   despite 

tne fact that  the analytic details  Increase  In complexity. 

(1C) 
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A genuinely new class of  functional equations emerges  from 

the study of "learning processes",   [14],   [9].     Here  It Is 

assumed that the distribution  function K(z,t,t«;u,v) exists,  but 

Is not completely known.     In the course of carrying out the process, 

additional  Information  Is  obtained concerning K.     The problem 

Is once  again to maximize   the expected value  of the  total return. 

It  Is clear,   of course,   that  we are encroaching upon the domain of 

sequential analysis.    We  shall  consider the  functional equations 

obtained  In  this way In a  subsequent work. 

The methods we employ  here,  combined vlth  those used to 

establish the results of   [3j $   can be used  In very much the  same  form 

to treat  the nonlinear differential equations 

(11) dx. 
—- m Max Kiln       [</</ f. (x^iu^dG^dQ'(v)] 
dt 0      0' I 

- Mln Max       [     ... J,   1-1,2,...,n, 
Q1     G 

and similar types of Integro-dlfferentlal equations,  cf.   [l6],   [l7j. 

05.    Statement of Principal Results. 

Befure  stating our results,   let us  Introduce  some notation 

and definitions.    We shall  take  P and  P"   to be  n- and n'-dimensional 

vectors  defined over  regions D and D*   respectively,  each contain- 

ing the  origin  In  Its  respective space.     For all  values  of u, 

v,  P and  P',   the transformed vectors T{?,?% tv,?),  T1 (P^1 ;u,v), 

are required to lie within these same domains,  where u and v are 

k and k'-dimensional choice vectors respectively,  constrained  to 

domains S and S*  which,   In general, depend upon  P and P'.    Since 

(U) 
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we are dealing with ahrlnklng tranaformatlona,  there  Is no IOBB in 

-asBumlng D and D*   to be finite. 

In each apace,   let us  Introduce  the norm,   (|P||,  eqi.al to the 

sum of the absolute values of the  components of P, 

0) llPlI     -     E IPJ. 
1-1    1 

IIP'II   -    £'   IP'J. 
1-1      1 

Actually, these need not be Hie  same norms, and In aome situations. 

It might be useful to consider norms molded to the structure of the 

functional equations arising, rather than standard liorms of the 

above type. 

The functional equation we shsll consider Is 

(2) f^P«)  - Max Mln  I   ^ S    li^P'iUjv) 
G  G«  L L 

vcsls •('?!?•) ^(P.P,^.v)f(T>T')jdG(u)d(?^ 

Mln Max [ ... J, 
G«  G 

where 

(3; T - T(P.P'iu,v), 

T" - T^PjP^u.v) 

To simplify our notation, let us represent the operator appearing 

within brackets In equation (2) by T(P,P';f ^G«), so tnat the above 

functional equations take the form 

(4)     f^P') - Max Mln T(P.P1;f ;G,QI) 
G  0» 

- Mln Max T^P^f^G')- 
0' G 

(12) 
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Whether one wishes to call this one functional equation or 

a pair of linked functional equations appears to be a matter of 

taste. 

The result we wish to prove  is 

Theorea 1.    Consider tf-e above equation,   (^), under the   follow- 

ing assuaptions. 

(5) (a)    The  functions !*(?,?';u,v),   hCP.P^u.v),  T(P,P»;u,v) 

and T(P,P' ;u,v) are continuous functions of P and P', 

u and v,   in any bounded  regions of tne variables. 

{h)    The  choice domains, S(P,P')»  S' (P,P')#  vary  contin- 

uously with p and P'. 

(c) T and T'   are shrinking t^^^^sfonnationB,   i.e. 

Max     (||   T(P,P';u,v)||   +   ||   TSr .P« ;u,v) || )  < k( ||p| KUp'l |) 
u<S 
veS« 

where k  1_8 a   fixed constant  less  than 1. 

(d) Let, 

w(c)   - Max (Max   |R(u,v) | )' 
IIPII   +   l|P'll<c       u^S,' 

v^S' 
oo 

Thei m      ^>      w(knc)  < oo. 

(e)    Max | |  h(P,P';u,v)||   < 1. 
u.v^.P« 

If the above  conditions are satisfied,  we can assert tttat there 

is a unique  solution  of  (4)  within  the  class of functions   f(P,P') 

*Por simplicity»   let us suppress  the   P and P'   In R(P,Pl;u,v). 

(13) 
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which are continuoua for all  finite  P and  P'  and vanish when  P' 

and P'  are both null vectors. 

This solution may be found by the method  of succesaive approx- 

imatlons, 

(6) f   (P,?')    -    Max Mln       |     ^ C R(u,v)dG(u)dO«(v)  1   , 
u^S, 
viS' 

-    Mln Max       [     ...    ]   , 
G'     G 

f^i(p'pl)    ■    Max Mln    T(P,P';f   :0,G') 
n+i GO' 

-    Mln Max    T(?,P';f  ^,0'), n > 0, 
0«     G 

with  f(P,P•)     -    11m      f  (P^')     In an^ bounded domain of the 
n—>OD     n 

(p.P')  epaco. 

We  shall   further demonetr   ;e 

Theorem 2.     Under the hypothesea  of Theorem  1,  a  set  of functions, 

(Gvu) »Q' (v)) ,   fomlahed  b^ the  functional equation conatltute a set 

of optimal  strategies for A  and  B respectively  In  the Multi-stage 

game described   In  the  pi-ecedlng sections. 

(14) 
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^6.    Lemma. 

Let us present a simple but extremely useful  Inequality which 

exhibits the quasl-llnearlty of  the  transformation 

(1) L(f)     -    Max Mln      ?(?,?•;   f;  0,  G»)  - Mln Max T 
0      0' G«     Q 

(2) 

1.     Let 

L(f)     -    Max Mln 
G      G' 

</ / 

U€S 
veS« 

R(u,v)  +  h(P,P';u,v)   f(T,T,) 

d0(u)da,(v) 

■    Mln Max     \    ... 
0»    0       L 

Lt(F)   - Max Mln 
G      G' 

/    / [Ri(u,v)  ■»- h(P,P';u.v)F(T,T') 
ueS 
vcS 

dO(u)dG,(v) 

Then 

(3) 

«    Mln Max     [ 
G'     0        1- 

iLCf)-^^?)!  < Max Max 
"    G       G' 

c/7    /||R(u,v)-Rl(u,v) 
u«S l 

v#S 

|h(P,P';u,v)|    |f(T.T')-P(T.T')|j   dg{u)dG«(v) 

Proof:    Lot us  write 

w L(f)     - Max Mln    T(P,P';f;G,G') - Mln Max 
G       C Q»     G 

Li(F)   - Max Mln T,(P,P';P ;G ,G') - Mln Max 
0« G«     G u 

Let  (0i ,0i ' )  bf»  a  pair of functions  yielding,  tne  value   L(f),  and   (üg ,Ga ' ) 

be a pair of  functions yielding  the  value Li(F).   Then,   by virtue  of  the 

saddle-point property,we have  the   following chain  of equalltiea  and 

Inequalities  
It is assumed  tnat max-ain  - mln-max   for each  transformation.  A  similar 
result holds  for the one-sided max-mln operator;   see $  I1». 



(5) L{f)  - TiF.P'ifiGx.Gt')    > T(P,P•;f;G2,G1
,) 

< T{?tP';r;Qi,Qa'). 

Li(P)  - T^P,?';?^«^»')  > TtiFiP'itiC^Qa1) 

< T^P^^PjO,/?,') 

Combining these Inequalities we have 

(6) L(f)-L,(F) > T(P,P';fjOafGi') - T,(P,P'jF;Ga,Qi') 

< T(P,P';f,G,,Gt') - T^P^P'^^t.Ga') 

The Inequality In (6) yields 

(8)        L(f)-L1(F)    > c/V^R(u,v)-R1(u,v)+h(P,P';u,v)[f(TfT')- 

w-D1 

Pi (T,T')]  dQa(u)dGi'(v) 

< ,/> (/'  f R(u,v)-Mu,v) ♦ 

v^D 

h(P,P';u,v) [f(T,T')-P(T,T')J  dG »(u)dGa'(v) . 

Using the fact that a < c O) Implies |c| < Max(|a|, |b|), we 

obtain from (8) the further Inequality 

(9) |L(f)-L,(P)| < Max / / y^   f|R(u,ir)-R,(u,v)| 
v I uvD 

vcD' 

jh(P,P,;u,v) | |f (T^'j-FCT,!') l) dG8(u)dG i' (v) j , 

r/} (/lR(u,v)-al(u,v)| ^ 
utD  I 
vtD« 

dG,(u)dO,'(v) I , |h(P,P';u,v) | |f(T(T•)-P(T,T,) | 

from which (5) follows Immediately. 

it is easy to make the modlfKatlons required to obtain the analogous 

result for the case where Max Mtn is replaced by Sup Inf. 

£)7 .  Existence and Uniqueness . 

We can now proceed to  a  proof of Theorem  1. 

On) 
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ut 
( f   (P,P')  - Max 

0                     G 
Mln 

G« 

- Mln 
G' 

Max 
G 

,/'    ^   R(u,v)dG(u)4tf(v) 

vcS' 

and J 

^ ^I'vP,?1) - Max  Mln T^P^f ; 0,0') - Mln Max T, 
GO« n 

where T Is defined ae In (^.2) and (4.4). 

By virtue of our aseumptlons concerning the coefficient functions, 
and the domains, S and S', 

/we can assert the existence of the saddlepolnt In (l), and the 

continuity of f^P^').  Inductively, then, all the fn(P,P
l) exist 

and are continuous for all finite P and P'. 

Let us now show that the sequence X f \ converges uniformly In 

any finite portion of the (P,P')-reglün8.  Using Lemma I we obtain 

the Inequality 

(5) IH-1 (P,P')-f (P,?* ) I < Max Max 
n 

tß ,J)  l^d.T')-^^!,!')! 

dC (u)dG'(v)J , n-2,3  

Define  the  new  sequence 

(4) u l
n+1(c)   «Max 

||p|H IP« I |<c 
lfn^i(

p'p')-f
n(p'p,)l' 

Then (3) yields, using the assumption of (4a) of ^3, 

Vl'   -    n (5)       ^^,(0) < u_(kc), n-?,3,... , 

MSQ we have 

(17) 
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(6) If.CP,?')-^ (P.P')!  <    Max    Max    </(/|R(uf OilO(u)dO'(v). 
0 "      G G« 

whence 

(7) ua(c)  < «(c). 

Using our aasumptlon that L w(k c)  < cc^  we ace that the series 

Z [fn+i(
p»p,)~f

n(p»p')J   converges uniformly In any finite  region. 

Hence  f   (P,?1)  converges uniformly to a  function f^P')  which 

satisfies  the original   functional equation. 

This completes  the proof of existence.     Let us now turn to a 

proof of unlqueneaa.     Let F^.P')  be another solution which Is 

continuous at  P-C^P'-O,   and  bounded  In any finite region.     We see 

that  P^.P')   Is  then actually continuous  for all finite  P and P', 

although this fact  Is  not necessary for our proof.     It does  simplify 

It  a bit  since we can replace Sup—Inf  by      Max-Mln. 

We  then have the  two equations 

(8) P^P')   - Max    Mln    T^P« ;P; 0,0') 
G 0' 

f(PfP')   - Max    Mln    T(P,P•;f;0,0«)• 
G O1 

Applying Lemma 1,   we  see that 

(9) \?{?t?*)-r{P,?*)\  < Max    Max 
~    G G' 

Let 

y1 ^|P(T,T')-f(T,T')|dGdG 
utS 
v^^' 

(10) A(c)   - Max |F(P,P')-f(P.P,)|. 
MPIMIPMI^C 

Then   (9)  yields  the  relation 

(11) A(c)   < A(kc), 

48) 
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which, upon Iteration, yield» A(c) ^ A(knc), 11-1,2,...,. Since 

P and f are both contlnuoua at P ■ 0, P1 ■ 0, and have -he common 

value 0 there, we see that A(knc) -^ 0 a» u —^ ax Hence A(c) - 0 

and F K f. 

This completea the proof of Theorem 1. 

§f. Succeeaive Approxlmatlona In Qeneral 

The sequence of approximations, j T  {?,?*) r  , we uoed to 

construct the function f^P') was precisely that obtained 
the sequence of values associated with 

from/the finite rv-stage processess. This Is actually not the 

best sequence to use If we are Interested only In the Infinite 

stage process. As we nave pointed out elsewhere,^ 4 J, r"M, 

approximation In "policy space", here "strategy space", Is In 

many ways a -.no-e natural and more Important type of approximation. 

To Justify this and other types of approxlmatlona we require 

Theorem 3.  Under the assumptions of Theorem 1, the sequence 

defined by 

(1)      fMP^') - Max Mln T(P,P';f n;G,G'), n-0f 1,.. . 
n+i GO' 

- Mln Max 
G«   G 

Converges to the solution of (5.3) for any initial function f (P,P') 

which Is continuous In any finite part of the (P,P' )-<3omain, 

and equal to zero at P-C^P'-O. 

The proof Is precisely the same as that given above. 

6 9« Effectiveness of Solution. 

We have established existence and uniqueness of the functional 
the 

equation we derived under the assumption that/infinite process 

possessed a value for each player. The question now arises as 

tc whether the functional equation actually yields sufficient 

Information to allow each player to obtain this value.  If so, 
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we say that the  solution Is effective. 

To »how effectiveness, under the hypotheses of Theorem 1, 

we must show that  If A uses a distribution function 0(u) ■ 0(u;P,pi) 

obtained fron a pair (0,0') which yield the rain-max,   then,  regard- 

less of what B nay do,  we can guarantee a return of at least 

f(P,P') to A. 

Employing thla  fixed strategy,  A's return will be,  at 

worst, detarmined by the solution of  the  functional equation 

(1) F(P.P')  -Min  /' V7 [R(u,v)+h(P,P';u,v)p(T,T')]da(u)dO'(v)l 

vfS1 

It is easy to show, using the techniques of the preceding sections, 

cf [2j , where these equations are treated in detail, that this 

equation hfs a unique continuous solution which is zero at 

p-C^P'-o. Furthermore, the solution of this equation may be 

obtaineo as the limit of the sequence defined by 

(2) ?(P,P')  - Min [/ /R(u,v)dG(u)dG'(v) 1, 
G« L u€S J 

V€S 

Pn-»-l(p'p,) " nixi\^   /[R(u'v)^h(P'p,Ju»v)Pn(T'T,)dG^u)d0l^vM 
v«S' 

It is clear, from the derivation of G(u), that F = fi.  Hence, 

inductively, ?n^l  - fn+1» a«» defined by (7.2).  Thus 

(3)      F(P,P') - Um  F- lim  fn-f(P.P'). 
n—>OD    n—>aD 

This demonstrates the effectlvenese of the solution in the 

continuous case. 

^10.  Stability of the Solution 

An important aspect of any physical process is the dependence 

of measuring functions (in '.his case, the value of the game), 

upon the parameters and coefficient functions which determine 

(20) 
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the process.  In general, we expect small changes In these 

quantities to result In small changes In the measuring functions. 

If this le true, with appropriate definitions of M8mallne88M, 

we say the process Is stablt«  A principle of wide validity Is that 

physical processes arv stable.  Of course, since the mathematical 

transcription of any physical process Js never precise, we 

cannot conclude Immediately that the mathematical process, as 

defined by the equation. Is stsble.  Actually, one of the most 

useful tests of the realism of a mathematical model of a physical 

process is that of stability. 

Let us now establish 

Theorem 4.  Let 

(1) A(c) -    Max Max  |R(u,v)-R'(u,v)|. 
||P|H|P'||<c    u<S 

v«S • 

Then, under the hypotheses of Theorem 1, the solutions of 

(2)       *{?,?*)    - Max Mln [/ / ^R(u,v)■^h(P,P•;u,v)f(T,T')l<lG<iQ, 
G  G» r u^S  L J 

v^S 

Mln Max I 
G» G   L J. 

?(?,?') Max Mln 
G  G' 

[/ yR,(u,v)+h(P,P';u,7)F(T,T')JdGdG'j 
ucS 

«> Mln Max 
G«   G 

(21) 
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aatlefy tne Inequality 

(3) \T{P,?*)-F{?,?')\  <    £      A(knc). 
n-0 

Proof;    Applying the  Lemma of §3,  we  see  that 

(4) IftP.PM-FCP.P')!   <    Max  Maxf^ ^flR-R' |+U(T,T')-F(T»T') 
dGdG i 

Iteration of thlo inequality yields the desired result. 

511.  Further Results. 

There are a number of different ways in which the results of 

Theorems 1 through 4 can be extended and generalized. 

These results depended upon the fact that the transformation 

(T^1) was a shrinking transfomatlon, In the sense explained above. 

An intuitive visualization of this is to consider {?,?*)  as wpre- 

sentlng the resources of each side. Then each play of the game 

diminishes the total resources available. 

We can Introduce a shrinking transformation In another way 

by imposing the conciltlon that 

(1) |h(P,P';u,v)| < k < 1. 

A condition of  this  type  can »rise  in two  ways.    First of all, 

It may represent the discounted value  of  future actions as contrasted 

with  the present;   secondly,   It may  represent a  probability of 

survival In situations   in wnlch there  is a non-zerc probability of 

the  termination of the process associated with every play of the 

(22) 
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of Jl6.    Both concepts are connected through the intermediary 

of prediction theory. 

Having introduced  (1),   it la no longer neceaaary to aaaumc 

that  (T,?1)     ia a ahrlnking transformation.     We muat, however, 

assume that  (P.P1)    id tranaforma alwaya xie within some  fixed 

region.     With these  conditions,  the analoguea  of Theorems  1 

through 4 are readily obtained. 

Furthennore, similar results may be obtained,  using the 

same methods,  Tor the generalized equations mentioned in ^4, 

under various combinations of the above assumptions. 

Equations satisfying either of the above conditions correspond 

to the equations of Types One  and Two discussed  in our paper on 

one-person processes,   [2].     When we consider other types of processes, 

the analysis becomes more specialized and complicated,  cf.   [2j,  ^10. 

In a different direction,  we mey  ~elax  the  restrictions  of 

continuity which we have  imposed snd  investigate the conditions 

under which we obtain solutions to equations of the  form 

fU,?')    - Sup Inf      ?{?,?* it;0,Q'), 
0       0« 

Inf Sup      T{?,?% ;f;G,a'). 
0«     Q 

In these csftes,  w?  will  obtain ^-etfective  strategies. 

F   ^.     Differentiability. 
If we assume that under suitable assumptions of concavity and 

convexity  the functional equation roduces  to 

(1) f(P.P') - max Min       I  R(u,v)+f(T,T')   I 

then,  in certain other fortunate cases,  we can reduce the equation 
U3) 
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to a functional equation of more conventional form. 

To llluetrate the Idea, consider the functional equation 

(2)     l.;x) - Max  rg(y)+h(x-y)>f(ay+b(x-y))1 , 
0<y<x l^ J 

where 0<a,b <1, which we have dlscusaed In a number of papers, 2] 7 

If the raaxlmum/o^Afe In the Interior of the Interval, end If we 

aeeume that g and h are dlfferentlable, we obtain the two equations 

(5)      g,(y)-h'(x-y)^-b)f'(ay+b(x-y))-0 

f' (x)-h • (x-yKbf • (ay+b (x-y)), 

which allow us to compute f'Cx) via a relatively simple recurrence 

relation. 

Similarly, If we consider the equation 

CO      f(x,y) - Max   'Iln  [«(u,v;x,y)+f(T(x,y,u,v),T'(x,y,u,v)H 

-Mln   mk      C- . ] 
0^u<j 

^     mk    C 
Kx OO^y 

where x and y are no» sealers, and assume that the saddlepolnt 
always 

exists and ls/lnslde the region for all non—negative x and y, 

we can reduce (4) to the set of simultaneous equations 

VTufx(T,T' )vr'ufy(T,T" )-0, 

(5)      Rv-»-Tvfx(T,T')+Tv'fy(T,T')-0, 

fx-VTxfx^T,)' 
f -R +T f (T,!'). 
y y y yv ' 

§13.    Qne-Slded Mln-Max 

Let us now consider the equation 

(1)      f(P,P')-Mln Max [ R(u.v)+h(P,P';u,v)f(?,?•) , 

which arises frjm the allocation process described above If the 

second player Is required to announce his choice of v before each 

play. (^ ^ 
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TT8lng a technique due  to Wendell  Fleming,  we can treat  this 

equation In exactly the same fashion as these appearing  In the 

previous  sections.     We begin by noting that   for any  function  R(u,v) 

(2) Mln    Max     R(u,v)   - Mln    Max R(u,v), 
v^S«   uCS vtS'  U(v)€S 

where u(v)   Is now a  function of v which maximizes  R(u,vy   for 

fixed v.     Let  u(v)   be  this  function. 

Let V be a  value of  v which minimizes   R(u(v),v).    Then we 

have the  two Inequalltlep 

CO R(U(V),V)   - <  r(U(v),v), 

H(U(V),V)   >       R(u(V),V), 

for any otner admissible  values of u and  v. 

Using these  Inequalities we readily obtain the  analogue 

of the  lemma given  In §4   for equations of the above type.     In 

this way we can establish   the analogues of  the previous   theorems. 

§1S•     An Alternative Approach. 

Let  us now  show  that   there are alternative approaches which 

can dispense with our lemma,  and rely  Instead directly upon  the 

shrinking properties  of  the  transformation.     Let us,   .'or 

simplicity,  consider the most  Important  case  where R(u,v)  and 

h(P,Pl;u,v)   are  non—negative. 

Let,  as above 

(1) w(c)  -    Max Ma-    Max       R(u,v). 
I iP| l+l IP1 i l<c    u^ß    v^' 

As  usual,   let  us  Introduce the sequence ffn(p»p,)£ »  *<h«re 

(2) fi (P^'j-Mlr  Max  R(u,v) 
v«3'   urS 

f    .(P,P')-Mln Max    rR(u,v)>h(PlP
,;u,v)f   (T,T')     ,n- 

n+1 V€S'   u€S ^ n J 
• 1,2, ... 

c-s; 
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Then 

(3) filP,?')  < fa(P,P,)  < M^n      Ma*   [n(u,v)+*{kc)] 

< fl(P,P')+w(kc). 

Continuing  In thus  fashion,   we see  that 

{*) ?»{?,?')  < f3(P,P')   < Mln Max    rR(u,v)^h(P,P';u,v)f 8(T.T')«»- 
- v€S'  u<8 L w(atc)J 

< fa(P,P,)^(kAc). 

(5) f
n(P,P') 1 rn^l?.!") £ fn(P,P'Hknc). 1 

Thus we have  uniform convergence to a s^lut'on, under our 

aspumptlon that SP  »«(knc) < 03 . 
n-1 

§16.  Probability of Survival. 

briefly 
Let us now/consider some other classes of multi-stage 

games which lead to related classes of functional equations. 

To begin with, let us consider the allocation process discussed 

In §2 in which we assume that there is a probability h(P,P,;u,v), 

dependent upon P,?1, u and v, that the process will terminate 

at the end of the partlcubr stage.  The functional equation 

governing the process is then the equation we have discussed 

in the preceding sections where f^,?') is    the expected 

return to A.  In the fliocatlon process, h may be either 1, or 

a "discount factor*'emphasizing the present value of a return as 

opposed to a future value. 

£jl6.  Games of Survival. 

Associated with the p.evious concept of probability of 

survival is the class of games called "games of survival".  Here 

both players are actuated by the desire to survive the other, 

with each play of the game involving either a dimlnuatlon of 

resources of one or both players, or an actual chance of elimination. 

(26) 
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Here the baelc functional «quiitl( n Is 

(1) f(P,P')-Max    Hin L/    ,/? h(P.P ' ;u.v)f (?,?• )dO(u)dO'(v) 1 
G Q'  LuvL ' 

v.D 

-Mln     Max 
Q'        Ü      [ J 

where  ("(P,?')   la now   the  probability   that  A  aurvlve B.     The 

equation la  valid only  for P.P^O with   the aide  conditions 

(2) f(P.O)   -  1,   P>OJ 

f(0,P')-  0,   P'>0( 

f(0,0)   -   I/?,   (aa a matter oi   convention). 

Thla equation  la  very much mure difficult  to  treat  than the 

foregoing equatlona   In the caaea  of greateat  Interest where 

hjjl  rnd T and T1   a-"  merely restricted   to  He  In  the  bounded 

regions containing P and P'. 

Particular results may be found  In 5J,  Mllcor and 

Shapley, [12].     This  approach  la  occasionally useful  In  treating 

non-zero sum games,   see 1 ^ ]' 

^17.    Games of Pursuit. 

Finally,   let us  mention  the  very  Interesting  and difficult 

problems connected with pursuit games.     There  Is PS yet no 

satisfactory theory of continuous  pursuit games,  which necessarily 

restricts us to a discussion of discrete games. 

Let ua assiLne that two players,  A and B,   are restricted to 

positions at the lattice points  of  the  plane.     A  can move  up to 

k  units from his position In either horizontal  or vertical direction, 

and B can move up to   1 units  In the same manner.     With both players 

required to move simultaneously,  we are  Interested  In  the  strategies 

which enable A to catch B,  to catch B In minimum time,   or  to 

minimize some other payoff function. 
(27) 
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II   pl«y«»'1    n  th«   um.    .mied  reglcm of  the  pltne,   It  Is not 

••ey   to determine  *h9n  cajtare üCCUFB,   end  the  floblem Is not 

trivial   for  «   bounded   region   either. 

Let   UM   eet 

(1)      l{¥,f,}   - tue Urne required for A to catch B when 
A is tt the lattice point P, B Is at the 
lattice point Q, and both players employ 
uptlmal strategies. 

Then, without Inquiring Into the existence of our function, 

the equation aatlnfled by f is 

{?) (P.P')   -  U Win    Max L/   / f (P-»-e,P'-»-f )dO(e)da'(f) 1 , 
G 0« I J 

-  1+  Max     Ml 
0'        G "[■■ J 

where G(e)   and  G(f)  are distributions over the  allowable 

vectors e  and  f.     This  equation holds  prior to  capture.     At 
done 

capture,   the process  terminates.    Very little has beeiy^ln connection 

with eetabllshlng existence and uniqueness  theorems for these 

equations.     We shall discuss   them In a subsequent paper. 

§18.     Colonel Blotto. 

Let  us  now  consider a  well-known  single—stage game which  can 

profitably  be considered  to  be a multl—stage process.     Let A and  B 

possess  the  scalar quantlt  es  x and y,   both oosltlve. 

A divides x  .nto a  sum of N non-negative  quantities x t »xg,. . . ,Xjjf 

and  B does   llkewlae  with  y,   BO  that we  have 

(1) x  " xi^Xa-»-. • ••♦•Xv,,   x > 0 

y - yi^y«^-•.+yN- 

As  a   result  of  this allocation,   A receives  a  pay-off of 
N 

(2) -Vxi'yj) * z   max (xi-yi'0)' 

(r8) 
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and B a pay-off of -Rj-lx.jy.). 

Let us define  fN(x,y)  to  be the  value of  this game.    Then we 

have the recurrence relations 
x     y 

(3) fi(x,y)   » Max Mln   f J"       Max  (x ,-y! ,ü)dG (^jdC (i|), 
G      G"     0    0 

x      y 
- Mln Max   if [T       Max   (xi-yi,0)aG (x^dO1(^), 

G'     G      0    0 
x       y 

fN+1(x,y)-Max Mln     [ c/   ^       [Max(x ,-y ,.0) + f   (x-x »,y-y »^dGl^jdG» (M)] 
w^J- G      G1 0        0 

-Mln Max     [    ...    ] 
G'     G 

This  formulation facllltateo  both analytical  and   computational 

treatment. 

(29) 
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